
D I S S E R T A T I O N

Exact and Heuristic Approaches
for Solving the

Bounded Diameter
Minimum Spanning Tree Problem

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften unter der Leitung von

ao. Univ.-Prof. Dr. Günther Raidl

Institut für Computergraphik und Algorithmen E186
Technische Universität Wien

und

ao. Univ.-Prof. Dr. Ulrich Pferschy

Institut für Statistik und Operations Research
Universität Graz

eingereicht an der Technischen Universität Wien
Fakultät für Informatik von

Mag. DI Martin Gruber

Matrikelnummer 9025080
Hietzinger Hauptstraße 97/10, 1130 Wien

Wien, am 19. Mai 2009

Martin Gruber

ii

Kurzfassung

Das Finden eines durchmesserbeschränkten minimale Spannbaumes (bounded dia-
meter minimum spanning tree, BDMST) ist ein kombinatorisches Optimierungspro-
blem aus dem Bereich des Netzwerkdesigns und hat Anwendungen in verschiedensten
Bereichen. So unter anderem beim Entwurf von kabelgebundenen Kommunikations-
netzwerken, sofern gewisse Anforderungen hinsichtlich der Kommunikationsgüte
erfüllt werden sollen. Um die Wahrscheinlichkeit für das Auftreten von Störun-
gen möglichst gering zu halten, soll zum Beispiel ein Signal über weniger als eine
festgelegte Anzahl an Routern laufen. Aber auch bei ad-hoc Funknetzwerken oder
bei der Datenkomprimierung sowie bei verteilten Mutual Exclusion Algorithmen gilt
es immer wieder, einen BDMST zu berechnen.

Bei dieser Problemstellung gilt es, in einem ungerichteten, gewichteten und zusam-
menhängenden Graphen G = (V,E) mit der Knotenmenge V und der Kantenmenge
E einen aufspannenden Baum minimaler Kosten zu finden. Zusätzlich muss gelten,
dass die Anzahl der Kanten auf jedem Pfad zwischen zwei beliebigen Knoten inner-
halb des Baumes kleiner oder gleich einem Durchmesser D ist. Dieses Problem ist
für eine Durchmesserbeschränkung von 4 ≤ D < |V | − 1 NP-schwer.

Es existiert eine Vielzahl verschiedener Verfahren, um dieses Problem zu lösen. Für
eine exakte Lösung des BDMST Problems haben sich neben Modellen, die auf Miller-
Tucker-Zemlin Ungleichungen aufbauen, besonders spezielle Flussformulierungen
als sehr erfolgreich herausgestellt. Während die mit diesen Modellen erhaltenen
Schranken sehr gut sind, ist die Anzahl der benötigten Variablen sehr groß. Aufgrund
der Komplexität des Problems ist die Anwendbarkeit exakter Verfahren auf relativ
kleine Instanzen mit nicht mehr als 100 Knoten beschränkt, sofern von vollständigen
Graphen ausgegangen wird. Um Instanzen mit 1000 und mehr Knoten (zumindest

iii

Kurzfassung

näherungsweise) lösen zu können, wurden auch verschiedene Heuristiken entwick-
elt. Einfachen, aber schnellen Konstruktionsheuristiken basieren auf dem Algorith-
mus von Prim zum Finden eines minimalen Spannbaumes (minimum spanning tree,
MST). Da diese aber aufgrund sehr lokal getroffener Entscheidungen speziell auf
euklidischen Graphen im Normalfall versagen, da hier durchaus auch längere Kan-
ten Teil einer guten Lösung sein können, wurden auch Metaheursitiken eingesetzt –
hauptsächlich evolutionäre Algorithmen (evolutionary algorithms, EAs).

In dieser Dissertation werden neben neuen Verfahren, um Instanzen des BDMST
Problems moderater Größe beweisbar optimal zu lösen, auch Algorithmen
vorgestellt, um auf größeren Instanzen durchmesserbeschränkte Spannbäume in einer
Qualität zu berechnen, die bisher nicht möglich war.

Basierend auf drei unterschiedlichen Lösungsrepräsentationen werden fünf, sich
gegenseitig ergänzende Nachbarschaftsstrukturen definiert, die dazu verwendet wer-
den, um aus gegebenen Bäumen jeweils neue, bessere Lösungen zu generieren. Um
ein möglichst effizientes Durchsuchen der Nachbarschaften zu realisieren, wird hier
großes Augenmerk auf eine inkrementelle Auswertung dieser gelegt.

Zwei Formulierungen des BDMST Problems als ganzzahlige lineare Programme (in-
teger linear programs, ILPs) werden vorgestellt, die versuchen, das Hauptproblem
der Flussformulierungen, die große Anzahl an Variablen, zu vermeiden. Ein ein-
faches und kompaktes 0–1 ILP Modell wird, eingebettet in einen Branch&Cut Al-
gorithmus, durch das dynamische Hinzufügen verletzter Ungleichungen zur Sicher-
stellung der Konnektivität und der Kreisfreiheit zusätzlich gestärkt. Das zweite
Modell basiert auf sogenannten

”
jump inequalities“, Nebenbedingungen, die die

Durchmesserbeschränkung sicherstellen. Da ihre Anzahl exponentiell mit der Kno-
tenanzahl |V | steigt, kommt auch hier ein Branch&Cut Verfahren zum Einsatz.
Da das Identifizieren einer verletzten

”
jump“ Nebenbedingung in einer fraktionalen

Lösung des zugehörigen linearen Programms mutmaßlich NP-schwer ist, wird eine
Hierarchie von (Meta-)Heursitiken eingesetzt, um dieses Separierungsproblem ef-
fizient zu lösen.

Für größere Instanzen werden drei unterschiedliche Metaheuristiken vorgestellt,
die auf den für das BDMST Problem definierten Nachbarschaften aufbauen.
Diese werden als lokale Verbesserungsstrategien innerhalb einer variablen Nach-
barschaftssuche (variable neighborhood search, VNS), eines evolutionären Algorith-
mus mit einer neuen Lösungsrepräsentation, und einem Ameisensystem (ant colony
optimization, ACO) eingesetzt. Zu guter Letzt wird noch eine neue Konstruktion-
sheuristik präsentiert, die auf einem Clustering der Knoten basiert und speziell für
große euklidische Instanzen geeignet ist.

iv

Die Testergebnisse zeigen eindrucksvoll die Effizienz der hier beschriebenen Ver-
fahren. Mit Hilfe des ganzzahligen linearen Programms auf Basis der

”
jump in-

equalities“ konnte für mehrere bisher nicht exakt lösbare Instanzen das Optimum
bestimmt werden. Besonders bei größeren Durchmessern ist dieser Ansatz auch
den sehr erfolgreichen Flussformulierungen überlegen. Für Instanzen mit mehreren
hundert Knoten ist der vorgestellte ACO die zur Zeit führende Metaheuristik, um
qualitativ hochwertige Lösungen in vernünftiger Zeit zu berechnen. Schlussendlich
liefert die hier präsentierte Konstruktionsheuristik für sehr große euklidische In-
stanzen durchmesserbeschränkte Spannbäume mit einer Lösungsgüte, die bisherige
Verfahren aus der Literatur besonders bei kleinen Durchmessern bei weitem nicht
erreichen konnten.

v

vi

Abstract

The bounded diameter minimum spanning tree (BDMST) problem is a combinatorial
optimization problem appearing in applications such as wire-based communication
network design when quality of service is of major concern and, for example, a
signal between any two nodes in the network should not pass more than a fixed
number of routers. It also arises in ad-hoc wireless networks and in the areas of data
compression and distributed mutual exclusion algorithms.

Given an undirected, weighted, and connected graph G = (V,E) with a node set V
and an edge set E the goal is to identify a tree structure of minimum costs connecting
all nodes of this network where the number of edges on each path linking any pair of
nodes is limited by a maximum diameter D. This problem is known to be NP-hard
for a diameter bound of 4 ≤ D < |V | − 1.

There exist a great variety of different approaches to solve this problem. Beside
models based on Miller-Tucker-Zemlin inequalities especially multi-commodity hop-
indexed flow formulations have proven to be very successful in exactly solving the
BDMST problem. However, to obtain tight linear programming (LP) relaxation
bounds these models require a huge number of variables. Due to the complexity of
the problem exact approaches are limited to relatively small instances with clearly
less than 100 nodes when considering complete graphs. Therefore, heuristics have
been developed to solve instances with up to 1000 and more nodes. Fast and sim-
ple greedy construction heuristics are primarily based on Prim’s minimum spanning
tree algorithm, but in particular on Euclidean instances this greedy behavior mis-
leads these heuristics since in this case in general also long edges are part of a
good BDMST. For higher quality solutions metaheuristics, especially evolutionary
algorithms, have been proposed.

vii

Abstract

In this thesis, various new approaches are presented to solve moderately sized
instances of the BDMST problem to proven optimality, as well as constructing
diameter-constrained trees on larger instances of significantly higher quality than
it was possible before.

First, five local search neighborhood structures are defined to locally improve (in-
termediate) trees computed with one of the proposed algorithms. Since they are
based on three different representations of a solution they complement each other
in a perfect way. Special attention is payed on the efficient evaluation of solutions
and moves when searching these neighborhoods.

Two different exact integer linear programming models for the BDMST problem
are introduced trying to overcome the main problem of the multi-commodity flow
formulations, i.e., the great number of required variables. A simple and compact
0–1 integer linear programming (ILP) model is further strengthened by dynamically
adding violated connection and cycle elimination constraints within a Branch&Cut
environment. The second model is based on so-called jump inequalities to ensure
the diameter bound. Again, Branch&Cut is utilized due to the fact that the number
of these jump inequalities grows exponentially with |V |. Since identifying a violated
jump inequality for a fractional LP solution is conjectured to beNP-hard a hierarchy
of (meta-)heuristics is used to solve this separation problem efficiently.

For larger instances three different metaheuristics are proposed making use of the
defined neighborhoods. They are utilized by local improvement strategies within
a variable neighborhood search (VNS), an evolutionary algorithm (EA) utilizing a
new encoding of solutions, and an ant colony optimization (ACO). Finally, a new
fast construction heuristic based on clustering is presented designed especially for
Euclidean instances.

The computational results demonstrate the efficiency of the discussed approaches.
Using the ILP model based on jump inequalities it was possible to discover so long
unknown optima for various problem instances, and to compete with state-of-the-
art hop-indexed multi-commodity flow formulations, especially when the diameter
bound is loose. For larger instances with hundreds of nodes, the ACO is currently
the leading metaheuristic to get high-quality solutions within reasonable time. In
the end, also the new construction heuristic outperforms standard algorithms from
the literature significantly on very large Euclidean instances.

viii

Acknowledgments

Brevity is the soul of wit.

First of all I am deeply grateful to my supervisor Prof. Günther Raidl, who gave
me the opportunity to do my PhD at the Vienna University of Technology and
introduced me into the field of combinatorial optimization. He provided me with
invaluable advices and ideas, help and encouragement. Thank you for your tireless
efforts! I further want to thank Prof. Ulrich Pferschy, who agreed to be the second
assessor of this thesis, for his feedback and suggestions for improvement.

During my time at university I had a lot of colleagues, and it would be unfair to
only name some of them at this place since I am really glad to also call them all my
friends! So thank you all for our fruitful discussions and the exchange of ideas, your
support and helpful suggestions, and also the lot of fun we had making these years
really a great time.

Last but not least I also want to thank my family and all my friends for their love
and support over all these years.

My special thanks go to all the people responsible to produce and deliver coffee (as well as the corresponding

amount of sugar), their contribution to this thesis will never be forgotten!

ix

x

Contents

1 Introduction 1
1.1 Methodologies . 8
1.2 Overview of the Thesis . 9

2 Methodologies 13
2.1 Exact Algorithms . 13

2.1.1 Linear Programming . 13
2.1.2 Dynamic Programming . 22
2.1.3 Lagrangean Relaxation (LR) 23

2.2 (Meta-)Heuristics . 24
2.2.1 Construction Heuristics . 24
2.2.2 Approximation Algorithms 25
2.2.3 Local Search . 25
2.2.4 Greedy Randomized Adaptive Search Procedure (GRASP) . 26
2.2.5 Variable Neighborhood Search (VNS) 28
2.2.6 Tabu Search (TS) . 29
2.2.7 Evolutionary Algorithms (EA) 31
2.2.8 Ant Colony Optimization (ACO) 33

2.3 Hybrid Algorithms . 34
2.3.1 Incorporating (Meta-)Heuristics in Exact Algorithms 34
2.3.2 Incorporating Exact Algorithms in (Meta-)Heuristics 35
2.3.3 Collaborative Approaches . 36

3 Previous Work 39
3.1 Exact Algorithms . 39

xi

Contents

3.2 Construction Heuristics . 45

3.3 Metaheuristics . 47

3.4 Approximation Results . 48

4 Local Search Neighborhoods 51

4.1 Incremental Evaluation . 52

4.2 Tree-Structure Based Neighborhoods 53

4.2.1 Arc Exchange Neighborhood 53

4.2.2 Node Swap Neighborhood . 53

4.3 Level-Based Neighborhoods . 55

4.3.1 Level Change Neighborhood 56

4.3.2 Center Exchange Level Neighborhood 64

4.4 Clustering-Based Neighborhood . 64

5 Level-Based Integer Linear Programming Approach 67

5.1 Introduction . 67

5.2 A Compact 0–1 ILP Formulation . 68

5.2.1 The Even Diameter Case . 68

5.2.2 The Odd Diameter Case . 69

5.3 Branch&Cut . 70

5.3.1 Connection Cuts . 71

5.3.2 Cycle Elimination Cuts . 71

5.4 Computational Results . 72

5.5 Additional Constraints . 75

5.6 Conclusions . 76

6 Integer Linear Programming Approach Based on Jump Inequalities 79

6.1 Introduction . 79

6.2 The Jump Model . 80

6.3 Jump Cut Separation . 83

6.3.1 Exact Separation Model . 83

6.3.2 Simple Construction Heuristic CA 85

6.3.3 Constraint Graph Based Construction Heuristic CB 86

6.3.4 Local Search and Tabu Search 89

6.4 Primal Heuristics . 91

6.5 Computational Results . 91

6.6 Conclusions and Future Work . 98

7 Metaheuristics for the BDMST Problem 99

7.1 Introduction . 99

7.2 Variable Neighborhood Search . 100

xii

Contents

7.3 Evolutionary Algorithm . 101
7.4 Ant Colony Optimization . 102
7.5 Computational Results . 103
7.6 Conclusions . 109

8 Clustering-Based Construction Heuristic 111
8.1 Introduction . 111
8.2 Clustering-Based Construction Heuristic 112

8.2.1 Hierarchical Clustering . 113
8.2.2 Height Restricted Clustering 113
8.2.3 Determining Good Root Nodes 116
8.2.4 Inherent Problem of Clustering 122

8.3 Refinement of Cutting Positions . 123
8.4 The Odd-Diameter Case . 124
8.5 Local Search Neighborhood . 125
8.6 Computational Results . 125
8.7 Conclusions and Future Work . 136

9 Conclusions 137

Bibliography 141

A Curriculum Vitae 153

xiii

xiv

Chapter 1

Introduction

Network design is an active topic in research since numerous real world problems
can be mapped to a formulation dealing with nodes and edges within a graph. Ob-
viously, problems in the fields of telecommunication networks or information tech-
nology infrastructure fall into this category. One fundamental problem in this area
is the minimum spanning tree (MST) problem where all nodes in a graph have to
be linked together in a circle-free structure in the cheapest possible way. The MST
problem itself is easy to solve by polynomial-time algorithms like those of Prim [109]
or Kruskal [90], but adding additional constraints often make the corresponding op-
timization problem a hard one. For example, in the degree-constraint MST problem
a bound on the degree, i.e., the number of incident edges, is imposed on every node
in the tree to model that in a telecommunication network the used hardware (e.g., a
router or switch) can only handle a limited amount of links. In the leaf-constrained
MST problem a final solution must have at least l leaves, i.e., nodes with degree one,
a problem with applications not only in network but also in circuit design. When
not all but only a subset of nodes, the terminals, have to be connected in a tree
of minimum costs, this is called the Steiner tree problem, where the non-terminals
or Steiner nodes are allowed to appear in the final solution but do not have to.
An extension is the prize-collecting Steiner tree problem where a decision has to
be made which customers are connected to an existing infrastructure maximizing
the profit under consideration of connection and maintenance costs. Biconnectivity
is of major interest when designing fault tolerant networks where the loss of one
transmission node or the disruption of a single link should not lead to a complete
breakdown of the whole communication within the network. However, there are also
other problems that can be expressed as network design problems, such as various

1

Chapter 1 Introduction

transportation and routing problems. For example, in the famous traveling sales-
man problem (TSP), one has to find a round trip (Hamiltonian cycle) through a
set of cities (nodes) of minimal length. A practical correspondent appears in the
automated manufacturing of printed circuits when one wants to minimize the time
required for drilling all holes by optimizing the path for moving the drill. Already
this short list of problems should give a rough idea of the economical impact and
therefore interest of solving such network design problems properly in general.

One of these problems is the bounded diameter minimum spanning tree (BDMST)
problem where we seek a tree spanning all nodes of the network of minimum costs
where the diameter, i.e., the number of edges between any pair of nodes, is limited
above by a given constant.

The main application area for the BDMST is in communication network design when
quality of service is of major concern, see [23, 140]. Requirements can be for example
a limitation of the maximum communication delay or the guarantee for a minimum
signal-to-noise ratio. Thus, the number of relaying nodes on any path between two
communication partners needs to be restricted.

However, there are also other fields in computer science where the BDMST problem
arises as a subproblem. An example are mutual exclusion algorithms as described
by Raymond [119]. Before entering a critical section a computer in a distributed
environment has to signal its intention and ask for permission. A relevant part of
the costs for these operations is the length of the longest path the messages between
the computers have to travel. Thus, when a tree structure is used as underlying
communication infrastructure as proposed in [119] the diameter of it has a direct
influence on the efficiency of the mutual exclusion algorithm.

Another application can be found in textual information retrieval systems, to be
more precise in the subproblem of compressing correlated bit-vectors, see [21]. The
algorithm can roughly be described as follows: Sparse bit-vectors, i.e., vectors con-
taining only a few ones, can be compressed more efficiently. In a first step similar
vectors are clustered. This allows to choose for each cluster a representative r, and
to code all other vectors v of the cluster by using the result of the operation v xor r,
which will produce less ones in general. To further increase the compression rate not
only vectors within a cluster are coded relative to a representative but also the cluster
representatives themselves relative to each other, where the relation of the clusters is
expressed by a graph spanning them all. Since the decoding has to be unambiguous
the created structure must be free of cycles (one representative has to stay uncoded
acting as starting point for all operations), which leads to the problem of creating a
minimum spanning tree where the Hamming distance between two clusters is used as
cost function. The length of the paths within this tree has a considerable impact on
the time required to decompress bit-vectors part of the corresponding clusters. As

2

(a) Unconstrained MST. (b) BDMST with D = 4. (c) BDMST with D = 5.

Figure 1.1: An unconstrained MST (a) and optimal diameter-constrained trees with
a diameter bound ofD = 4 (b) andD = 5 (c), respectively, on a complete
Euclidean instance with 25 nodes. In the BDMSTs the respective center
is highlighted.

a consequence, there has to be a trade-off between the compression rate (captured
in the costs of the spanning tree) and the (de-)compression time (diameter of the
tree).

Additional fields of application are described for example in [2], where the BDMST
appears as a subproblem within the vehicle routing problem, in [25] dealing with
ad-hoc wireless networks, or in [11] presenting dynamic routing algorithms for multi-
casting in a linear lightwave network.

In the following the BDMST is defined more formally. Before doing so, some addi-
tional and more basic definitions are given.

Definition 1 (Network Design Problem, NDP) Given a graph G = (V,E) with node
set V and edge set E, the goal of a network design problem is the selection of a subset
of nodes v ∈ V and / or edges e ∈ E such that some criteria and constraints are
met while at the same time the costs of the selection with respect to some objective
function have to be optimized.

Definition 2 (Minimum Spanning Tree Problem, MST) Let G = (V,E) be a con-
nected, weighted, undirected graph with node set V and edge set E, where each edge
e has associated costs ce ≥ 0. A minimum spanning tree is a cycle-free subgraph
T = (V,ET), ET ⊆ E, of minimum total costs c(T) =

∑

e∈ET
ce connecting all nodes

3

Chapter 1 Introduction

into one single component, i.e., there exists a unique path between any two nodes
∈ V within T ; see Fig. 1.1 (a).

Note that the MST for a graph has not to be unique unless all edge weights are
pairwise disjoint. Furthermore, a MST contains exactly |V |− 1 edges, otherwise the
tree would not span all nodes (|ET | < |V | − 1) or it would contain cycles (|ET | >
|V | − 1).

Definition 3 (Bounded Diameter Minimum Spanning Tree Problem, BDMST)
Given an undirected connected graph G = (V,E) with node set V (n = |V |) and
edge set E (m = |E|) with associated costs ce ≥ 0, ∀e ∈ E, we seek a spanning tree
T = (V,ET) with edge set ET ⊆ E whose diameter, i.e., the longest path between
any two nodes in the tree with respect to the number of edges, does not exceed a given
constant D ≥ 2, and whose total costs c(T) =

∑

e∈ET
ce are minimal.

The eccentricity of a node v ∈ V is defined as the maximum number of edges on
the path between v and any other node within the tree T . Thus, the diameter D
is an upper bound for the eccentricity allowed in the BDMST. A single node (even
diameterD) respectively a single edge (oddD) connecting the two nodes of minimum
eccentricity form the center of the diameter-constrained tree, cf. Fig. 1.1 (b) and (c).
The task of identifying a BDMST can then also be seen as choosing an appropriate
center and building a height-restricted tree where the unique path from this center
to any node of the tree consists of no more than H = ⌊D2 ⌋ edges.

This problem belongs to the class of combinatorial optimization (CO) problems
where a choice out of a set of elements, in this case a small set of edges ET out
of all edges E of the graph, has to be made considering additional constraints and
optimizing a cost function. Since the BDMST is a relatively general graph problem
its first appearance in the literature is hard to fix. From an algorithmic point of
view, Maffioli [92] for example discusses transformations of a network where solving
a diameter-constrained tree can be used to deal with more than one label (weight,
costs, length, or delay) per edge in 1973, and in 1979 Garey and Johnson [51]
showed that the BDMST problem is NP-complete. Most of the first applications
and algorithms with relevance nowadays – some of them already given above – date
to the 80ies and 90ies of the last century.

As already mentioned, the computation of an unconstrained minimum spanning
tree (MST) is an easy task using for example the polynomial-time algorithms of
Prim [109] or Kruskal [90], but the BDMST problem is known to be NP-hard for
4 ≤ D < n − 1 [51] (under the restriction that not all edge costs are equal). Since
a tree spanning n nodes contains exactly n− 1 edges a diameter bound D of n− 1

4

and larger is always met when computing a MST. Connecting more than two nodes
within a tree structure requires at least a diameter of two. In case D = 2 the tree
forms a star, i.e., all nodes are linked to a single node, the center of the tree. In
the D = 3 case the center is a single edge where all remaining nodes of the graph
are connected to one of its endpoints by the cheaper edge. Therefore, the optimal
BDMST can be found in polynomial time by enumerating all stars in O(n2) (D = 2),
respectively by iterating over all edges and connecting the remaining nodes in time
O(m ·n) (D = 3), which is bounded above by O(n3) for complete graphs. For deeper
insights into these special cases with D < 4 see [62].

The NP-completeness for the BDMST problem with a diameter D ≥ 4 can be
shown by a reduction to the exact cover by 3-sets (X3S) problem.

Definition 4 (Exact Cover by 3-Sets, X3S) Given a set X with |X| = 3 · q, and
a collection Y of 3-element subsets of X. Then the question to be answered is as
follows: Does Y contain an exact cover for X, i.e., a sub-collection Y ′ ⊆ Y such
that every element of X occurs in exactly one member of Y ′?

Theorem 1 X3S is NP-complete.

Proof X3S is a generalization of the 3-dimensional matching which isNP-complete,
for a full proof see [85]. For the sake of completeness an entire reduction chain from
the X3S to the satisfiability (SAT) problem is as follows, see also [51]:

• Exact Cover by 3-Sets (X3S) →
• 3-Dimensional Matching (3DM) →
• 3-Satisfiability (3SAT) →
• Satisfiability (SAT). �

Theorem 2 BDMST is NP-complete for D ≥ 4.

Proof Fig. 1.2 shows the transformation from an X3S to a BDMST instance with
a diameter bound of D = 4, i.e., a tree with one single center node and a height
restriction of ⌊D2 ⌋ = 2.

The elements of the sets X and Y are represented by nodes. Each node of Y is
connected to exactly the three nodes of X it represents. Furthermore, a root node
r is introduced, the designated center of the BDMST, linked to each node of Y . All
edges in the graph have zero costs except the edges connecting r with nodes of Y

5

Chapter 1 Introduction

X

Y

r

v1

v2

|X| = 3 · q

ce =1

ce =0

Figure 1.2: NP-completeness of the BDMST problem: Transformation of an X3S
instance to a BDMST instance with a diameter bound of D = 4.

which have costs of one. Thus, minimizing the costs of the BDMST also minimizes
the connections between r and nodes of Y . Since a spanning tree is constructed the
minimal number of nodes of Y is used to reach all nodes of X.

As also all nodes of Y have to be connected in the spanning tree, they are linked
by additional edges to form a clique, a complete subgraph of zero costs. Due to the
imposed height restriction it is not possible to reach a node of X via a node of Y
that is not directly connected to the center r.

To avoid that – after augmenting the subgraph induced by Y to form a clique – a
node y ∈ Y becomes the center of the BDMST (this always would lead to a BDMST
of costs one: one edge, (y, r), to connect r, all other nodes are reachable over zero
cost edges without violating the diameter bound) an additional path (r, v1) and
(v1, v2) has to be included into the instance. This way r is now the only valid center
for the BDMST since v2 cannot be reached from any node y ∈ Y with a path of
length ≤ ⌊D2 ⌋.

When solving the BDMST problem to proven optimality on an instance constructed
as described the question of the X3S problem can now simply be answered: If the
objective value of the BDMST equals q then the center node r is connected to exactly
q nodes of set Y , a sub-collection Y ′ ⊆ Y forming an exact cover of all nodes in X.
Otherwise, the costs of the BDMST must be higher, and there exists no solution to
the corresponding X3S instance.

6

This shows that a solver for the BDMST problem can also solve X3S instances.
Since all transformations can be performed in polynomial time and X3S belongs to
the class of NP-complete problems, it is proven that also the BDMST problem with
a diameter bound D = 4 is NP-complete.

For D = 5 the graph in Fig. 1.2 can be augmented with a second center node r′

which is connected via the center edge of zero costs to r. This additional center
node r′ is – like r – linked to all nodes representing the set Y with edges of costs
one. Moreover, the path (r, v1) and (v1, v2) has to be duplicated for r′, i.e., (r′, v′1)
and (v′1, v

′
2), to guarantee that the edge (r, r′) will definitely be the center of the

BDMST. As easily can be seen, an optimal diameter-constrained tree with D = 5
and costs equal to q on such an extended graph also solves the corresponding X3C
instance. For all diameter bounds D ≥ 6 the height of the computed tree has to be
increased. This can be achieved, for example, by splitting the center r (respectively
r and r′ in the odd-diameter case) into two or more nodes r1, . . . , ri and adding
zero-cost edges (r1, r2), (r2, r3), . . . , (ri−1, ri). The last node in this chain, ri, now
is linked to all nodes of set Y . The additional path containing nodes vk has to
extended accordingly, i.e., (r1, v1), (v1, v2), . . . , (vi, vi+1). �

At this place, two problems closely related to the BDMST should also be mentioned.
In the diameter-constrained tree problem finding the best center is part of the opti-
mization. A related problem, which can be seen as a more restricted version of the
BDMST problem, is the hop constrained MST problem, where we are given a root
node that corresponds to a predefined center:

Definition 5 (Hop Constrained Minimum Spanning Tree Problem, HCMST) Given
a graph G = (V,E), a function c assigning each edge e ∈ E non-negative costs, a
designated node r ∈ V , and a hop limit H, the goal is to find a spanning tree
T = (V,ET) on G, ET ⊆ E, of minimal costs where each unique path within T from
r to any other node v ∈ V \ {r} consists of no more than H edges [30].

A possible application is the existence of a dedicated server streaming for example
multimedia content within a network and where the maximum delay to each of the
clients has to be limited. In this case a fixed delay introduced by an edge or a node
is assumed.

A generalization of the HCMST is the following problem:

Definition 6 (Distance or Delay Constrained Minimum Spanning Tree Problem,
DCMST) We are given a graph G = (V,E), each edge e ∈ E has associated costs
ce ≥ 0 and an additional distance or delay de ≥ 0. Furthermore, a maximum

7

Chapter 1 Introduction

distance or delay limit L is given as well as a designated root node r ∈ V . The
objective is to identify a spanning tree T = (V,ET) on G of minimum costs. In
addition, the cumulative distance or delay of all edges of the unique path P ⊆ ET
from r to any other node v ∈ V \ {r} within T , i.e.,

∑

e∈P de, is bounded above by
L [127, 63].

1.1 Methodologies

There are various techniques to solve optimization problems like these presented
above. Roughly they can be classified into two main categories: exact and heuristic
algorithms. Exact algorithms are guaranteed to always identify a provable optimal
solution (if some exists), but often the runtime behavior does not scale satisfyingly
with instance size. As a consequence, exact approaches often are only applied to
small or moderately-sized instances while larger instances are solved by heuristics.
Heuristics sacrifice the guarantee to reach the optimum for the sake of finding good
solutions of acceptable quality within reasonable time. Somewhere in-between are
the approximation algorithms: Mainly classified as heuristics they are able to give
at least some provable bounds on the quality of the computed solution in relation
to the optimum.

Examples for successful exact algorithms are Dynamic Programming (DP) [19], Con-
straint Programming (CP) [125], Branch&Bound, and especially the large family
of (integer) linear programming ((I)LP) based approaches, including in particu-
lar Linear Programming based Branch&Bound, Branch&Cut, Branch&Price, and
Branch&Cut&Price [102, 105].

Concerning heuristics there exist constructive methods like Greedy Heuristics and
techniques such as Local Search. Usually, these approaches are highly problem spe-
cific. More general solution strategies are the so-called metaheuristics [53, 78], which
control and manage subordinate, often problem specific heuristics, using various
strategies to escape local optima simple heuristics are frequently trapped in. Usu-
ally, metaheuristcs are more reliable and robust in finding good solutions, making
them an interesting choice to solve difficult optimization problems. Prominent rep-
resentatives for metaheuristics are Iterated Local Search [91], Tabu Search (TS) [54],
or Variable Neighborhood Search (VNS) [75]. Proven to sometimes be very effective
are also algorithms inspired by nature and biology, such as Simulated Annealing
[87], Ant Colony Optimization (ACO) [42], or population-based approaches which
are especially well suited for parallel processing like Evolutionary Algorithms (EA)
[9], Scatter Search [55], and Memetic Algorithms [100].

8

1.2 Overview of the Thesis

Both, exact and heuristic methods, have their strengths and weaknesses. In prac-
tice, the combination of them to hybrid algorithms often allows to improve solution
quality (faster algorithms and/or better solutions) by exploiting synergies. Classifi-
cations and surveys of different hybridizations of exact optimization techniques with
metaheuristics can be found in [117, 111, 118].

For solving the bounded diameter minimum spanning tree problem a great variety of
the listed approaches can be used. Two different ILP formulations strengthened by
additional cutting planes will be presented to solve the BDMST problem to proven
optimality. Altogether five neighborhood structures for the BDMST problem will be
described, acting as local search procedures within a Variable Neighborhood Descend
(VND) [75] for various metaheuristics, as well as for the ILP based exact algorithms.
Arising subproblems will be tackled with simple greedy heuristics or suited meta-
heuristics, but also with exact approaches like dynamic programming when they
are appropriately applicable. Special attention will be paid on techniques to speed-
up computation using for example preprocessing or an incremental evaluation of
solutions.

1.2 Overview of the Thesis

The further organization of this thesis is as follows: In Chapter 2 an introduction
to the used methodologies is given, where particular attention is paid to linear and
integer linear programming, tabu search, variable neighborhood search, evolutionary
algorithms and ant colony optimization. The previous work on the BDMST and
related problems is summarized in Chapter 3, followed by a detailed presentation of
various local search neighborhoods defined for the BDMST problem in Chapter 4.

Afterwards, various new approaches to solve the BDMST problem developed as
main part of the PhD research work are discussed. In Chapter 5, in contrast to
multi-commodity flow formulations which include a huge number of variables, a
more compact ILP model is presented, which is further strengthened by dynamically
adding violated connection and cycle elimination constraints within a Branch&Cut
environment. This work has also been published in

Martin Gruber and Günther R. Raidl: A new 0–1 ILP approach for the
bounded diameter minimum spanning tree problem. In L. Gouveia and
C. Mourão, editors, Proceedings of the International Network Optimiza-
tion Conference, pages 178–185, Lisbon, Portugal, 2005.

A talk dealing with an enhanced version of this approach utilizing a larger set of
different constraints within Branch&Cut, e.g., the stronger directed version of the

9

Chapter 1 Introduction

connectivity constraints and specialized path constraints, was given by the author at
the 10th International Workshop on Combinatorial Optimization in Aussois, France,
2006.

Chapter 6 covers a significantly improved ILP model further reducing the re-
quired number of variables and making use of so-called jump inequalities within
Branch&Cut to ensure the diameter restriction. Since the separation subproblem of
identifying currently violated jump inequalities is difficult, they are identified heuris-
tically by various construction heuristics, local search, and optionally tabu search.
Also a new type of cuts, the center connection cuts, is introduced to strengthen
the formulation in the more difficult to solve odd-diameter case. This work was
published in

Martin Gruber and Günther R. Raidl: (Meta-)Heuristic separation of
jump cuts in a Branch&Cut approach for the bounded diameter min-
imum spanning tree problem. In Thomas Stützle and others, editors,
Special issue on Matheuristics of Operations Research. Computer Sci-
ence Interface Series, Springer, to appear 2009.

Early versions of this article based on a slightly different model can be found in

Martin Gruber and Günther R. Raidl: Heuristic cut separation in a
Branch&Cut approach for the bounded diameter minimum spanning tree
problem. Proceedings of the 2008 International Symposium on Applica-
tions and the Internet (SAINT), pages 261–264, Turku, Finland, IEEE
Computer Society, 2008,

and – using already the final model formulation but presenting only preliminary
results – in

Martin Gruber and Günther R. Raidl: (Meta-)Heuristic separation of
jump cuts for the bounded diameter minimum spanning tree problem. In
P. Hansen and others, editors, Proceedings of Matheuristics 2008: Second
International Workshop on Model Based Metaheuristics, Bertinoro, Italy,
2008.

A talk with the title Heuristic jump cut separation in a Branch&Cut approach for the
bounded diameter minimum spanning tree problem including preliminary results was
further given at a meeting of the Austrian Society of Operations Research (ÖGOR)
in Salzburg, Austria, 2008.

After these exact approaches, Chapter 7 discusses various metaheuristics for the
BDMST problem in order to deal with larger instances that cannot be solved by
the ILP-based methods anymore. First, a VNS is proposed, mainly based on the
neighborhood structures defined in Chapter 4. The corresponding publication is

10

1.2 Overview of the Thesis

Martin Gruber and Günther R. Raidl: Variable neighborhood search
for the bounded diameter minimum spanning tree problem. In Pierre
Hansen and others, editors, Proceedings of the 18th Mini Euro Confer-
ence on Variable Neighborhood Search, Tenerife, Spain, 2005.

This work further led to two additional approaches, an EA and ACO, using a new
solution representation which make them highly competitive. The ACO is currently
still the leading metaheuristic for high-quality solutions. The EA and the ACO were
published in

Martin Gruber, Jano van Hemert, and Günther R. Raidl: Neighborhood
searches for the bounded diameter minimum spanning tree problem em-
bedded in a VNS, EA, and ACO. In Maarten Keĳzer and others, editors,
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO), pages 1187–1194, Seattle, Washington, USA, ACM Press,
2006.

A talk with preliminary results was given under the same title at the Austrian
Workshop on Metaheuristics 4’06 (AWM) in Vienna, Austria, 2006.

To address even larger instances and to compute initial solutions for exact or meta-
heuristic approaches, respectively, a new construction heuristic for the BDMST
problem is introduced, which is described in Chapter 8. It is specially designed
to approach hard to solve Euclidean instances by using hierarchical clustering to
guide the construction process. This work can also be found in

Martin Gruber and Günther R. Raidl: Exploiting hierarchical cluster-
ing for finding bounded diameter minimum spanning trees on Euclidean
instances. In Günther R. Raidl et al., editors, Proceedings of the Ge-
netic and Evolutionary Computation Conference (GECCO), Montréal,
Québec, Canada, ACM Press, to appear 2009.

