
Variable Neighborhood Search for Integrated
Timetable Based Design of Railway

Infrastructure

Igor Grujičić1, Günther Raidl1, Andreas Schöbel2

1Institute of Computer Graphics and Algorithms
Vienna University of Technology , Vienna, Austria

2Institute of Transportation, Research Centre for Railway Engineering,
Vienna University of Technology , Vienna, Austria

Abstract

In this paper we deal with the problem of building new or extending an existing
railway infrastructure. The goal is to determine a minimum cost infrastructure ful-
filling the requirements defined by an integrated timetable and the operation of the
railway system. We first model this planning task as a combinatorial network opti-
mization problem, capturing the essential aspects. We then present a metaheuristic
solution method based on general variable neighborhood search that makes use of
a dynamic programming procedure for realizing individual connections. Compu-
tational experiments indicate that the suggested approach is promising and the
analysis of obtained results gives useful hints for future work in this area.

Keywords: Railway Infrastructure Design, Integrated Timetables, Dynamic
Programming, Variable Neighborhood Search.

1 Email: {grujicic|raidl}@ads.tuwien.ac.at
2 Email: andreas.schoebel@tuwien.ac.at

1 Introduction

The design of new railway infrastructure is nowadays strongly guided by the
prespecified integrated timetables that have been derived from expected traffic
to be served [4]. Integrated timetables synchronize the traffic in major nodes
(hubs, e.g., main railway stations in major cities) at regular time intervals,
ensuring connectivity between different lines with minimum waiting times at
those hubs, and allowing passengers to easily remember the regular departure
and arrival times.

The Timetable Based Design of Railway Infrastructure (TTBDRI) problem
can be summarized as follows: The aim is to extend an existing or to build a
new railway infrastructure in such a way that all scheduled connections can
be realized according to the given (integrated) timetable and costs are as low
as possible. Implementing the concept of integrated timetables imposes major
challenges and constraints, see e.g. [1]. Computational complexity of TTBDRI
is discussed in [6].

In this paper we present a concrete combinatorial approach for model-
ing the basic problem which builds upon our former work [2]. It considers
already existing railway infrastructure as well as extension possibilities in a
fine-grained way. We then suggest a variable neighborhood search algorithm
for approximately solving this problem, which makes use of a dynamic pro-
gramming procedure for realizing individual connections locally optimal.

2 Problem Definition

We are given the following input data.

• An undirected graph G = (V,E) represents the existing railway infrastruc-
ture plus all possible extensions. The node set V contains different types
of nodes, first of all the following infrastructure nodes corresponding to real
objects:
· track segment nodes representing physical, simple track segments of a

certain length, they always have at most degree two;
· switch nodes representing classical switches, they have degree three (or

possibly higher if more complex switches are modeled by single nodes);
· crossing nodes representing crossings of two lines, which always have

degree four;
· signal position nodes representing signaling stations; they always have

degree two.
To model mutually exclusive alternatives for infrastructure extensions, we

further use:
· alternative nodes, which have degree k + 1 for k mutually exclusive

options.
Edges E represent the corresponding connections of the respective nodes.
Parallel tracks are always represented by multiple paths.

• Let V R ⊆ V be the set of signal position nodes. Paths starting and ending
at such nodes and otherwise containing only nodes from V \ V R are called
(compound) routes. Once a compound route is reserved for a train, no other
train is allowed to enter any part of this route before the train has left and
the route is released again.

• Let the subgraph G0 = (V 0, E0), with V 0 ⊆ V and E0 ⊂ E, corre-
spond to the already existing infrastructure, and graph G′ = (V ′, E ′) with
V ′ = V \ V 0, E ′ = E \ E0 represent the infrastructure by which the ex-
isting infrastructure may be extended. Alternative nodes are considered
to be part of V 0 iff one of the modeled options corresponds to an existing
infrastructure, virtual nodes are part of V 0 if both adjacent nodes are also
in V 0. All nodes v ∈ V have associated costs cv ≥ 0 and lengths lv ≥ 0,
with cv = 0 for alternative nodes, virtual nodes, and all nodes in v ∈ V 0,
lv = 0 for signal position nodes, alternative nodes and virtual nodes.

• Set S represents the major railway stations considered in the integrated
timetable. Each railway station s ∈ S has associated a set of simple track
segment nodes V (s) ⊂ V corresponding to the tracks at the platforms for
boarding/disembarking trains.