An early version of this heuristic dealing only with the simpler even-diameter case
was published in

Martin Gruber and Günther R. Raidl: Solving the Euclidean bounded
diameter minimum spanning tree problem by clustering-based (meta-)
heuristics. In A. Quesada-Arencibia and others, editors, Twelfth Inter-
national Conference on Computer Aided Systems Theory (EUROCAST),
Gran Canaria, Spain, Springer LNCS, to appear 2009.

Finally, Chapter 9 summarizes the work and conclusions are drawn.

11

12

Chapter 2

Methodologies

This chapter summarizes different approaches to deal with combinatorial optimiza-
tion problems (COPs). First, exact algorithms are discussed which are able to
prove the optimality of a found solution. Afterwards, an overview over various
metaheuristics is given to handle larger problem instances no longer solvable by ex-
act algorithms. Finally, hybrid approaches combining the advantages of exact and
(meta-)heuristic techniques are described

2.1 Exact Algorithms

Whenever possible, the first attempt should be to solve a given problem to proven
optimality. In this overview, the main focus will lie on (mixed) integer linear pro-
gramming techniques, a powerful class of algorithms for NP-hard combinatorial
optimization problems. This part is mainly based on the books by Bertsimas and
Tsitsiklis [20] as well as Nemhauser and Wolsey [102] on (integer) linear optimization.
The section closes with a short description of dynamic programming, a polynomial-
time approach to solve specially structured problems.

2.1.1 Linear Programming

A lot of optimization problems can be formulated as a linear program (LP) which
can be solved efficiently in practice using the simplex algorithm or, in guaranteed
polynomial time, with the ellipsoid-method [86] or interior-point methods [84].

13

Chapter 2 Methodologies

The standard form of a linear program is as follows:

min cx

s.t. Ax ≥ b

with c, x ∈ Rn, b ∈ Rm, A ∈ Rm×n. The n-dimensional decision vector x and the
given vector c of equal dimension form the objective function c · x that has to be
optimized subject to them constraints given as matrix A and vector b. If constraints
should be equalities this can be modeled by two corresponding inequalities, and
≤ inequalities can be reformulated as ≥ inequalities by changing the sign of all
coefficients.

Since the diameter-constrained MST and all related problems discussed in this work
are minimization problems this formulation will be used throughout this section.
This is no restriction of generality since each maximization problem can be trans-
formed into a minimization one by multiplying the objective function with −1. The
optimal objective value zLP can now be stated as

zLP = min{cx | Ax ≥ b, x ∈ Rn}. (2.1)

Integer Linear Programming

As mentioned above, LPs with x ∈ Rn can be solved efficiently by polynomial-time
algorithms. In case we seek an integer solution, i.e., a solution where x ∈ Zn, this
problem becomes NP-hard in general. The corresponding integer linear program
(ILP) with the optimal objective value zIP can now be formulated as

zIP = min{cx | Ax ≥ b, x ∈ Zn}. (2.2)

If the domain of x is restricted to binary variables, i.e., x ∈ {0, 1}n, this variant is
called a 0–1 ILP. In a mixed linear program (MIP) only some and not all of the
decision variables have to be integral.

Geometric Interpretation and the Simplex Algorithm

To get deeper insight into solution algorithms the geometric interpretation of (in-
teger) linear programs can be valuable. Given a linear program LP as denoted by
(2.1), the set of all feasible solutions is defined by the following polyhedron:

P = {x ∈ Rn | Ax ≥ b, A ∈ Rm×n, b ∈ Rn}. (2.3)

14

2.1 Exact Algorithms

Based on the characteristics of the polyhedron P the following propositions can be
made:

• P = ∅ ⇒ the LP contains no feasible solutions and is therefore infeasible.

• P 6= ∅, but ∄ inf{cTx | x ∈ P} ⇒ the LP is feasible but unbounded; an optimal
solution does not exist.

• P 6= ∅ and ∃min{cTx | x ∈ P} ⇒ the LP is feasible and an optimal solution
denoted by x∗ ∈ P, cTx∗ = min{cTx | x ∈ P} exists.

The following definitions and theorems now directly lead to the simplex algorithm
to efficiently solve feasible and bounded linear programs:

Definition 7 A polyhedron P ⊂ Rn is bounded if there exists a constant k such
that |xi| < k ∀x ∈ P , i = 1, . . . , n. Such a bounded polyhedron is called a polytope.

Definition 8 A set S ⊂ Rn is convex if λx + (1 − λ)y ∈ S, ∀x, y ∈ S, λ ∈ [0, 1]
holds.

Definition 9 Given X = {x1, . . . , xk}, with xi ∈ Rn, λi ≥ 0, i = 1, . . . , k, and
∑k
i=1 λi = 1. Then

(1) the vector
∑k
i=1 λi x

i is called a convex combination of X, and

(2) the convex hull of X which is denoted as conv(X) is the set of all convex
combinations of X.

Note that all polyhedra defined by a linear program are convex.

Definition 10 Let P be a polyhedron defined by linear equality and inequality con-
straints, x∗ ∈ Rn.

(1) The vector x∗ is a basic solution if:

(a) All equality constraints are satisfied, and

(b) there are n linearly independent inequality constraints that are active at
x∗, i.e., these constraints hold with equality.

(2) A basic solution x∗ that satisfies all constraints is called a basic feasible solu-
tion.

15

Chapter 2 Methodologies

Theorem 3 Let P 6= ∅ be a nonempty polyhedron, and x ∈ P a feasible solution.
Then the following statements are equivalent:

(1) x is a vertex of P ;

(2) x is a basic feasible solution.

Theorem 4 Given an LP as defined in (2.1), then the following statements are
true:

(1) If the polyhedron P in (2.3) is nonempty, then there exists a basic feasible
solution.

(2) If the LP (2.1) has an optimal solution, then there is an optimal basic feasible
solution.

Theorem 4 states that if the linear program is feasible and has an optimal solution
x∗, then x∗ is a vertex of the corresponding polyhedron P . The simplex algorithm,
developed by George Dantzig in 1947, exploits this observation by reducing the
search space to vertices of P .

In general, the simplex algorithm is performed in two steps (two-phase simplex):
First, an initial basic feasible solution has to be found. In the second phase, the
algorithm move to an adjacent vertex of P by simultaneously improving the value of
the objective function. This second step is repeated until no adjacent vertex leads
to an improvement of the solution, i.e., the optimum has been reached, or one of the
adjacent edges (a facet of P) is unbounded.

Already finding an initial basic feasible solution, that is a first vertex of P to start
the second phase, can be a difficult task, especially if the point {0}n is not part of
the polyhedron P . A method to compute such a first feasible solution transforms
the inequality constraints of a linear program given in standard form, i.e., Ax ≥ b,
into equalities by introducing for each of the m inequalities a so-called slack variable
σi ∈ R. i = 1, . . . ,m. This linear system of equations Ax+σ = b can now be solved
using for example the Gaussian elimination method yielding a first feasible solution
x0.

For the given LP, a set of m linear independent column vectors of A forms a basis.
Let B(1), . . . , B(m) denote the indices of the basic variables of solution x0, and
B = [AB(1) . . . AB(m)] the corresponding basic matrix. Moving from a vertex of P
to an adjacent one, called pivoting, can now be interpreted as removing one of the
basic variables from B, and simultaneously inserting a new variable into the basis.
The decision which variable xj to include into the basis can be predicated on the
corresponding reduced costs cj :

16

2.1 Exact Algorithms

Definition 11 Let x be a basic solution, B the associated basis matrix as defined
above, and cB the vector of costs of the basic variables. For each j, the reduced
costs cj of the variable xj are defined as

cj = cj − cBB−1Aj . (2.4)

The reduced costs directly correspond to the per unit change in the objective func-
tion. Therefore, negative reduced costs indicate a variable that can be inserted into
the basis to improve the objective value of the corresponding solution when con-
sidering minimization problems. In case all variables have reduced costs greater or
equal to zero, an optimum has been reached.

As already mentioned, the simplex algorithm is very efficient in practice to solve LPs
to proven optimality, but there exist worst-case scenarios where it degrades, so it
is no full polynomial-time algorithm. There are other approaches like the ellipsoid-
method by Khachiyan [86] or the more successful interior-point methods introduced
by Karmakar [84] which guarantee a polynomial runtime. Modern LP-solvers utilize
in addition to the simplex algorithm different interior-point methods such as the
primal-dual or the barrier algorithm.

Duality

For each linear program, now called the primal LP, there also exists a corresponding
dual LP where each constraint of the primal problem has an associated variable in
the dual problem, and vice versa. To be more precise, for a primal problem as stated
in (2.1), its dual problem can be formulated as:

wLP = max{ub | uA ≤ c, u ∈ Rm}, (2.5)

where the vector of decision variables u ∈ Rm directly corresponds to the m con-
straints of the primal LP.

Proposition 1 The dual of the dual problem is the primal problem.

Proposition 2 (Weak Duality) If x is primal feasible and u is dual feasible, then

cx ≤ ub.

17

Chapter 2 Methodologies

The following theorems present fundamental results in duality theory and build the
basis for primal-dual algorithms:

Theorem 5 (Strong Duality) If zLP or wLP is finite, then both, the primal problem
(2.1) and the dual (2.5), have the same finite optimal value

zLP = wLP.

Proposition 3 (Complementary Slackness) Let x∗ be a feasible solution for the
primal problem (2.1), as well as u∗ a feasible solution for the corresponding dual
problem (2.5), then x∗ and u∗ are optimal solutions if and only if

ui(b−Ax)i = 0, ∀i, and

xj(uA− c)j = 0, ∀j.

LP-Based Branch&Bound

As described above, LPs can be solved efficiently in polynomial time. However, when
some (MIP) or all of the decision variables (ILP) have to be integral, the problem
becomes NP-hard in general. Branch&Bound is a general purpose optimization
algorithm well suited for combinatorial and discrete problems based on two ideas:
Split the whole problem into smaller, easier to handle subproblems (divide&conquer),
and use bounds computed for the various subproblems to prune whole parts of the
search tree (the hierarchy of the subproblems, also called the Branch&Bound tree)
definitely not containing the optimal solution.

In the following, we assume a minimization problem where x ∈ Zn. An upper
bound z for the whole problem under consideration is any feasible solution and
can be obtained for example by heuristics. A lower bound zi for a (sub-)problem
Pi can be computed by relaxing the integrality constraints for x and solving the
corresponding LP, called the LP relaxation.

Definition 12 The LP relaxation of the ILP zIP = min{cx | Ax ≥ b, x ∈ Zn} is
the LP zLP = min{cx | Ax ≥ b, x ∈ Rn}.

Proposition 4 If a LP is the relaxation of an ILP, then zLP ≤ zIP (minimization
problem).

18

2.1 Exact Algorithms

Based on the lower and upper bounds the following decisions can be made for a
(sub-)problem Pi within in the search tree:

• zi = z: The optimal solution for Pi has been found.

• zi > z: The objective value of the best obtainable solution in Pi already
exceeds the global upper bound, a feasible solution for the original problem.
Therefore, this subproblem cannot contain the optimal solution and can be
pruned.

• zi < z: No conclusions can be drawn at this stage for problem Pi, so further
divide it into subproblems and continue with Branch&Bound.

Branching: In general, a problem Pi is split into two different subproblems Pi1 and
Pi2 . This partitioning of the search space is called branching. In case the solution
xLP,i of the LP relaxation of Pi is not integral, there has to be at least one fractional
variable, i.e., a variable xLP,ij assigned a fractional value. By rounding this variable
up and down and using these values as bounds, respectively, we obtain the following
two subproblems:

Pi1 = Pi ∩ {x : xj ≤ ⌊xLP,ij ⌋}, and

Pi2 = Pi ∩ {x : xj ≥ ⌈xLP,ij ⌉}.

A question arising is which fractional variable to choose for branching. A simple rule
would be to take the most fractional one, that is the variable where xLP,ij −⌊xLP,ij ⌋ is
as close to 0.5 as possible. A more advanced method is strong branching [138] which
computes bounds for all fractional variables and based on these bounds chooses the
most promising one for branching.

Selecting next subproblem: Another important issue for the performance of
Branch&Bound is the strategy to select the next subproblem to be considered. One
possibility is to try to get a good upper bound z as fast as possible to be able
to prune parts of the search tree early. This can be achieved by preferring newly
created subproblems and therefore going deep into the tree first, i.e., performing a
depth-first search. Another strategy is to reduce the number of subproblems that
have to be created thus reducing the overall size of the search tree by following a
best-first search where the subproblem with the smallest lower bound is favored.
Often a combination of these two strategies is used, first diving deep into the tree to
find a good and feasible solution fast, and afterwards switching to best-first search.
Algorithm 1 gives a detailed overview on the Branch&Bound procedure for a mini-
mization problem.

19

Chapter 2 Methodologies

Algorithm 1: LP-Based Branch&Bound

Input: initial problem P (minimization)
Initialization: upper bound z :=∞
set of problems S ← {P}1

while S 6= ∅ do2

choose and remove a problem Pi from S3

solve LP relaxation of Pi: solution xLP
i , objective value zi4

if Pi is infeasible then5

prune6

else if zi ≥ z then7

prune8

else if xLP
i is integral then9

z ← zi10

new incumbent x∗ ← xLP
i11

prune12

else13

create subproblems Pi1 and Pi214

S ← S ∪ {Pi1 , Pi2}15

x∗ is optimal solution of P16

Cutting Plane Algorithms and Branch&Cut

The size of a linear programming model, i.e., the number of variables and constraints,
in general has direct influence on the time required to solve it. There exist LP
models requiring a huge number of constraints, sometimes even exponentially many,
but usually only a small set of these constraints is required within a solver like
the simplex algorithm to identify the optimal solution. In such a case the cutting
plane algorithm can be used to efficiently solve the complex model as depicted in
Algorithm 2 by starting with only a small subset of constraints and dynamically
adding only those which are violated by the current LP solution. The algorithm
stops if no violated constraints can be found anymore thus the optimal solution of
the original problem has been discovered.

The most important part in this algorithm is solving the separation problem, which
can be defined as follows:

20

2.1 Exact Algorithms

Algorithm 2: Cutting Plane Algorithm

start with simplified model containing only a subset of constraints1

loop2

solve model → x∗3

solve separation problem for x∗4

if ∃ constraint aTx ≥ bj such that aTx∗ < bj then5

add constraint aTx ≥ bj to model6

else7

return x∗ which is the optimal solution of the original model8

Definition 13 Given a solution x̂ ∈ Rn for a LP (2.1) subject to only a subset of
all m constraints. If x̂ /∈ conv(X), the separation problem is to identify a valid
inequality aTx ≥ bj not considered so far that is violated by x̂.

Branch&Cut is an extension of this basic idea for MIPs and ILPs that are solved
using Branch&Bound discussed in the previous section. Here the cutting plane
algorithm is performed for each subproblem in the search tree, where usually the
main intention is to strengthen the LP of the corresponding subproblem, i.e., to
provide better bounds and therefore to prune the search tree as much as possible.
Since the separation problem has to be solved for each subproblem appearing in the
search tree, an efficient algorithm for it is crucial. Other aspects to be considered
in this context are for example the management of the identified cuts, the maximal
number of cuts to be computed for one single LP solution x̂, or the search strategy,
i.e., to be satisfied with any cut or looking for the best one to improve the bounds.

Column Generation and Branch&Price

As already mentioned above, also the number of variables of a LP model has a strong
influence on the runtime behavior when solving it. When such a model contains
a large number or even exponentially many variables the same basic idea can be
applied as in the cutting plane algorithm: Start with a small subset of variables,
solve the corresponding LP, and add only those variables not already part of the
model which are able to eventually improve the current solution x̂. Again, this
is done until no new variable can be identified improving x̂, thus the optimum of
the original problem has been found. Since a new variable introduced into the LP
corresponds to a new column in matrix A of (2.1) this method is named column
generation.

21

Chapter 2 Methodologies

The subproblem of deciding which variable to add to the LP is called the pricing
problem. Following the description of the simplex algorithm, a variable with negative
reduced costs (minimization problem) is allowed to enter the basis by simultaneously
reducing the costs of the objective function. Therefore, the pricing problem is to
identify variables with negative reduced costs not already contained in the current
LP model.

Branch&Price is the hybridization of Branch&Bound to solve MIPs/ILPs and col-
umn generation. In this case, special attention has to be paid on the branching
process since not all variables of the original model are available in each subprob-
lem. Also note, that column generation and the cutting plane algorithm are somehow
dual to each other since the constraints in the primal correspond to variables in the
dual problem, and vice versa.

2.1.2 Dynamic Programming

Beside the class of algorithms based on linear programming primarily applied toNP-
hard problems, dynamic programming is a technique used for optimization problems
solvable in polynomial time [19] (for the quite humorously story behind the name of
this method see [44]). Famous representatives for dynamic programming approaches
are Dĳkstra’s shortest path algorithm [38] or the Needleman-Wunsch algorithm to
find an optimal pairwise sequence alignment [101] used in the field of bioinformat-
ics.

Following the nomenclature of Cormen et al. in [27], there are two properties an
optimization problem has to fulfill so dynamic programming is applicable:

1. Optimal substructure: The original problem can be split recursively into
smaller subproblems, whereas the optimal solutions of the subproblems can
be used in a bottom-up fashion to compute the optimum of the respective
parent problem. In contrast to simple divide&conquer, the solution of a parent
problem is not simply collecting results from the subproblems but making a
choice which optimal subproblem solutions to use and how to combine them
to obtain the optimum for the parent problem.

2. Overlapping subproblems: The space of subproblems should be small in a
sense that the number of distinct subproblems is polynomial in the input size,
and one and the same subproblem can appear more than once when splitting
the original problem recursively. A crucial point in this context is that each
unique subproblem is only solved exactly once, and the corresponding solution
is stored for further usage in some sort of memory (which – of course – has to

22

2.1 Exact Algorithms

be organized in a way the solution for a subproblem can be found efficiently
when available).

Defining the search space and, strongly related, how to combine the solutions of the
subproblems to an optimal one for the parent problem is the fine art of dynamic
programing.

2.1.3 Lagrangean Relaxation (LR)

The Lagrangean relaxation [138, 18] is a somehow special technique since its main
focus is not to create an optimal (or heuristic) solution to an optimization problem
but to compute good bounds for the optimal objective value. These bounds can
be used either within the class of Branch&Bound algorithms for MIPs and ILPs,
or to give some information on the quality of solutions computed by other (meta-
)heuristic approaches. With tight bounds in addition to good heuristic solutions
even the optimality of such a solution sometimes can be proved when their objective
values correspond.

Given an integer linear program for an NP-hard optimization problem in standard
form, cf. (2.2), but this time the set of constraints is split into two:

min cx (2.6)

s.t. Ax ≥ b

Bx ≥ d

x ∈ Zn.

Often, an NP-hard optimization problem is composed of a simple one with ad-
ditional constraints, or multiple simple problems combined with so-called coupling
constraints. Let us assume that the optimization problem without the inequalities
Ax ≥ b can be solved efficiently, for example by a polynomial-time exact algorithm.
To compute a lower bound for the original ILP, the inequalities Ax ≥ b can be
relaxed, since removing constraints of a minimization problem can only reduce the
corresponding objective value. Instead of directly considering these constraints, they
are brought into the objective function with a vector of Lagrange multipliers λ ≥ 0
attached to the relaxed inequalities:

min cx + λ(b−Ax) (2.7)

s.t. Bx ≥ d

x ∈ Zn.

The program (2.7) is called the Lagrangean lower bound program, and λ(b−Ax) can
be seen as penalty in case Ax ≥ b is violated. To get the best, i.e., the maximal lower

23

Chapter 2 Methodologies

bound, Lagrange multipliers have to be found optimizing the following Lagrangean
dual program:

max
λ≥0

min cx + λ(b−Ax)
s.t. Bx ≥ d

x ∈ Zn

(2.8)

As this problem is piecewise linear and concave it can be solved efficiently for example
using subgradient optimization [18] or the volume algorithm [14]. In general, the
solutions of the Lagrangean lower bound program are primal infeasible, i.e., no
solutions for the original problem (due to relaxed and violated inequalities), but
repair heuristics can be utilized to compute upper bounds.

2.2 (Meta-)Heuristics

When confronted with NP-hard combinatorial optimization problems, exact ap-
proaches often are only applicable to relatively small problem instances due to run-
time and sometimes also memory restrictions. Heuristics and especially metaheuris-
tics can be seen as alternatives when large instances have to be solved in reasonable
time, whereas these approaches are not able to guarantee to reach the optimum.
Nevertheless, for real-world optimization problems they are often the only opportu-
nity to get high-quality solutions with limited resources.

The term metaheuristic has been introduced by Glover [52] and denotes a problem-
independent high-level solution strategy managing and controlling subordinate
heuristics, which themselves are highly problem specific in general.

This section starts with an introduction to some basic heuristics, and afterwards,
an overview on some important metaheurstics is given.

2.2.1 Construction Heuristics

Usually, construction heuristics are simple and fast algorithms to compute a first
feasible solution, which can be used as an initial solution for iterative approaches
to refine it, or as bound for exact algorithms. A certain characteristic of these
heuristics is that no backtracking is performed, i.e., once a decision has been made
during the construction process it will never be put in question again, a reason for
their computational efficiency. A special class are the greedy algorithms considering
in each construction step only the locally optimal choice.

24

2.2 (Meta-)Heuristics

2.2.2 Approximation Algorithms

In contrast to simple heuristics, approximation algorithms [136] are able to provide
some information about the quality of a computed solution, i.e., they give a bound
for the distance from a created solution to the optimum. More formally, this can be
stated as follows:

Definition 14 Given an optimization problem P (minimization) and an algorithm
A computing feasible solutions for every instance I ∈ P , let cA(I) denote the ob-
jective value of the solution generated by A, and let copt(I) be the optimal objective
value. If

∃ ε > 0 :
cA(I)

copt(I)
≤ ε, ∀I ∈ P

holds, then A is an ε-approximation algorithm for P , and ε is the approximation
factor of A.

There exist different classes of approximation algorithms: Those with an absolute or
relative approximation factor, and (fully) polynomial time approximation schemes
where runtime complexity can be traded for better approximation factors. Also note
that not every optimization problem is approximable.

2.2.3 Local Search

While construction heuristics build a feasible solution from scratch, local search
starts from an initial solution and refines it iteratively by performing (small) local
changes, so-called moves, which improve the objective value. The terms neighborhood
structure and neighborhood are of vital importance for local search and can be defined
as follows:

Definition 15 Given the set S of feasible solutions for an optimization problem. A
neighborhood structure N : S → 2S is a function associating every solution x ∈ S a
set of neighbors, called the neighborhood N (x) ⊆ S of x.

Algorithm 3 shows the basic local search algorithm in more detail. A crucial point
of this procedure with significant impact on the runtime behavior and the achievable
solution quality is the selection process of a neighboring solution x′ ∈ N (x). There
are three possibilities:

25

Chapter 2 Methodologies

Algorithm 3: Basic Local Search (x)

Input: initial solution x
Output: (potentially) improved solution x

repeat1

choose a neighboring solution x′ ∈ N (x)2

if f(x′) better than f(x) then3

x← x′4

until some termination criterion is met5

return x6

• Best improvement: The complete neighborhood N (x) is explored, the best
solution x′ is chosen.

• Next improvement: The neighborhood N (x) is searched systematically, the
first solution x′ with f(x′) better than f(x) is chosen.

• Random neighbor: A random solution x′ ∈ N (x) is chosen and evaluated.
Here the selection process itself is very fast, but in most cases f(x′) will be
worse than f(x).

There is no strategy dominating all others in the general case. However, using best
or next improvement depends on various parameters like the problem to be solved,
the definition of the neighborhood structure, or if there exists an efficient incremental
evaluation scheme.

Local search is performed until a stopping criterion is met, which can be the maximal
number of iterations, a time limit, or when reaching a local optimum:

Definition 16 Let x be a feasible solution in S, and f(x) the objective value of x.
Then x is a local optimum of a minimization problem ↔ ∀x′ ∈ N (x) : f(x′) ≥ f(x).

Of course, a local optimum with respect to a chosen neighborhood structure is not
necessarily a global optimum, but each global optimum is also a local one.

2.2.4 Greedy Randomized Adaptive Search Procedure (GRASP)

The greedy randomized adaptive search procedure [46, 47] is a multi-start method
where each iteration consists of two phases: A construction phase, where a feasible
solution is computed, which is refined in the second phase using local search.

26

2.2 (Meta-)Heuristics

Algorithm 4: Greedy Randomized Adaptive Search Procedure

Input: instance I of optimization problem P
Output: best found feasible solution x

initialize so far best solution x+
1

repeat2

solution x← ∅3

repeat4

build RCL // restricted candidate list5

select an element xj from RCL at random6

add xj to solution x7

until x is a complete solution8

locally improve x9

if f(x) better than f(x+) then10

x+ ← x11

until some termination criterion is met12

return best found solution x+
13

The overall best solution is stored and return as result of GRASP when a stop-
ping criterion like exceeded runtime or maximal number of iterations is met, see
Algorithm 4.

The construction phase does not follow a pure greedy approach but makes use of a so-
called restricted candidate list (RCL). Whenever a new element will be added to the
solution, such a list is computed in advance where each candidate for incorporation
is evaluated according to a greedy cost function. The best elements are allowed
to enter the RCL, and one of them is chosen at random to be part of the current
solution. The size of the list can be static, i.e., the lmax best candidates are used for
the RCL, or can depend on the incremental costs caused to objective value of the
considered elements. In the latter case, a parameter α ∈ [0, 1] is used to control the
selection pressure, reaching from only accepting the best candidate (pure greedy)
to a complete random approach where each candidate element leading to a feasible
solution is allowed to join the RCL. If α is a self-tuned parameter this is referred to
as reactive GRASP.

To improve the performance of the basic algorithm there exist various modifications
and enhancements, including for example cost perturbations to enforce search diver-
sification, the introduction of long-term memory to store several good solutions to
be used to bias the construction phase, or the replacement of the uniformly random

27

Chapter 2 Methodologies

selection of a candidate element from the RCL by a probability distribution taking
into account the incremental costs of the different elements.

2.2.5 Variable Neighborhood Search (VNS)

Variable neighborhood search, introduced by Hansen and Mladenović [75], is a meta-
heuristic making use of multiple neighborhood structures defined for the considered
optimization problem, and a technique to escape local optima. It is based on fol-
lowing observations:

• A local optimum with respect to one neighborhood structure is not necessarily
a local optimum to another one.

• A global optimum is a local optimum with respect to every possible neighbor-
hood structures.

• Often local optima with respect to different neighborhood structures are rela-
tively close to each other.

Variable Neighborhood Descend (VND)

Variable neighborhood descend implements the first observation given above and can
be seen as a local search procedure using not just one but multiple neighborhood
structures, N1,N2, . . . ,Nkmax . An initial solution x is thereby systematically im-
proved with respect to the various neighborhood structures until a local optimum
for all of them is reached, see Algorithm 5.

In general, the ordering of the neighborhood structures is crucial for the performance
of the VND, not only with respect to the runtime but also to the achievable solution
quality. Different properties of these neighborhood structures have to be considered,
like their relationship to each other (overlapping, (partly) including one another,
mutual exclusive), the complexity to search them, or their coverage of the whole
solution space. The simplest choice is to use a static ordering, usually based on
the runtime complexity since the first neighborhood N1 is more often searched than
Nkmax . However, there also exist more sophisticated approaches like the self-adaptive
VND which dynamically reorders the neighborhood structures according to their
execution time and their success to improve a solution [79]. Another method quickly
evaluates relaxations of the different neighborhood structures to be able to choose
the most promising one next [112].

28

2.2 (Meta-)Heuristics

Algorithm 5: Variable Neighborhood Descent (x)

Input: initial solution x; neighborhoods N1,N2, . . . ,Nkmax

Output: (probably) improved solution x

k ← 11

repeat2

choose a neighboring solution x′ ∈ Nk(x)3

if f(x′) better than f(x) then4

x← x′5

k ← 16

else7

k ← k + 18

until k = kmax9

return x10

Basic Variable Neighborhood Search

In addition to a strong local improvement component, VNS also includes a mecha-
nism to escape local optima, the so-called shaking process. For this purpose, a set
of neighborhood structures N1,N2, . . . ,Nlmax , which are usually ordered by size and
can be different from those exploited within VND, is used to perform random moves
from the so far best found solution, cf. Algorithm 6.

When following a best improvement strategy in the local search step, a single random
shaking move in the same neighborhood would not be sufficient to escape a local
optimum. In such a case a sequence of moves is often used to perform shaking in
corresponding larger neighborhoods.

Like GRASP, VNS is a very simple to implement metaheuristic with only a few
parameters to tune making it easy it use in practice. Variants of the basic VNS
include reduced VNS which completely omit the local search phase, thus relying
only on the shaking process, as well as the general VNS utilizing VND to locally
improve solutions.

2.2.6 Tabu Search (TS)

A problem almost all iterative metaheuristics are confronted with is cycling, i.e.,
returning to an already visited and evaluated point in the solution space. It is
obvious that evaluating a solution more than once is waste of computational effort.

29

Chapter 2 Methodologies

Algorithm 6: Basic Variable Neighborhood Search (x)

Input: initial solution x; neighborhoods N1,N2, . . . ,Nlmax

Output: (probably) improved solution x

repeat1

l← 12

repeat3

choose random solution x′ ∈ Nl(x) // shaking4

locally improve x′ // local search, VND, ...5

if f(x′) better than f(x) then6

x← x′7

l← 18

else9

l← l + 110

until l = lmax11

until some termination criterion is met12

return x13

Of course, all visited solutions can be stored within a long-term memory but the size
and management of such a memory can quickly make the positive effects undone.
Tabu search [54] makes a compromise and uses a so-called tabu list L of restricted
length to share information for avoiding or at least reducing cycling. Algorithm 7
shows the procedure in detail.

The tabu list may store whole solutions which are not allowed to be reached again,
but depending on the considered optimization problem and instance size this can
lead to high memory requirements. More often, only some characteristic attributes of
a solution are recorded in L for a certain time (number of iterations). This approach
is much more memory efficient, but has the drawback to exclude all solutions from
search containing the stored attributes, whether already visited or not.

An especially critical parameter is the tabu tenure tL which controls the length of
the tabu list. If it is chosen too small, cycling is not avoided reliably, and if it is too
large, the search space is restricted too strongly, eventually disallowing also highly
promising not yet evaluated solutions. In practice, identifying a good tabu tenure
for the concrete problem and instance can be a difficult task. It can be chosen static,
or tL can be adapted dynamically during runtime [37, 97, 15].

To be sure not to miss a good solution or even the optimum, aspiration criteria
can be defined when to accept a solution although it should be tabu due to L. A
standard one is to keep a solution if it is the overall best so far.

30

2.2 (Meta-)Heuristics

Algorithm 7: Tabu Search (x)

Input: initial solution x
Output: (probably) improved solution x

L← {x} // tabu list1

x′ ← x2

repeat3

x′ ← best solution ∈ N (x′) with respect to L and aspiration criteria4

add x′ to L5

remove all elements from L older than tL // tabu tenure6

if f(x′) better than f(x) then7

x← x′8

until some termination criterion is met9

return x10

2.2.7 Evolutionary Algorithms (EA)

Evolutionary algorithms are a family of optimization techniques inspired by nature
and the theory of evolution as proposed by Darwin [32] as well as the work of Mendel
[96] concerning genetics. Part of this family are for example genetic algorithms
[77] and evolution strategies [120, 128], and there exist a lot of other variants and
extensions, cf. [9].

A special feature of evolutionary algorithms when compared to most other meta-
heuristics like GRASP or VNS is the concept of operating not on a single solution
but a whole set, called population. Such a population can be created by fast con-
struction heuristics, which require a probabilistic component to compute different
individuals. This diversity of a population, which has to be preserved during opti-
mization, in general allows to cover a larger part of the search space, helps to escape
from local optima, and leads to more robust results.

Not only the concept of a population but also the operators are inspired from evo-
lutionary theory: selection, recombination, and mutation, see Algorithm 8.

• Selection: In a first step individuals of the population have to be selected
which are allowed in the following to create offspring solutions. The selection
pressure, i.e., the expected probability of how much the best solution in the
current population is preferred over other ones to become a parent, has a major
impact on the final solution quality as well as on the runtime of the EA. Various
selection mechanisms have been developed, including fitness-proportional [77]
and rank-based [10] selection, where individuals are chosen with a probability

31

Chapter 2 Methodologies

Algorithm 8: Basic Evolutionary Algorithm

Output: best solution found during optimization

create population P of initial solutions1

evaluate P2

repeat3

repeat4

select parental solutions from population // selection5

offspring x← recombine parental solutions // recombination6

mutate x // mutation7

evaluate x8

until enough offspring solutions created9

update population10

until some termination criterion is met11

return best found solution12

according to their fitness or rank (position in the list of solutions sorted by
fitness), respectively, or tournament selection [45], where a small number of
individuals is chosen at random and from them the best one is selected to be
a parental solution.

• Recombination/Crossover: In the recombination step, new offspring solu-
tions are computed based on selected parents by inheriting as much as possible
parental attributes. This operator is highly problem dependent and has to re-
spect the solution representation in order to create a feasible offspring. In the
literature a lot of various crossover operators have been proposed, for exam-
ple one point crossover, partially mapped crossover [56], order crossover [33],
uniform order based crossover [132], or edge recombination crossover [28].

• Mutation: To (re-)insert attributes not present in the initial population or
lost during the optimization process, small random manipulations are applied
to an offspring solution. Usually, mutation is only performed with a relatively
low probability.

The basic evolutionary algorithm as depicted in Algorithm 8 contains no local im-
provement step for individuals of the population, so the returned solution is not
guaranteed to be even local optimal with respect to any neighborhood structure.
Memetic algorithms [99] close this gap by introducing local search (or other local
improvement techniques) into the EAs, not only to enhance the solution quality but
also to speed up computation. However, a balance has to be found between diver-
sification (solutions as different as possible in the population) and intensification
(locally improved individuals) to avoid a bad convergence behavior.

32

2.2 (Meta-)Heuristics

2.2.8 Ant Colony Optimization (ACO)

Another class of metaheuristics motivated by nature is ant colony optimization [39].
It is mainly based on the ability of ants to find the shortest path between their
nest and a food source by means of a pheromone trail. Since in the same period of
time more ants can pass the shortest of all possible paths the pheromone on it will
increase much faster thus directing other ants with a higher probability towards this
path.

ACOs are constructive metaheuristics where (artificial) ants build solutions from
scratch. Within this construction phase, an ant usually can access two types of in-
formation: A local one indicating in a greedy fashion the best elements to be incor-
porated into the current solution, and a more global view represented by pheromone
deposited by complete and feasible solutions to bias the local decision. The strength
of ACOs are combinatorial optimization problems where in a broader sense the
computation of a shortest path appears at least as a subproblem, for example in
vehicle routing, scheduling, or routing problems. The basic ant colony optimization
algorithm is very simple as can be seen in Algorithm 9.

Algorithm 9: Ant Colony Optimization

Output: best solution found during optimization

repeat1

manage ant activities // build solution(s), deposit pheromone, ...2

evaporate pheromone3

perform optional daemon activities4

until some termination criterion is met5

return best found solution6

Beside the construction of solutions by ants there are two additional procedures
within an ant colony optimization algorithm. In the pheromone evaporation phase
the pheromone deposited by ants in former iterations of the algorithm is decreased
which is required to avoid a too fast convergence. The optional daemon activities
allow to implement some global actions like a local improvement of constructed
solutions or the depositing of extra pheromone for the so long best solution (also
called a off-line pheromone update).

Ant colony optimization algorithms have a relatively large number of strategy pa-
rameters, e.g., the relation between local and global information when selecting an
element in the construction phase, the number of ants, and the pheromone decay co-
efficient controlling the evaporation process, thus tuning them can be a challenging
task. There are also some strategic decisions to be made like for example which ants

33

Chapter 2 Methodologies

are allowed to deposit pheromone, all of them or only the best ones. This leads to
a great variety of different ant algorithms. Some prominent members are elitist ant
systems [41] where the so far best ant is allowed to deposit additional pheromone,
and the MAX−MIN ant system (MMAS) [131] where only the globally most
successful or the best ant of an iteration deposits pheromone and upper and lower
bounds on the pheromone values are introduced to encourage the exploration of the
search space.

2.3 Hybrid Algorithms

All the exact and (meta-)heuristic approaches presented in this chapter so long have
their assets and drawbacks, but often they also can complement each other and ben-
efit from synergy thus leading to hybrid algorithms [117]. According to [111], such
hybrid algorithms can be classified into two main categories, namely collaborative
combinations where exact approaches and metaheuristics are executed in sequential
order, in parallel, or intertwined and exchange information with each other, or inte-
grative combinations where exact algorithms are subordinates of metaheuristics or
vice versa. In the following, some of the main hybridization ideas and techniques
with focus on integrative approaches are presented.

2.3.1 Incorporating (Meta-)Heuristics in Exact Algorithms

For Branch&Bound to exploits its full potential, it requires good feasible solutions to
the original problem yielding tight global bounds to prune as much as possible from
the search tree. Each of these parts of the algorithm can benefit from heuristics.
Providing a good initial solution to start with is an obvious contribution of heuristics
to Branch&Bound. Whenever a new incumbent solution has been found, it can
instantly be locally improved to enhance the global bound further. (Meta-)heuristics
can also be applied on fractional solutions appearing during the optimization process,
i.e., on every node within the Branch&Bound tree. However, the computational
effort invested has to pay off, and especially metaheuristics can require a lot of
runtime to converge, thus a decision has to be made where in the search tree and
when to apply such heuristics. For example, in [139] Woodruff presented a chunking-
based selection strategy that measures a distance between the already explored nodes
of the search tree and the current one to restrict the execution of runtime-intense
procedures to relatively distant nodes.

However, there are also other techniques inspired by (meta-)heuristics to get good
global bounds early in the optimization process when using Branch&Bound. This

34

2.3 Hybrid Algorithms

includes for example guided dive [31], a modification to the standard approach of
using depth-first search where the subproblem is explored first in which the branch-
ing variable is set to the value of the currently best feasible solution, thus biasing
the search to neighbors of the current incumbent solution. Another very successful
method is local branching [49] where the problem under consideration is split into
two subproblems based on an incumbent solution. The smaller of these two sub-
problems is restricted to solutions that differs only in k variables from the current
incumbent solution and is forced to be solved first. In case a better solution is found,
this new incumbent solution is further investigated following the same scheme recur-
sively. This way, the neighborhood of good feasible solutions is explored first before
going back to the remaining subproblems.

Another application of (meta-)heuristics within exact algorithms is the computation
of cutting planes [8, 121] and solving the pricing problem in an column generation ap-
proach [48, 110]. Whereas the identification of violated inequalities for Branch&Cut
is not critical in the sense that missing a cut only affects the tightness of bounds but
does not touch the feasibility or optimality of the whole optimization problem, the
pricing problem has to be solved exactly in the end in case we seek for the optimal
solution to the original problem. However, every decision variable with negative re-
duced costs improves the solution, thus a hierarchy of different methods can be used
to speed up the column generation process: First, fast heuristics and metaheuristics
are applied, and only in case they are no longer able to identify new variables with
negative reduced costs, an exact approach is used to solve the pricing problem or to
prove that the current solution is optimal.

2.3.2 Incorporating Exact Algorithms in (Meta-)Heuristics

The exact solution of a relaxed and therefore easier to solve problem can act as
starting point for further investigations by heuristics to identify, e.g., good initial
solutions for various other algorithms. Using an LP relaxation, fractional variables
can be rounded for example and the resulting solution – if necessary – may be
repaired to become feasible. Adding a stochastic component to the rounding and
repair process can lead to a whole population of promising solutions [115, 107].
Another possibility is to fix some of the integral variables of a solution to the LP
relaxation thus reducing the size of the remaining search space significantly. This
approach is referred to as core method [12], whereas the definition of the fixed core
can further be extended in several ways, see for example [114, 135].

Metaheuristics based on local search techniques rely on the definition of one or
more neighborhood structures. To perform a local improvement, there have to exist
efficient algorithms to search such a neighborhood. Usually, classical enumeration

35

Chapter 2 Methodologies

techniques are used in this context limiting the size of the neighborhoods that can
be explored within reasonable time. However, finding the best neighboring solution
can also be defined as an optimization problem of its own and more sophisticated
approaches can be applied to search them thus making it possible to also deal with
neighborhood structures of exponential size. In very large-scale neighborhood search
for example (I)LP solvers can be utilized to explore the surrounding of an incumbent
solution by fixing some decision variables to their respective values and performing
a search over the remaining ones [22, 108]. In case the search space of the large
neighborhood is defined appropriately also dynamic programming can be applied,
then this approach is referred to as dynasearch [26].

Crossover is a crucial operator for the performance, runtime as well as solution qual-
ity, of evolutionary algorithms. Usually, the recombination of two or more parental
solutions to create a new offspring by merging their attributes is done in a simple
and therefore fast way relying heavily on random decisions. However, the offspring
is often worse than its parents leading to a relatively large number of iterations to
achieve an improvement. Therefore, investing more computational effort in identi-
fying a better offspring can pay off. Path relinking [55] follows this basic idea by
tracing a path between two parental solutions in the search space, i.e., one solution
is transformed in small steps into the other one whereas the best solution found
during this procedure is taken as result. Solution merging extends this approach
by considering not only a single path between the parental solutions but the whole
solution space spanned by their attributes. Identifying the best solution within this
subspace can be a hard to solve optimization problem, but usually the parental
solutions only differ in a few attributes thus making it manageable. This solution
merging technique can be used to replace the crossover operator within an EA, then
referred to as optimized crossover [5], but can also be applied as a post-processing
step to two or more heuristic solutions as in [7]. Finally, another application of ex-
act algorithms in the field of EAs is the decoding of indirect or incomplete solution
representations, see for example [130].

2.3.3 Collaborative Approaches

The key issue of hybrid algorithms following a collaborative strategy is to exchange
some sort of information so at least one of the partners can profit from discovered
knowledge about the search space.

An interesting approach in this context is to start with a Lagrangean relaxation
of the original problem using the volume algorithm to solve the Lagrangean dual
program, which gives some primal feasible solutions as a by-product. They now
can be used to restrict the search space for a subsequent metaheuristic by only

36

2.3 Hybrid Algorithms

considering attributes already appearing in these solutions [76, 106], a similar idea
to solution merging discussed above. Also information about dual variables gathered
during the volume algorithm can be exploited to bias the search to interesting regions
of the solution space.

Another example for a collaborative approach is the hybrid of an EA and
Branch&Bound proposed in [50] to solve general ILPs, where the two algorithms
are executed intertwined. Branch&Bound starts to explore the search space and
collects information about promising solutions. When a certain criterion is met,
this gathered information is used to augment the initial population of the EA. The
best solution found by the EA is then passed back to Branch&Bound and so forth.

Of course, the exchange of information is not restricted to complete or parts of so-
lutions. In [113] a Branch&Cut approach cooperates with a memetic algorithm in a
parallel and asynchronous way, where values of dual variables are transfered to im-
prove the repair and local search procedures. Furthermore, a multi-agent based ap-
plication called TECHS (TEams for Cooperative Heterogenous Search) is described
in [35]. Teams of one or more agents following the same search strategy exchange
not only positive (solutions) but also negative (parts of the search space already
explored) information. Each agent alternates between performing its optimization
algorithm and processing messages, whereas the communication is filtered for the
various agents by so-called send- and receive-referees.

All these listed cooperative approaches achieve better results on the corresponding
problems they were tested on than the individual algorithms executed for their own
thus demonstrating impressively the potential of hybrids between exact techniques
and (meta-)heuristics.

37

38

Chapter 3

Previous Work

This chapter summarizes previous work in the field of the bounded diameter min-
imum spanning tree problem, as well as other relevant work such as on the hop
constrained MST problem.

3.1 Exact Algorithms

When confronted with a combinatorial optimization problem, the first attempt al-
ways should be to consider solving it with an efficient algorithm to proven optimality.
Fundamental work of using mixed integer program (MIP) methods in the field of
network design was done by Magnanti and Wong [93], who proposed multi-source
multi-destination network flow models.

Achuthan and Caccetta [3] suggested a simpler flow model specifically for the
BDMST operating on a directed version of the instance graph, a standard tech-
nique to strengthen the formulation where each undirected edge e is replaced by two
oppositely directed arcs, both with the same costs ce. For the even-diameter case
they introduce a virtual source s and a target t, see Fig. 3.1 (a). The number of
arcs leaving s is restricted to one, and all the directed paths from s to the target are
limited in their length to ⌊D2 ⌋+2. When D is odd they proposed a model containing
two different target nodes t1 and t2, where all directed paths end at t2 except one
directed to t1 which is also allowed to contain one additional arc in length, the center
edge connecting c1 and c2. At this point the formulation is incorrect, as can be seen
in Fig. 3.1 (b). The result is a diameter-constrained tree, but in an optimal solution

39

Chapter 3 Previous Work

s t

· · ·

· · ·

· · ·

...
...

s

t1

t2

· · ·

· · ·

· · ·

...
...

(a) (b)

c1

c2

c1

Figure 3.1: Flow model by Achuthan and Caccetta introducing a virtual source s and
target nodes t, t1, and t2 for the even (a) and (incorrect) odd-diameter
case (b), respectively. c1 and c2 denote the center of the BDMST, the
bold arc in (b) the center edge.

all directed paths crossing the arc (c1, c2) are allowed to have length ⌊D2 ⌋ + 3 to
exploit the full height, not just a single one ending at t1. An advanced version no
longer requiring virtual target nodes (thus also formulating the odd-diameter case
correct) was published by Achuthan et al. in [4] together with a Branch&Bound
framework utilizing different branching rules and simple heuristics to improve the
performance.

Gouveia and Magnanti [59] investigated different extended variants of multi-
commodity flow (MCF) formulations for the BDMST problem, in which they count
and limit the hops on paths from a virtual root node to any other node. They subdi-
vided the problem of finding a diameter constrained tree into different subproblems:
creating a rooted spanning tree, modeling hop-constrained paths from the virtual
root, and selecting the center edge if the diameter bound is odd. For each of these
subproblems they presented various approaches leading to a pool of formulations to
solve the entire problem, which were evaluated in detail.

The most successful one is a hop-indexed single-source multi-commodity flow for-
mulation which will be recapitulated here for the even-diameter case due to its high
relevance. As done by Achuthan and Caccetta, the undirected edges (i, j) ∈ E of
the instance graph are replaced by directed arcs (i, j) and (j, i) ∈ A with the same
costs as the undirected edge. In addition, a virtual root node r is introduced, i.e.,
Vr = V ∪{r}, and Ar = A∪ (r, i) ∀i ∈ V , whereas all arcs (r, i) have zero-costs. The
model makes use of the following variables:

• xij , (i, j) ∈ A: the directed arc (i, j) is part of the diameter-constrained MST

• ykij , (i, j) ∈ Ar: the arc (i, j) is part of the unique path from r to k ∈ V
• zhkij , (i, j) ∈ Ar, h = 1, . . . , H = ⌊D2 ⌋ + 1: (i, j) is the hth arc on the unique

path from r to k ∈ V

40

3.1 Exact Algorithms

minimize
∑

(i,j)∈Ar

cij xij (3.1)

subject to
∑

(i,j)∈Ar

xij = |V | (3.2)

∑

j∈V

ykij −
∑

j∈Vr

ykji =

1 i = r

0 i 6= r, k ∀k ∈ V, i ∈ Vr
−1 i = k

(3.3)

ykij ≤ xij ∀(i, j) ∈ Ar, k ∈ V (3.4)

ykij ≥ 0 ∀(i, j) ∈ Ar, k ∈ V (3.5)

xij ∈ {0, 1} ∀(i, j) ∈ Ar (3.6)

∑

j∈V

xrj = 1 (3.7)

∑

j∈V

z1krj = 1 (3.8)

∑

j∈V

z2kij = z1kri ∀i ∈ V (3.9)

∑

j∈V

zh+1,k
ij −

∑

j∈V

zhkji = 0 ∀i ∈ V, h = 2, . . . , H − 1 (3.10)

∑

j∈V

zHkij = 1 (3.11)

ykij =
∑

h=1,...,H

zhkij ∀(i, j) ∈ Ar, k ∈ V (3.12)

zhkij ∈ {0, 1} ∀(i, j) ∈ Ar, h = 1, . . . , H (3.13)

zhkkk ∈ {0, 1} ∀k ∈ V, h = 2, . . . , H (3.14)

(3.1)–(3.6) describe a spanning arborescence of minimum costs rooted at r: The
costs of all arcs part of the BDMST are accounted for the objective value (3.1), and
the spanning arborescence including the virtual root node consists of |V | arcs (3.2).
The flow conservation constraints (3.3) guarantee that there is a unique directed
path from r to each node k ∈ V . The coupling constraints (3.4) ensure that each
arc carrying flow for a commodity k is considered in the objective function. Finally,
the variables ykij have to be positive or equal to null (3.5), and the xij are binary
variables (3.6).

41

Chapter 3 Previous Work

r

c1 c2

v

.

.

.

.

.

.

.

.

.

.

.

.

r

c1 c2

v

.

.

.

.

.

.

.

.

.

.

.

.

Figure 3.2: Triangle-tree: When D is odd there are two paths from the virtual root
r to any node v of the instance graph, a direct one and one crossing the
center edge (c1, c2).

Equation (3.7) now selects exactly one node to be the center of the BDMST with
an even diameter bound D, and (3.8)–(3.14) formulate that no directed path from r
to any node k ∈ V contains more than H arcs: The constraints state that – starting
at the virtual root r (3.8) – an arc is only allowed to enter a node i in position
h when there is another arc emanating from i in position h + 1, and there have
to be one arc entering node k in position H (3.9)–(3.11). Since not all paths to
nodes k ∈ V in the final BDMST are of length H there have to be so-called loop
variables zhkkk , h = 2, . . . , H to artificially extend short paths to the desired length.
In the end, equations (3.12) couple the binary hop-index with the corresponding
multi-commodity flow variables.

Using this model Gouveia and Magnanti achieved extremely tight LP bounds with a
gap of less than 1% to the optimal solution for almost all tested problem instances.
They were able to solve BDMST instances with up to 60 nodes and 600 edges and
a diameter constraint D ≤ 8 to proven optimality, although especially on Euclidean
graphs the runtime as well as the memory requirements increase quickly due to the
large number of variables (O(|V | · |E| · H)) and corresponding constraints in the
formulation.

In [60] (an enhanced version can be found in [61]) Gouveia et al. introduced an
extended flow formulation for the odd diameter case based on the model given above.
The BDMST is viewed as being composed of a variant of a directed spanning tree
from an artificial root node r together with two constrained paths from the root
to any node in the so-called triangle-tree: r is connected to the two center nodes
which are themselves linked via the center edge building a cycle of length three.
As a consequence, there exist two directed paths from r to any other node v of
the instance, a direct one from r to one of the center nodes and then to v, and a
second, one edge longer path from r to the other center node over the center edge
to v, see Fig. 3.2. The strength of this formulation is based on the possibility to
explicitly formulate the fact that the center edge always has to be the second arc
on the longer directed path from the artificial root to any node of tree. This model
for the complex odd-diameter case is characterized by relatively small LP relaxation

42

3.1 Exact Algorithms

gaps of usually less than 5%, and it allows to handle instance sizes comparable to the
case where D is even, i.e., up to 60 nodes and 600 edges. Gouveia et al. [59, 60, 61]
also applied modified MCF formulations to the related Steiner tree problem with
hop constraints.

A formulation based on lifted Miller-Tucker-Zemlin inequalities responsible for avoid-
ing cycles and ensuring the maximum diameter are presented in Santos et al. [43].
This approach is claimed to work well in particular on dense graphs but is not able
to reach the LP gaps as well as solution times of the MCF models presented above.
See Voß [137] for the use of MTZ constraints to compute Steiner trees.

Recently, a constraint programming approach has been proposed by Noronha et al.
in [103] for the BDMST problem using one single formulation to model the even
as well as the odd diameter case. Although giving respectable results for extremely
tight diameter bounds it cannot compete with state-of-the-art multi-commodity flow
and Branch&Cut formulations.

Hop Constrained Minimum Spanning Tree Problem

Identifying a diameter constrained MST can be reformulated as a special variant
of the HCMST problem by introducing an artificial root node and restricting its
connection to the center of the BDMST as described above. Therefore, publica-
tions in the field of hop-constrained trees also have some relevance for the BDMST
problem.

Not only for the diameter- but also for the hop-constrained MST problem hop-
indexed multi-commodity flow formulations have proven to be very successful with
their tight LP bounds, see for example [30] which also gives an overview on several
other models and solution approaches for this problem. Due to the size of the
strong MCF formulations it is sometimes promising to use Lagrangean relaxation to
compute good bounds. In [58] Gouveia proposed such an approach by dualizing the
coupling constraints between the arc (xij) and flow variables (ykij) for the various
commodities k (cf. inequalities (3.4)). Especially for larger and dense instances,
Gouveia and Requejo [64] use an alternative to derive a Lagrangean relaxation by
dualizing the flow-conservation constraints (cf. equations (3.3)). The computed lower
bounds can compete with the corresponding LP relaxation values but require in
general less running time.

An also well working approach in particular for a smaller hop limit H is the refor-
mulation of the problem as a Steiner tree problem on a layered directed graph [65],
see Fig. 3.3 (a) and (b). Here the nodes of the instance graph are duplicated to
different layers according to the numbers of allowed hops, numbered from 1 to H.

43

Chapter 3 Previous Work

(a) (b) (c)

v1 v2

v3 v4

v5 v6

v1

v2 v3 v4 v5 v6

r

v2 v3 v4 v5 v6v1

Figure 3.3: An instance graph (a) and its representation as a layered graph (b) with
root node v1 and hop limit H = 3. In (c) the transformation for an
odd-diameter BDMST (D = 5) is shown where an artificial root r and
an additional level have been introduced. Dotted lines denote arcs of
zero cost.

The root r of the HCMST is the only node assigned to layer 0. Each node v at a
layer 1 to H − 1 is directly connected to its copy at layer H by a zero cost arc. The
edges of the instance are replaced by arcs linking the corresponding nodes of directly
adjacent layers with appropriate costs, directed towards layer H. The nodes at the
highest layer represent the terminal nodes to be reached by directed paths from r
across the different layers. There exist efficient algorithms for solving even large
Steiner tree problems, see for example [34], but of course with increasing H also
the size of layered graph grows quickly thus making this reformulation reasonably
applicable only to instances with moderate hop limits. In the revised and signifi-
cantly extended version [66] also the BDMST problem is covered as a by-product.
The transformation of the even-diameter case is straightforward by introducing an
artificial root r, connecting it with zero-cost arcs to all instance nodes of layer 1,
and limiting the arcs emanating from it in a solution to one. The hop limit is set
to H = ⌊D2 ⌋+ 1. In case the diameter is odd, an additional layer −1 containing all
instance nodes is introduced, cf. Fig. 3.3 (c). This layer can only be reached from
layer 1 using arcs corresponding to the underlying graph with appropriate costs.
Each node of layer −1 is linked with its copy in 1 by a zero-cost arc. An additional
constraint guarantees that exactly one arc from layer 1 to layer −1 is chosen, the
center edge. Applying this transformation and using a Branch&Cut formulation
to solve the corresponding Steiner tree problem the layered graph approach is very
successful. The authors report that in most cases BDMST instances with up to 161
nodes can be solved without branching.

Another strong formulation is based on so-called jump inequalities [29] used to en-
force the hop constraint; they will be described in more detail in Section 6.2. Unfor-

44

3.2 Construction Heuristics

tunately, their number grows exponentially with |V |, and the problem of separating
them in a cutting plane algorithm is conjectured to be NP-hard. Therefore, Dahl
et al. [29] exploited them in a Relax&Cut algorithm where violated jump inequali-
ties only need to be identified for integer solutions, which is straightforward using a
simple depth first search procedure.

A noticeable result about the approximability of height-constrained minimum span-
ning and Steiner trees with implications also for the BDMST problem was published
by Manyem and Stallmann [95]. They showed that these problems are not within
APX, the class of NP optimization problems for which it is possible to give poly-
nomial time heuristics that guarantee a constant approximation bound.

3.2 Construction Heuristics

Since exact algorithms are not able to solve instances of even moderate size to proven
optimality within reasonable time, heuristics have been developed. To get acceptable
solutions fast for instances with hundreds of nodes which can also be utilized as
basis for more sophisticated metaheuristics simple construction heuristics play an
important role.

They are primarily based on Prim’s classical minimum spanning tree (MST) algo-
rithm [109]. It starts growing the tree at an arbitrary node and then always adds
the node with the cheapest connection to the partial spanning tree until all nodes
are part of the MST.

Abdalla et al. describe in [1] several construction heuristics for the BDMST problem.
For the special case of a diameter bound of D = 4 they proposed a transformation
from the optimal BDMST with a diameter of three which can be determined in
polynomial time (cf. Chapter 1). A more general approach is the one-time tree
construction (OTTC), a heuristic based on Prim’s MST algorithm and especially
suggested for the case of instances with random edge costs and a smaller diameter
bound. While performing the standard algorithm of Prim starting at an arbitrary
node the procedure keeps track of the eccentricities of all nodes in the so long
constructed partial tree. This allows for verifying if the cheapest link connecting
a node so long not part of the tree will violate the diameter constraint. If so, the
connection is established and all eccentricities have to be updated, a procedure that
can be implemented in O(n). Otherwise, this link has to be omitted and the next
edge has to be considered. Including the update procedure OTTC requires time
O(n3) to compute a BDMST for one starting node. Since OTTC is sensitive to the
choice of this initial starting node it has to be performed for each node of the instance
leading to an overall runtime complexity of O(n4) to find the best tree OTTC is able

45

Chapter 3 Previous Work

(a) CBTC (271.4). (b) RTC (41.18). (c) ACO (31.09).

Figure 3.4: A diameter constrained tree with D = 10 constructed using (a) the
CBTC heuristic, compared to (b) RTC (best solution from 1000 runs)
and (c) a solution obtained by an ant colony optimization approach
(complete, Euclidean graph with 1000 nodes distributed randomly in the
unit square, the corresponding objective values are given in parentheses).

to construct. Finally, in [1] also two iterative refinement algorithms are proposed
which are designed for rather loose diameter bounds. Starting from an unconstrained
MST paths that are too long are iteratively shortened until the diameter bound is
met. In [36] Deo and Abdalla report results for all these algorithms implemented
on a massively parallel SIMD machine (single instruction, multiple data) with more
than 8000 processors.

For the center-based tree construction (CBTC) Julstrom [82] exploits the observation
that a BDMST can be viewed as a height-restricted tree (height H = ⌊D2 ⌋) rooted
at the center to reduce the runtime of OTTC significantly. When starting at the
center there is no need to keep track of eccentricities and the corresponding update
procedure can be omitted. Ensuring the height limit is a much simpler task and can
be done in constant time, thus reducing the complexity of creating the best possible
tree to O(n3) (O(n2) for each instance node as center) in the even diameter case.
Nevertheless, if D is odd CBTC has to be executed for each edge as center leading
to an overall runtime complexity of O(n4) for complete graphs.

This approach works reasonably well on instances with random edge costs, but
on Euclidean instances which are – also for exact algorithms – much harder to
solve this leads to a backbone (the edges near the center) of relatively short edges
where the majority of the nodes have to be connected to the backbone via relatively
long edges, see the example in Fig. 3.4(a). On the contrary, a good solution as
shown in Fig. 3.4(c) obtained from a metaheuristic, demonstrates that the backbone

46

3.3 Metaheuristics

should consist of a few longer edges to span the whole area so the large number of
remaining nodes can be connected as leaves by much cheaper edges. In a pure greedy
construction heuristic this observation is difficult to realize. In the randomized tree
construction approach (RTC, Fig. 3.4(b)) from [82] not the overall cheapest node is
always added to the partial spanning tree but the next node is chosen at random and
then connected by the cheapest feasible edge. Thus at least the possibility to include
longer edges into the backbone at the beginning of the algorithm is increased. For
Euclidean instances RTC is so far the best choice to quickly create a first reasonable
solution as basis for exact or metaheuristic approaches.

There also exists another well-known algorithm for the unconstrained MST by
Kruskal [90] where in a first step the edges of the graph are sorted ascending ac-
cording to their costs. Afterwards, the edges are considered in this order and an
edge is accepted for the tree as long as it does not lead to a cycle. So this algorithm
starts with a forest of independent trees (the single nodes) and iteratively connects
them until this procedure results in a single spanning tree of minimum costs. This
approach makes it much more difficult to impose additional constraints like a di-
ameter restriction to the whole MST. Furthermore, the construction heuristics for
the BDMST problem operate in general on complete graphs which is no restriction
since each graph can be augmented with sufficiently costly edges. However, on dense
or even complete graphs Kruskal’s algorithm has a higher runtime complexity than
Prim’s MST algorithm since it is dominated by sorting all edges [98]. Neverthe-
less, for the related delay-constrained MST problem a successful approach has been
proposed by Ruthmair et al. [126].

3.3 Metaheuristics

Beside the greedy construction heuristics various evolutionary algorithms (EAs) were
developed for the BDMST problem in order to obtain better results. Raidl and
Julstrom [116] presented an EA employing a direct edge-set encoding where in the
recombination procedure special attention is payed to efficiently derive an offspring
having most edges in common with its parent solutions. In addition, they introduce
four variation operators that are able to produce new candidate solutions in almost
O(n) expected time. In [83] the same authors suggested an EA using a permutation
representation, which determines the order in which the nodes are appended by an
RTC-like decoding heuristic. For recombination partially mapped crossover (PMX)
[56] is utilized which tends to preserve the positions of nodes from the two parents
to the offspring. This approach leads to better solutions, but with the drawback of
longer running times for large instances since decoding a chromosome requires O(n2)

47

Chapter 3 Previous Work

time. Another EA based on random-keys has been proposed in [81]. A comparison
to the permutation-coded approach indicated a similar performance.

Singh and Gupta [129] improved the permutation encoded EA by including a lo-
cal improvement into their decoding procedure which leads to better results much
faster. They use a local search neighborhood already found in [68] where a subtree
is truncated from the solution and is reconnected – without changing the root of the
subtree – at another feasible place in the tree but at lower costs. When searching the
neighborhood they exploit knowledge of the construction phase to reduce the search
space considerable in practice. The same RTC-like decoding procedure is utilized
to derive a BDMST from a permutation π of all nodes, i.e., a node v at position i
in π already was checked against all nodes with an index j < i, and the cheapest
connection was established. In the following local improvement step, after a com-
plete diameter constrained tree was built, a cheaper place than its current one for
the subtree rooted at v can only be found when connecting it to a node not already
part of the tree when v was initially inserted during construction. Therefore, the
search for a cheaper and feasible place in the BDMST to move v with its complete
subtree to can be restricted to nodes with an index k > i within π.

3.4 Approximation Results

As mentioned in section on exact approaches for the hop-constrained MST, Manyem
and Stallmann showed in [95] that the height-constrained minimum spanning and
Steiner trees, and therefore also the BDMST problem, are not within APX, so there
exists no polynomial time heuristic guaranteeing a constant approximation bound.
In [13] Bar-Ilan et al. describe a logarithmic ratio approximation algorithm for the
special cases of a diameter bound of D = 4 and D = 5 where they assume special
conditions for the costs of the instance graph edges. The result was generalized
by Kortsarz and Peleg in [88] where they present a polynomial time approximation
algorithm of ratio O(D · logn) for a constant D, as well as an algorithm for general
D of ratio O(nε) for any fixed 0 < ε < 1. From the same authors similar results also
exist for Steiner trees, see [89].

Recently, Angel et al. [6] gave a sharp bound for the costs of height respectively
diameter constrained minimum spanning and Steiner trees when n → ∞ and the
edge costs of the complete graph are exponential random variables between 0 and 1.
They showed that for H ≥ log2 logn+ ω(1), where ω(1) is any function going to ∞
with n but slower, the costs of both, a height restricted and a diameter constrained
MST with D = 2H, tend to that of an unconstrained MST, which is ζ(3) = 1/13 +
1/23 + 1/33 + · · · . If 1 ≤ H ≤ log2 logn − ω(1), the overall costs tend to (1 −

48

3.4 Approximation Results

2−H)
√

8(
√

2n2/2H)1/(2H−1) in both expectation and probability. More theoretical
work concerning different properties of spanning trees, amongst others the diameter,
can be found for example in [124, 122, 133].

49

50

Chapter 4

Local Search Neighborhoods

In the following chapters, various new exact as well as (meta-)heuristic approaches
will be presented for the BDMST problem. They all have in common that they
can benefit from a local improvement of candidate solutions, even the exact algo-
rithms where intermediate trees can be improved to obtain better bounds to speed
up Branch&Bound or Branch&Cut. In this chapter, five local search neighborhoods
designed for the BDMST problem are defined. All of them will only consider feasible
solutions. Based on the representation of the diameter-constrained tree the neigh-
borhoods can be categorized into three classes: tree-structure based, level-based,
and clustering-based neighborhoods.

For an efficient implementation, we represent a solution as an outgoing arbores-
cence, i.e., a directed tree rooted at a center, using the following data structures, cf.
Fig. 4.1:

• An array pred containing for each node v ∈ V its direct predecessor in the
directed path from the center to it, respectively NULL in case v is a center
node;

• for each node v ∈ V a list succ(v) of all its direct successors; for a leaf this list
is empty;

• an array lev storing the level for each node v ∈ V , which is the length of the
path from the center to v;

• for each level l = 0, . . . , H a list Vl of all nodes at level l.

51

Chapter 4 Local Search Neighborhoods

0

1

2

pred :

succ(v1):

lev :

V0:

v1

v2 v3 v4

v5 v6 v7 v8 v9 v10

v1

v1

v2 v3 v4 v5 v6 v7 v8 v9 v10

v2, v3, v4

v1

v2 v3 v4

. . .

v1 v1 v2 v2 v4

0 1 21 1 2 2 2 2 2

V1: v2, v3, v4

. . .

Figure 4.1: Data structures required for an efficient implementation to search the
various neighborhoods.

4.1 Incremental Evaluation

A standard technique within local search to reduce the computational effort is to
incrementally evaluate the objective value of an solution. For the concrete example
of a BDMST solution, only the contributions to the objective value of those parts of
the tree have to be recalculated which have been modified by a move, an operation
(slightly) altering a solution.

In this work we go one step further. Whenever possible, not only the objective value
but also neighboring solutions are evaluated incrementally: All neighborhoods are
searched using a best improvement strategy where from all possible moves within
a neighborhood the one with the biggest gain is executed; ties are broken arbitrar-
ily. As a consequence, the whole neighborhood has to be searched to identify the
best improving move. This means, that from a given diameter-constrained tree ev-
ery neighboring solution that can be reached within one move has to be evaluated.
Depending on the size of the neighborhood these computations have an important
impact on the running time and therefore should be limited. In case now a single
performed move within a neighborhood has only small effects on the already evalu-
ated neighboring solutions, these solutions can be stored in some sort of cache. Then
only the affected part of this cache has to be reevaluated and updated accordingly
whenever a move has been executed, and the subsequent best improvement move
within the same neighborhood structure can be identified without checking again
every possible move. Of course, this strategy can only be exploited if a solution is
modified within one neighborhood until a local optimum is reached, i.e., best im-
provement moves are performed until the solution could no longer be refined. In
the following sections it will be explicitly pointed out, together with algorithmic de-
tails, whenever such an incremental evaluation of neighboring solutions is reasonably
possible.

52

4.2 Tree-Structure Based Neighborhoods

v

uv u

Figure 4.2: Arc exchange neighborhood: Disconnecting a subtree and reconnecting
it at another feasible place.

4.2 Tree-Structure Based Neighborhoods

The first two neighborhoods are based on the tree structure defined by the relation-
ship between predecessors and successors in the directed tree rooted at the center
of the BDMST.

4.2.1 Arc Exchange Neighborhood

The arc exchange neighborhood of a current solution T consists of all feasible trees
differing from T in exactly one single arc (directed edge). The associated move can
be interpreted as disconnecting some sub-tree and reconnecting it at another feasible
place, see Fig. 4.2.

This neighborhood consists of O(n2) solutions. A single neighbor can be evaluated
in constant time when only considering cost differences. To ensure that the diameter
constraint is not violated for each node v ∈ V the height h(v) of the sub-tree rooted
at it is predetermined; feasible candidates for becoming new predecessor of a node
v after disconnecting it are all nodes at levels less than or equal to H − h(v) − 1.
Under this conditions, the total time for examining the whole neighborhood in order
to identify the best move is in O(n2).

4.2.2 Node Swap Neighborhood

This neighborhood focuses on the relationship between nodes and their set of direct
successors. A neighboring solution is defined as a tree in which a node v and one
of its direct successors u exchange their positions within the tree: In the example
of Fig. 4.3 node u becomes predecessor of v and successor of v’s former predecessor.

53

Chapter 4 Local Search Neighborhoods

v

u v

u

x1 x2

y3y1 y2

w w

Figure 4.3: Node swap neighborhood: Reorganizing the positions of a node and its
direct successors in the BDMST.

While node u can keep its successors (u is moved to a smaller level), the successors
of v are reconnected to u in order to always ensure feasibility with respect to the
diameter constraint in an easy way.

In contrast to arc exchange, a move in this neighborhood can result in several new
connections, which means that on sparse graphs it could be difficult to identify a
valid move. Nevertheless, the whole neighborhood has only size O(n) and it can be
efficiently examined in time O(n · dmax), where dmax is the maximum degree of any
node in the current tree.

Furthermore, this neighborhood allows for an incremental evaluation of improvement
moves as suggested in Section 4.1 since the rearrangement of nodes only has small
local effects. When searching the whole neighborhood, all improvement moves are
stored within a priority queue, sorted according to the achievable gain. Within this
queue, for a move denoted by a node v the following data have to be recorded: v
itself, the successor u which will exchange its position with v, and the improvement
in the objective value. After executing an improvement move for a node v, the
priority queue have to be updated. This includes the reevaluation of moves for
the following nodes: The old successors xi of v, because the subtree resulting in
swapping a node xi with one of its direct successors now has to connect to u instead
of v; the new root of the subtree u since it has new direct successors as well as a new
predecessor; and w as u is now a new direct successor which has to be considered
accordingly. Afterwards, the priority queue contains again all improvement moves
for the current solution with respect to the node swap neighborhood, so the best one
can be chosen to be executed until the queue becomes empty, i.e., a local optimum
has been reached.

54

4.3 Level-Based Neighborhoods

521 3 4 6 7 8 9

120 2 2 2 1 12

node i

lev(i) (a)

1

2

3

4

5

6 7

8

9

(b)

1

2

3

4

5

6 7

8

9

Figure 4.4: Decoding a level vector (Euclidean distances, D = 4) strictly following
the levels (a), respectively using the relaxed interpretation of a level (b).

Algorithm 10: Decoding a level vector lev.

for every node v ∈ V do1

if
∑lev(v)−1
l=0 |Vl| < δ then2

search level lists Vl, l = 0, . . . , lev(v)− 1, for the cheapest predecessor p3

for node v
else4

search sorted nearest neighbor list of v for the first node p assigned to5

a level < lev(v)

pred(v)← p;6

4.3 Level-Based Neighborhoods

For the next two neighborhoods the representation of a solution is changed and there-
fore the search space: Instead of the predecessor respectively successor information,
the level a node is assigned to is of main interest. Given the level lev(v), ∀v ∈ V , it is
straight-forward to derive an optimal bounded diameter spanning tree with respect
to lev: To each non-center node v we assign a least-cost predecessor from Vlev(v)−1,
cf. Fig. 4.4-a.

In order to obtain even better solutions we go one step further and relax the meaning
of “level” in this decoding procedure: For a node at level l, any node at a level smaller
than l (not just l− 1) is allowed as predecessor, and an overall cheapest connection
is chosen. In case of ties a node of minimum level is selected. See Fig. 4.4-b for an
example. Note in particular that node 2 has level 2 and is connected to the center
node 1 at level 0 since this is the nearest node at a smaller level.

Algorithm 10 shows this decoding in a more detailed pseudo-code. In order to find
the least-cost predecessor of a node i as quickly as possible, we use the following

55

Chapter 4 Local Search Neighborhoods

H = ⌊D

2
⌋

0

1

.

H − 1

c1 c2

Figure 4.5: Level change neighborhood: Moving a non-center node one level towards
or away from the center.

strategy: Only if the number of nodes assigned to a level smaller than lev(i) is less
than a threshold δ, we scan the lists V0 to Vlev(i)−1 for the cheapest connection.
Otherwise, we make use of a precomputed nearest neighbor list for node i, which
contains all nodes adjacent to i in increasing edge cost order. The first node in
this nearest neighbor list at a level less than lev(i) is chosen as predecessor for node
i. In preliminary experiments δ ≈ 0.1 · n turned out to be a good choice in our
implementation.

All neighborhoods operating on this level structure have to take into account that the
number of nodes assigned to the lowest level 0 is restricted. This level contains the
center node(s) of the BDMST, therefore only exactly one node in the even diameter
case, and two nodes connected via the center edge if the diameter is odd.

4.3.1 Level Change Neighborhood

In the level change neighborhood an adjacent solution is reached by incrementing
or decrementing the level of exactly one node v at level 1 ≤ lev(v) ≤ H − 1 and
2 ≤ lev(v) ≤ H, respectively, and reapplying the decoding procedure presented in
Algorithm 10; see Fig. 4.5.

If a node v at level l is connected to a predecessor u assigned to a level smaller than
l− 1, as it is allowed by the decoding procedure, it is advantageous to reduce lev(v)
further by consecutive moves until lev(v) = lev(u)+1 because v can act as potential
predecessor for more nodes. This is accomplished by accepting decrement moves
towards the center of the BDMST even if they have no immediate impact on the
objective value.