• Let GD = (V,A) be the directed version of graph G, where we have for each
edge (u, v) ∈ E two corresponding oppositely directed arcs (u, v), (v, u) ∈ A.

• An integrated timetable specifies a set of connections C = {C1, . . . , C|C|} to
be realized, where a connection C` ∈ C is a tuple (sstart` , send` , T start

` , T end
` ,

GD
` , train`, l`) with sstart` , send` ∈ S being start and destination stations and

T start
` and T end

` the times when the train may leave station sstart` and has to
arrive at station send` latest, respectively. The connection has to be realized
by a path in a given subgraph GD

` = (V`, A`) with V` ⊆ V and A` ⊆ A. It
can safely be assumed that GD

` is acyclic. Finally, train` indicates the used
train’s ID. Typically, a train is used for a series of connections. Let l(train`)
refer to the train’s length.

• Values m`,v ≥ 0 indicate the maximum allowed average speed by which the
train realizing connection C` ∈ C may go over node v ∈ V`.

A solution consists of:

• A subgraph G′′ = (V ′′, E ′′) with V ′′ ⊂ V and E ′′ ⊆ E ′ indicating the
infrastructure to be installed.
Let Ge = (V e, Ee) represent the complete augmented infrastructure, i.e.,
V e = V 0 ∪ V ′′ and Ee = E0 ∪ E ′′.

• For each connection C` ∈ C a directed path P` ⊆ A` starting at a node
from V (sstart`), ending at a vertex from V (send`). Let V (P`) ⊆ V` be the set
of all nodes on this path.
Considering the signal position nodes V R as separators, P` can be par-
titioned into the ordered list of compound routes L` = (P`,1, . . . , P`,λ`)
with corresponding node sets V (P`,1), . . . , V (P`,λ`). The length of route
P`,i, i = 1, . . . , λ`, is l(P`,i) =

∑
v∈V (P`,i)

lv.

• For each (infrastructure) node v ∈ V (P`), C` ∈ C, an actual (average) speed
speed `,v that does not exceed the limit m`,v. Consequently, the train takes
time T`,v = lv/speed `,v for passing node v.

• For each route P`,i, i = 1, . . . , λ`, C` ∈ C, a reservation time slot (T enter
`,i , T exit

`,i)
in which the train will be able to pass this route.

To be feasible, a solution must satisfy:

• For each connection C` ∈ C: ∀(u, v) ∈ P` → u, v ∈ V e ∧ (u, v) ∈ Ee, i.e.,
the infrastructure used in the chosen paths must exist or be installed.

• All constraints for realizing possible extensions (e.g., mutual exclusivity of
some alternatives) must be adhered.

• The time slots of consecutive routes of a connection overlap by a certain
safety margin.

• For each connection C` ∈ C, the earliest start and latest arrival times T start
`

and T end
` are adhered, respectively.

• At each time, each node v ∈ V e \ V R (i.e., except signal position nodes)
may only be part of at most one reserved route.

• If a train is used for two successive connections, its arrival node at the
station’s platform must be the same as the node where it leaves from later.

The objective is to find a feasible solution with minimum total costs
∑

v∈V ′′ cv.

3 Solution method

We apply a general variable neighborhood search (VNS) scheme with embed-
ded variable neighborhood descent (VND) as proposed in [3]. A solution is
represented by a permutation π of the connections C to be realized and the

VNS neighborhood structures are defined on it. Each generated candidate per-
mutation is decoded into complete solution as defined above by a construction
heuristic that considers each connection in the order given by the permutation
and realizes it with local minimal costs by dynamic programming (DP).

The following section presents this DP, while Section 3.2 describes the VNS
framework.

3.1 Dynamic programming

Let C` ∈ C be the (single) connection for which we want to find a feasible
solution.

To cover the aspect that a train may possibly start from and end at different
platforms we add start and end nodes σ and τ to the set V` of the connection
C`, i.e., V ′` = V` ∪ {σ, τ}. Furtheron, we define the extended arc set A′` =
A` ∪ {(σ, s) | ∀s ∈ V (sstart`)} ∪ {(s, τ) | ∀s ∈ V (send`)}.

For every node v ∈ V`\V R
` we calculate a minimum reservation time ∆Tmin

R,v ,
considering just predecessor and successor nodes, as: min {lu/mu|(u, v) ∈ A′`}+
min {lu/mu|(v, u) ∈ A′`}+ lv/mv.