The size of this neighborhood is O(n) and an exhaustive examination can be imple-
mented in time O(n2). Incremental evaluation speeds up the computation substan-
tially in practice but does not reduce this worst-case time complexity.

56

4.3 Level-Based Neighborhoods

Incremental Enumeration of Moves within the Level Change Neighborhood

For each node v ∈ V two possible moves have to be considered, a decrement move,
shifting the node from a level l+1 down to level l thus bringing it closer to the center
of the BDMST, and the oppositely directed move, an increment move. Evaluating a
decrement move of a node v includes finding a new predecessor for v if the current one
is at level l, and to check if nodes at level l+1 can now have v as cheaper predecessor.
An increment move of v from level l − 1 to l can only be profitable in case v can
connect much cheaper to a new predecessor at level l − 1 thus compensating that
all old successors of v at level l have to find new predecessors (v was the cheapest
available predecessor for these nodes, now they have to connect to other nodes at –
in general – higher costs).

After exploring the whole neighborhood once the goal is to find consecutively the
currently best improvement move and execute it until a local optimum is reached,
i.e., no further improvement moves within the level change neighborhood are avail-
able. Shifting a node one level up or down has effects on only some of the previously
evaluated moves. For the affected nodes these moves simply can be recomputed
from scratch, in general already saving a lot of computational effort. However, this
neighborhood allows for a much more fine grained reevaluation of moves, which will
be described in more detail in the following.

When exploring the whole neighborhood at the beginning, all found improvement
moves can be stored within a priority queue Q. This queue is sorted according to
the improvement ∆ ≥ 0, the value that the current costs of the BDMST can be
decreased when the corresponding move is applied. Since for each node there can
at most be two improvement moves stored within the queue, a decrement and an
increment move, its size is bounded by O(2n).

The record stored for a move in Q contains the node v to be moved, the direction,
the corresponding improvement ∆, and a list L of all new connections implied by
this move, i.e., a list of pairs of nodes, where one pair describes a new relationship
of a predecessor and a successor. The latter list is not mandatory but once again
accelerates the computation significantly since one of the most time consuming pro-
cedures is to identify for a node the cheapest possible predecessor at a lower level,
cf. Algorithm 10. This has to be done already when evaluating a move. To avoid
that the same computations have to be performed once again when an improvement
move is executed all this information can be cached in the mentioned list. The first
pair in this list is the moving node v and its new predecessor (in case this move
really implies a new predecessor for v) because this information will be required
often when moves in the queue have to be updated.

57

Chapter 4 Local Search Neighborhoods

l

l + 1

l − 1

l + 2

vnew

vold

predold(v)

prednew(v)

succold(v)

succnew(v)succnew(v)

succold(v)succold(v)

¶ ·

¸¹

º»

¼

½

¾

¸ ¸ ¹

º »

¼

½ ½ ½

¾¾¾

Figure 4.6: Incremental enumeration of the level change neighborhood: Moves that
have to be reevaluated after a decrement move of node v from level l+ 1
to level l towards the center of the BDMST. The numbers ❶,. . . ,❾ denote
the items in the corresponding description of the various moves.

After extracting and executing the best improvement move from Q, two different
cases have to be distinguished in order to have again all possible improvements in
the priority queue.

Case 1: Decrement move. The performed move decremented the level of node v
from level l + 1 to l. In case for v also an increment move was filed in Q this entry
now can be deleted without any further investigations. Additionally, this move leads
to various rechecks and updates in Q, cf. Fig. 4.6:

❶. Decrement move of v to level l − 1:

This move was not possible before and therefore has to be evaluated completely
new.

❷. Increment move of the new predecessor of v, prednew(v), if its current level is
l − 1 and if this move can already be found in the priority queue Q:

The case that prednew(v) loses v as its successor (v no longer can connect to
prednew(v) if the new predecessor is moved to the same level) is new. So a

58

4.3 Level-Based Neighborhoods

new predecessor for v has to be found, this information must be added to the
list of predecessor and successor relationships stored for this move and the
improvement ∆ has to be updated accordingly.
Since the decrement move of v can only reduce the gain of shifting prednew(v)
to level l this move has only to be checked if it was profitable before, i.e., an
increment move of prednew(v) was already stored in Q.

If the improvement ∆ becomes negative after the update, the corresponding
move can be removed from the priority queue. This operation has to be per-
formed in all following cases whenever ∆ becomes less zero and will no longer
be explicitly mentioned.

❸. Decrement move of all old successors of v, succold(v), at level l + 2:

These nodes can now move one level towards the center without losing their
cheapest available predecessor v. If such a move is already in the queue only
the predecessor of the corresponding succold(v) and so the improvement ∆
have to be updated. Otherwise, the move has to be newly evaluated with the
exception that there is no need to search for a new predecessor for succold(v).

❹. Decrement move for each node u at level l+2 having its predecessor pred(u) 6= v
at level l + 1:

When performing such a move node u would lose its current predecessor and v
might now become its new one which was not possible before. If such a move
can be found in the priority queue Q only the predecessor of u stored in this
move has to be checked against v and in case v would be the better choice the
move (predecessor of u and ∆) has to be updated accordingly. Otherwise, the
decrement move of u has to be evaluated completely new.

❺. Decrement move for each new successor of v, succnew(v), if such a move is already
filed in the priority queue.

Before the move of v to level l a node succnew(v) had another predecessor p, so
the calculated ∆ of this move was based on the connection between succnew(v)
and p. Now succnew(v) has v as its predecessor (the costs csuccnew(v),v has to
be less than csuccnew(v),p). Furthermore, the stored move can contain in L the
information that succnew(v) would have become the new predecessor of v at
its old level l + 1, after moving v to level l this is no longer possible. Finally,
the move can contain new successors for succnew(v) now connected to v which
have to be checked if still succnew(v) would be the cheaper choice. So there
are three possible impacts on ∆ and the list L of predecessor and successor
relationships of the stored move record which have to be updated accordingly.

❻. Decrement move for each node u at level l + 1 not being a new successor of v if
there is already a corresponding move in Q:

59

Chapter 4 Local Search Neighborhoods

This is more or less case 5 with the restriction that the predecessor of u did
not change after moving v to level l. So there are only two possible impacts
on ∆ and L to be considered.

❼. Increment move for each new successor of v, succnew(v), if such a move can
already be found in the priority queue.

Since the only possibility for an increment move to be profitable is that after-
wards itself can be connected much cheaper, two cases have to be distinguished:

1. In the move stored in Q for succnew(v) node v should have become the
new predecessor for succnew(v). After moving v to level l this connection
already has been established so the move can be deleted from Q without
any further investigations (after incrementing the level of succnew(v) v
was the cheapest available predecessor, so there cannot be another op-
portunity to make this increment move valuable).

2. Otherwise, succnew(v) is now connected cheaper than it was before when
the move was evaluated so ∆ has to be updated accordingly.

❽. Decrement move for each node u at level l, excluding v, if u would be a cheaper
predecessor for v than its current one, i.e., cv,u < cv,prednew(v):

If such a decrement move for u is already filed in Q only the new connection
between u and v has to be added (including an update of ∆), otherwise the
move has to be computed from scratch.

❾. Increment move for each node u at level l, excluding v:

Node v now could act as new predecessor for u and for all old successors of u
at level l + 1 losing their predecessor when this increment move is executed.
If no such move exists in the priority queue it has to be evaluated completely
new, otherwise the following checks and updates of the stored increment move
for u are necessary:

1. The move contains another new predecessor w for u. If v would be a
cheaper predecessor than w update the corresponding information in L
and the improvement ∆.

2. The old successors of u at level l + 1 will lose their predecessor. For all
of these nodes there will be a new predecessor stored in L of the move
record.

• In the meantime (after performing the decrement move of v) it is
possible that a former old successor s of u is now successor of v.
In this case s will no longer lose its predecessor, the corresponding
information stored in the move record of u must be removed and ∆
has to be updated.

60

4.3 Level-Based Neighborhoods

l

l + 1

l − 1

l − 2

vold

vnew

prednew(v)

predold(v)

succstill(v)

succold(v)succold(v)

succstill(v)succstill(v)

¶

·¸

¹º

»¼½

¸ ¸ ¸

¹ ¹ ¹º º º

»¼ ¼ ½

Figure 4.7: Incremental enumeration of the level change neighborhood: Moves that
have to be reevaluated after an increment move of node v from level l−1
to level l. The numbers ❶,. . . ,❽ denote the items in the corresponding
description of the various moves.

• For all nodes still successors of u (after performing the move of v) the
new predecessor stored in the move now has to be compared to v if
v would be a better choice, and if so the corresponding information
and ∆ requires an update.
• In case u is the old predecessor of v (predold(v)) there will be a new

predecessor for v stored in list L of the move record. This information
can be removed and ∆ has to be updated accordingly.

Case 2: Increment move. The performed move incremented the level of node v
from level l− 1 to l. If a decrement move for v can be found in Q it can be deleted
instantly. In addition, again some tests and updates have to be performed, see
Fig. 4.7:

❶. Increment move of v to level l + 1:

Continue to move node v towards the leaves. This move was not possible
before and therefore has to be computed from scratch.

61

Chapter 4 Local Search Neighborhoods

❷. Increment move of the old predecessor of v, predold(v), if its level equals l − 2:

Node v will now not lose its predecessor. If the move can already be found
in the priority queue only the objective value gain ∆ will change and the new
connection of v to another predecessor can be deleted from L. Otherwise, the
move has to be evaluated completely new.

❸. Decrement move for each node u at level l − 1 if such a move is already stored
in the priority queue Q and cv,u < cv,predold(v):

If this move is not in the queue it still has not to be considered, nothing changed
to make this move profitable. Contrarily, if such a move can be found in Q then
the objective value gain ∆ includes the benefit of changing the predecessor of
v from predold(v) to u (note the precondition given above). Therefore, ∆ and
the fact that v is already connected to u have to be updated in the decrement
move record of u.

❹. Increment move for each node u at level l − 1 if such a move is already part of
the priority queue Q:

Shifting node v to level l has various effects on already exiting increment moves
of other nodes u from level l − 1 to l:

1. Node v is no longer available as predecessor for u and for all old successors
of u at level l.

2. Some old successors of v, succold(v), as well as v itself can have u as their
new predecessor and so would require to find a new node they can connect
to.

All these have to be considered and appropriate updates have to be performed
on the stored move record.

❺. Decrement move for each node u at level l, excluding v:

In case such a move is found in the priority queue Q two things have to be
checked:

1. Node v could become a new successor of u if the condition cu,v <
cprednew(v),v holds true.

2. Old successors of v at level l have lost their predecessor. Node u could
now be attractive as new predecessor if it was not already before.

In both cases the objective value gain ∆ and the list L of predecessor and
successor relationships of the move record have to be updated accordingly.

If such a move was not stored in Q it must be reevaluated. For efficiency
reasons the computation can be split into two steps: The only changes are
the two cases described above (u possibly a better predecessor for v and old
successors of v). If the evaluation of these changes do not lead to a positive ∆

62

4.3 Level-Based Neighborhoods

the move could not have become valuable after moving v from level l − 1 to l
and so the computation can already be stopped at this point.

❻. Increment move for all old successors of v, succold(v), at level l, if no such move
is stored in Q:

After shifting node v from level l−1 to l the old successors of v were forced to
connect to new predecessors at higher costs. Incrementing the level of an old
successor succold(v) from l to l + 1 allows it to get back its old and cheaper
predecessor v.

If such a move cannot be found in the priority queue it has to be evaluated
completely new. Otherwise, nothing has to be done, since an increment move
can only be profitable if the shifting node can connect to a cheaper predecessor.
Consequently, because such a move already exists in Q there have to be a
better predecessor for succold(v) at level l than v was before. In addition, all
successors of succold(v) at level l+1 now losing its predecessor still can connect
to v, so the situation not substantially changed since evaluating the move, no
updates are required.

❼. Decrement move for all successors of v, succold(v), at level l + 1 if such a move
already can be found in the priority queue:

Before moving v one level up to l a successor node at l + 1 could keep v as
its predecessor when moving one level down. Now this is no longer possible,
a new predecessor has to be found leading to a different objective value gain
∆. The new predecessor for succold(v) also has to be inserted into L of the
corresponding move record in Q.

❽. Decrement move for each node u at level l+ 1, excluding all successors of v, but
with a predecessor at level l if such a move is stored in the priority queue Q
and u would have become successor of v:

When executing this decrement move u no longer can connect to v, therefore
a new predecessor has to be found for u, the improvement ∆ and L have to
be updated accordingly.

After giving these detailed rules to incrementally enumerate the level change neigh-
borhood it has to be noted that it does not always make sense to implement all
of them. Depending on various factors like the actual implementation of the used
data structures (e.g., the priority queue and its direct access operators) it could be
sometimes more time consuming to test all conditions than simply evaluating the
complete move from scratch. Thus appropriate experiments have to be performed,
and also a compromise – from a software engineers’ point of view – between highly
complex and simple, reliable, and maintainable code has to be found.

63

Chapter 4 Local Search Neighborhoods

u

H = ⌊D

2
⌋

0

1

c2

.

H − 1

c1

Figure 4.8: Center exchange level neighborhood: Replacing a center node and re-
connecting the tree according to a level neighborhood.

4.3.2 Center Exchange Level Neighborhood

The level change neighborhood never affects the center node(s). In order to fill
this gap, we use the center exchange level neighborhood. It replaces exactly one
center node by any non-center node u. The replaced center node is set to level H,
maximizing the number of potential predecessors, see Fig. 4.8.

To better exploit the potential of such a center exchange a local improvement step
is immediately appended: As long as there exists a node w whose predecessor v has
level lev(v) < lev(w) − 1, we assign node w to level lev(v) + 1. Following such a
reduction, node w can serve as potential predecessor for a larger number of other
nodes and – as a consequence – cheaper connections might be enabled.

Restricting the exchange to exactly one center node leads to a neighborhood size of
O(n). A local improvement step requires in the worst-case time O(n2), yielding a
total time complexity of O(n3) for evaluating the whole neighborhood.

4.4 Clustering-Based Neighborhood

As already mentioned in Chapter 3 when discussing greedy construction heuristics
a well structured BDMST – especially in case of Euclidean instances – usually has a
few but long edges near the center, the backbone, so the majority of the nodes can
connect using relatively short edges. A height restricted, agglomerative, hierarchical
clustering of all instance nodes can act as basis for such a structured tree, where
the actual tree is derived by selecting for each cluster a good root for the subtree
represented by it. Since a valid BDMST solution describes such an height restricted
clustering in a natural way, it can easily be transformed into this representation and
a new, probably better tree can be determined from the hierarchical clustering.

64

4.4 Clustering-Based Neighborhood

Deriving a tree of high quality from a given clustering is a multi-stage process. It
is discussed in full detail in Chapter 8 where also a construction heuristic based on
clustering is presented.

65

66

Chapter 5

Level-Based Integer Linear
Programming Approach

5.1 Introduction

Prior exact approaches for determining a diameter constraint minimum spanning
tree mostly rely on Miller-Tucker-Zemlin (MTZ) inequalities [43] and network flow-
based integer linear programming formulations [3, 4]. In particular hop-indexed
multi-commodity flow formulations by Gouveia et al. [59, 60] have been very suc-
cessful. The lower bounds achieved with the linear programming (LP) relaxations
of their models are extremely tight, however, at the expense of a large number of
flow variables of order O(|E| · |V | ·D)).

In this chapter we present a new 0–1 integer linear programming model involving
only Θ(|E| + |V | · D) variables and Θ(|E| · D) constraints. It is strengthened by
dynamically adding violated connection and cycle elimination constraints within a
Branch&Cut environment. The proposed approach is empirically compared to two
state-of-the-art models based on network flows and the MTZ formulation, respec-
tively.

67

Chapter 5 Level-Based Integer Linear Programming Approach

5.2 A Compact 0–1 ILP Formulation

Like most of the existing formulations, we view the task of finding a BDMST as
a directed graph problem. However, we do not introduce any artificial nodes. Let
A be the arc set derived from E by including for each undirected edge (i, j) ∈ E
two oppositely directed arcs (i, j) and (j, i) with the same costs ci,j = cj,i. In our
formulation of the BDMST only the two center nodes in case of an odd diameter are
connected by an undirected edge. All other edges are directed in such a way that
there exists a directed path from the center to any other node. Let the depth d(v)
of a node v ∈ V be the number of arcs on the path from the center to node v. The
center node(s) have depth d(v) = 0. The height of this rooted tree is then at most
H = ⌊D2 ⌋. The BDMST can be seen as a variation of the hop constrained minimum
spanning tree problem with a root not fixed in advance [57].

We formulate the BDMST problem by assigning each node v a depth 0 ≤ d(v) ≤ H.
Furthermore, each node of depth d(v) > 0 has to have one predecessor denoted by
pred(v). In order to get a feasible spanning tree, d(pred(v)) = d(v) − 1 must hold
for all nodes v ∈ V | d(v) > 0.

The ILP uses the following variables:

• ui,l ∈ {0, 1}; i ∈ V , l = 0, . . . , H: ui,l = 1 ↔ d(i) = l.

• pi,j ∈ {0, 1}; (i, j) ∈ A: pi,j = 1 ↔ pred(j) = i, i.e., (i, j) ∈ ET .

• if D is odd:
ri,j ∈ {0, 1}; (i, j) ∈ E: ri,j = 1 ↔ edge (i, j) ∈ ET and connects the center
nodes.

5.2.1 The Even Diameter Case

In the simplest form, the even diameter case can be modeled as follows:

minimize
∑

(i,j)∈A

pi,j · ci,j (5.1)

68

5.2 A Compact 0–1 ILP Formulation

subject to
H
∑

l=0

ui,l = 1 ∀i ∈ V (5.2)

∑

i∈V

ui,0 = 1 (5.3)

∑

i|(i,j)∈A

pi,j = 1− uj,0 ∀j ∈ V (5.4)

pi,j ≤ 1− uj,l + ui,l−1 ∀(i, j) ∈ A, ∀l = 1, . . . , H. (5.5)

The objective (5.1) is to minimize the total costs of all used arcs (pi,j = 1). Equations
(5.2) ensure that each node i is assigned to exactly one depth. Depth zero must be
assigned to exactly one node, the center (5.3). Constraints (5.4) guarantee that each
node except the center always has exactly one predecessor. Finally, we have to model
the fact that node i can only be predecessor of node j if d(i) = d(j)− 1, or in other
words pi,j = 1→ ∃ l | uj,l = 1 ∧ ui,l−1 = 1. This is assured by inequalities (5.5).

To strengthen the LP-relaxation we further add constraints which explicitly express
that a node assigned to depth zero cannot have a predecessor, nor can a node
assigned to depth H be predecessor of any other node:

uj,0 ≤ 1− pi,j and ui,H ≤ 1− pi,j ∀(i, j) ∈ A. (5.6)

5.2.2 The Odd Diameter Case

In case the diameter D is odd, we can formulate the BDMST problem as follows:

minimize
∑

(i,j)∈A

pi,j · ci,j +
∑

(i,j)∈E

ri,j · ci,j

(5.7)

subject to
∑

i∈V

ui,0 = 2 (5.8)

∑

j|(i,j)∈E

ri,j = ui,0 ∀i ∈ V (5.9)

Constraints (5.2), (5.4), (5.5) and (5.6) are adopted unchanged.

69

Chapter 5 Level-Based Integer Linear Programming Approach

Starting from the ILP (5.1) to (5.6) we have to adapt the objective function (5.1) to
include the costs of the edge connecting the two center nodes (5.7) as well as equation
(5.3) to reflect the fact that now there are two nodes assigned to depth zero (5.8).
In addition, constraints (5.9) are required in order to get the edge connecting the
two center nodes at depth zero.

Equations (5.9) together with (5.8) imply the following constraint that does not
actually strengthen the LP-relaxation, but nevertheless speeds up the integer opti-
mization in practice as our experiments indicate:

∑

e∈E

re = 1. (5.10)

Finally, Gouveia and Magnanti [59] suggested to exploit the fact that in a BDMST
with odd D, the nodes of depth one are always connected to the nearer one of the
two center nodes. We consider this aspect in the following way.

For each arc (i, j) ∈ A, let L(i, j) be the set of all potential center edges when i is
one of the center nodes, j appears at depth one, and i is j’s predecessor:

L(i, j) = {(i, i′) ∈ E | j 6= i′ ∧ (ci,j < ci′,j ∨ ci,j = ci′,j ∧ i < i′)}. (5.11)

If uj,1 = 1, pi,j may only be set to one if the center edge appears in L(i, j):

pi,j ≤ 1− uj,1 +
∑

e∈L(i,j)

re ∀(i, j) ∈ A. (5.12)

5.3 Branch&Cut

Achuthan et al. [4] already described the possibility to include constraints for ex-
plicitly avoiding cycles in order to strengthen the LP-relaxation. Unfortunately,
considering each possible cycle and adding an appropriate inequality from the very
beginning – as Achuthan et al. did – leads to a huge number of constraints which
increases exponentially with D. This limits the applicability to very small diameters
and/or instances.

We suggest a Branch&Cut approach, in which connectivity and cycle elimination
constraints violated in the solution of the LP-relaxation are iteratively determined
and added as cuts throughout the optimization process. These sorts of cuts are often
used in cutting plane algorithms for various network design problems, such as the
traveling salesman problem [102].

70

5.3 Branch&Cut

5.3.1 Connection Cuts

A spanning tree always has to be connected, i.e., each non-empty subset S of all
nodes V has to induce a cut δ(S) of size greater than or equal to one. More for-
mally,

∑

(i,j)∈δ(S)

(pi,j + ri,j) ≥ 1 ∀S ⊂ V, S 6= ∅, (5.13)

where variables ri,j are only required in case the diameter is odd. Using a max-
flow/min-cut algorithm, it is easy to identify a subset of nodes for which the above
constraint is violated in the solution of the LP-relaxation or to prove that no such
set exists.

5.3.2 Cycle Elimination Cuts

In a tree no cycle may appear, and therefore we can consider the constraints

∑

(i,j)∈C

pi,j + pj,i + ri,j ≤ |C| − 1 ∀ cycles C ⊂ E, (5.14)

where again variables ri,j only have to be considered in the odd diameter case. We
separate such cuts by constructing an undirected graph from the solution of the
LP-relaxation with node set V , edge set E′T = {(i, j) ∈ E | pi,j +pj,i+ ri,j > 0}, and
with associated costs max(0, 1−pi,j−pj,i−ri,j). A cycle violating the corresponding
constraint has total costs less than 1 and can be identified by calculating the shortest
path for each pair of nodes i and j with (i, j) ∈ E′T .

From a theoretical point of view, connection and cycle elimination cuts are both
covered by the more general sub-tour elimination cuts, where C is replaced by the
set of all edges induced by a subset of vertices from V [104]. However, finding general
sub-tour elimination cuts is much more time demanding than identifying violated
connection and cycle constraints. Therefore, it is usually a good idea to first separate
connection and cycle elimination constraints, before considering general sub-tour
elimination cuts. We have not yet implemented the latter and leave them for future
research. Since the separation of connection cuts is faster than looking for cycle
elimination cuts, we first separate all violated connection constraints and only then
calculate cycle elimination cuts when using both.

71

Chapter 5 Level-Based Integer Linear Programming Approach

5.4 Computational Results

We compare our approach to the MTZ-based formulation of Santos et al. [43] (variant
(B) and (C) for even and odd diameters, respectively) and the MCF formulation
of Gouveia and Magnanti [59] (HopDMCF and Enh-HopMCF, respectively). The
same test instances as in these previous works are used, which have been created
the following way: The integral edge costs for random instances have been chosen
from the interval [1, 100] using a uniform distribution. For Euclidean instances, the
integer coordinates of the nodes have been computed randomly within a 100× 100
square grid, whereas for the edge weights just the integer parts of the Euclidean
distances have been utilized. From these complete graphs, Gouveia and Magnanti
only used the |E| cheapest edges for their tests. To ensure that their sparse instance
graphs have feasible solutions, Santos et al. built them in a special way by first
computing a minimum spanning tree with a diameter bound of D = 2 (a star), and
afterwards augmenting this tree with the least cost edges until reaching the desired
number of edges for the instance. Our experiments were performed on a Pentium R©4
2.8 GHz system with 2 GB of RAM using Linux 2.4.21 and CPLEX 8.1 under default
parameters as MIP solver.

Table 5.1 lists CPU times for finding optimal solutions and proving optimality on
complete and sparse instances for our reimplementation of Santos et al. and our ILP
formulation. Variants marked by ‘+’ apply connection cuts, whereas those marked
by ‘∗’ use cycle elimination cuts. Enclosed in parentheses we list the percentage
gap between the optimal solution (opt) and the LP-relaxation (lb) at the first node
within the Branch&Cut tree after performing all separations of our own and the
standard cuts of CPLEX: gap = (opt− lb)/opt · 100%. In case there are two values
listed the first one depicts the gap at the very beginning only depending on the
model used and so invariant in terms of applying cuts.

In general, no approach dominates any other. However, it can be observed that the
ILP formulation performs better on tighter constrained instances with rather small
diameters, whereas the model of Santos et al. becomes faster than the ILP for looser
diameter constraints.

Applying our cuts to the different formulations lead to ambivalent results, except
on sparse instances where connection cuts show significantly better performance. It
also turns out that the ILP model in general benefits more from cycle elimination
cuts, in particular on bigger instances with larger diameters.

Concerning the listed LP-relaxation gaps we further remark that in addition to our
connection and cycle elimination cuts, CPLEX sometimes adds additional general-
purpose cuts, which further reduce the LP-bound. In a few cases, this leads to the

72

5.4
C

om
p
u
tation

al
R

esu
lts

Table 5.1: CPU times (in seconds) and LP-relaxation gaps on Euclidean instances from Santos et al. [43].

|V | |E| D Santos Santos+ Santos∗ Santos+∗ ILP ILP+ ILP∗ ILP+∗
15 105 4 4.7 (37.4/23.9) 9.8 (22.4) 18.88 (21.0) 29.9 (20.1) 0.7 (36.4/22.0) 0.9 (25.1) 1.1 (19.7) 1.7 (20.1)
15 105 5 22.8 (33.8/28.9) 36.9 (25.5) 44.1 (20.8) 78.7 (18.2) 3.0 (33.6/29.2) 3.2 (25.3) 5.8 (19.2) 7.0 (18.1)
15 105 6 21.1 (31.5/19.7) 18.6 (16.4) 52.6 (16.9) 48.6 (13.7) 8.1 (38.9/32.8) 24.1 (25.0) 15.6 (16.3) 33.6 (13.7)
15 105 7 44.8 (28.1/23.7) 29.3 (18.0) 38.8 (13.9) 26.9 (10.6) 26.4 (33.6/28.3) 37.2 (28.3) 20.5 (14.0) 20.0 (10.6)
15 105 9 18.4 (24.8/21.1) 16.5 (15.1) 15.8 (10.4) 6.2 (6.6) 150.6 (32.5/26.8) 47.0 (21.1) 20.7 (10.3) 10.7 (6.6)
15 105 10 1.5 (24.8/12.1) 1.0 (8.3) 5.1 (9.2) 2.4 (5.3) 65.8 (36.1/29.1) 43.3 (20.6) 15.8 (9.2) 4.3 (5.3)

20 190 4 562.9 (29.7/24.4) 1,063.6 (21.6) 1,232.5 (24.1) 4,315.1 (21.4) 2.5 (28.8/25.0) 3.3 (21.3) 3.7 (22.3) 5.0 (20.2)
20 190 5 436.7 (25.2/20.9) 662.5 (20.3) 572.9 (17.4) 1,260.6 (17.3) 8.1 (27.4/17.8) 10.2 (17.8) 9.3 (15.2) 12.8 (15.6)
20 190 6 577.0 (20.3/13.8) 489.3 (13.3) 455.2 (12.5) 531.9 (12.1) 95.0 (28.2/21.7) 210.5 (19.7) 396.4 (12.5) 382.8 (12.5)
20 190 7 8.1 (13.4/9.7) 5.1 (7.7) 7.8 (5.9) 10.2 (5.1) 10.0 (19.3/11.3) 12.9 (8.3) 4.5 (5.0) 7.2 (5.0)
20 190 9 241.9 (22.2/18.5) 105.7 (14.4) 244.3 (11.2) 73.4 (8.9) 1,209.1 (30.0/24.4) 923.7 (18.6) 194.6 (11.0) 66.7 (8.8)
20 190 10 64.6 (21.9/15.4) 41.9 (10.6) 205.1 (11.2) 29.7 (8.1) 13,755.5 (34.0/26.1) 13,972.1 (18.4) 226.4 (11.3) 101.0 (8.1)

25 300 4 15,203.7 (30.3/26.6) > 20,000.0 (25.9) > 20,000.0 (26.1) > 20,000.0 (25.1) 12.0 (31.2/23.2) 14.2 (22.9) 16.5 (22.2) 20.3 (21.7)
25 300 5 > 20,000.0 (32.4/28.7) > 20,000.0 (25.1) > 20,000.0 (25.5) > 20,000.0 (22.6) 76.3 (33.5/27.4) 64.3 (23.1) 102.7 (23.7) 127.3 (20.9)
25 300 6 1,282.5 (18.6/12.4) 826.7 (11.4) 1,241.7 (10.9) 1,151.3 (10.1) 26.4 (28.4/17.0) 166.7 (13.9) 75.8 (10.6) 146.1 (10.1)
25 300 7 11,521.3 (18.7/15.9) > 20,000.0 (14.0) > 20,000.0 (13.3) 17,014.1 (11.4) 770.5 (26.5/17.6) 2,719.3 (14.9) 1,090.3 (13.0) 989.6 (11.6)
25 300 9 > 20,000.0 (22.7/18.4) 246.0 (8.0) 13,677.6 (15.5) 429.7 (5.3) > 20,000.0 (31.3/22.7) 2160.1 (11.9) 4,143.3 (15.4) 295.4 (5.2)
25 300 10 278.2 (10/8.6) 254.8 (5.9) 401.4 (7.0) 327.0 (5.3) 3,666.1 (24.0/12.6) 2,904.2 (9.2) 1,127.9 (7.2) 404.9 (5.3)

20 50 4 1.0 (32.9/19.1) 1.0 (16.5) 4.7 (18.8) 3.8 (16.4) 0.2 (29.0/13.9) 0.2 (13.4) 0.3 (13.8) 0.4 (13.2)
20 50 5 4.6 (60.7/57.8) 9.0 (52.5) 15.6 (54.6) 23.7 (51.2) 1.0 (62.1/58.8) 2.5 (53.6) 3.5 (53.8) 4.9 (50.6)
20 50 6 34.6 (28.9/20.8) 0.8 (9.5) 45.6 (15.2) 1.5 (8.8) 8.7 (35.1/27.2) 5.1 (11.6) 19.9 (15.2) 6.0 (8.8)
20 50 7 13.3 (26.1/22.4) 0.8 (8.4) 13.3 (20.8) 1.2 (7.9) 1.2 (27.4/25.5) 1.7 (7.8) 2.5 (19.5) 3.0 (7.4)
20 50 9 76.2 (24.3/19.5) 0.7 (7.7) 108.5 (14.5) 0.8 (4.6) 42.5 (31.8/24.9) 2.8 (10.4) 25.6 (14.4) 3.7 (4.6)
20 50 10 98.5 (29.5/21.7) 0.2 (3.9) 187.7 (16.8) 0.2 (2.2) 505.3 (40.4/32.8) 1.8 (7.4) 79.1 (16.7) 1.3 (2.2)

40 100 4 43.7 (41.9/27.7) 82.4 (23.5) 516.5 (24.6) 2,352.1 (23.0) 1.9 (39.6/20.4) 1.9 (19.4) 8.5 (19.0) 10.0 (18.5)
40 100 5 471.0 (65.4/56.7) 291.7 (52.9) 1,646.5 (56.1) 893.2 (52.3) 6.4 (62.9/47.5) 6.8 (46.9) 13.1 (46.9) 18.2 (46.7)
40 100 6 1,991.6 (29.9/25.7) 50.9 (4.6) 13,719.8 (23.3) 100.2 (4.1) 182.9 (44.8/30.2) 13.2 (6.4) 449.6 (23.3) 37.4 (4.6)
40 100 7 > 20,000.0 (36.6/21.1) 459.4 (14.7) 3,731.7 (20.4) 10,224.2 (13.4) 212.4 (45.5/34.5) 4,463.2 (15.2) 525.2 (20.9) 9455.3 (13.2)
40 100 9 14,882.5 (27.7/23.3) 1,565.0 (15.8) 13,078.0 (21.1) 4,262.7 (14.5) 3,828.7 (39.2/28.2) 9,974.3 (16.9) 979.8 (21.1) 5137.2 (14.6)

73

Chapter 5 Level-Based Integer Linear Programming Approach

Table 5.2: CPU times (in seconds) and LP-relaxation gaps on incomplete instances
from Gouveia and Magnanti [59] (gaps for G&M at the beginning of the
first Branch&Cut node without CPLEX generated cuts).

|V | |E| D G&M ILP ILP+ ILP∗ ILP+∗
Random 20 100 4 0.5 (0.0) 0.9 (35.8/23.9) 0.9 (23.9) 1.5 (24.3) 1.6 (23.4)

20 100 5 6.3 (0.0) 2.7 (35.5/27.0) 2.4 (26.9) 2.4 (25.6) 3.2 (25.6)
20 100 6 5.8 (1.0) 2.9 (34.7/21.0) 7.2 (20.6) 5.9 (16.3) 7.9 (18.0)
20 100 7 94.0 (1.5) 10.6 (31.6/17.1) 5.7 (16.2) 2.6 (13.1) 15.8 (13.2)
20 100 8 1.3 (0.0) 4.4 (28.1/10.0) 4.3 (9.4) 3.4 (5.8) 5.7 (5.8)

Random 30 200 4 0.8 (0.0) 3.5 (39.8/30.1) 6.1 (29.7) 6.3 (29.8) 8.7 (29.5)
30 200 5 58.6 (0.0) 377.8 (48.1/41.9) 283.8 (41.9) 428.1 (42.1) 482.4 (41.6)
30 200 6 2.9 (0.0) 5.7 (28.4/19.4) 20.4 (14.9) 11.5 (14.6) 39.6 (13.5)
30 200 7 529.4 (0.0) 112.4 (21.3/16.6) 261.1 (16.3) 53.9 (14.3) 100.8 (14.2)
30 200 8 2.3 (0.0) 10.6 (18.3/14.3) 13.9 (5.4) 3.67 (8.3) 4.9 (2.2)

Euclidian 20 100 4 0.1 (0.0) 1.1 (20.3/17.5) 1.4 (17.4) 2.3 (17.2) 2.2 (17.1)
20 100 5 5.3 (0.0) 1.7 (16.8/13.2) 2.0 (13.0) 2.5 (12.8) 3.5 (12.6)
20 100 6 3.1 (0.2) 7.3 (16.3/10.4) 9.5 (9.9) 15.5 (8.0) 21.2 (8.5)
20 100 7 49.5 (0) 10.0 (14.1/8.3) 24.3 (8.2) 11.2 (7.0) 31.3 (7.6)
20 100 8 1.1 (0.0) 10.7 (14.2/10.0) 12.9 (7.7) 18.9 (6.8) 31.2 (5.2)

Euclidian 30 200 4 130.8 (1.7) 148.6 (35.2/25.8) 84.9 (26.0) 59.5 (26.3) 107.0 (25.3)
30 200 5 25.1 (0.1) 36.1 (33.9/25.7) 42.2 (26.1) 65.3 (24.1) 61.5 (25.6)
30 200 6 1,381.9 (0.8) 348.0 (28.8/19.4) 4,022.7 (17.6) 7,224.2 (16.9) 17,144.3 (15.0)
30 200 7 6,912.1 (1.2) 1,339.7 (23.5/17.5) 3,713.8 (16.3) 1,014.4 (13.6) 4,205.4 (13.4)
30 200 8 1,111.0 (0.8) 2,864.7 (22.6/16.2) 9,298.8 (12.6) 2,430.6 (11.5) > 20,000.0 (9.4)

effect that the LP-bound of a variant where only one type of our cuts is used is
slightly smaller than when applying both of them.

Table 5.2 shows running times and LP-bounds for the ILP variants and Gouveia
and Magnanti’s (G&M) approach. The times listed for G&M are adopted from [59]
and scaled by a factor of 1/8 to account for different hardware. This factor has been
determined by considering the widely used floating point benchmarks published at
http://www.spec.org. Nevertheless, we remark that this scaling is only a rough
estimation and running time comparisons should be taken with care.

Concerning the LP-relaxation gaps it can easily be seen that the ILP model cannot
compete with the flow formulations of G&M. When looking at the computation times
no single variant dominates any other. The different ILP approaches outperform
G&M on several occasions. However, no real pattern can be observed for conditions
under which a certain method performs best; speed-up factors are in general not as
large as those of the first series of experiments (Table 5.1).

In this context we want to point out that the above results are not sufficient to
draw more general conclusions on expected running times for specific classes of

74

5.5 Additional Constraints

instances. During our tests we experienced highly varying computation times for
instances randomly generated all the same way. For example, when running ILP+
on 10 different complete Euclidean graphs with 20 randomly distributed nodes, CPU
times ranged from 51 to 54,400 seconds. A similar behavior was observed for the
model of Santos et al. and the flow formulations as well.

In addition to the presented results we also made first experiments on instances
with 40 nodes and more. As expected due to the observed LP-relaxation gaps the
size of the Branch&Cut tree grows fast and so does the computation time. Without
further improvements the ILP results will not be competitive to state-of-the-art flow
formulations.

We also tried to reduce the initialization overhead always involved when calculating
connection or cycle elimination cuts. A number of two to three cuts generated at
once (i.e., cuts added to the model before a new LP is solved) has proven to be a
good choice.

5.5 Additional Constraints

In this section we present some additional constraints we made experiments with,
some of them strengthening the LP-relaxation of the ILP model. However, exhaus-
tive benchmarks led to the conclusion not to include them into the model in general,
because over all tested instances the running time behavior was not significantly
better.

∑

(i,j)∈A

pi,j = n− 1− (D mod 2) (5.15)

A spanning tree of n nodes contains n − 1 edges. In case of an odd diameter we
have to subtract the center edge encoded separately using the variables ri,j . When
including this equation to the model the calculation times are undifferentiated; they
range from three times faster and more to about two times slower.

pi,j ≤ 1− ui,l−1 + uj,l ∀(i, j) ∈ A, ∀l = 1, . . . , H. (5.16)

These constraints are a modification of the inequalities (5.5). Replacing (5.5) by
them yields a poorer LP-relaxation. Using both types of constraints strengthens
the LP-relaxation noticeable, but in either case the running times are substantially
higher.

75

Chapter 5 Level-Based Integer Linear Programming Approach

pi,j + pj,i ≤ 1 ∀(i, j) ∈ A (5.17)

A node i cannot be predecessor and successor of a node j at the same time. These
inequalities strengthen the LP-relaxation significantly and often speed up compu-
tation for instances with larger diameter (approx. 8 and above) and sparse graphs.
For other instances, however, running times are usually increased.

pi,j ≤ 1− uj,l +
l−1
∑

l′=0

ui,l′ ∀(i, j) ∈ A, ∀l = 1, . . . , H (5.18)

A relaxed alternative for inequalities (5.5), where an edge from a node at depth l
may be attached to any node at depth ≤ l−1, not just l−1. This formulation leads
to weaker LP-bounds as well as a poorer running time behavior.

δi,j + (H + 1)pi,j + (H − 1)pj,i ≤ H ∀(i, j) ∈ A with (5.19)

δi,j =
H
∑

l=0
l · ui,l − l · uj,l ∀(i, j) ∈ A (5.20)

being the difference of the depths of nodes i and j. These lifted MTZ constraints
from [43] strengthen the LP-relaxation, but the computational results do not exhibit
a conclusive pattern.

5.6 Conclusions

A compact 0–1 ILP for the BDMST problem has been introduced. When solving
this ILP with the general purpose MIP-solver CPLEX, the performance can be
improved by separating violated connectivity and/or cycle constraints and adding
them in a Branch&Cut manner at each node of the Branch&Bound tree. The new
approach has been compared to two state-of-the-art formulations. It turns out that
in particular dense instances with small to moderate diameter bounds are solved
significantly faster than with the approach from Santos et al. [43]. This MTZ-base
model, however, exhibits its strengths on instances whereD approaches the diameter
of the unconstrained minimum spanning tree.

In [60], Gouveia et al. introduced a specific improvement for the odd diameter case
we did not consider so far. Further theoretical investigations and experiments on

76

5.6 Conclusions

more and larger benchmark instances are necessary to get a closer insight into the
specific assets and drawbacks of the different formulations.

Besides the implementation of tighter sub-tour elimination cuts as a substitute for
the cycle elimination cuts another future objective will be to combine exact algo-
rithms like those discussed here with (meta-)heuristic approaches. This will be done
not just in the classical sense – for example by heuristically determining a good
starting solution for an exact algorithm – but also by running different algorithms
in parallel and letting them exchange information relevant for the optimization in
order to benefit from synergy [134].

77

78

Chapter 6

Integer Linear Programming
Approach Based on Jump

Inequalities

6.1 Introduction

The level-based ILP discussed in Chapter 6 reduces significantly the number of
required variables in contrast to the multi-commodity hop-indexed flow formulations,
but at the expense of weak LP relaxation bounds. Therefore, the gain in runtime and
memory usage of having a small, compact model is in general undone by the size of
the Branch&Bound tree required to solve a BDMST instance to proven optimality.
Strengthening the formulation by applying standard cutting planes like connectivity
and cycle elimination cuts within a Branch&Cut environment enhances the situation
only marginally.

In [29] Dahl et al. proposed a strong formulation for the HCMST problem based
on so-called jump inequalities to ensure the hop constraint. Unfortunately, their
number grows exponentially with the number of nodes in the instance graph n,
and the problem of separating them in a cutting plane algorithm is conjectured to
be NP-hard. Therefore, they exploited them in a relax-and-cut algorithm where
violated jump inequalities only need to be identified for integer solutions, which is
straightforward using depth first search.

79

Chapter 6 Integer Linear Programming Approach Based on Jump Inequalities

In this chapter we present a strong integer linear programming formulation based
on these jump inequalities solved by a Branch&Cut algorithm. As the separation
subproblem of identifying currently violated jump inequalities is difficult, we ap-
proach it heuristically by two alternative construction heuristics, local search, and
optionally tabu search. We also introduce a new type of cuts, the center connection
cuts, to strengthen the formulation in the more difficult to solve odd diameter case.
In addition, primal heuristics are used to compute initial solutions and to locally
improve incumbent solutions identified during Branch&Cut.

6.2 The Jump Model

Our ILP model is defined on a directed graph G+ = (V +, A+), with the arc set
A+ being derived from E by including for each undirected edge (u, v) ∈ E two
oppositely directed arcs (u, v) and (v, u) with the same costs cu,v = cv,u. In addition,
we introduce an artificial root node r that is connected to every other node with zero
costs, i.e., V + = V ∪ {r} and {(r, v) | v ∈ V } ⊂ A+. This artificial root allows us
to model the BDMST problem as a special directed outgoing HCMST problem on
G+ with root r, hop limit (i.e., maximum height) H = ⌊D2 ⌋+ 1, and the additional
constraint that the artificial root must have exactly one outgoing arc in the case
of even diameter D and two outgoing arcs in the case D is odd. From a feasible
HCMST T+ = (V +, A+

T), the associated BDMST T on G is derived by choosing all
edges for which a corresponding arc is contained in A+

T . In the odd diameter case,
an additional center edge connecting the two nodes adjacent to the artificial root is
further included.

We make use of the following variables: Arc variables xu,v ∈ {0, 1}, ∀(u, v) ∈ A+,
which are set to one iff (u, v) ∈ T+, and center edge variables zu,v ∈ {0, 1}, ∀(u, v) ∈
E, which are only relevant for the odd diameter case and are set to one iff (u, v)
forms the center of the BDMST.

The even diameter case is formulated as follows:

minimize
∑

(u,v)∈A

cu,v · xu,v (6.1)

80

6.2 The Jump Model

S0 S1 S2 S3=H SH+1

r

J(P)

1 2 3=H H+1

Figure 6.1: Partitioning P of the nodes in V + intoH+2 nonempty sets S0, . . . , SH+1.
The jump J(P) contains all arcs leading from a partition to a higher
indexed one skipping at least one in-between (curved arcs). A path
connecting the artificial root node r with nodes in SH+1 without any arc
from J(P) would consist of at least H + 1 arcs and thus violate the hop
constraint H.

subject to
∑

u|(u,v)∈A+

xu,v = 1 ∀ v ∈ V (6.2)

∑

v∈V

xr,v = 1 (6.3)

∑

(u,v)∈δ+(V ′)

xu,v ≥ 1 ∀ V ′ ⊂ V + | r ∈ V ′ (6.4)

∑

(u,v)∈J(P)

xu,v ≥ 1 ∀ P ∈ P (V +) | r ∈ S0. (6.5)

The objective is to minimize the total costs of all selected arcs (6.1). All nodes of
the original graph (without artificial root node r) have exactly one predecessor (6.2),
and just one node is successor of r (6.3). To achieve a connected, cycle free solution
we include the widely used directed connection cuts (6.4), where δ+(V ′) denotes all
arcs (u, v) with u ∈ V ′ and v ∈ V + \ V ′, see also [94].

The diameter restriction is enforced by the jump inequalities (6.5) from [29] as
follows. Consider a partitioning P of V + into H + 2 pairwise disjoint nonempty
sets S0 to SH+1 with S0 = {r}. Let σ(v) denote the index of the partition a
node v is assigned to. Jump J(P) is defined as the set of arcs (u, v) ∈ A+ with
σ(u) < σ(v) − 1, i.e., J(P) contains all arcs leading from a partition to a higher
indexed one and skipping at least one in-between, see Fig. 6.1. The jump inequality
associated with this partitioning states that in a feasible HCMST T+ at least one of
these arcs in J(P) must appear. Otherwise, there would be a path connecting the
root contained in S0 to a node in SH+1 with length at least H + 1 violating the hop
constraint. Such jump inequalities must hold for all possible partitionings P (V +) of
V + with r being element of set S0.

81

Chapter 6 Integer Linear Programming Approach Based on Jump Inequalities

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

r r

v v

(a) Two different paths from r to v.

.

.

.

.

.

.

.

.

.

r

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

r

.

.

.

.

.

.

.

.

.

V
′′

V
′′

(b) Center connection inequalities.

Figure 6.2: Triangle tree: In the odd diameter case there are two paths connecting
r with any node v ∈ V . This leads to the center connection inequalities
involving the center edge.

The odd diameter case additionally makes use of the center edge variables zu,v:

minimize
∑

(u,v)∈A

cu,v · xu,v +
∑

(u,v)∈E

cu,v · zu,v (6.6)

subject to
∑

v∈V

xr,v = 2 (6.7)

∑

v|(u,v)∈E

zu,v = xr,u ∀ u ∈ V (6.8)

2 ·
∑

(u,v)∈δ+(V \V ′′)

xu,v +
∑

v∈V ′′

xr,v +
∑

(u,v)∈δ(V ′′)

zu,v ≥ 2 ∀ ∅ 6= V ′′ ⊂ V (6.9)

(6.2), (6.4), and (6.5) are adopted unchanged.

Now, two nodes are to be connected to the artificial root node r (6.7), and they are
interlinked via the center edge (6.8). The costs of this edge are also accounted for
in the extended objective function (6.6).

The new connection inequalities (6.9), which we call center connection inequalities,
are not necessary for the validity of the model but strengthen it considerably. They
are essentially derived from observations in [60]: The HCMST T+ together with the
center edge linking the two center nodes connected to r forms a special structure,
a so-called triangle tree. In such a tree every node v ∈ V can be reached from r
by two different – not necessarily completely arc disjoint – directed paths: The first
path directly connects r with v via one center node, whereas the second one visits
the second center node first and crosses the center edge, see Fig. 6.2. This idea is

82

6.3 Jump Cut Separation

captured in these inequalities: Two paths from r have to reach each subset V ′′ of
nodes of V , either from other non-center nodes (first term) or – in case a center node
v is contained in V ′′ – directly from r and via the center edge (second and third
terms).

As there are exponentially many directed and center connection inequalities (6.4,
6.9) and jump inequalities (6.5), directly solving these models is not a practical
option. Instead, we start without these inequalities and apply Branch&Cut, thus,
separating inequalities that are violated by optimal LP solutions on the fly. Directed
connection cuts – including our special variants (6.9) – can efficiently be separated:
In each LP solution |V | max-flow/min-cut computations have to be performed be-
tween the artificial root r and any node of the instance graph. To compute these
maximum flows in a directed graph we used the algorithm by Cherkassky and Gold-
berg [24]. Unfortunately, solving the separation problem for the jump inequalities
is conjectured to be NP-hard [29].

6.3 Jump Cut Separation

In order to find a valid jump cut, we have to identify a node partitioning P and
corresponding jump J(P) for which the current LP solution (xLP, zLP) violates
∑

(u,v)∈J(P) x
LP
u,v ≥ 1.

6.3.1 Exact Separation Model

In a first attempt we formulate the separation problem as an ILP, making use of the
following variables: yv,i ∈ {0, 1}, ∀v ∈ V +, i = 0, . . . , H + 1, is set to one iff node v
is assigned to partition Si, and xu,v ∈ {0, 1}, ∀(u, v) ∈ ALP is set to one iff arc (u, v)
is contained in the jump J(P); let ALP = {(u, v) ∈ A+ | xLP

u,v > 0}. This leads to
the following model:

minimize
∑

(u,v)∈ALP

xLP
u,v · xu,v (6.10)

83

Chapter 6 Integer Linear Programming Approach Based on Jump Inequalities

S0 Si−1 Si Si+1 SH+1

r

V
′

V
+\V′

Figure 6.3: A partitioning P with
∑

J(P) x
LP < 1 and an empty set Si corresponds

to a violated directed connection cut.

subject to
H+1
∑

i=1

yv,i = 1 ∀ v ∈ V (6.11)

yr,0 = 1 (6.12)
∑

v∈V

yv,H+1 = 1 (6.13)

yu,i − 1 +
H+1
∑

j=i+2

yv,j ≤ xu,v ∀ i ∈ {1, . . . , H − 1}, (u, v) ∈ ALP (6.14)

H+1
∑

i=2

yv,i ≤ xr,v ∀v ∈ V | (r, v) ∈ ALP (6.15)

The objective is to minimize the total weight of the arcs in the jump J(P) (6.10).
Each node in V is assigned to exactly one of the sets S1 to SH+1 (6.11), whereas the
artificial root r is the only node in set S0 (6.12). Exactly one node is assigned to
set SH+1 (6.13), as Dahl et al. [29] showed that a jump inequality is facet-defining
iff the last set is singleton. Finally, an arc (u, v) (6.14), respectively (r, v) (6.15), is
part of the jump J(P) iff it leads from a set Si to a set Sj with j ≥ i+ 2.

Note that, according to the following theorem, it is not necessary to explicitly address
the condition that no partition may be empty:

Theorem 6 In case all directed connection cuts are separated in advance, no par-
tition Si, i ∈ {1, . . . , H}, will be empty in an optimal solution to the ILP model
described by (6.10) to (6.15).

Proof Assume Si, i ∈ {1, . . . , H}, is an empty set in an otherwise valid (according
to the rules defined for jump inequalities) partitioning P ,

∑

(u,v)∈J(P) x
LP
u,v < 1. Then

V + can be partitioned into two sets V ′ and V + \ V ′, with V ′ = {v ∈ V + | σ(v) < i}

84

6.3 Jump Cut Separation

(including r). The sets V ′ and V + \V ′ define a cut where all arcs from V ′ to V + \V ′
belong to the jump J(P); it follows that

∑

(u,v)∈δ+(V ′) x
LP
u,v < 1. Consequently, every

partitioning with
∑

(u,v)∈J(P) x
LP
u,v < 1 and an empty set Si, i ∈ {1, . . . , H}, can be

transformed into a violated directed connection inequality, see Fig. 6.3. Since such
a violated directed connection inequality does not exist in the current LP solution
by assumption, no set Si can be empty. �

This observation reveals the possibility to avoid time-consuming max-flow/ min-
cut computations to separate directed connection cuts. By not forcing the sets
S1, . . . , SH to be nonempty, violated directed connection and jump constraints can
be identified by only one single separation procedure, depending on whether the
node partitioning P contains an empty partition Si or not.

The exact jump cut separation model contains O(H · |V | + |ALP|) variables and
O(|V | + H · |ALP|) constraints. Solving it by a general purpose solver each time
when a jump cut should be separated is, however, only applicable for small problem
instances as the computation times are high and increase dramatically with the
problem size. According to our experiments, between about 85% and almost 100%
of the total time for solving the BDMST problem is spent in this exact separation
procedure for jump cuts.

To speed up computation, we developed heuristic procedures for this separation
problem and apply them in a hierarchical fashion: Two alternative construction
heuristics are used to find initial partitionings; they are improved by local search
and – in case a violated jump inequality has not yet been encountered – finally by
tabu search.

6.3.2 Simple Construction Heuristic CA

Heuristic CA greedily assigns the nodes V + to sets S1, . . . , SH+1 trying to keep
the number of arcs that become part of the jump J(P) as small as possible, see
Algorithm 11. An independent partitioning is computed for each node v ∈ V initially
placed in the last set SH+1, and the overall best solution is returned. To derive one
such partitioning, all nodes u connected to r via an arc (r, u) ∈ ALP with xLP

r,u

exceeding a certain threshold (0.5 in our experiments) are assigned to set S1. Then
the algorithm iterates through partitions SH+1 down to S3. For each of these sets Si
all arcs (w, u) ∈ ALP with target node u ∈ Si are further examined. In case w is still
free (i.e., not already assigned to a set), it is placed in Si−1, in order to avoid (w, u)
becoming part of J(P). At the end, eventually remaining free nodes are assigned to
set S1.

85

Chapter 6 Integer Linear Programming Approach Based on Jump Inequalities

Results achieved with heuristic CA were encouraging, but also left room for im-
provement when compared to the exact separation. In particular, this heuristic
does (almost) not consider differences in arc weights xLP

u,v when deciding upon the
assignment of nodes.

6.3.3 Constraint Graph Based Construction Heuristic CB

To exploit arc weights in a better way, we developed the more sophisticated con-
struction heuristic CB which makes use of an additional constraint graph GC =
(V +, AC). To avoid that an arc (u, v) ∈ ALP becomes part of J(P), the constraint
σ(u) ≥ σ(v) − 1 must hold in partitioning P . Heuristic CB iterates through all
arcs in ALP in decreasing LP-value order (ties are broken arbitrarily) and checks for
each arc whether or not its associated constraint on the partitioning can be realized,
i.e., if it is compatible with previously accepted arcs and their induced constraints.
Compatible arcs are accepted and collected within the constraint graph, while arcs
raising contradictions w.r.t. previously accepted arcs in GC are rejected and will
be part of J(P). After checking each arc in this way, a partitioning P respecting
all constraints represented by GC is derived. Algorithm 12 shows this heuristic in
pseudo-code.

Algorithm 11: Simple Construction Heuristic CA

input : V +, ALP

output: partitioning P of V +

forall nodes v ∈ V do1

S0 ← {r}; SH+1 ← {v}; ∀i = 1, . . . , H : Si ← ∅2

forall arcs (r, u) | u 6= v do3

if xLP
r,u > 0.5 then S1 ← S1 ∪ {u}4

for i = H + 1, . . . , 3 do5

foreach node u ∈ Si do6

foreach arc (w, u) ∈ ALP | w not already assigned do7

Si−1 ← Si−1 ∪ {w}8

forall still unassigned nodes u ∈ V + do9

S1 ← S1 ∪ {u}10

derive jump J(P) for current partitioning P = (S0, . . . , SH+1)11

evaluate J(P) and store P if best so far12

return best found partitioning13

86

6.3 Jump Cut Separation

In more detail, graph GC not only holds compatible arcs but for each node u ∈ V +

also an integer assignment interval bu = [αu, βu] indicating the feasible range of
partitions; i.e., u may be assigned to one of the sets {Si | i = αu, . . . , βu}. When an
arc (u, v) is inserted into AC , the implied new constraint σ(u) ≥ σ(v)− 1 makes the
following interval updates necessary:

bu ← [max(αu, αv − 1), βu] and bv ← [αv, min(βv, βu + 1)]. (6.16)

Changes of interval bounds must further be propagated through the constraint graph
by recursively following adjacent arcs until all bounds are feasible again w.r.t. the
constraints.

Figure 6.4 gives an example of such an update procedure after inserting an arc
into the constraint graph. It visualizes the relevant part of GC in an instance with
a diameter constraint of six, including the artificial root node r assigned to S0

(br = [0, 0]), node vn in partition SH+1 (bvn = [5, 5]), six additional nodes v1 to v6
which still are allowed to be assigned to any partition Si, i = 1, . . . , 4, and already
some compatible arcs. In Fig. 6.4(a) a new arc from r to v1 should be inserted into
the constraint graph. To prevent this arc to become part of the jump J(P) we have
to restrict the assignment interval of v1 (r is already fixed to a single partition): If v1

Algorithm 12: Constraint Graph Based Construction Heuristic CB

input : V +, ALP

output: partitioning P of V +

sort ALP according to decreasing LP values1

forall nodes v ∈ V do2

S0 ← {r}; SH+1 ← {v}; ∀i = 1, . . . , H : Si ← ∅3

br = [0, 0]; bv = [H + 1, H + 1]; ∀w ∈ V \ {v}: bw ← [1, H]4

initialize GC : AC ← ∅5

initialize jump J(P)← ∅6

forall arcs (u, v) ∈ ALP according to decreasing xLP
u,v do7

if AC ∪ (u, v) allows for a feasible assignment of all nodes then8

AC ← AC ∪ (u, v)9

perform recursive update of bounds starting at bu and bv10

else11

J(P)← J(P) ∪ (u, v)12

assign nodes to partitions according to the constraints in GC13

evaluate jump J(P) and store P if best so far14

return best found partitioning15

87

Chapter 6 Integer Linear Programming Approach Based on Jump Inequalities

v3

vnv6

[0, 0]

[1, 4]

[5, 5][1, 4]

[1, 4]

[1, 4]
[1, 4]

v4 v1 v2

v5

[1, 4]

r

(a) GC : Inserting (r, v1).

v3

vnv6

[0, 0]

[1, 4]

[5, 5][1, 4]

[1, 4]

[1, 4]
[1, 4]

v4 v1 v2

v5

[1,1]

r

(b) Feasible update of bv1
.

v3

vnv6

[0, 0]

[1,2]

[5, 5][1, 4]

[1, 4]

[1, 4]
[1,3]

v4 v1 v2

v5

[1, 1]

r

(c) Recursive update.

Figure 6.4: Insertion of arc (r, v1) into the constraint graph GC , including all neces-
sary updates to the assignment intervals.

would be assigned to any partition Si with i ≥ 2, the arc (r, v1) would skip at least
S1 making it a jump arc. Therefore, the upper bound βv1 has to be decreased to
one (bv1 = [1,min(4, 0+1)]), see Fig. 6.4(b). Now this update has to be propagated
through the constraint graph as shown in Fig. 6.4(c). Nothing has to be done for
node v2 (and so for v3), it still can be assigned to any of the partitions S1 to S4

since the arc (v2, v1) can no longer become part of J(P) (σ(v2) ∈ [1, 4] will always
be greater than or equal to σ(v1) − 1 = 1 − 1 = 0). On the other hand, the upper
interval bound of v4 has to be set to two (to avoid that arc (v1, v4) skips at least
partition S2), and – analogously – βv5 has to be set to three. After this recursive
update procedure the constraint graph is in a valid state again, i.e., all nodes can
be assigned to partitions without violating constraints implied by the collected arcs
AC .

An arc (u, v) can be feasibly added to the graph GC without raising conflicts with
any stored constraint as long as the assignment intervals bu and bv do not become
empty, i.e., αu ≤ βu ∧ αv ≤ βv must always hold. In Algorithm 12 this condition
is tested in line 8, and the arc (u, v) is either accepted for AC or added to J(P),
respectively.

88

6.3 Jump Cut Separation

Theorem 7 The recursive update of the assignment interval bounds in GC after
inserting an arc (u, v) always terminates and cannot fail if it succeeded at nodes u
and v.

Proof Let GC be valid, i.e., it contains no contradicting constraints, and it was
possible to insert arc (u, v) into the graph without obtaining empty assignment
intervals for nodes u and v. Let (s, t) be any other arc ∈ GC , implying αs ≥ αt − 1,
and βt ≤ βs + 1. Now, assume that αt was updated, i.e., increased, to α′t, with
α′t ≤ βt. If the lower bound of s must be modified, it is set to α′s = α′t− 1 according
to the update rules. To prove that the interval at s will not become empty we have
to show that α′s ≤ βs:

α′s
(update rule)

= α′t − 1
α′t≤βt≤ βt − 1

βt≤βs+1
≤ βs (6.17)

The feasibility of the upper bound propagation can be argued in an analogous way.
This also proves that the recursive update procedure terminates, even when there
are cycles in GC (intervals cannot become empty, and updates increase respectively
decrease lower and upper bounds by at least one). �

6.3.4 Local Search and Tabu Search

Although the construction heuristics usually find many violated jump inequalities,
there is still room for improvement using local search. The neighborhood of a
current partitioning P is in principle defined by moving one node to some other
partition. As this neighborhood would be relatively large and costly to search, we
restrict it as follows: Each arc (u, v) ∈ J(P) induces two allowed moves to remove
it from the associated jump J(P): reassigning node u to set Sσ(v)−1 and reassigning
node v to set Sσ(u)+1, respectively. Moves modifying S0 or SH+1 are not allowed.
The local search is performed in a first improvement manner until a local optimum
is reached; see Algorithm 13.

In most cases, the construction heuristics followed by local search are able to identify
a jump cut if one exists. In the remaining cases, we give tabu search a try to
eventually detect still undiscovered violated jump inequalities. Algorithm 14 shows
our tabu search procedure in pseudo-code.

The neighborhood structure as well as the valid moves are defined as in the lo-
cal search, but now a best improvement strategy is applied. Having performed a
movement of a node v, we file as tabu the node v in combination with its inverted
direction of movement (to a lower or higher indexed set, respectively).

89

Chapter 6 Integer Linear Programming Approach Based on Jump Inequalities

Algorithm 13: Local Search

input : V +, ALP, current partitioning P and implied jump J(P)
output: possibly improved partitioning P of V +

repeat1

improved ← false2

forall arcs (u, v) ∈ J(P) do3

if moving u to Sσ(v)−1 or v to Sσ(u)+1 is valid and improves solution4

then
perform move; update P and J(P) correspondingly5

improved ← true6

break7

until improved = false8

return partitioning P9

Algorithm 14: Tabu Search

input : V +, ALP, current partitioning P and implied jump J(P)
output: possibly improved partitioning P of V +

tabu list L← ∅1

repeat2

search neighborhood of P for best move m considering tabu list L3

perform move m; update P and J(P) correspondingly4

file move m−1 in tabu list: L← L ∪ {m−1}5

remove from L entries older than max(lmin, γ · |J(P)|) iterations6

until no new best partitioning found during the last imax iterations7

return best encountered partitioning8

The tabu tenure is dynamically controlled by the number of arcs in jump J(P):
Tabu entries older than max(lmin, γ · |J(P)|) iterations are discarded, where lmin and
γ are strategy parameters.

We consider the following aspiration criterion: The tabu status of a move is ignored
if the move leads to a new so far best node partitioning. Tabu search terminates
when a predefined number imax of iterations without improvement of the overall best
partitioning is reached.

90

6.4 Primal Heuristics

6.4 Primal Heuristics

In order to further improve the performance of our Branch&Cut approach we make
use of additional fast heuristics to set an initial solution and to locally improve
incumbent solutions.

To create good starting solutions the center based tree construction (CBTC) and
the randomized tree construction (RTC) heuristics, proposed by Julstrom in [82],
are utilized; for a detailed discussion of these construction heuristics see Section 3.2.
While CBTC is used for BDMST instances with random edge costs, RTC is applied
to Euclidean instances.

Both construction heuristics are designed to operate on complete graphs. Whereas
CBTC can handle incomplete graphs easily we modified RTC to increase the pos-
sibility of identifying a valid BDMST also on sparse graphs in the following way:
Every node of the permutation not feasibly connectable is stored within a queue.
After the whole permutation of nodes has been processed each node in the queue is
again checked if it could be connected to the tree without violating the height re-
striction. This procedure is stopped when either the queue becomes empty or none
of the nodes in the queue can be added feasibly to the tree. In addition, in case the
diameter is odd a permutation is only accepted if the first two nodes – which should
form the center – are linked via an edge.

Solutions of both construction heuristics as well as all incumbent solutions found
during the optimization are further improved by the variable neighborhood descent
(VND) from [74] utilizing four of the neighborhood structures already discussed
in Chapter 4: The arc exchange, the node swap, the level change, and the center
exchange level neighborhood.

6.5 Computational Results

For our computational experiments we utilize Euclidean (TE) and random (TR)
instances as described and used by Gouveia et al. [59, 60] as well as complete and
sparse Euclidean instances of Santos et al. [43, 103]. The instance type, together
with the number of nodes (|V |) and edges (|E|) and the diameter bound (D) is
specified for each test case in the following results tables. All experiments have
been performed on a dual-core AMD Opteron 2214 machine (2.2GHz), and CPLEX
11.1 has been used as ILP solver and framework for Branch&Cut. Since most of
the heuristic components are not deterministic, the median and/or the mean value
of at least 30 independent runs is listed for each experiment (when not otherwise

91

Chapter 6 Integer Linear Programming Approach Based on Jump Inequalities

specified). To verify statistical significance Wilcoxon rank tests with an error level
of 5% (if not indicated otherwise) have been performed.

The experiments were executed with modified jump cut heuristics to simultaneously
identify violated directed connection cuts to avoid additional time-consuming max-
flow/min-cut computations (see proof of Theorem 6). Although a polynomial time
exact separation procedure is replaced by a heuristic approach, preliminary tests
demonstrated a significant enhancement in running time. Violated directed connec-
tion cuts were only identified separately in case the exact ILP model was used to
separate jump cuts.

Table 6.1 demonstrates the clear advantages of applying primal heuristics: For a set
of small and medium-sized instances the running times in seconds are given (heuristic
jump cut separation using construction heuristic CB with local search), as well as
the mean values (including the gaps to the optimal solutions) and the standard
deviations of the initial solutions. For instances with random edge costs (TR) the
CBTC construction heuristic was used to compute initial solutions, RTC for all
others. Since CBTC gives deterministic results for a given center it was executed
once for each node ∈ V for even diameter bounds. Otherwise, both construction
heuristics were iterated until no better solution could be found for 100 runs; the
finally best solution was utilized as initial solution in Branch&Cut.

The results are clear: Primal heuristics boost the optimization noticeable, especially
if D is even. Significantly better results are highlighted in gray, the error probabil-
ity obtained by the Wilcoxon tests is always less than 0.01%, except for instance
TR 60/600/7 (0.789%). The parts of the overall running times of CBTC/RTC and
the VND to improve incumbent solutions are negligibly, much less than one sec-
ond for all instances. Only in some rare cases the primal heuristics can mislead
CPLEX, although the minimal running times achieved are still better or at least
comparable.

The solutions computed by CBTC and RTC for these small instances are in general
of high quality (average objective value less than 2% from the optimum) when the
graph is complete or at least dense. On sparse graphs (Santos 40/100, TR 60/600)
already finding a feasible solution is difficult. An interesting observation is that
the running times are much more stable when no primal heuristics are used, so
differences in the jump cuts identified by CB plus local search have only a relatively
small impact in this case. For all remaining experiments primal heuristics were
activated.

For smaller instances where the exact ILP-based jump cut separation can also be
applied, Table 6.2 lists success rates SR(·) for finding existing violated jump in-
equalities in LP solutions for the two construction heuristics (CA and CB), option-

92

6.5 Computational Results

Table 6.1: Optimization with and without primal heuristics, running times t (in sec-
onds), and quality of solutions, compared to the optimum (opt), obtained
by the construction heuristics RTC (Euclidean instances TE and Santos)
or CBTC (instances with random weights TR); significantly better re-
sults according to Wilcoxon tests are highlighted gray. Since not all of
the applied heuristics are deterministic, 30 independent runs have been
performed for each instance.

t(primal heuristics) t(no primal heuristics) quality RTC/CBTC
Instance |V | |E| D median min max median min max opt mean stddev gap(mean)

TE 30 200 4 11.78 11.59 12.03 21.57 21.36 21.85 599 599.13 0.34 0.02%
6 8.92 8.63 12.68 12.84 12.70 13.11 482 483.97 2.98 0.41%
8 1.99 1.89 2.27 2.41 2.33 2.51 437 437.35 1.05 0.08%

TR 30 200 4 1.37 1.35 1.41 2.13 2.08 2.20 234 234.00 0.00 0.00%
6 0.61 0.59 0.63 0.78 0.74 0.80 157 160.00 0.00 1.91%
8 0.12 0.10 0.13 0.15 0.14 0.16 135 135.00 0.00 0.00%

Santos 25 300 4 2.07 2.02 2.12 4.06 3.98 4.12 500 500.00 0.00 0.00%
6 0.70 0.66 0.93 1.07 1.05 1.11 378 378.55 1.15 0.15%
10 0.48 0.40 0.56 0.59 0.55 0.62 379 383.06 2.13 1.07%

40 100 4 1.16 1.10 1.29 1.34 1.27 1.38 755 759.26 11.45 0.56%
6 0.43 0.40 0.45 0.43 0.41 0.44 599 621.32 2.87 3.73%
10 0.38 0.36 0.41 0.39 0.37 0.41 574 589.42 5.58 2.69%

TE 40 400 4 27.98 27.18 46.24 91.98 91.23 93.60 672 674.32 3.35 0.35%
6 126.62 93.23 243.96 182.59 181.73 189.06 555 558.97 1.96 0.71%
8 81.78 42.37 98.84 154.92 154.01 162.29 507 514.94 3.05 1.57%

TR 60 600 4 1739.10 1647.47 1828.58 3494.98 3464.51 3645.16 326 368.00 0.00 12.88%
6 561.53 537.10 607.79 901.11 894.57 937.41 175 179.00 0.00 2.29%
8 4.66 4.53 4.89 4.74 4.67 4.89 127 148.00 0.00 16.54%

TE 30 200 5 67.50 45.67 69.34 52.96 52.54 53.74 534 534.29 0.90 0.05%
7 28.98 24.91 31.95 28.34 27.92 28.91 463 464.68 1.58 0.36%

TR 30 200 5 2.67 2.36 3.64 2.39 2.35 2.44 195 196.52 3.11 0.78%
7 0.29 0.27 0.34 0.32 0.31 0.33 144 145.26 3.20 0.87%

Santos 25 300 5 10.42 10.27 10.59 10.65 10.52 10.88 429 429.00 0.00 0.00%
7 2.13 2.11 2.16 3.85 3.79 3.92 408 408.00 0.00 0.00%
9 1.11 1.08 1.41 1.62 1.58 1.64 336 337.19 1.83 0.36%

40 100 5 0.93 0.87 1.02 1.06 1.02 1.10 729 739.35 14.37 1.42%
7 3.38 2.90 4.30 4.52 4.47 4.65 667 684.87 7.12 2.68%
9 3.44 3.30 3.81 3.95 3.90 4.05 552 570.77 8.79 3.40%

TE 40 400 5 348.51 335.09 618.57 466.34 464.20 478.88 612 613.55 2.41 0.25%
7 463.89 244.64 808.79 605.31 601.90 623.02 527 532.84 3.38 1.11%
9 181.40 111.62 822.45 527.47 524.99 544.38 495 502.74 3.68 1.56%

TR 60 600 5 1286.76 652.53 2546.96 811.16 804.56 835.89 256 265.71 11.09 3.79%
7 33.37 17.44 52.10 27.31 27.01 28.06 150 163.35 3.90 8.90%
9 5.99 5.33 20.88 10.32 10.17 10.62 124 136.35 2.74 9.96%

ally followed by local search (L) and tabu search (T) with the strategy parameters
lmin = 5, γ = 0.75, and imax = 25. The number of cuts identified by the exact model
is given in column “#exact”. As can be seen, for even diameter already the simple
construction heuristic CA gives excellent results, in most cases further improved by

93

Chapter 6 Integer Linear Programming Approach Based on Jump Inequalities

Table 6.2: Success rates SR (%) for separating jump cuts by construction heuristics
CA and CB, optionally followed by local search L and tabu search T, in
comparison to the exact separation approach on the same LP solutions.

Instance |V | |E| D #exact SR(CA) SR(CAL) SR(CB) SR(CBL) SR(CBLT)

TE 30 200 4 817 99.02% 100.00% 99.14% 99.39% 99.39%
6 991 97.17% 99.80% 97.07% 97.58% 98.63%
8 560 65.87% 92.94% 95.08% 95.42% 96.35%

TR 30 200 4 272 100.00% 100.00% 100.00% 100.00% 100.00%

6 152 98.03% 100.00% 100.00% 100.00% 100.00%

8 22 100.00% 100.00% 100.00% 100.00% 100.00%

Santos 25 300 4 316 100.00% 100.00% 100.00% 100.00% 100.00%

6 126 99.21% 99.21% 100.00% 100.00% 100.00%

10 77 100.00% 100.00% 100.00% 100.00% 100.00%

40 100 4 204 100.00% 100.00% 100.00% 100.00% 100.00%

6 112 100.00% 100.00% 100.00% 100.00% 100.00%

10 85 64.71% 90.59% 96.47% 96.47% 96.47%

TE 30 200 5 2786 89.75% 98.39% 92.41% 95.36% 95.36%
7 3353 64.04% 91.88% 94.06% 95.41% 96.99%

TR 30 200 5 377 79.05% 91.51% 96.55% 97.35% 97.35%

7 89 80.90% 85.39% 92.13% 94.38% 95.51%

Santos 25 300 5 794 83.50% 97.10% 97.73% 98.36% 99.46%

7 188 81.38% 88.83% 95.21% 95.74% 96.81%

9 115 91.30% 93.91% 97.39% 97.39% 98.26%

40 100 5 186 100.00% 100.00% 100.00% 100.00% 100.00%

7 445 81.88% 93.82% 95.58% 96.15% 96.16%

9 485 67.80% 73.35% 92.66% 93.04% 94.02%

local search. The statistically significantly better heuristic CB (error level < 0.01%)
leaves not much room for local and tabu search to enhance the success rate. A more
differentiated situation can be observed for odd diameter bounds. The number of
jump cuts identified directly by CB is significantly higher in contrast to CA (er-
ror level < 0.01%), whereas local search flattens the differences in the construction
phase to a greater or lesser extent. On almost all test instances, tabu search further
improves the success rate to more than 95%. In total, heuristic CB followed by local
search and tabu search was able to separate all existing jump cuts for 9 out of 22
instances.