For every node v ∈ V` \ V R
` we define a set Yv of time intervals in which

it may be possible to reserve node v for the train to pass it. Every such time
interval of Yv has to have a duration of at least ∆Tmin

R,v .

Our DP stores labels (c, T start
R , T end

R , t, π) for every reached node v ∈ V ′` ,
where:

(i) π represents the preceding node;

(ii) c represents the accumulated costs for the path from σ to v including cv;

(iii) T start
R represents the earliest time from which the reservation of the node
v may start;

(iv) T end
R represents the latest time until which the reservation of the node v

may last;

(v) t represents the earliest arrival time at node v in [T start
R , T end

R].

The initial label for node σ is: (0, T start
` , T end

` , T start
` , null).

The extend function (c, T start
R , T end

R , t, π) → (c′, T start′
R , T end′

R , t′, π′) for con-
sidering as next step to go from node u to node v is: c′ = c+cv, π

′ = u and for
the calculation of the t′, T start′

R and T end′
R we need to distinguish the following

cases:

(i) when v ∈ V (sstart`), then for every [T low, T up] ∈ Yv ⇒ T start′
R = T low,

T end′
R = T up and t′ = T low;

(ii) when v ∈ V R
` ∪{τ}, then T start′

R = T start
R , T end′

R = T end
R and t′ = t+ lu/mu;

(iii) when v ∈ V` \ (V (sstart`) ∪ V R
` ∪ {τ}), we distinguish the following:

• preceding node u ∈ V R
` , then for every [T low, T up] ∈ Yv having nonempty

intersection with [t, T end
R]⇒ T start′

R =

 t , if T low ≤ t

T low , otherwise
, T end′

R = T up

and t′ = T start′
R , nothing otherwise;

• preceding node u /∈ V R
` , then for every [T low, T up] ∈ Yv having nonempty

intersection with [T start
R , T end

R]⇒ [T start′
R , T end′

R] = [T low, T up]∩[T start
R , T end

R]
and t′ =

(
T start′
R − T start

R

)
+ (t+ lu/mu), nothing otherwise.

An extension is feasible iff the following two conditions hold. (a) The
actual arrival time at node v has to be feasible, i.e, t′ ∈ [T start′

R , T end′
R]. (b) A

time exists at which the train can pass from the previous route to the current
one. This is expressed as T start′

R ∈ [T start
W , T end

W] where [T start
W , T end

W] = [t, T end
R]

of the last signal position node on the path from σ to v.

Labels that are dominated by others can be removed. A label l = (c, T start
R ,

T end
R , t, π) dominates a label l′ = (c′, T start′

R , T end′
R , t′, π′) iff the reservation

time interval [T start
R , T end

R] of label l contains the reservation time interval
[T start′

R , T end′
R] of label l′ and c ≤ c′ as well as t ≤ t′ and at least one of

these inequalities holds strictly.

Once we have reached end node τ an actual solution is obtained by going
backwards towards start node σ. In every step we calculate the reservation
time interval for the visited node and the speed used for traveling through it.

3.2 VNS framework

The VND considers the following classical permutation neighborhoods in a
next-improvement manner in the given order: Adjacent pairwise exchange
(Swap), Exchange, Forward-Shift, Forward-Shift-Block, Backward-Shift, Back-
ward-Shift-Block, Double-Shift. For their explanations see e.g. [5].

Shaking in VNS: In every VNS iteration we first randomly choose between
k-Swap and k-Exchange with equal probability. When k-Swap (k-Exchange)
is selected, k random swap (exchange) moves are performed.

It might happen that the decoding of a permutation π = (p1, p2, . . . , pi,
. . . , p|C|) to a feasible solution cannot be performed as some connection pi can-
not be realized by the DP procedure as previously realized connections block
essential part. Such infeasible permutations are discarded, but even more im-
portantly, all permutations starting with the same prefix (p1, p2, . . . , pi) will
also fail. In order to prevent an unnecessary investigation of permutations

with already known infeasible prefixes in the further search, we store all these
prefixes in a trie data structure and pre-check each candidate solution with it
before calling the decoding procedure.

4 Experimental results

All experiments were carried out on an Intel Core i7-860 processor on 2.80GHz
with 8GB of RAM. All algorithms have been implemented in C++. Tests
are run on instances obtained from real scenarios in Austria as well as on
artificially generated instances. We compare a restricted enumeration heuristic
(REH) to the VNS.