The consequences of the success to reliably identify violated jump inequalities can be
seen in Table 6.3, where for the various approaches CPU-times t(·) to identify proven
optimal integer solutions are listed. It can clearly be seen that the excessive running
times of the exact jump cut separation prohibit its usage on larger instances. Times
of the overall optimization process are in general magnitudes higher as when using
our heuristics for jump cut separation, sometimes even the given CPU-time limit of
one hour is exceeded. Since tabu search is only executed in case the construction
heuristic followed by local search fails to identify a violated jump inequality, running

94

6.5 Computational Results

Table 6.3: Optimal solution values, median running times t (in seconds) to find
and prove these solutions when using different strategies for jump cut
separation, and optimality gaps of the final LP relaxations in the root
nodes of the Branch&Cut search trees when using heuristic CB followed
by local search and tabu search. The last column gives running times in
case directed connection cuts (dc) are separated exactly using multiple
max-flow/min-cut computations.

Instance |V | |E| D opt t(exact) t(CAL) t(CBL) t(CBLT) gap(CBLT) t(dc+CBLT)

TE 30 200 4 599 3522.73 13.03 11.78 11.39 1.69% 18.73
6 482 > 1h 32.06 8.92 9.09 2.59% 13.73
8 437 > 1h 2.16 1.99 2.12 1.98% 3.25

TR 30 200 4 234 328.09 1.63 1.37 1.38 0.00% 3.28
6 157 185.65 0.96 0.61 0.63 0.00% 1.16
8 135 0.59 0.11 0.12 0.11 0.00% 0.30

Santos 25 300 4 500 809.86 7.03 2.07 2.10 0.00% 3.58
6 378 215.30 1.04 0.70 0.71 0.53% 0.86
10 379 419.03 0.58 0.48 0.48 0.00% 0.64

40 100 4 755 105.34 0.98 1.16 1.18 0.00% 2.14
6 599 41.07 0.37 0.43 0.43 0.00% 0.93
10 574 440.55 0.34 0.38 0.36 0.13% 0.70

TE 30 200 5 534 > 1h 57.85 67.50 62.14 7.20% 148.88
7 463 > 1h 28.87 28.98 28.35 6.63% 38.16

TR 30 200 5 195 831.31 2.86 2.67 2.85 9.40% 5.36
7 144 139.08 0.27 0.29 0.30 4.56% 1.31

Santos 25 300 5 429 1122.52 7.20 10.42 6.08 8.87% 20.08
7 408 2489.67 1.69 2.13 1.98 4.65% 6.10
9 336 66.66 1.01 1.11 1.12 0.89% 1.28

40 100 5 729 238.24 0.79 0.93 1.02 0.00% 2.98
7 667 988.36 2.47 3.38 3.22 1.50% 5.32
9 552 > 1h 7.47 3.44 3.98 3.22% 5.70

times of CBL and CBLT considerably differ only on few instances, especially when
D is odd.

On these relatively small instances it is difficult to draw conclusions on the per-
formance of the various heuristics, even though the time required to solve all in-
stances to proven optimality is lowest for CB with local search and tabu search
(141.02s), followed by CBL (150.86s) and CAL (170.77s). The picture becomes
more apparent when investigating slightly larger instances (sparse, dense, and com-
plete graphs), see Table 6.4. Again, statistically significantly better results are
highlighted gray; the error probability is always less than 0.01% except for instances
TE 30/435/9 (0.5%), TR 40/480/7 (2.73%; CAL is significantly faster although
median(CBL)<median(CAL)), TR 40/480/9 (4.17%), and TR 40/780/7 (1.72%).
With increasing instance size the higher success rates of CBL in identifying jump
cuts show a considerable impact on running times.

95

Chapter 6 Integer Linear Programming Approach Based on Jump Inequalities

Table 6.4: Running times t (in seconds) on larger instances (sparse, dense, complete)
when separating jump cuts using heuristics CA and CB including local
search; statistically significantly better results are highlighted gray.

Instance |V | |E| D t(CAL) t(CBL) D t(CAL) t(CBL)

sparse TE 30 175 4 9.40 9.31 5 112.39 72.05

6 28.66 6.62 7 23.07 28.65
8 2.09 1.62 9 1.49 1.49

dense 305 4 98.95 27.08 5 35.38 33.51

6 24.01 11.28 7 12.09 27.10
8 2.70 2.01 9 1.47 1.80

complete 435 4 98.68 30.74 5 54.49 32.64

6 47.57 13.18 7 13.00 19.73
8 2.68 2.60 9 2.37 2.64

sparse TR 40 175 4 63.59 24.27 5 174.60 20.03

6 10.28 2.08 7 3.82 1.63

8 0.46 0.47 9 0.84 0.72

dense 480 4 173.81 27.55 5 24.63 20.78

6 8.34 2.71 7 3.21 3.09

8 0.77 0.72 9 1.15 1.10

complete 780 4 206.48 27.75 5 100.00 68.67

6 7.60 3.61 7 15.27 15.50
8 1.08 1.10 9 9.13 8.96

sum: 787.15 194.70 588.40 360.09

To achieve a good runtime behavior using tabu search a lot of parameter tuning for
lmin, γ, and imax is necessary. A parameter set working for all instance types and
sizes very well does not exist. In addition, when the number of nodes and edges
in the graph increases, the benefit of identifying more violated jump inequalities is
increasingly undone. Especially this is true when D is odd since a lot of computa-
tional effort is invested into LP solutions in which no jump cuts exist. Therefore, we
abstained from using tabu search on larger instances since the performance of the
construction heuristics with local search is already excellent.

Table 6.3 also lists optimal solution values (“opt”) as well as optimality gaps of the
LP relaxations at the root nodes of the Branch&Cut search trees for CBLT. Whereas
our model is quite tight in the even diameter case, the gaps for odd diameters reveal
potential for further investigations to strengthen the formulation. In the last column,
Table 6.3 finally gives running times for CBLT when directed connection cuts (dc)
are separated for LP solutions before jump cuts using an exact max-flow/min-cut
algorithm, which proved to be definitely much more time consuming by a factor of
at least 1.2 up to 4 and more.

Last but not least, Table 6.5 compares our approach to the so far leading hop-indexed
multi-commodity flow formulations from [59] (even diameter cases) and [60] (odd
diameter cases) on larger instances. The columns list for each instance the optimal

96

6.5 Computational Results

Table 6.5: Optimal values resp. upper bounds, LP relaxation values, LP gaps (for
CBL and GMR, the tightest models from [59] and [60]), and running
times on Euclidean and random instances with 40, 60, and 80 nodes.

t(CBL)
Instance |V | |E| D opt/UB∗ LP(CBL) gap(CBL) gap(GMR) median min max

TE 40 400 4 672 672.00 0.00% 0.04% 27.98 27.18 46.24
6 555 544.33 1.92% 0.60% 126.62 93.23 243.96
8 507 500.14 1.35% 0.50% 81.78 42.37 98.84

60 600 4 1180 1178.50 0.13% 0.10% 1062.03 673.11 1154.82
6 837 816.85 2.41% 0.50% 9244.26 5331.65 16389.33
8 755 736.60 2.44% 18844.98 15815.31 25913.07

80 800 4 infeasible infeasible 1871.81 1857.74 2098.96
6 1066 1044.87 1.98% > 10h
8 963∗ 925.32 ∗3.91% > 10h

TR 40 400 4 309 309.00 0.00% 0.00% 23.35 22.84 23.99
6 189 189.00 0.00% 0.00% 2.82 2.78 2.90
8 161 161.00 0.00% 0.00% 0.76 0.72 0.79

60 600 4 326 323.49 0.77% 0.70% 1739.10 1647.47 1828.58
6 175 171.16 2.19% 1.30% 561.53 537.10 607.79
8 127 127.00 0.00% 0.00% 4.66 4.53 4.89

80 800 4 424 399.67 5.74% 5.70% > 10h
6 210 206.41 1.71% 1904.19 1891.74 2181.73
8 166 164.33 1.00% 25.56 24.83 27.24

TE 40 400 5 612 578.42 5.49% 0.00% 348.51 335.09 618.57
7 527 495.09 6.06% 0.30% 463.89 244.64 808.79
9 495 468.08 5.44% 0.30% 181.40 111.62 822.45

60 600 5 965 899.79 6.76% 0.00% 34288.91 31383.42 > 10h
7 789 742.23 5.93% 0.00% > 10h
9 738 690.88 6.38% 0.50% > 10h 30869.08 > 10h

80 800 5 1313 1205.82 8.16% > 10h
7 1010 942.60 6.67% > 10h
9 950∗ 871.90 ∗8.22% > 10h

TR 40 400 5 253 224.90 11.11% 1.00% 17.94 17.66 22.49
7 171 169.11 1.10% 0.00% 2.16 2.00 2.26
9 154 154.00 0.00% 0.00% 1.06 0.86 1.20

60 600 5 256 217.14 15.18% 3.20% 1286.76 652.53 2546.96
7 150 138.50 7.67% 0.30% 33.37 17.44 52.10
9 124 119.84 3.35% 0.00% 5.99 5.33 20.88

80 800 5 323 272.42 15.66% > 10h
7 185 176.44 4.62% 153.57 126.16 300.28
9 158 154.57 2.17% 15.97 13.81 133.14

objective value if known, otherwise an upper bound (opt/UB∗), the LP relaxation
value for construction heuristic CB with local search (LP(CBL)), the gaps for this
approach and for the best model from [59] and [60] whenever the optimum is available
resp. the corresponding values were published (gap(CBL), gap(GMR)), as well as
the running time to proven optimality (t(CBL)); a time limit of 10 hours was used
for these experiments.

97

Chapter 6 Integer Linear Programming Approach Based on Jump Inequalities

We were able to discover and prove previously unknown optima (bold) and could
show that instance TE 80/800/4 is infeasible. Concerning the LP gaps, the results
are comparable on even diameter instances, while for odd diameters the flow models
are significantly better. A fair runtime comparison to [59] and [60] is not possible
since the used hardware is too different (dual-core AMD Opteron 2214 (2.2GHz)
compared to an Intel Pentium II (450MHz)). A rough estimation indicates that the
flow formulations have their strengths on small diameter bounds (4 to 6), whereas
Branch&Cut dominates when the diameter bound is looser (6 and above). To give
an example: In [60] Gouveia et al. report for their best odd diameter formulation,
the Longest-Path model, on instance TE 40/400/5 a running time of 345 seconds
to prove optimality, the Branch&Cut approach requires about the same time on
a much faster machine (median: 348.51 seconds). On the same instance with a
diameter bound of 9 the situation changes, Gouveia et al. list 44600 seconds for
their model whereas Branch&Cut in general only requires about 181.40 seconds
(median).

6.6 Conclusions and Future Work

In this work we presented a new ILP formulation for the BDMST problem utilizing
jump inequalities to ensure the diameter constraint and solve it with Branch&Cut.
The odd diameter case is further strengthened by new center connection inequalities.
For the separation of jump inequalities we considered an exact ILP approach and
two greedy construction heuristics followed by local and tabu search. While our
exact separation prohibits its use in practice due to its excessive computation times,
the heuristic methods are substantially faster and achieve convincing success rates in
identifying violated jump inequalities; they lead to an excellent overall performance
of the Branch&Cut.

The usage of primal heuristics for determining initial solutions and for locally im-
proving new incumbent solutions enhances our approach significantly. The gain
received by replacing an exact polynomial time separation procedure for directed
connection cuts by fast (meta-)heuristics was surprisingly high and can be an inter-
esting field for further research also for other types of cuts and problems. Having an
exact algorithm at hand to solve BDMST instances of moderate size in reasonable
time also opens up new opportunities in combining it with leading metaheuristics.
Smaller subproblems arising can now be solved to proven optimality, or specially de-
signed neighborhoods can be searched making use of the Branch&Cut approach.

98

Chapter 7

Metaheuristics for the BDMST
Problem

7.1 Introduction

The applicability of exact approaches for the BDMST problem is limited to rela-
tively small instances, namely considerable less than 100 nodes when dealing with
complete graphs, cf. Chapters 5 and 6. To solve instances with up to 1000 nodes
and more fast construction heuristics can be used, see Section 3.2 and Chapter 8,
or metaheuristics in order to obtain better results at the expense of more compu-
tational effort. Different evolutionary algorithms (EAs) have been developed for
this problem, mainly differing in their solution representation: an EA employing a
direct edge-set encoding [116], a permutation-coded EA [83], or an EA of similar
performance based on random-keys [81].

This chapter now describes a general variable neighborhood search (VNS) approach
[75] for solving large instances heuristically. Furthermore, an EA based on a newly
developed level encoding and an ant colony optimization (ACO) approach are pro-
posed. All these metaheuristics make use of the neighborhood structures defined in
Chapter 4 to locally improve candidate solutions. In comparison to previous work,
the VNS as well as the EA and the ACO were able to obtain new, significantly bet-
ter solutions on all investigated instances. In particular in long-term runs on larger
instances, the ACO performs best with respect to solution quality, while the EA’s
results are better when the running time is strictly limited.

99

Chapter 7 Metaheuristics for the BDMST Problem

7.2 Variable Neighborhood Search

The framework follows the general VNS scheme as proposed by Hansen and Mlade-
nović in [75] using variable neighborhood decent (VND) as local search strategy.

An initial solution is created by one of the fast greedy construction heuristics de-
scribed in Section 3.2. In our implementation we repeatedly applied RTC until
no new improved solution has been obtained within the last n = |V | repetitions.
Within VND we always use a best improvement strategy, i.e., each neighborhood
is completely explored and the best move is performed as long as it yields an im-
provement. The following order of neighborhoods has proven to be successful: First,
whole sub-trees are moved within the solution (arc exchange), afterwards the ar-
rangement of nodes and their direct successors is considered (node swap). Then
the usually more time consuming level based neighborhoods are applied: The best
center with respect to the center exchange level neighborhood is determined, and
finally the levels the non-center nodes are assigned to are refined by means of the
level change neighborhood.

When performing a local search using a single neighborhood and following a best
improvement strategy, it is sometimes possible to store information during the ex-
ploration of this neighborhood allowing a faster incremental search for the succes-
sive best move. We implemented such a scheme for the node swap and the level
change neighborhoods, cf. the detailed description in Chapter 4. To benefit from
this advantage and in contrast to standard VND, we do not switch back to the
first neighborhood immediately after an improvement, but continue the local search
within the same neighborhood until a local optimum is reached. Only then we
restart our search with the first neighborhood in order to exploit further possible
improvements.

Our general VNS framework is shown in Algorithm 15. Since VND always yields
a solution that is locally optimal with respect to all used neighborhoods, it makes
usually no sense to shake a solution in the VNS performing only a single random
move in one of these neighborhoods. Therefore, shaking is performed by applying
k random moves within one of the four neighborhoods chosen at random, with k
running from kstart ≥ 2 to kmax.

In case the center exchange level neighborhood has been chosen for the shaking
process we make an exception and use a combination of it and the level change
neighborhood because iterated center exchange moves alone cannot gain the desired
larger variation: The first 1 + D mod 2 (the number of center nodes) moves are
executed within the center exchange level neighborhood, and for the remaining k −
(1 +D mod 2) shaking moves we switch to the level change neighborhood.

100

7.3 Evolutionary Algorithm

Algorithm 15: VNS for the BDMST problem

create initial solution using RTC heuristic1

number of shaking moves k ← kstart2

while termination condition not met do3

perform VND with best improvement strategy: begin4

neighborhood l← 15

while l ≤ 4 and time limit not reached do6

switch l do perform local search to a local optimum using7

neighborhood
case 1 : arc exchange8

case 2 : node swap9

case 3 : center exchange level10

case 4 : level change11

if solution improved and l 6= 1 then l← 1 else l← l + 112

end13

if best solution improved or k ≥ kmax then k ← kstart else k ← k + 114

choose neighborhood at random and shake currently best known solution15

using k moves

7.3 Evolutionary Algorithm

The evolutionary algorithm uses a novel representation, based on the concepts of
the level neighborhoods, to loosely represent solutions to the BDMST problem. It
then relies on a decoding mechanism to transform this representation into a specific
tree. A BDMST is represented as a string of levels, i.e., each gene represents the
level of a corresponding node in the directed tree. This level information on itself
does not completely encode a tree, and therefore, we use Algorithm 10 (Section 4.3,
page 55) to derive the predecessor information, i.e., a specific tree. This predecessor
information is also stored in the individual and local improvement is applied.

The local improvement consists of applying only the arc exchange neighborhood
search from Section 4.2.1. If an improvement can be made, which is the case more
often than not, the node level representation and fitness value are set according
to the new improvement. The arc exchange neighborhood is chosen to perform
the local improvement as it is computationally relatively cheap in practice and it
complements the genetic operators, which provide new points in the search space by
changing level information, and especially, by moving the centers around.

101

Chapter 7 Metaheuristics for the BDMST Problem

We decided not to include the other three neighborhood searches. This decision
is based on preliminary experiments where we found including them almost always
extremely increased the necessary running times for converging to high-quality so-
lutions. These experiments consisted of including the three neighborhood searches
with equal probability to the arc exchange neighborhood search, including each of
them with the small probability of 0.10, and including each of them with a very
small probability of 0.01.

An important aspect of the representation is that an individual is allowed a limited
number of center nodes only. These nodes have a level of zero. If the BDMST
problem has an even diameter, one node is allowed, if it is odd, two nodes form
the center. When generating the initial population, genes are assigned levels of one
to the maximum height of the tree H = ⌊D2 ⌋. Thereafter, one or two nodes are
randomly assigned to level zero, depending on the parity of the problem.

The genetic operators are of a simple, straight-forward nature, with the exception
where they cater for the center nodes. A uniform crossover is performed where
for each gene a level is chosen with equal probability from the two parents. The
locations of the center nodes of both parents are put into a pool. Then one or two
are selected randomly to represent the center nodes of the offspring. The remaining
locations are checked in the offspring, if they contain center nodes inherited from
the uniform crossover, then these genes are overwritten with a random level between
one and the maximum tree height. The mutation operator generates a new level for
each gene with a probability of 1/n, skipping center nodes. Afterwards, the center
nodes are swapped with other nodes selected randomly with equal probability.

A steady-state evolutionary model with binary tournament selection for choosing the
parents is used. A new candidate solution always replaces the worst solution in the
population, with one exception: duplicate individuals are not allowed to enter the
population, whereas duplicate elimination is based on the genotype (level encoding)
and not the phenotype (predecessor information of the BDMST). Crossover and
mutation are always applied, as well as local improvement.

7.4 Ant Colony Optimization

In our ant colony optimization approach (ACO, Dorigo and Gambardella [40]) we
also exploit the idea that a solution to the BDMST problem can be derived from an
assignment of nodes to levels 0 . . .H by Algorithm 10.

Therefore, we make use of a n × (H + 1) pheromone matrix τ where each value
τi,l denotes the pheromone value for a node i at level l. The pheromone matrix

102

7.5 Computational Results

is uniformly initialized with τi,l = (n · T0)−1, with T0 being the objective value of
a heuristic solution to the BDMST problem computed using one of the presented
greedy construction heuristics, e.g., RTC for Euclidean instances (see Section 3.2).

To derive a valid solution we have to restrict the number of center nodes, so they
are chosen first: A node i is selected in proportion to its pheromone value τi,0 at
level 0, i.e., with a probability

Pi,0 =
τi.0

∑

j∈V τj.0
.

In case the diameter is odd, the second center node is selected analogously from all
remaining nodes.

After the center has been determined all other nodes are assigned to the available
levels 1 . . .H independently from each other. The probability for a node i to be set
to level l is defined similar as for the center nodes, namely

Pi,l =
τi.l

∑H
l′=1 τi.l′

.

Note in particular that these probabilities do not include any local heuristic compo-
nent.

After each node has been assigned to a level, a corresponding BDMST is derived
using Algorithm 10, where every node at a level ≥ 1 is connected to the cheapest
available predecessor at any smaller level. Afterwards, this tree is locally improved
using a VND exploiting only the arc exchange and node swap neighborhoods. The
ideas of the level based neighborhoods are already captured in the construction and
decoding phase. In practice, the use of these neighborhoods does not lead to a
further improvement of the solution quality, but only significantly increases running
time.

After each ant has built a BDMST the pheromone evaporation τi.l ← (1 − ρ) · τi.l,
where ρ ∈ [0, 1) represents the pheromone decay coefficient, is triggered on all entries
of the pheromone matrix. Only the best ant of an iteration is allowed to deposit
pheromone: if node i is assigned to level l we set τi.l ← τi.l + ρ · 1

T+ with T+ being
the objective value of the best BDMST in the current iteration.

7.5 Computational Results

The experiments have been performed on a Pentium R©4 2.8 GHz system using Linux
2.4.21 as operating system utilizing benchmark instances already used in the corre-
sponding literature from Beasley’s OR-Library [17, 16] originally proposed for the

103

Chapter 7 Metaheuristics for the BDMST Problem

Table 7.1: Long-term runs on Euclidean instances; results for the EAs are taken
from [81].

Instance permutation coded EA random-key coded EA VNS
|V | D nr. best mean stddev best mean stddev kstart kmax best mean stddev sec.

100 10 00 7.818 7.919 0.07 7.831 7.919 0.05 3 15 7.759 7.819 0.03 37.35
01 7.873 8.017 0.08 7.853 8.043 0.09 7.852 7.891 0.03 41.52
02 7.990 8.139 0.08 7.982 8.137 0.09 7.904 7.962 0.04 38.66
03 8.009 8.143 0.07 7.996 8.122 0.06 7.979 8.046 0.03 34.27
04 8.193 8.335 0.08 8.198 8.313 0.08 8.165 8.203 0.03 39.31

250 15 00 12.440 12.602 0.08 12.448 12.580 0.08 4 20 12.301 12.430 0.05 1584.31
01 12.237 12.432 0.10 12.222 12.393 0.10 12.024 12.171 0.06 1678.90
02 12.117 12.282 0.08 12.178 12.315 0.07 12.041 12.112 0.04 1309.21
03 12.572 12.824 0.11 12.632 12.802 0.07 12.507 12.615 0.06 1572.39
04 12.358 12.608 0.12 12.382 12.623 0.10 12.281 12.423 0.07 1525.39

500 20 00 17.216 17.476 0.10 17.156 17.429 0.10 5 25 16.974 17.129 0.07 3718.54
01 17.085 17.311 0.11 17.097 17.291 0.10 16.879 17.052 0.07 3762.02
02 17.173 17.449 0.11 17.164 17.369 0.11 16.975 17.148 0.07 3849.42
03 17.215 17.484 0.13 17.266 17.432 0.09 16.992 17.166 0.06 3687.97
04 16.939 17.137 0.11 16.872 17.092 0.11 16.572 16.786 0.07 3693.13

Euclidean Steiner tree problem. These complete instances contain point coordinates
in the unit square, and the Euclidean distances between each pair of points are taken
as edge costs. For our tests we used the first five instances of each size |V | = 100, 250,
500, and 1000. The maximum diameters were set to 10, 15, 20, and 25, respectively.
Best results over all algorithms are printed in bold.

First we compare the results of the VNS to those of the at this point leading evolu-
tionary algorithms from [81] based on permutation and random-key representations.
VNS uses a least-cost tree identified in multiple runs of RTC as initial solution: This
construction heuristic is repeatedly performed until no better solution was obtained
during the last n iterations. As stopping condition for VNS we used a combination
of a CPU time limit (2000, 3000, and 4000 seconds for the 100, 250, and 500 node
instances, respectively) and a maximum of 1000 consecutive applications of shaking
without further improvement of the best solution. Depending on the problem size
we also used different values kstart and kmax for shaking as indicated in Table 7.1.

Table 7.1 further lists for each instance the number of nodes, the maximum diameter
D, the instance number, and for each approach the best found solution, the mean,
and the standard deviation of 50 (EAs) respectively 30 (VNS) independent runs. In
addition, for VNS the mean times to find the best solutions are given.

104

7.5 Computational Results

Table 7.2: Short-term runs with strict time limit on Euclidean instances.

Instance time edge-set coded EA random-key coded EA VNS
|V | D nr. limit (sec.) best mean stddev best mean stddev kmax best mean stddev

500 20 00 50 19.368 19.830 0.17 21.223 21.440 0.07 25 17.753 18.108 0.12
01 19.156 19.522 0.13 20.836 21.097 0.09 17.688 17.966 0.10
02 19.321 19.888 0.16 21.042 21.304 0.11 17.799 18.114 0.10
03 19.464 19.866 0.19 21.129 21.432 0.09 17.930 18.161 0.11
04 19.209 19.477 0.17 20.728 21.017 0.11 17.464 17.863 0.12

500 20 00 500 18.470 18.976 0.13 19.658 19.908 0.14 25 17.290 17.460 0.08
01 18.442 18.810 0.22 19.332 19.651 0.13 17.215 17.373 0.08
02 18.619 19.056 0.18 19.618 19.887 0.10 17.252 17.464 0.05
03 18.745 19.116 0.17 19.654 19.905 0.11 17.318 17.514 0.07
04 18.197 18.685 0.20 19.312 19.635 0.10 16.932 17.139 0.09

1000 25 00 100 28.721 29.265 0.16 30.996 31.288 0.11 50 25.850 26.188 0.13
01 28.607 29.105 0.19 30.832 31.132 0.11 25.501 25.981 0.17
02 28.410 28.905 0.17 30.515 30.856 0.12 25.340 25.705 0.09
03 28.695 29.263 0.21 30.966 31.277 0.08 25.562 26.128 0.17
04 28.396 28.882 0.19 30.633 31.010 0.10 25.504 25.826 0.15

1000 25 00 1000 26.494 26.936 0.14 30.097 30.401 0.13 50 25.177 25.572 0.14
01 26.300 26.789 0.24 29.924 30.261 0.12 25.015 25.342 0.14
02 25.762 26.556 0.21 29.586 29.981 0.12 24.816 25.086 0.11
03 26.470 26.816 0.15 29.946 30.329 0.13 25.289 25.572 0.11
04 26.117 26.606 0.19 29.782 30.151 0.12 25.026 25.254 0.12

The results are clear and consistent among all instances: VNS outperforms both
EAs with respect to the best found solutions as well as with respect to the mean
values. Sometimes, especially on larger instances, even the mean over all VNS runs
is better than the overall best solutions identified by both EAs. For VNS the time
limit was of no significance for the 100 and 250 nodes instances, whereas on graphs
with 500 nodes the optimization was usually terminated due to the time constraint
before 1000 successive applications of shaking without further improvement were
achieved.

As there was no time information published for the EAs in [81] and since we were
particularly interested in the short-term performance, we did additional experiments
providing the algorithms the same, very limited amount of time. For this comparison
we chose the random-key coded EA from [81] and the edge-set EA by Raidl and
Julstrom [116]; the latter because it scales much better to larger instances since
it derives new candidate solutions in almost linear time. For these experiments,
we used instances with 500 and 1000 nodes and two different time limits for each
instance size, namely 50 and 500 seconds for the 500 node graphs and 100 and 1000
seconds for the instance with 1000 nodes, respectively. For VNS kstart was set to 5

105

Chapter 7 Metaheuristics for the BDMST Problem

Table 7.3: Final objective values of long-term runs on Euclidean instances.

Instance VNS level-encoded EA ACO
|V | D nr best mean stdev sec. best mean stdev sec. best mean stdev sec.

100 1000 7.759 7.819 0.03 37.35 7.760 7.785 0.03 678.70 7.759 7.768 0.02 27.78
01 7.852 7.891 0.03 41.52 7.849 7.860 0.02 734.65 7.850 7.864 0.01 25.10
02 7.904 7.962 0.04 38.66 7.904 7.964 0.04 897.58 7.907 7.943 0.04 28.48
03 7.979 8.046 0.03 34.27 7.977 8.008 0.03 732.83 7.979 8.000 0.01 38.24
04 8.165 8.203 0.03 39.31 8.164 8.176 0.03 410.17 8.164 8.170 0.00 25.45

250 1500 12.301 12.430 0.05 1584.31 12.280 12.377 0.05 1992.70 12.231 12.280 0.02 174.17
01 12.024 12.171 0.06 1678.90 12.054 12.156 0.06 1969.42 12.016 12.038 0.01 156.71
02 12.041 12.112 0.04 1309.21 12.026 12.095 0.04 1897.87 12.004 12.021 0.01 145.29
03 12.507 12.615 0.06 1572.39 12.487 12.594 0.05 1742.48 12.462 12.486 0.01 159.41
04 12.281 12.423 0.07 1525.39 12.319 12.423 0.06 1712.16 12.233 12.288 0.04 211.11

500 2000 16.974 17.129 0.07 3718.54 16.866 16.967 0.06 2609.28 16.778 16.850 0.03 906.17
01 16.879 17.052 0.07 3762.02 16.764 16.858 0.05 2472.59 16.626 16.699 0.03 1012.91
02 16.975 17.148 0.07 3849.42 16.856 16.977 0.05 2808.15 16.792 16.844 0.03 1069.84
03 16.992 17.166 0.06 3687.97 16.943 17.040 0.06 2837.81 16.796 16.923 0.04 1010.91
04 16.572 16.786 0.07 3693.13 16.501 16.590 0.05 2294.43 16.421 16.456 0.02 947.26

and kmax depending on the instance size. We performed 30 runs for each instance
and time limit.

Table 7.2 lists the results. As easily can be seen VNS again performs consistently
better than both EAs. The mean values of VNS with the tighter time limits are
even always superior to the objective values of the overall best solutions found by
both EAs with 10 times more time available. Comparing the performance of the
EAs the complexity of the chromosome decoding procedure in the random-key EA
becomes noticeable, and the edge-set EA always gives better results since it can
perform much more iterations.

Finally, the VNS is experimentally compared with the level-based EA and ACO for
the BDMST problem. For the different approaches the following parameters were
used: For the EA a population size of 100 was chosen. The number of artificial ants
in the ACO was 25, the value for the pheromone decay coefficient ρ was studied in
depth by extensive preliminary tests and was set in dependence on the size of the
instance, namely ρ = 0.003, 0.005, 0.006, and 0.008 for the 100, 250, 500, and 1000
node instances. For the VNS the parameters were chosen as described above for the
comparison with the edge-set and random-key coded EAs.

Regarding the termination condition we again performed two different series of ex-
periments: long-term and short-term runs with the same CPU time restrictions as
used in Tables 7.1 and 7.2, respectively. In addition, in case of the VNS and ACO

106

7.5 Computational Results

distribution of running times:

objective value

time (sec)

ACO
EA

VNS

1000 2000 3000

ACO VNS

EA

17.0

16.5

17.5

18.0

18.5

1000 2000 3000 4000

mean objective value ± standard deviation:

0

0

Figure 7.1: Objective value over time and running time distribution; long-term runs,
n = 500, D = 20, instance 01.

a run was also terminated after 1000 iterations without further improvement of the
best solution, since in this situation these two algorithms – in contrast to the EA
– can be considered to have converged and further improvements are extremely un-
likely. All statistical evaluations are based on 30 (VNS) respectively 50 (EA, ACO)
independent runs for each instance.

Table 7.3 shows the results for long runs on instances with 100, 250, and 500 nodes,
where the main focus lies on the quality of the built tree. Listed are best and mean
objective values, the corresponding standard deviations and the average times to
identify the finally best solutions for each instance and the three metaheuristics
under consideration.

The instances with n = 100 seem too small to provide a proper comparison; each
algorithm finds the best results for some of the instances. Furthermore, the objective
values of the solutions over the three algorithms are rather similar and do not allow
any conclusion to be drawn. On all larger instances with 250 and 500 nodes, the ACO
clearly outperforms VNS and the EA. In fact, the ACO’s observed mean objective
values are never worse than the single best solutions identified by one of the other
approaches. Furthermore, the ACO’s standard deviations are smallest indicating a
higher reliability of finding high-quality solutions.

Comparing VNS with the level-encoded EA on the 250 and 500 node instances, the
mean values of the EA are always smaller than those of VNS with exception of the
fifth instance (04) with 250 nodes, where they are equal.

107

Chapter 7 Metaheuristics for the BDMST Problem

Table 7.4: Final objective values of short-term runs on Euclidean instances.

Instance limit VNS level-encoded EA ACO
n D nr sec. best mean stdev sec. best mean stdev sec. best mean stdev sec.

500 20 00 50 17.753 18.108 0.12 46.41 16.573 16.760 0.16 37.94 17.594 17.751 0.06 41.29
01 17.688 17.966 0.10 44.70 16.826 17.014 0.11 41.06 17.403 17.583 0.05 40.33
02 17.799 18.114 0.10 46.23 16.947 17.192 0.13 43.15 17.653 17.756 0.05 39.66
03 17.930 18.161 0.11 45.38 16.957 17.085 0.08 39.18 17.647 17.793 0.05 41.41
04 17.464 17.863 0.12 45.94 17.055 17.245 0.13 39.54 17.331 17.438 0.05 40.95

500 20 00 500 17.290 17.460 0.08 476.22 16.534 16.641 0.07 340.34 17.017 17.150 0.07 485.57
01 17.215 17.373 0.08 480.87 16.808 16.902 0.05 320.84 16.864 17.072 0.08 478.47
02 17.252 17.464 0.05 476.33 16.886 17.017 0.06 319.09 17.094 17.259 0.07 479.17
03 17.318 17.514 0.07 476.80 16.923 17.036 0.06 316.33 17.070 17.277 0.08 472.57
04 16.932 17.139 0.09 473.82 17.007 17.105 0.06 288.66 16.613 16.791 0.08 479.93

1000 25 00 100 25.850 26.188 0.13 75.40 24.831 25.019 0.10 92.06 25.246 25.437 0.07 81.42
01 25.501 25.981 0.17 68.30 24.890 25.159 0.10 89.29 25.092 25.239 0.07 80.17
02 25.340 25.705 0.09 62.33 25.021 25.338 0.14 92.27 24.870 25.007 0.06 73.96
03 25.562 26.128 0.17 73.89 25.133 25.524 0.12 92.17 25.329 25.450 0.06 76.56
04 25.504 25.826 0.15 74.75 25.493 25.675 0.08 89.18 24.884 25.153 0.07 79.90

1000 25 00 1000 25.177 25.572 0.14 905.50 23.434 23.573 0.08 565.38 24.842 25.033 0.07 812.78
01 25.015 25.342 0.14 930.04 23.464 23.668 0.08 561.49 24.634 24.834 0.06 847.79
02 24.816 25.086 0.11 956.06 23.635 23.793 0.08 524.21 24.498 24.619 0.06 838.68
03 25.289 25.572 0.11 928.97 23.787 23.962 0.09 602.30 24.993 25.091 0.06 793.41
04 25.026 25.254 0.12 935.85 23.837 23.982 0.10 516.74 24.571 24.732 0.06 844.67

After verifying our data are normally distributed, we performed unpaired t-tests
between each pair of algorithms for each problem instance. With a significance level
of 1%, the difference in results between the EA and the VNS are all significant
with the exceptions of instance 01 to 04 for n = 250, D = 15, and instance 02 for
n = 100, D = 10. The differences between the ACO and the VNS are all significant,
except for instance 02 for n = 100, D = 10. All differences between the EA and the
ACO are significant, except for instances 01, 03, and 04 for n = 100, D = 10.

When looking at the average times until the best solutions have been found the ACO
was in almost all cases substantially faster than VNS and the EA. Furthermore, on
smaller instances the VNS found its final solutions in shorter time than the EA; on
the largest considered instances the situation was vice versa.

Fig. 7.1 shows the mean objective value over time for multiple runs of the VNS, EA
and ACO on instance number 01 with 500 nodes and a diameter of 20. The bottom
of the chart displays the distributions of running times required to identify the best
solution of a run, where mean running times are indicated by a vertical line each.

In our short-term experiments, we tested the approaches under CPU-time limits of
50 and 500 seconds for the 500 node instances, as well as 100 and 1000 seconds for

108

7.6 Conclusions

the 1000 node instances. Table 7.4 shows the results of these short-term runs. Here
we see that roles are reversed, as in most cases the mean results of the EA are better
than those of the ACO. Both, the EA and the ACO, almost always outperform the
VNS. Interesting to note is that, with only a few exceptions, the mean results of the
EA are already better than the best results found by the VNS, and this also holds
true for the mean values of the ACO over the best of the VNS. Furthermore, when
looking at the average computation times to identify the finally best solutions, the
EA is usually faster than the ACO and VNS.

The objective value differences between all algorithms are statistically significant
on an error-level of 1%, except for the EA and ACO on instances 02 and 04 for
n = 1000, D = 25 with a time limit of 100 seconds.

In this comparison, we used for the short-term runs the same strategy parameters as
for the high-quality experiments, which proved to be robust in excessive preliminary
tests. However, there would be different possibilities to tune the algorithms to
better perform when time is short. For example the VNS can omit the very time
consuming center exchange level neighborhood; the idea of the level representation
is still captured with the level change neighborhood. The population size of the EA
can be reduced, as well as the number of ants in the ant colony. In addition, a higher
pheromone decay coefficient ρ can be used to influence the convergence behavior of
the ACO.

7.6 Conclusions

In this chapter new metaheuristic algorithms have been introduced for the Bounded
Diameter Minimum Spanning tree problem, which make use of for neighborhood
structures to locally improve solutions.

These neighborhoods have been combined within a general VNS/VND approach.
The results on complete Euclidean instances have been compared with those of three
so-far leading meta-heuristics for this problem, namely a permutation, a random-key,
and an edge-set coded evolutionary algorithm. In both categories, solution quality
as well as computation time, VNS exhibits results clearly superior to those of these
EAs. In particular when the running time is strongly limited the solution quality of
the VNS approach is substantially better.

In addition, an evolutionary algorithm has been presented that encodes candidate
trees only incompletely by node levels and uses a decoding procedure to comple-
ment solutions. Similarly, an ant colony optimization algorithm is introduced where
pheromone values are associated to the assignment of nodes to levels and the same

109

Chapter 7 Metaheuristics for the BDMST Problem

decoding procedure is applied. In both metaheuristics, candidate spanning trees are
further improved by a choice of neighborhood searches.

Our results show that the level-based evolutionary algorithm with the arc exchange
neighborhood search as local optimization leads to significantly better results in runs
with a tight limit on execution time when compared to the variable neighborhood
search and the ant colony optimization algorithm. When running time is less critical,
the tables turn, and it is the ant colony optimization algorithm that improves on
the previous best known optima.

110

Chapter 8

Clustering-Based Construction
Heuristic

8.1 Introduction

Simple and fast construction heuristics for the BDMST problem are primarily based
on Prim’s MST algorithm [109], for example the center based tree construction
(CBTC) and randomized tree construction (RTC) [82] already discussed in detail in
Section 3.2. To summarize, CBTC is well suited for problem instances with random
edge weights, whereas it is much too greedy on Euclidean instances. It tends to
create a backbone (the edges near the center) of relatively short edges and the
majority of the nodes have to be connected to this backbone via rather long edges,
see Fig. 8.1(a). A good solution, like this one shown in Fig. 8.1(c), only contains
a few long edges in the backbone to span the whole area so the large number of
remaining nodes can be connected as leaves by much cheaper edges. In RTC the
nodes are connected to the tree in random order, so at least the possibility to include
longer edges into the backbone at the beginning of the algorithm is increased, see
Fig. 8.1(b). For Euclidean instances RTC has been so far the best choice to quickly
create a first solution as basis for exact or metaheuristic approaches.

In the following we will introduce a new construction heuristic for the BDMST
problem which is especially suited for very large Euclidean instances. It is based on
a hierarchical clustering that guides the algorithm to find a good backbone.

111

Chapter 8 Clustering-Based Construction Heuristic

(a) CBTC (8.284). (b) RTC (5.725). (c) Optimum (5.195).

Figure 8.1: A diameter-constrained tree withD = 6 constructed using (a) the CBTC
heuristic, compared to (b) RTC (best solution from 100 runs) and (c) the
optimal solution (complete, Euclidean graph with 40 nodes distributed
randomly in the unit square, the corresponding objective values are given
in parentheses).

8.2 Clustering-Based Construction Heuristic

The clustering-based construction heuristic can be divided into three steps,
cf. Fig. 8.2: Creating a hierarchical clustering (dendrogram) of all instance nodes
based on the edge costs, deriving a height-restricted clustering (HRC) from this
dendrogram, and finding for each cluster in the HRC a good root (center) node.
Different algorithms are used for the various steps, Fig. 8.3 shows the algorithmic
point of view: After generating the hierarchical clustering, cuts through the den-
drogram have to be found to get a height-restricted clustering. In a first step,
initial cutting positions are computed analytically where a parameter is optimized
using simple binary search. Afterwards, the determined cutting positions are fur-
ther refined using a GRASP-like procedure [123]. To evaluate the cuts through the
dendrogram, diameter-constrained trees have to be derived from the corresponding
HRCs, and since this have to be done multiple times a fast greedy heuristic with
additional local search is used. Finally, when a good set of cutting positions has been
identified to create a height-restricted clustering, dynamic programming operating
on a reduced search space is applied to get the approximately best BDMST from
this HRC, again improved by local search.

112

8.2 Clustering-Based Construction Heuristic

cut ς1 =6

(a)

(c)

0 9 4 1 3 5 2 8 6 7

6 7
2 81 3

0 4 9

0 9

0 1 3 4 9

0 1 3 4 5 9

0 1 2 3 4 5 6 7 8 9

2 6 7 8

(b)

0 1 3 4 9 5 2 8 6 7

0 1 2 3 4 5 6 7 8 9

¶
·

¸
¹

º

»

¼
½

¾

60 3 4 8

7251

9

Figure 8.2: Hierarchical clustering (a), height restricted clustering (b), and the re-
sulting diameter constrained tree with D = 4 (c) after choosing a root
for each cluster in (b). In (a) ❶. . . ❾ denote the merge numbers, i.e., at
which time the two corresponding clusters have been merged during the
agglomeration process.

8.2.1 Hierarchical Clustering

For the purpose of creating a good backbone especially for an Euclidean instance
of the BDMST problem agglomerative hierarchical clustering provides a reasonable
guidance. To get spatially confined areas, two clusters A and B are merged when
max{ca,b : a ∈ A, b ∈ B} is minimal over all pairs of clusters (complete linkage
clustering [80]).

The agglomeration starts with each node being an individual cluster, and stops when
all nodes are merged within one single cluster. The resulting hierarchical clustering
can be illustrated as a binary tree, also referred to as a dendrogram, with |V |−1 inner
nodes each representing one merging operation during clustering and |V | leaves; see
Fig. 8.2(a) for an example with |V | = 10. An inner node’s distance from the leaves
indicates when the two corresponding clusters – relative to each other – have been
merged.

8.2.2 Height Restricted Clustering

After performing the agglomerative hierarchical clustering, the resulting dendrogram
has to be transformed into a height-restricted clustering (HRC) for the BDMST, i.e.,
into a representation of the clustering respecting the diameter and thus the height
condition. The dendrogram itself cannot directly act as HRC since in general it
will violate this constraint, see Fig. 8.2(a). Therefore, some of the nodes in the

113

Chapter 8 Clustering-Based Construction Heuristic

cut refinement:

GRASP-like procedure final BDMST

r
e
fi
n
e
m

e
n
t

agglomerative clustering:

complete linkage clustering

initial cuts computation:

binary search

root node assignment:

restricted / approximate
dynamic programming

local improvement:

local search procedure

root node assignment:

fast greedy heuristic

Figure 8.3: Algorithmic overview of the clustering-based construction heuristic.

dendrogram have to be merged to finally get a tree of height H − 1, the HRC for
the BDMST; see Fig. 8.2(b) for a diameter of D = 4.

For the quality of the resulting tree this merging of dendrogram nodes is a crucial
step, worth investing significant effort. It can be described by H−1 cuts through the
dendrogram defining which nodes of it will also become part of the height-restricted
clustering and which are merged with their parent clusters. As an example, starting
at the root containing all instance nodes agglomerated within one single cluster the
cut illustrated in Fig. 8.2(a) defines the dendrogram nodes {0, 1, 3, 4, 9}, {5}, {2, 8},
and {6, 7} to become direct successors of the root cluster in the height-restricted
clustering.

One fundamental question arising in this context is the way of defining the cutting
positions through the dendrogram. This could be, for example, based on the height
of the (sub-)dendrogram(s), but this choice would be problematic in two senses.
On one hand, the cut illustrated in Fig. 8.2(a) cannot be described based on height
information: The whole dendrogram has a height of five. With a cut at height three,
i.e., in this example the first sub-dendrogram of height ≤ 3 on a path from the root
to a leaf will become direct successor of the root cluster in the HRC, we are able
to specify the clusters {0, 1, 3, 4, 9} and {5}, but not {2, 8} and {6, 7} since their
parent cluster already has a height of three. Reducing the cutting height to two is
no solution since then the cluster {0, 1, 3, 4, 9} will be split to {0, 4, 9} and {1, 3}. On
the other hand, the height of the dendrogram will be, when the instance graph is not
specifically structured, in general approximately log2(2n). Preliminary tests showed
that especially for larger diameter bounds, e.g., D ≥ 20 for a 1000 node instance

114

8.2 Clustering-Based Construction Heuristic

Algorithm 16: buildHRC(pd, pp, ς, j)

input : reference to dendrogram node pd; reference to parent cluster in the
HRC pp; cutting positions ςi, i = 1, . . . , H−1; current cut index j

output: height-restricted clustering for the BDMST

if pd.merge# > ςj then1

forall children pc of pd do2

buildHRC(pc, pp, ς, j)3

else4

create new HRC node pn for instance nodes agglomerated in pd5

connect pn to its parent cluster pp within the HRC6

if j < H−1 then7

forall children pc of pd do8

buildHRC(pc, pn, ς, j + 1)9

where the height of the dendrogram would be near 11, the height is not flexible
enough to obtain good solutions. Alternatively, the precise information at which
iteration two clusters have been merged in the agglomeration process turns out to
be a good criterion. This merge number (or merge#), which allows a finer grained
control of the cutting positions, can be stored within each node of the dendrogram,
where the leaves have a merge number of zero, and the root |V | − 1.

Based on the merge numbers cutting positions ς are computed as

ςi = (|V |−1)− 2 i·
log2(x)

H−1 i = 1, . . . , H−1, (8.1)

where x is a strategy parameter. This formula is motivated by a perfectly balanced
tree, where parameter x can be interpreted as the number of nodes that shall form
the backbone.

These cutting positions can now be utilized to build the height-restricted clustering
for the BDMST, as depicted in Algorithm 16. The recursion is started with the root
of the dendrogram (pd), a reference to the newly created root node of the HRC (pp),
the computed cutting positions (ς), and 1 for the current cut index j.

An experimental evaluation with a simple greedy construction heuristic described
in the next section revealed that for D ≥ 6 promising values for x can be found
close to |V |; see Fig. 8.4. Only in case of the smallest possible even diameter of

four the picture is inverted and x should be chosen near |V |10 . The rather continuous
and mostly monotonic increase or decrease of the curve further suggests to apply

115

Chapter 8 Clustering-Based Construction Heuristic

|V |/10 |V |x

min

max
c(

T
)

D=4

|V |/10 |V |x |V |/10 |V |x |V |/10 |V |x |V |/10 |V |x

D=6 D=12 D=16 D=22

CG (strict)

CG+L (strict)
CG (free)

CG+L (free)

Figure 8.4: Obtained objective values (scaled to minimal and maximal values) over

parameter x of Equation (8.1) (ranging from |V |
10 to |V |) for various di-

ameter bounds on an Euclidean instance with 1000 nodes distributed
randomly in the unit square. The trees were computed using the simple
greedy construction heuristic CG (Section 8.2.3) with and without lo-
cal improvement (L), respectively with free leaf nodes or leaves strictly
following the clustering (see Section 8.2.4 for details).

binary search to determine an approximately best value for x for a specific Euclidean
instance and diameter bound, if time allows and the heuristic can be run multiple
times.

8.2.3 Determining Good Root Nodes

Finally, from the height-restricted clustering a BDMST has to be derived by iden-
tifying for each (sub-)cluster an appropriate root; see Fig. 8.2(b) and (c). This can
be done heuristically in a greedy fashion based on rough cost estimations for each
cluster followed by a local improvement step, or by more sophisticated approaches
based on dynamic programming [19].

In the following we will require a more formal and in some points augmented defi-
nition of a height-restricted hierarchical clustering. Let C0 = {C0

1 , . . . , C
0
|V |} be the

set of clusters at the lowest level 0, where each node of V forms an individual cluster.
Moreover, let Ck = {Ck1 , . . . , Ckik} be the clustering at the higher levels k = 1, . . . , H.

All Cki , i = 1, . . . , ik, are pairwise disjoint, and Ck1 ∪ Ck2 ∪ . . . ∪ Ckik = Ck−1. CH

is the highest level, and it is singleton, i.e., CH = {CH1 }; it refers to all nodes
in V aggregated within one cluster. Furthermore, by V (Cki) we denote the set
of nodes in V represented by the cluster Cki , i.e., the nodes part of this cluster
and all its sub-clusters at lower levels; V (Ck) = V (Ck1) ∪ . . . ∪ V (Ckik) = V , and

V (Ck1) ∩ . . . ∩ V (Ckik) = ∅, for all k = 0, . . . , H.

This definition mainly corresponds to the simple height-restricted clustering previ-
ously presented in Fig. 8.2(b) and computed by Algorithm 16, with two exceptions:

116

8.2 Clustering-Based Construction Heuristic

Algorithm 17: greedyRoots(r)

input : root r of the HRC
output: a root node for each cluster, and if D is odd a center edge for the

root cluster of the HRC

forall v ∈ V do available[v] ← true1

if D is even then2

assignRoot(r)3

else4

forall children rc of r do5

rc.stars ← ()6

foreach node v ∈ V (rc) do7

compute star sv: connect to v all nodes V (rc) \ {v} of cluster rc8

rc.stars.append(sv)9

sort rc.stars ascending according to the costs of the stars10

rc.root ← v of least cost star sv ∈ rc.stars11

r.root ← best center edge for the roots of the child clusters rc12

for both center nodes c1 and c2 do available[ci] ← false13

forall children rc of r do14

if not available[rc.root] then15

rc.root ← next best root node based on rc.stars16

available[rc.root] ← false17

forall children pc of rc do assignRoot(pc)18

The clusters at level zero corresponding to the individual nodes have not been re-
alized explicitly, and not all leaves of the HRC created by Algorithm 16 have to be
found at level one. In the latter case such a leaf can only contain exactly one node
v ∈ V , therefore the HRC can be augmented with (virtual) nodes to connect the
corresponding cluster at level zero with a leaf at a level ≥ 2.

Greedy Heuristic with Local Improvement

A simple greedy heuristic to find an initial root for each cluster Cki can be based
on so-called stars, i.e., trees with a diameter of two where a single node v of the
cluster acts as center while the remaining nodes V (Cki) \ {v} are connected directly
to it. Such a star can be computed for every node belonging to the cluster, the

117

Chapter 8 Clustering-Based Construction Heuristic

Algorithm 18: assignRoot(p)

input : reference p to a node of the HRC
output: for cluster p a sorted list p.stars of diameter 2 trees and a root p.root

p.root ← ∅1

p.stars ← ()2

foreach node v ∈ V (p) do3

compute star sv: connect to v all nodes V (p) \ {v} of current cluster p4

p.stars.append(sv)5

sort p.stars ascending according to the costs of the stars6

scan p.stars from beginning for first sv where available[v] = true7

if such a star sv could be found then8

p.root ← v9

available[v] ← false10

forall children pc of p do assignRoot(pc)11

center node v leading to a star of minimal costs for Cki is chosen as root for this
cluster. The heuristic starts at cluster CH and assigns roots to clusters top-down
until reaching the leaves of the simple height-restricted clustering. Note that a node
already selected as root at a level l no longer has to be considered in levels less than
l, which can also cause an empty cluster in case all nodes of it are already used as
roots at higher levels.

Algorithms 17 and 18 illustrate this heuristic in more detail. An array available
is used to indicate whether a node still can be selected as root in a (sub-)cluster.
The even-diameter case is much simpler to handle: For each cluster represented by
a node in the simple HRC all possible stars are computed and gathered within a
list. This list is sorted in ascending order according to the costs of the stars, and
the still available node leading to the cheapest star is chosen as root for the current
cluster.

While this procedure can also be used for the root cluster CH1 of the height-restricted
clustering whenD is even, not a single node but an edge has to be selected as center of
the BDMST in case the diameter bound is odd. The corresponding algorithm would
be to compute the cheapest BDMST with a diameter of three for the whole instance
and use the resulting center edge also as center for the root cluster. However, in
general this would lead to a much too long center edge because in a good BDMST
this edge becomes shorter with increasing diameter bound since it no longer has to
span a larger area. To make a better choice in a first step a reasonable root node is
computed for every cluster CH−1

i at level H−1. These roots are the only nodes that

118

8.2 Clustering-Based Construction Heuristic

Algorithm 19: locallyImprove(r)

input : root r of the HRC
output: locally improved roots for each cluster of the HRC

costs∗ ← costs c(T) of the current BDMST T derived from the HRC1

T ∗ ← T2

repeat3

improved ← false4

forall v ∈ V do available[v] ← true5

r.root ← best center to connect current roots of all child clusters rc of r6

update available[·] accordingly; // for center node/edge of BDMST7

recursively find for each sub-cluster of r the currently local optimal root:8

• consider only nodes vi with available[vi] = true,
• provide for connection costs to root of parent cluster,
• if no leaf of the HRC:

consider costs to connect the current roots of direct successor
clusters,
• always update available[·] accordingly

evaluate current BDMST T derived from the assigned roots in the HRC9

if c(T) < costs∗ then10

T ∗ ← T11

costs∗ ← c(T)12

improved ← true13

until improved = false14

restore best tree T ∗15

have to be linked directly to the center edge. Based on this observation now a more
suitable center edge can be determined by computing a diameter three BDMST only
considering the connection costs of the root nodes of the clusters CH−1

i .

While this heuristic runs in O(H · n2) when D is even, the selection of the center
edge in the odd-diameter case adds a term of O(δr ·m), with δr being the branching
factor of the root cluster in the HRC, leading to an overall runtime complexity of
O(δr ·m+H · n2).

In a following local improvement step the selection of root nodes (and the center
edge) is refined. In case a cluster Cki with chosen root v is no leaf of the simple
height-restricted clustering not all nodes of V (Cki) \ {v} will straightly connect to v
in the final tree but only the roots of the direct sub-clusters of Cki at level k− 1, cf.

119

Chapter 8 Clustering-Based Construction Heuristic

Fig. 8.2(c). This sub-cluster root information was not available in the greedy con-
struction process since the assignment from root nodes to clusters was performed
top-down but now can be used to adapt for each cluster the chosen root node iter-
atively, see Algorithm 19. This refinement of assigned roots to clusters requires for
one iteration time O(H · δmax · n) if D is even, where δmax is the maximal branch-
ing factor in the height-restricted clustering, and O(δr · m + H · δmax · n) in the
odd-diameter case.

Attention has to be payed to the fact that a local improving move (new root for a
specific cluster Cki) not necessarily leads to an improvement of the overall BDMST.
Choosing a node u instead of v as root node for Cki can have various effects on
this part of the tree. E.g. u no longer can act as root for one of the clusters at a
lower level; moreover, v now has to be connected as a new leaf to the BDMST if
not chosen as a root within one of the sub-clusters of Cki . As a consequence, the
stopping criterion is not based on the existence or absence of an local improvement
move but on the costs of the whole derived BDMST.

Dynamic Programming

The multiple effects on the tree when choosing a specific node as root for a clus-
ter increase the complexity of deriving an optimal BDMST for a given hierarchical
clustering to such an extent that it is in general computationally unattractive. Nev-
ertheless, when restricting the search space it is possible to formulate an efficient
dynamic programming approach for this problem.

Let c(Cki , v) denote the minimum costs of the subtree of the BDMST defined by the
cluster Cki if it is rooted at node v ∈ V (Cki), i.e., node v has been chosen as root for
cluster Cki . These costs can now be recursively defined for each level and node of a
cluster as follows:

c(C0
ord(v), v) = 0 ∀v ∈ V (8.2)

φ(Cki , v) =
∑

Ck−1
j
∈Ck
i
\{Ck−1

j′
}

min
u∈V (Ck−1

j
)

(

cv,u + c(Ck−1
j , u)

)

c(Cki , v) = c(Ck−1
j′ , v) + φ(Cki , v)

∀k = 1, . . . , H, ∀v ∈ V (Cki), C
k−1
j′ ∈ Cki | v ∈ V (Ck−1

j′) (8.3)

At level zero each node is a single cluster. Therefore, in (8.2) the costs of the
corresponding subtrees can be initialized with zero (ord(v) assigns each node v ∈ V

120

8.2 Clustering-Based Construction Heuristic

a unique index within 1 and |V |). In the remaining levels we restrict the root for
a cluster Cki to nodes that are already roots in one of its direct sub-clusters Ck−1

j ,

Ck−1
j ∈ Cki . Then the costs c(Cki , v) are composed of the costs of the subtree rooted

at v at level k − 1 plus – for all remaining direct sub-clusters – the minimal costs
to connect a node u of a sub-cluster with its subtree to v, referred to as φ(Cki , v)
in (8.3). After deriving all these costs in a bottom-up fashion, optimal root nodes
leading to these costs can be chosen top-down in a second pass.

Limiting the potential roots of a cluster to root nodes within one of its sub-clusters
obviously leads to suboptimal trees, especially when the diameter bound is loose and
each root node only has very few connections. Moreover, using the whole subtree
rooted at v from a cluster at level k − 1 for a cluster at level k implies that this
subtree is moved one edge towards the center of the BDMST and therefore does
not exploit the full possible height, a problem arising for every cluster at every level
k ≥ 2.

Beside other implications one major point when choosing a node v as root is that it
no longer has to be connected elsewhere in the tree. When computing c(Cki , v) and
selecting another node w from the same sub-cluster Ck−1

j′ that v is also part of, then

the costs c(Ck−1
j′ , w) also contain the costs to connect node v (perhaps as root of one

of the sub-clusters, more likely as a leaf of the BDMST). To exactly compute the
contribution of v to the costs of c(Ck−1

j′ , w) is in general not worth the (huge) effort,
in particular when considering the costs of edges between root nodes in relation to
the costs of connecting a leaf to the tree via a short edge, which is the goal of the
whole clustering heuristic.

This observation can be used to formulate an approximate dynamic programming
approach utilizing a correction value κv for each node v ∈ V which estimates the
costs arising when v has to be connected as leaf to the BDMST. There are various
possibilities to define these correction values, preliminary tests showed that a simple
choice usually is sufficient: The subtrees computed at level one correspond to stars
with diameter two. For each cluster at level one the cheapest star is determined,
and for a node v of such a cluster, κv are the costs to connect it to the center of the
best star. This now leads to the following reformulation of the recursion to compute
the costs c(Cki , v):

c(Cki , v) = min
(

c(Ck−1
j′ , v), cv,w + c(Ck−1

j′ , w)− κv
)

+ φ(Cki , v)

∀k = 1, . . . , H, ∀v ∈ V (Cki), C
k−1
j′ ∈ Cki | v ∈ V (Ck−1

j′),

w ∈ V (Ck−1
j′) | w 6= v (8.4)

121

Chapter 8 Clustering-Based Construction Heuristic

(a) BDMST with leaves fol-
lowing the clustering.

(b) Problematic path in the
solution (a).

(c) BDMST with free leaves.

Figure 8.5: Problem arising when strictly following the clustering on a complete
Euclidean instance with 100 nodes andD = 6. In (b) the interesting area
of (a) near the center of the BDMST is shown enlarged, a problematic
path is highlighted. The solution can significantly be improved when
leaf nodes are free to connect to any node of the backbone (c).

Both dynamic programming approaches compute roots for clusters within timeO(H ·
n2) and O(n ·m+H · n2), respectively, for the even and odd-diameter case.

8.2.4 Inherent Problem of Clustering

One problem arising when strictly following the clustering to the leaves of the
BDMST – in particular when the diameter bound is weak in comparison to the
number of nodes – is illustrated in Fig. 8.5. This situation can be observed when a
node of a (sub-)cluster is chosen to be part of the backbone (a root node), and other
nodes close to it not. The node right below the center of the BDMST in Fig. 8.5(a)
and the close-up (b) is connected to the root of the last sub-cluster following the
hierarchy of the clustering neglecting the fact that there are much cheaper oppor-
tunities. The negative effect on the solution quality is noticeable especially for leaf
nodes but is not restricted to them.

A possibility to deal with this problem is to free the leaves from their strict mem-
bership to a specific cluster and to allow them to connect to the root of any cluster
in the cheapest possible way. This leads to – also visually observable – much better
results as demonstrated in Fig. 8.5(c).

122

8.3 Refinement of Cutting Positions

Algorithm 20: refineCuts(ς)

input : cutting positions ςi, i = 1, . . . , H−1
output: improved cutting positions

T ∗ ← buildTree(ς) ; // currently best BDMST T ∗1

ς∗ ← ς ; // currently best cutting positions ς∗2

clear cache for sets of cutting positions and insert ς3

lwi← 0 ; // loops without improvement4

repeat5

for i = 1, . . . , H − 1 do6

if i = 1 then ∆← (|V | − 1)− ς∗1 else ∆← ς∗i−1 − ς∗i7

repeat ςi ← ς∗i + ∆ ·N(µ, σ2) until check(ςi) is ok8

if ς ∈ cache then9

lwi← lwi+ 110

continue11

insert ς into cache12

T ← buildTree(ς)13

if c(T) < c(T ∗) then14

T ∗ ← T15

ς∗ ← ς16

lwi← 017

else18

lwi← lwi+ 119

until lwi ≥ lmax20

8.3 Refinement of Cutting Positions

In Section 8.2.2 the computation of initial cutting positions ςi, i = 1, . . . , H−1,
through the dendrogram to derive a height-restricted clustering has been presented.
Since these ςi have a formidable impact on solution quality we additionally im-
plemented an approach similar to a greedy randomized adaptive search procedure
(GRASP) [123] to further refine them, see Algorithm 20. In each iteration all cut-
ting positions of the currently best solution are perturbated using the difference ∆
to the next lower indexed cutting position (for ς1 the value (|V | − 1) − ς1 is used),
multiplied with a Gaussian distributed random value N(µ, σ2).

To derive an actual BDMST from the cutting positions ς in buildTree(ς) a really
fast construction heuristic should be applied like the greedy heuristic with local

123

Chapter 8 Clustering-Based Construction Heuristic

search presented in the previous Section 8.2.3. To avoid redundant computations a
cache is used to identify sets of cutting positions ς already evaluated. Furthermore,
a new cutting position ςi is only accepted if it lies within the interval [|V |−2, 1] and
if it differs from all ςj , j < i, which is tested in check(ςi).

The whole refinement process is stopped when lmax iterations without improvement
have been performed, or no sets of new cutting positions could be found, respec-
tively.

8.4 The Odd-Diameter Case

In case the diameter bound D is odd no single node forms the center of a BDMST
but an edge, the center edge, connecting the two center nodes. This increases –
when considering complete instance graphs – the number of tests to determine the
best center from O(|V |2) (when D is even) to O(|V |3). Due to the large number of
trees that have to be derived from a height-restricted clustering in the various steps
of the clustering heuristic the complexity increase has a substantial impact on the
runtime.

An opportunity to speed-up computations in the odd-diameter case is to reduce in a
preprocessing step the number of potential center edges that are considered. Given
a height-restricted clustering the center edge (building the backbone at level H) will
connect to every root node of the clusters at level H − 1. In case the Euclidean
instance is sufficiently large the set of plausible center edges can be restricted to
edges where both endpoints are within the rectangle spanned by these root nodes.
Since the optimal roots for the clusters at level H−1 are not known they have to be
heuristically determined. This can easily be done by computing diameter two stars
for all these clusters and then choosing for each cluster the center of the cheapest star
as representative for its root node. With increasing diameter bound the rectangle
spanned by these nodes at level H−1 becomes smaller, thus the number of potential
center edges is further reduced.

When searching for a value of parameter x in Equation (8.1) to determine a good set
of initial cutting positions through the dendrogram using binary search the charts
as shown in Fig. 8.4 (objective value of the BDMST over x) are almost identical for
an odd diameter D and the even diameter D − 1. That is, a good value of x for
an even D usually is also an appropriate choice for D + 1 making it unnecessary to
derive odd BDMSTs with an center edge in this step.

Unfortunately, this strong connection between the odd diameter D case and its even
correspondentD−1 is no longer observable in the greedy randomized adaptive search

124

8.5 Local Search Neighborhood

procedure to refine the initially calculated cutting positions. Since the runtime
increases dramatically especially when the diameter bound is tight we implemented
an additional variant: In general just BDMSTs with an even diameter D − 1 are
derived during the refinement process. Only in case a new best solution is found also
a BDMST with the correct odd diameter D – managed separately – is computed
based on the current HRC.

8.5 Local Search Neighborhood

The heuristics presented so far to derive a good tree from a height-restricted clus-
tering can also be used to locally improve solutions obtained from another (meta-
)heuristic since from each valid solution a corresponding hierarchical clustering of
the nodes can be determined easily.

Creating a simple height-restricted clustering as shown in Fig. 8.2(b) from a
diameter-constrained tree (c) is straight-forward, only root nodes not already part
of the leaves of the HRC (just node 9 in the figure) have to be treated separately.
Every such root has to be assigned to one of its direct sub-clusters where it addition-
ally has to be propagated to further sub-clusters until a leaf of the HRC is reached.
The decision which sub-cluster to choose can be based on the same criterion like in
the agglomeration process the choice which clusters to merge, i.e., a root node is
assigned to the sub-cluster where the maximum distance to a node of it is minimal.

8.6 Computational Results

The experiments have been performed on a dual-core AMD Opteron 2214 machine
(2.2GHz) utilizing benchmark instances already used in the corresponding literature
(e.g., [116, 74]) from Beasley’s OR-Library [17, 16] originally proposed for the Eu-
clidean Steiner tree problem. These complete instances contain point coordinates in
the unit square, and the Euclidean distances between each pair of points are taken as
edge costs. As performance differences are more significant on larger instances, we
restricted for our experiments the set of test instances to the largest available ones
with 1000 nodes. This class contains 15 different instances, but since the heuristics
perform quite similar on all of them we list in the following detailed results only for
the first three instances (average values of 30 independent runs, standard deviations
in parentheses).

Tables 8.1 and 8.2 summarize the results obtained for the various heuristics when
the diameter is even, while Tables 8.3 and 8.4 cover the odd-diameter case. Given

125

C
h
ap

te
r

8
C

lu
st

er
in

g-
B

as
ed

C
on

st
ru

ct
io

n
H

eu
ri

st
ic

Table 8.1: Objective values of solutions obtained from CBTC, RTC, and the clustering heuristic C (binary search
(b), cut refinement (r), local search (L), dynamic programming approaches dA and dB for assigning roots)
on complete Euclidean instances with 1000 nodes, even diameter case. Additionally, the table lists the
maximum times (sec) of one of the clustering heuristics (time limit for CBTC/RTC). Mean values over 30
runs, standard deviations are given parentheses; CbL and CBTC (within time limit) are deterministic.

Instance without VND
D CBTC RTC CbL CbrL Cbrd

A Cbrd
B Cbrd

AL Cbrd
BL t[s]

00 4 333.1778 146.2846 (4.3087) 68.4293 68.4293 (0.0000) 68.7405 (0.0000) 68.4293 (0.0000) 68.4293 (0.0000) 68.4293 (0.0000) 2.55
6 319.1373 80.9461 (2.2105) 57.3387 44.7858 (3.0416) 45.6181 (3.5626) 44.6655 (2.9398) 44.7195 (2.9398) 44.6494 (2.9624) 4.98
8 298.7454 53.3496 (1.4402) 44.1488 37.0520 (1.5646) 37.9215 (1.8261) 36.9848 (1.6640) 37.0715 (1.6640) 36.9725 (1.6523) 5.86
10 271.3976 41.2373 (0.5789) 37.7984 33.7021 (0.7689) 34.9211 (0.9216) 33.5717 (0.8710) 33.8305 (0.8710) 33.5717 (0.8880) 7.18
12 261.6350 35.8323 (0.4741) 34.3425 32.4345 (0.3511) 33.8426 (0.5355) 32.2621 (0.4062) 32.7360 (0.4062) 32.2621 (0.3602) 6.69
14 240.9920 33.4520 (0.2481) 32.1548 31.4093 (0.1791) 32.6319 (0.3028) 31.2290 (0.2537) 31.6736 (0.2537) 31.2230 (0.1733) 7.01
16 223.4451 32.2899 (0.1421) 31.0876 30.8778 (0.0700) 32.2592 (0.3049) 30.7887 (0.1324) 31.2125 (0.1324) 30.7887 (0.1496) 6.72
18 223.6044 31.6838 (0.1233) 30.8274 30.5872 (0.0328) 31.0783 (0.2674) 30.2669 (0.1847) 30.7697 (0.1847) 30.2323 (0.1274) 6.99
20 205.1811 31.3145 (0.1156) 30.5581 30.4872 (0.0518) 30.5922 (0.1056) 30.2452 (0.1096) 30.3671 (0.1096) 30.2020 (0.0647) 7.68
22 187.5576 31.1179 (0.1176) 30.5841 30.4394 (0.0542) 30.5380 (0.1588) 30.3451 (0.0693) 30.3139 (0.0693) 30.2064 (0.0605) 9.29
24 176.7546 31.0607 (0.1122) 30.5997 30.4404 (0.0359) 30.1811 (0.0531) 30.4632 (0.0815) 30.1446 (0.0815) 30.1620 (0.0440) 9.08

01 4 319.8968 144.8287 (3.5643) 67.8938 67.7157 (0.0476) 67.8526 (0.0477) 67.8157 (0.0476) 67.7157 (0.0476) 67.7157 (0.0476) 2.56
6 308.6494 81.2136 (2.3047) 56.6842 49.5692 (4.3732) 51.3624 (5.1963) 49.3140 (4.3217) 49.6271 (4.3217) 49.3089 (4.1812) 4.19
8 283.7449 52.7770 (1.3545) 44.6115 37.6394 (1.3655) 38.5604 (1.4182) 37.6162 (1.4567) 37.6659 (1.4567) 37.5570 (1.3699) 5.86
10 255.9973 41.1043 (0.5924) 37.1610 33.3137 (0.5323) 34.5437 (0.6932) 33.0283 (0.5995) 33.3021 (0.5995) 33.0283 (0.5810) 6.79
12 232.2019 35.7376 (0.2761) 33.9504 32.1760 (0.2941) 33.4031 (0.4189) 31.8839 (0.2708) 32.2610 (0.2708) 31.8839 (0.3176) 7.40
14 222.9918 33.2274 (0.2200) 32.3991 31.1289 (0.1255) 32.4471 (0.2406) 30.9184 (0.1211) 31.3850 (0.1211) 30.9184 (0.1743) 7.21
16 216.4585 32.0792 (0.1378) 31.2347 30.6651 (0.1500) 31.7030 (0.4244) 30.5019 (0.0759) 30.8763 (0.0759) 30.3795 (0.2296) 6.91
18 202.0703 31.5349 (0.1166) 30.4893 30.3661 (0.0784) 31.2821 (0.1868) 30.1496 (0.1114) 30.6215 (0.1114) 30.0754 (0.1472) 8.06
20 201.3354 31.1884 (0.1171) 30.4513 30.3367 (0.0382) 30.6516 (0.2416) 30.0307 (0.1244) 30.4777 (0.1244) 29.9864 (0.1184) 7.60
22 182.3676 31.0098 (0.1243) 30.5410 30.4810 (0.0229) 29.9266 (0.1115) 30.1627 (0.0764) 29.9192 (0.0764) 30.0288 (0.0711) 7.87
24 173.4081 30.8659 (0.0793) 30.6320 30.5306 (0.0260) 29.8572 (0.0412) 30.2587 (0.0412) 29.8572 (0.0412) 30.0813 (0.1315) 8.70

02 4 323.8917 145.6452 (3.7690) 68.9695 68.9695 (0.0000) 69.2646 (0.0000) 68.9695 (0.0000) 68.9695 (0.0000) 68.9695 (0.0000) 2.53
6 295.9416 80.6684 (2.0948) 57.0119 51.0036 (4.1721) 53.4263 (5.2519) 50.6211 (4.3343) 51.2829 (4.3343) 50.6046 (3.9952) 3.90
8 287.6123 52.8909 (1.3366) 44.7386 35.9854 (0.0733) 36.9639 (0.1743) 35.9041 (0.0669) 36.0518 (0.0669) 35.9041 (0.0963) 6.42
10 258.2323 40.8925 (0.6345) 37.3424 33.2714 (0.2865) 34.4700 (0.3700) 33.2334 (0.2805) 33.4197 (0.2805) 33.2334 (0.2819) 6.65
12 245.4804 35.4809 (0.4291) 34.2121 31.9162 (0.2604) 33.2711 (0.3446) 31.8456 (0.3724) 32.1527 (0.3724) 31.8363 (0.3294) 6.64
14 239.5847 33.0912 (0.1962) 31.9710 31.0000 (0.2179) 32.2365 (0.3541) 30.9223 (0.3121) 31.2276 (0.3121) 30.8871 (0.2742) 6.59
16 231.7629 31.8738 (0.1564) 30.6676 30.5329 (0.1449) 31.6423 (0.3417) 30.5096 (0.2139) 30.7029 (0.2139) 30.4300 (0.3045) 6.93
18 213.1380 31.2912 (0.0902) 30.4643 30.0813 (0.0940) 30.5786 (0.2185) 29.8776 (0.1196) 30.0950 (0.1196) 29.7745 (0.2144) 7.83
20 200.7924 30.9771 (0.0778) 30.0950 30.0337 (0.0528) 30.3278 (0.1727) 29.7651 (0.0754) 29.8770 (0.0754) 29.6536 (0.0774) 7.59
22 186.5278 30.7510 (0.1028) 30.1562 30.0266 (0.0528) 29.8146 (0.0941) 29.8711 (0.0952) 29.8131 (0.0952) 29.6772 (0.1013) 8.83
24 181.6017 30.6342 (0.1381) 30.2402 29.9758 (0.0643) 29.7326 (0.0406) 29.8932 (0.0385) 29.7314 (0.0385) 29.7242 (0.0918) 10.64 12

6

8.6
C

om
p
u
tation

al
R

esu
lts

Table 8.2: Objective values of solutions obtained from the same algorithms on instances as in Table 8.1, where the
best solution is locally improved by a VND described in Section 7.2. For comparison the solution values
of the ACO from Section 7.4 is given after one hour of computation.