In REH a solution is primarily built by following a greedy constructive
approach. In each iteration, all not yet realized connections are tried for
realization, and a feasible one increasing the total costs the least is adopted.
In the case none of the remaining connections can be feasibly realized, the
procedure backtracks to the previous position in the permutation and tries
the next-best feasible choice.

The VNS as well as REH were terminated after 200 or 1000 seconds de-
pending on |C| ≤ 10 or |C| > 10, respectively, or, in case of the VNS, when
10 major iterations without improvement have been performed. Due to its
stochastic nature, we ran the VNS 10 times on each instance and report here
mean values.

Table 1 presents results of our tests. Listed are for each instance its
name, the number of nodes and edges as well as the number of connections in
timetable C, objective values, CPU-times ttotal, and times needed by VNS to
obtain the finally best solution tbest. Best results are printed bold.

Table 1: Results on small set of instances.
Instance REH VNS

Name |V | |E| |C| Obj. Value∗ ttotal [s] Obj. Value∗ tbest[s] ttotal [s]
generated832168 108 118 4 0.25 0.26 0 12.20 12.20
generated433233 190 208 4 0 0.31 0 2.47 2.47
generated123948 153 166 8 62.6923 0.20 0 184.67 184.67
generated373145 132 146 8 – 200 0.25 120.23 200
generated491776 307 340 8 0.25 35.99 0 89.97 89.97
FB scenario2 211 219 10 33.865 166.75 0 34.14 34.143
FB scenario3 211 219 10 39.09 0.41 5.25 122.21 200
FB scenario4 211 219 18 – 1000 3.705 186.63 1000

Average times 175.49 94.07 215.43
∗Objective values are given in Millions of Euro.

Obtained results show that although on average the VNS requires more
time than REH, it achieves better solutions on all test instances. In two cases
the VNS has found solutions for instances where REH terminated without
finding any feasible solution. Taken all together, we can conclude that the

presented approach is efficient for smaller to mid-size instances. The fact that
the VNS, but also REH, were not able to find a feasible solution even with
prolonged execution times for instances where |C| > 30 tells us however, that
further improvements are necessary.

5 Conclusions and future work

In this article we have presented a formal combinatorial optimization model for
the integrated timetable-based design of railway infrastructure. We have then
suggested a metaheuristic approach for approximately solving this problem,
which consists of a VNS framework in which an exact dynamic programming
procedure is embedded for realizing individual connections. Obtained results
appear reasonable and encouraging but also indicate the need of further algo-
rithmic improvements to solve more complex practical scenarios effectively.

In future work we aim at applying advanced hybrid metaheuristics but also
exact techniques based on mathematical programming methods like column
generation and Benders’ decomposition.

References

[1] Caimi, G., Laumans, M., Schüpbach, K., Wörner, S. and Fuchsberger, M., The periodic
service intention as a conceptual framework for generating timetables with partial
periodicity, Transportation Planning and Technology, 34(4) (2011), 323–339.

[2] Grujičić, I., Raidl, G., Schöbel, A., and Besau, G., A Metaheuristic Approach for
Integrated Timetable based Design of Railway Infrastructure, in Proceedings of the 3rd
International Conference on Road and Rail Infrastructure – CETRA 2014, Split, Croatia,
(2014) 691 – 696.

[3] Hansen, P., and N. Mladenović, An introduction to variable neighborhood search, Voss,
S., et al., editors, Meta-heuristics, Advances and trends in local search paradigms for
optimization, Kluwer Academic Publishers, Dordrecht, (1999), 433–458.

[4] Lichtenegger, M., Der integrierte Taktfahrplan: Abbildung und Konstruktion mit
Hilfe der Graphentheorie, Minimierung der Realisierungskosten, Eisenbahntechnische
Rundschau, 40 (1991), 171–175.

[5] Reeves, C., Landscapes, operators and heuristic search, Annals of Operations Research,
86(1999), 473 – 490.

[6] Schöbel, A., Raidl, G. R., Grujičić, I., Besau, G., and Schuster, G., An Optimization
Model for Integrated Timetable Based Design of Railway Infrastructure, in Proceedings
of the 5th International Seminar on Railway Operations Modelling and Analysis -
RailCopenhagen 2013, Copenhagen, Denmark, (2013) 765–774.

	Introduction
	Problem Definition
	Solution method
	Dynamic programming
	VNS framework

	Experimental results
	Conclusions and future work
	References