Instance with VND
D CBTC RTC CbL CbrL Cbrd

AL Cbrd
BL ACO

00 4 66.3860 66.0537 (0.2564) 65.6725 65.6725 (0.0000) 65.6725 (0.0000) 65.6725 (0.0000) 66.5485 (0.1300)
6 41.5663 41.6762 (0.2597) 41.5787 41.1946 (0.4784) 41.2539 (0.2783) 41.2150 (0.3278) 42.2666 (0.1203)
8 35.3437 35.2037 (0.2342) 34.6061 34.0972 (0.2710) 34.0504 (0.2874) 33.9667 (0.2960) 34.8643 (0.0827)
10 32.2006 32.2369 (0.2736) 31.8518 31.2213 (0.1545) 31.1720 (0.1447) 31.0408 (0.1863) 31.2158 (0.0870)
12 30.6040 30.3253 (0.2518) 29.6424 29.3811 (0.0824) 29.4594 (0.0952) 29.3726 (0.1192) 28.8857 (0.1455)
14 28.8171 29.2421 (0.1887) 28.2135 28.1360 (0.1907) 28.2601 (0.2102) 28.1405 (0.1441) 26.7998 (0.2710)
16 29.3602 28.4036 (0.2212) 27.1433 27.2165 (0.0614) 27.3989 (0.0904) 27.2841 (0.0677) 25.6659 (0.0891)
18 27.5753 27.7371 (0.2576) 26.9135 26.7054 (0.0417) 26.7617 (0.0876) 26.6980 (0.0883) 24.9721 (0.0485)
20 27.2770 27.2182 (0.1779) 26.2943 26.3903 (0.0955) 26.4811 (0.0710) 26.3564 (0.1031) 24.5097 (0.0434)
22 26.7815 26.8119 (0.1741) 25.9035 26.1078 (0.0622) 26.0350 (0.0929) 25.9287 (0.1507) 24.1486 (0.0896)
24 26.5512 26.4912 (0.2343) 25.6094 25.8073 (0.0386) 25.8281 (0.1095) 25.8046 (0.0972) 23.9438 (0.1674)

01 4 64.7319 64.7081 (0.1889) 64.8327 64.8327 (0.0000) 64.8327 (0.0000) 64.8327 (0.0000) 65.3880 (0.1320)
6 41.6357 41.2002 (0.2930) 40.7283 41.1331 (0.0909) 41.1659 (0.0876) 41.2032 (0.0859) 41.8799 (0.1185)
8 34.9962 34.8162 (0.2786) 34.2772 34.2077 (0.2897) 34.2428 (0.2514) 34.1730 (0.2379) 34.4363 (0.0821)
10 31.8495 32.0129 (0.1959) 31.7840 30.8892 (0.1734) 30.9510 (0.1581) 30.8128 (0.1694) 30.8802 (0.0964)
12 30.5000 30.1785 (0.2629) 29.6711 29.1753 (0.1506) 29.2489 (0.1836) 29.1676 (0.1566) 28.5762 (0.1624)
14 29.5841 29.0310 (0.2469) 28.0571 27.8590 (0.1118) 28.0193 (0.0839) 27.8911 (0.1218) 26.7925 (0.2662)
16 28.6480 28.1114 (0.2099) 27.1907 27.0579 (0.0383) 27.1706 (0.0654) 27.0377 (0.0997) 25.6153 (0.1568)
18 27.6042 27.5220 (0.2179) 26.5756 26.5838 (0.0451) 26.7334 (0.1001) 26.6367 (0.0708) 24.8529 (0.0696)
20 27.5157 26.9948 (0.2208) 26.1348 26.2519 (0.0526) 26.4150 (0.0873) 26.1214 (0.0723) 24.3636 (0.0909)
22 27.0029 26.6309 (0.2395) 25.8205 25.8679 (0.0353) 25.9167 (0.0466) 25.7924 (0.0405) 23.9628 (0.1291)
24 26.3927 26.3612 (0.2023) 25.4279 25.5766 (0.0857) 25.5088 (0.0347) 25.4857 (0.1436) 23.6896 (0.1496)

02 4 65.0116 64.7623 (0.1853) 64.4312 64.4312 (0.0000) 64.4312 (0.0000) 64.4312 (0.0000) 65.5188 (0.1515)
6 40.7349 41.2438 (0.3294) 40.8028 41.0533 (0.1251) 41.2958 (0.2452) 41.1944 (0.1583) 41.8806 (0.0830)
8 34.8123 34.8576 (0.3756) 34.1660 34.0139 (0.1236) 34.0104 (0.0630) 34.0569 (0.0399) 34.4206 (0.0830)
10 32.5153 31.7946 (0.2564) 31.3344 30.7090 (0.1299) 30.7162 (0.1480) 30.6506 (0.1193) 30.7889 (0.0927)
12 30.3992 30.0125 (0.2134) 29.4628 29.0580 (0.1258) 28.9847 (0.1344) 28.9728 (0.1697) 28.1903 (0.1588)
14 28.8848 28.7565 (0.1979) 28.1242 27.8866 (0.1196) 28.0251 (0.1224) 27.8472 (0.1426) 26.2120 (0.2075)
16 27.9989 27.9417 (0.1964) 26.9242 26.9744 (0.0682) 27.2007 (0.0828) 27.0769 (0.1136) 25.2303 (0.0445)
18 27.5996 27.2587 (0.2280) 26.4321 26.3833 (0.0675) 26.4710 (0.0748) 26.3214 (0.0789) 24.6526 (0.0948)
20 27.3748 26.7782 (0.1952) 25.9866 25.9405 (0.0776) 25.9985 (0.0606) 25.8772 (0.0879) 24.1545 (0.1349)
22 26.6629 26.3459 (0.2105) 25.4822 25.5618 (0.0924) 25.7318 (0.0985) 25.5650 (0.0953) 23.7834 (0.1287)
24 26.0186 26.1191 (0.2333) 25.1808 25.2422 (0.0738) 25.4261 (0.0788) 25.2403 (0.0859) 23.5635 (0.1527)

127

C
h
ap

te
r

8
C

lu
st

er
in

g-
B

as
ed

C
on

st
ru

ct
io

n
H

eu
ri

st
ic

Table 8.3: Objective values of solutions obtained from CBTC, RTC, and the clustering heuristic C (binary search (b),
fast cut refinement (r; based on even diameter case), local search (L), dynamic programming approaches
dA and dB for assigning roots) on complete Euclidean instances with 1000 nodes, odd diameter case.
Additionally, the table lists the maximum times (sec) of one of the clustering heuristics (time limit for
CBTC/RTC). Mean values over 30 runs, standard deviations are given parentheses; CbL is deterministic.

Instance without VND
D CBTC RTC CbL CbrL Cbrd

A Cbrd
B Cbrd

AL Cbrd
BL t[s]

00 5 244.1504 (2.9502) 117.3690 (2.1687) 62.5424 62.5424 (0.0000) 62.9691 (0.0000) 62.5132 (0.0000) 62.9691 (0.0000) 62.4226 (0.0000) 24.38
7 224.5403 (2.4116) 67.2259 (1.5432) 55.0517 45.6928 (3.8075) 47.4495 (4.7193) 45.6770 (3.7782) 45.6899 (3.7640) 45.6409 (3.8140) 30.45
9 209.8556 (3.1790) 47.3568 (0.7820) 43.6185 37.6313 (1.0293) 39.0107 (1.2652) 37.7189 (1.1080) 37.8234 (1.1224) 37.7189 (1.1080) 17.41
11 189.6122 (3.3210) 38.6134 (0.4178) 37.6441 33.5533 (0.6729) 34.9134 (0.8441) 33.4510 (0.7488) 33.7331 (0.7071) 33.4432 (0.7238) 13.87
13 178.7385 (2.4013) 34.6598 (0.2013) 34.2323 32.0684 (0.1658) 33.4588 (0.4533) 31.8801 (0.2219) 32.3622 (0.2856) 31.8801 (0.2219) 14.58
15 164.5634 (3.4339) 32.7890 (0.1576) 32.0429 31.2568 (0.1176) 32.5559 (0.3009) 31.1224 (0.1459) 31.5329 (0.1677) 31.1129 (0.1480) 11.63
17 152.3630 (3.4950) 31.9520 (0.1213) 30.9684 30.8059 (0.0663) 32.0331 (0.2396) 30.6794 (0.1833) 31.0627 (0.1409) 30.6693 (0.1792) 9.75
19 139.3465 (3.3326) 31.4199 (0.1094) 30.8265 30.4726 (0.0549) 30.9834 (0.1925) 30.2495 (0.0872) 30.6617 (0.1116) 30.1882 (0.0739) 9.28
21 125.5484 (3.9635) 31.2403 (0.1318) 30.5572 30.5038 (0.0504) 30.5628 (0.0858) 30.2344 (0.0872) 30.4095 (0.0745) 30.1800 (0.0577) 7.93
23 117.4370 (2.7649) 31.1276 (0.1308) 30.5833 30.5667 (0.0197) 30.1877 (0.0204) 30.4051 (0.0454) 30.1877 (0.0204) 30.1277 (0.0626) 7.60
25 111.2900 (3.8243) 30.9873 (0.1180) 30.5988 30.5532 (0.0159) 30.0734 (0.0153) 30.3180 (0.0244) 30.0734 (0.0153) 30.2519 (0.0442) 7.66

01 5 243.3573 (3.7621) 117.5966 (1.5584) 61.7430 61.5998 (0.0383) 61.8315 (0.0266) 61.7541 (0.0243) 61.5504 (0.0266) 61.5483 (0.0253) 29.95
7 220.4474 (4.8040) 68.1388 (1.1929) 54.1575 46.8109 (3.1034) 49.1187 (4.0574) 46.7287 (3.0898) 46.7797 (3.0559) 46.7287 (3.0898) 27.82
9 205.5397 (5.2434) 47.1454 (0.9493) 43.8505 37.3567 (1.3534) 38.1964 (1.4197) 37.2152 (1.3771) 37.3256 (1.4143) 37.1840 (1.3506) 15.76
11 184.5198 (3.9264) 38.4400 (0.2788) 37.0529 33.0900 (0.5789) 34.2452 (0.7699) 32.8505 (0.6438) 32.9577 (0.6947) 32.8505 (0.6438) 14.29
13 176.1962 (2.7340) 34.3933 (0.2577) 33.8801 32.1088 (0.2319) 33.3487 (0.3999) 31.7263 (0.2687) 32.0866 (0.2293) 31.7065 (0.2810) 12.68
15 161.3017 (3.7868) 32.5977 (0.1852) 32.2819 31.2063 (0.1675) 32.4660 (0.2317) 30.9376 (0.1694) 31.3579 (0.1240) 30.9263 (0.1791) 10.04
17 146.1453 (5.3256) 31.7749 (0.1406) 31.1285 30.6560 (0.0971) 31.5468 (0.2635) 30.3862 (0.1104) 30.8162 (0.1015) 30.2677 (0.1876) 8.99
19 138.7341 (4.3218) 31.3275 (0.1109) 30.3917 30.3080 (0.0667) 31.3020 (0.1623) 30.1054 (0.1207) 30.7151 (0.0964) 30.0958 (0.1432) 7.94
21 127.9913 (4.5085) 31.0876 (0.1094) 30.3344 30.3339 (0.0019) 30.3568 (0.0000) 29.9955 (0.0030) 30.3568 (0.0000) 29.9930 (0.0106) 7.29
23 121.6571 (2.5004) 30.8813 (0.1560) 30.4241 30.4239 (0.0006) 29.8576 (0.0028) 30.4145 (0.0107) 29.8576 (0.0028) 30.0385 (0.0079) 7.14
25 112.7985 (3.7336) 30.8831 (0.1375) 30.5151 30.5146 (0.0024) 29.7934 (0.0029) 30.5434 (0.0003) 29.7934 (0.0029) 30.3881 (0.0099) 6.37

02 5 243.1300 (3.1597) 116.5611 (2.1222) 62.4420 62.4420 (0.0000) 62.7556 (0.0000) 62.4420 (0.0000) 62.7556 (0.0000) 62.4420 (0.0000) 24.49
7 225.2825 (1.8583) 67.3661 (1.4986) 54.5530 48.2742 (3.6418) 50.3754 (4.5401) 47.3495 (3.1588) 48.2633 (3.6447) 47.3346 (3.1856) 28.12
9 210.1822 (3.2451) 47.1804 (0.7465) 43.9374 36.1488 (1.3038) 37.1451 (1.4016) 36.0873 (1.3106) 36.2697 (1.2741) 36.0173 (1.2930) 18.57
11 191.1158 (3.0048) 38.2710 (0.4864) 37.1124 33.0853 (0.4668) 34.1593 (0.6691) 33.0039 (0.4844) 33.2310 (0.5164) 32.9922 (0.4547) 13.54
13 178.8800 (3.1969) 34.2332 (0.2254) 34.1587 31.9303 (0.2754) 33.2779 (0.3346) 31.8708 (0.2618) 32.1677 (0.2874) 31.8529 (0.2843) 12.18
15 166.8335 (2.5609) 32.4176 (0.1511) 31.9071 31.0055 (0.2245) 32.1462 (0.4317) 30.8390 (0.3012) 31.1466 (0.3387) 30.8224 (0.3058) 9.59
17 153.2093 (3.2867) 31.5436 (0.1497) 30.6525 30.5276 (0.1441) 31.6632 (0.3333) 30.4901 (0.2799) 30.6511 (0.2043) 30.4415 (0.3387) 7.50
19 139.1990 (2.7681) 31.0371 (0.1483) 30.4898 30.1239 (0.0829) 30.5731 (0.3010) 29.7799 (0.1663) 30.0967 (0.1221) 29.6545 (0.1794) 8.84
21 127.6935 (3.8689) 30.8056 (0.1304) 30.1175 30.0757 (0.0433) 30.3077 (0.1264) 29.7750 (0.0696) 29.9120 (0.0398) 29.5529 (0.1027) 7.14
23 117.5319 (3.6122) 30.6848 (0.1367) 30.1787 30.0851 (0.0558) 29.7391 (0.0227) 29.8834 (0.0785) 29.6956 (0.0382) 29.7227 (0.0584) 8.05
25 109.0172 (2.5038) 30.5773 (0.1447) 30.2627 30.2409 (0.0237) 29.6312 (0.0398) 29.8293 (0.1253) 29.6312 (0.0398) 29.7407 (0.0416) 7.84 12

8

8.6
C

om
p
u
tation

al
R

esu
lts

Table 8.4: Objective values of solutions obtained from the same algorithms on instances as in Table 8.3, where the
best solution is locally improved by a VND described in Section 7.2. For comparison the solution values
of the ACO from Section 7.4 is given after one hour of computation.

Instance with VND
D CBTC RTC CbL CbrL Cbrd

AL Cbrd
BL ACO

00 5 59.6221 (0.1103) 59.7765 (0.2529) 59.8156 59.8156 (0.0413) 59.9559 (0.0706) 59.8042 (0.0477) 60.3577 (0.1344)
7 39.6436 (0.1476) 39.6902 (0.2243) 39.4605 39.5537 (0.2961) 39.5395 (0.2729) 39.3744 (0.2200) 40.2425 (0.0978)
9 34.1601 (0.3505) 34.0715 (0.2738) 33.6128 33.1894 (0.0688) 33.3052 (0.1306) 33.2355 (0.1397) 33.7396 (0.0743)
11 31.4880 (0.2351) 31.4607 (0.2071) 30.9243 30.5135 (0.3328) 30.5305 (0.2379) 30.4532 (0.2617) 30.5041 (0.0958)
13 30.0161 (0.2483) 29.8353 (0.1813) 29.2811 28.8274 (0.0936) 28.8512 (0.1499) 28.8525 (0.1066) 28.3057 (0.1535)
15 28.9688 (0.2162) 28.7828 (0.2254) 27.9198 27.7925 (0.0337) 27.9081 (0.0587) 27.8019 (0.0998) 26.4572 (0.2241)
17 28.0892 (0.3004) 28.0250 (0.1900) 27.0307 26.9613 (0.1244) 27.2969 (0.0736) 27.0643 (0.1312) 25.5560 (0.1846)
19 27.5062 (0.2292) 27.4700 (0.2336) 26.7333 26.4315 (0.0794) 26.5478 (0.0752) 26.5503 (0.0807) 24.8623 (0.1072)
21 26.9498 (0.2618) 27.0683 (0.2508) 26.0460 26.1122 (0.0501) 26.1258 (0.1049) 26.2238 (0.0741) 24.3701 (0.1381)
23 26.4851 (0.2468) 26.6122 (0.1916) 25.7810 25.7797 (0.0670) 26.1194 (0.0106) 25.8932 (0.0456) 23.9870 (0.1130)
25 26.1102 (0.2321) 26.3004 (0.1746) 25.4557 25.5545 (0.0531) 25.6581 (0.0000) 25.5949 (0.0977) 23.8765 (0.2161)

01 5 58.8320 (0.2001) 58.8361 (0.2913) 58.4245 58.4472 (0.0195) 58.4230 (0.0204) 58.4230 (0.0176) 59.2314 (0.1045)
7 39.1542 (0.2811) 39.2198 (0.2558) 38.9405 39.3357 (0.3697) 39.3378 (0.5176) 39.2348 (0.3976) 39.6842 (0.1040)
9 33.7809 (0.2224) 33.7917 (0.2481) 33.1571 33.1902 (0.2114) 33.1230 (0.2475) 33.1725 (0.2291) 33.3331 (0.0792)
11 31.3595 (0.2545) 31.2630 (0.2017) 31.2530 30.3054 (0.2073) 30.3464 (0.1912) 30.2346 (0.2537) 30.0771 (0.0735)
13 29.7690 (0.2772) 29.7246 (0.2649) 29.2360 28.6266 (0.1064) 28.7196 (0.1093) 28.6844 (0.1193) 27.9802 (0.1502)
15 28.7330 (0.2448) 28.6167 (0.2367) 27.9772 27.6316 (0.1526) 27.8079 (0.1587) 27.6724 (0.1265) 26.4729 (0.2407)
17 27.9237 (0.2089) 27.8762 (0.1928) 26.8635 26.8116 (0.0337) 26.9191 (0.0746) 26.7986 (0.0806) 25.3262 (0.1523)
19 27.3373 (0.2535) 27.2496 (0.2195) 26.4955 26.5193 (0.0395) 26.5098 (0.0756) 26.4994 (0.0840) 24.6858 (0.1394)
21 26.8815 (0.1982) 26.8427 (0.2405) 26.0522 26.0522 (0.0324) 26.0732 (0.0677) 26.0630 (0.0419) 24.3830 (0.1736)
23 26.3993 (0.1980) 26.4637 (0.1784) 25.7646 25.7673 (0.0194) 25.8666 (0.0308) 25.6814 (0.0307) 24.0122 (0.1667)
25 25.9669 (0.2171) 26.1550 (0.1929) 25.3941 25.3941 (0.0126) 25.6193 (0.0028) 25.1329 (0.0179) 23.8536 (0.1912)

02 5 58.8960 (0.2258) 58.7338 (0.2237) 58.4183 58.4183 (0.1058) 58.7459 (0.0534) 58.4183 (0.0838) 59.3599 (0.1225)
7 39.1793 (0.2901) 39.2197 (0.2176) 38.8909 38.7746 (0.2032) 39.0378 (0.2531) 38.9682 (0.3107) 39.6961 (0.1395)
9 33.6654 (0.2527) 33.7463 (0.2096) 33.2359 32.9355 (0.1276) 32.9426 (0.1121) 32.9709 (0.1751) 33.2441 (0.0844)
11 31.0565 (0.1837) 31.0403 (0.2450) 30.2728 30.1227 (0.2090) 30.1662 (0.2186) 30.1451 (0.2571) 30.0009 (0.0741)
13 29.6195 (0.2974) 29.4133 (0.1850) 29.3309 28.5560 (0.1009) 28.6452 (0.1307) 28.5969 (0.1632) 27.8937 (0.0909)
15 28.4502 (0.2337) 28.3968 (0.1873) 27.9103 27.6218 (0.0627) 27.5936 (0.0616) 27.5169 (0.1012) 26.1176 (0.2001)
17 27.8170 (0.2331) 27.5829 (0.1663) 26.8776 26.8526 (0.0597) 26.9479 (0.1273) 26.8676 (0.1548) 25.1324 (0.1353)
19 27.1231 (0.2543) 27.0401 (0.2294) 26.1847 26.2344 (0.0791) 26.2541 (0.0464) 26.1395 (0.0746) 24.6174 (0.1618)
21 26.4635 (0.2664) 26.6310 (0.1449) 25.8567 25.8101 (0.0768) 25.8430 (0.0714) 25.6117 (0.0542) 24.1249 (0.1686)
23 26.0805 (0.2628) 26.2041 (0.1511) 25.3178 25.3434 (0.0492) 25.3645 (0.1673) 25.3746 (0.0578) 23.7830 (0.1696)
25 25.7151 (0.2142) 25.8258 (0.2432) 25.0308 25.1299 (0.0007) 25.4112 (0.0437) 24.9809 (0.0044) 23.5875 (0.1734)

129

C
h
ap

te
r

8
C

lu
st

er
in

g-
B

as
ed

C
on

st
ru

ct
io

n
H

eu
ri

st
ic

Table 8.5: Averaged objective values over all 15 Euclidean Steiner tree instances of Beasley’s OR-Library with 1000
nodes for various diameter bounds and (meta-)heuristics, the standard deviations are given parentheses.
In addition, the averaged maximum running times of the clustering heuristics that were used as time limit
for CBTC and RTC are listed, whereas the time limit for the ACO was set to one hour. All results are
statistically significant due to paired Wilcoxon signed rank tests.

without VND with VND
D CBTC RTC Cbrd

AL Cbrd
BL t[s] RTC Cbrd

BL ACO t[s]

4 329.0261 (6.0233) 146.4919 (3.8841) 68.3241 (0.7152) 68.3226 (0.7004) 2.54 (0.09) 65.2061 (0.5478) 65.1598 (0.5571) 65.8010 (0.4779) 5.56 (1.01)
6 306.2655 (9.0246) 80.8636 (2.3991) 47.4045 (4.8519) 47.1702 (4.6086) 4.55 (0.49) 41.4577 (0.3559) 41.3127 (0.5041) 42.1167 (0.2623) 9.94 (1.52)
8 288.3842 (7.5165) 53.2535 (1.3275) 37.0706 (1.3539) 36.9408 (1.3361) 5.92 (0.42) 35.0511 (0.3457) 34.2171 (0.2930) 34.7489 (0.2347) 11.61 (1.61)
10 266.3665 (9.0090) 41.1201 (0.6795) 33.5460 (0.6665) 33.3408 (0.6643) 6.79 (0.42) 32.1181 (0.3089) 30.9704 (0.2420) 31.0388 (0.2012) 13.43 (2.16)
12 250.0016 (8.0149) 35.7590 (0.4661) 32.2571 (0.4675) 31.9561 (0.4423) 7.11 (0.33) 30.2897 (0.2908) 29.1796 (0.2550) 28.6356 (0.2299) 14.68 (2.49)
14 237.1403 (6.2757) 33.3644 (0.2990) 31.3790 (0.3740) 31.0176 (0.3278) 7.00 (0.64) 29.0940 (0.2838) 28.0093 (0.2314) 26.6524 (0.3169) 15.05 (3.00)
16 224.3123 (5.7232) 32.1965 (0.2409) 30.7937 (0.3275) 30.4287 (0.2879) 7.20 (0.72) 28.2433 (0.2759) 27.1363 (0.1950) 25.5760 (0.1949) 15.63 (2.89)
18 210.9872 (7.6322) 31.5826 (0.2410) 30.5182 (0.2884) 30.1348 (0.2714) 7.32 (0.81) 27.6008 (0.2659) 26.5601 (0.1988) 24.8811 (0.1637) 16.78 (3.61)
20 197.1772 (7.9852) 31.2682 (0.2212) 30.3116 (0.3056) 30.0384 (0.2810) 7.57 (0.76) 27.1091 (0.2622) 26.1079 (0.2289) 24.3698 (0.1523) 18.54 (3.89)
22 183.0157 (8.0299) 31.0864 (0.2217) 30.2344 (0.2970) 30.0739 (0.2814) 8.56 (0.98) 26.6984 (0.2779) 25.8048 (0.2125) 24.0129 (0.1750) 21.39 (5.19)
24 172.8251 (10.5944) 30.9921 (0.2280) 30.0202 (0.2280) 30.1603 (0.2735) 8.28 (1.41) 26.3648 (0.2699) 25.4523 (0.2408) 23.7723 (0.2004) 21.36 (6.42)

5 241.3032 (5.0912) 117.3238 (2.2237) 62.2867 (0.7563) 62.0646 (0.6743) 24.59 (2.02) 58.9883 (0.5269) 58.7930 (0.5620) 59.5964 (0.4882) 30.82 (3.28)
7 222.1441 (4.5006) 67.7577 (1.3133) 46.7291 (3.9205) 46.4112 (3.7329) 27.94 (1.79) 39.4703 (0.3355) 39.3817 (0.4613) 39.9948 (0.2469) 38.79 (4.03)
9 204.6141 (6.0033) 47.3168 (0.8482) 37.0224 (1.2484) 36.8904 (1.2696) 18.27 (1.68) 33.9677 (0.2980) 33.2142 (0.2457) 33.5907 (0.2327) 32.51 (4.88)
11 189.7513 (4.6215) 38.4754 (0.4970) 33.4140 (0.6952) 33.1749 (0.6629) 13.97 (0.71) 31.3661 (0.2898) 30.3683 (0.2018) 30.2701 (0.1946) 29.47 (4.70)
13 175.7382 (4.2250) 34.5154 (0.3235) 32.1094 (0.4250) 31.8041 (0.4131) 12.79 (1.17) 29.7644 (0.2760) 28.7554 (0.2115) 28.1224 (0.2049) 29.94 (6.28)
15 163.1926 (4.3107) 32.7069 (0.2458) 31.2654 (0.3490) 30.8941 (0.3244) 11.03 (1.27) 28.6966 (0.2567) 27.6899 (0.2046) 26.3893 (0.2473) 28.54 (6.29)
17 149.9852 (5.1365) 31.8467 (0.2302) 30.7699 (0.3264) 30.3664 (0.3047) 8.93 (0.94) 27.9309 (0.2663) 26.9097 (0.1946) 25.3794 (0.2297) 28.47 (6.19)
19 139.9730 (4.3211) 31.4048 (0.2090) 30.5350 (0.2922) 30.0837 (0.2659) 7.91 (1.08) 27.3691 (0.2618) 26.3784 (0.2011) 24.7705 (0.1792) 29.67 (7.37)
21 128.1830 (4.8954) 31.1697 (0.2290) 30.3017 (0.3030) 30.0384 (0.2735) 7.60 (0.71) 26.9015 (0.2598) 25.9415 (0.1972) 24.3128 (0.1835) 30.05 (6.74)
23 119.5551 (4.4550) 31.0421 (0.2227) 30.0627 (0.2403) 30.1166 (0.3139) 6.96 (0.81) 26.5346 (0.2727) 25.6021 (0.2101) 23.9719 (0.2111) 28.55 (7.05)
25 110.6725 (4.3891) 30.9772 (0.2315) 29.9450 (0.2145) 30.1393 (0.2427) 6.68 (0.89) 26.2126 (0.2607) 25.2289 (0.2146) 23.7773 (0.2518) 25.59 (6.02)

13
0

8.6 Computational Results

are the objective values, each with and without a variable neighborhood descend
(VND) based on four different neighborhoods as presented in Section 7.2 applied
to the best found solution, of the two construction heuristics CBTC and RTC, as
well as the results for the clustering heuristic C at various stages: After binary
search to determine good initial cutting positions through the dendrogram (b) and
refinement of these cuts (r), where the actual trees have been derived by the simple
greedy heuristic with additional local search (L), and when utilizing the two dynamic
programming approaches (dA with restricted search space, and dB approximating
optimal cluster centers using a correction value κ) to assign each cluster a good root
node.

Binary search to identify a good value for x was performed within |V |
2 and |V |,

except when D < 6. In this latter case the interval bounds have been set to |V |20

and |V |8 . In GRASP a mean µ of 0 and, after preliminary tests, a variance σ2 of
0.25 was used, and the procedure was aborted after lmax = 100 iterations without
improvement. The time (in seconds) listed is the maximum running time of Cbrd

AL
and Cbrd

BL, which was also used as time limit for CBTC and RTC. Furthermore, in
the tables with applied VND the results for the leading metaheuristic in this field,
the ant colony optimization (ACO) presented in Section 7.4, are given after one hour
of computation.

Clearly, CBTC is not suited for this type of instances. Its strength are problems with
random edge costs. The clustering heuristic outperforms RTC for every diameter
bound, where the gap in solution quality is huge when D is small and becomes
less with increasing diameter bound. Since both dynamic programming approaches
derive no optimal trees for a given clustering, local improvement can further enhance
their solutions, thus Cbrd

BL builds in most cases the best diameter-constrained
tree of the construction heuristics. It can also be seen that the runtime of the
clustering heuristic only increases moderately with the number of levels in the height-
restricted clustering. However, when applying the VND the differences between
the construction heuristics flatten, but still the BDMSTs derived from clustering
heuristic solutions are in general of higher quality. On instances with small diameter
bounds these trees – computed in a few seconds – can also compete with results from
the ACO with computation times of one hour and more.

Table 8.5 summarizes the observed results by listing for various diameter bounds
the averaged objective values over all 15 Euclidean Steiner tree problem instances
with 1000 nodes of Beasley’s OR-Library. To verify statistical significance paired
Wilcoxon signed rank tests have been performed. Cbrd

BL outperforms all other
construction heuristics significantly with an error probability of less than 2.2 ·10−16.
Only when the diameter bound gets noticeably loose the first dynamic program-

131

C
h
ap

te
r

8
C

lu
st

er
in

g-
B

as
ed

C
on

st
ru

ct
io

n
H

eu
ri

st
ic

Table 8.6: Objective values and runtimes for two different versions of GRASP to refine initial cutting positions
through the dendrogram in the odd diameter case (see Section 8.4 for details).

Instance GRASP (based on even BDMSTs) GRASP (only odd BDMSTs)
D RTC CbrL Cbrd

BL Cbrd
BLV t[s] RTC CbrL Cbrd

BL Cbrd
BLV t[s]

00 5 117.3691 (2.1687) 62.5424 (0.0000) 62.4227 (0.0000) 59.8042 (0.0000) 24.38 115.0603 (2.1320) 62.0675 (0.0741) 62.0673 (0.0735) 59.7178 (0.0477) 81.29
7 67.2259 (1.5432) 45.6928 (3.8075) 45.6409 (3.8140) 39.3744 (0.3555) 30.45 65.9653 (1.3729) 41.8482 (1.3121) 41.7991 (1.3700) 39.1763 (0.2200) 152.85
9 47.3568 (0.7820) 37.6313 (1.0293) 37.7189 (1.1080) 33.2355 (0.1867) 17.41 46.7370 (0.5608) 36.4715 (1.4370) 36.4858 (1.4561) 33.1628 (0.1397) 51.30
11 38.6134 (0.4178) 33.5533 (0.6729) 33.4432 (0.7238) 30.4532 (0.1101) 13.87 38.2935 (0.3907) 33.2897 (0.6087) 33.1521 (0.6115) 30.3725 (0.2617) 31.88
13 34.6598 (0.2013) 32.0684 (0.1658) 31.8801 (0.2219) 28.8525 (0.1331) 14.58 34.5474 (0.2605) 32.0303 (0.1286) 31.9302 (0.1796) 28.8576 (0.1066) 24.23
15 32.7890 (0.1576) 31.2568 (0.1176) 31.1129 (0.1480) 27.8019 (0.1140) 11.63 32.7771 (0.1478) 31.1149 (0.0391) 31.0939 (0.1308) 27.8829 (0.0998) 21.80
17 31.9520 (0.1213) 30.8059 (0.0663) 30.6693 (0.1792) 27.0643 (0.1104) 9.75 31.8768 (0.1125) 30.7512 (0.0810) 30.4830 (0.1805) 27.1374 (0.1312) 14.74
19 31.4199 (0.1094) 30.4726 (0.0549) 30.1882 (0.0739) 26.5503 (0.0794) 9.28 31.4581 (0.1320) 30.4489 (0.0481) 30.1720 (0.0780) 26.5668 (0.0807) 10.03
21 31.2403 (0.1318) 30.5038 (0.0504) 30.1800 (0.0577) 26.2238 (0.1325) 7.93 31.2124 (0.1096) 30.4612 (0.0264) 30.2092 (0.1002) 26.1652 (0.0741) 9.23
23 31.1276 (0.1308) 30.5667 (0.0197) 30.1277 (0.0626) 25.8932 (0.0398) 7.60 31.1043 (0.1065) 30.4943 (0.0180) 30.3655 (0.0141) 25.9301 (0.0456) 7.13
25 30.9873 (0.1180) 30.5532 (0.0159) 30.2519 (0.0442) 25.5949 (0.0423) 7.66 31.0492 (0.1172) 30.4986 (0.0209) 30.2633 (0.0117) 25.5366 (0.0977) 7.49

01 5 117.5966 (1.5584) 61.5998 (0.0383) 61.5483 (0.0253) 58.4230 (0.0004) 29.95 115.0932 (2.1735) 61.5091 (0.0021) 61.5586 (0.0315) 59.1128 (0.0176) 96.89
7 68.1388 (1.1929) 46.8109 (3.1034) 46.7287 (3.0898) 39.2348 (0.2341) 27.82 65.9784 (1.1417) 44.9667 (3.3749) 45.0474 (3.4465) 39.2726 (0.3976) 123.74
9 47.1454 (0.9493) 37.3567 (1.3534) 37.1840 (1.3506) 33.1725 (0.1619) 15.76 46.6096 (0.6025) 36.0680 (0.9435) 35.8380 (1.0060) 33.3254 (0.2291) 55.27
11 38.4400 (0.2788) 33.0900 (0.5789) 32.8505 (0.6438) 30.2346 (0.1627) 14.29 37.9413 (0.4751) 33.0719 (0.6094) 32.8458 (0.6219) 30.2470 (0.2537) 34.58
13 34.3933 (0.2577) 32.1088 (0.2319) 31.7065 (0.2810) 28.6844 (0.1284) 12.68 34.2003 (0.3087) 31.8353 (0.2689) 31.5111 (0.3210) 28.6077 (0.1193) 31.77
15 32.5977 (0.1852) 31.2063 (0.1675) 30.9263 (0.1791) 27.6724 (0.1502) 10.04 32.5164 (0.1617) 31.1512 (0.1594) 30.8229 (0.1880) 27.6577 (0.1265) 18.21
17 31.7749 (0.1406) 30.6560 (0.0971) 30.2677 (0.1876) 26.7986 (0.1064) 8.99 31.6723 (0.1275) 30.6329 (0.0968) 30.3059 (0.1489) 26.8031 (0.0806) 12.67
19 31.3275 (0.1109) 30.3080 (0.0667) 30.0958 (0.1432) 26.4994 (0.0996) 7.94 31.3165 (0.1373) 30.2865 (0.0658) 30.1015 (0.1100) 26.5066 (0.0840) 7.01
21 31.0876 (0.1094) 30.3339 (0.0019) 29.9930 (0.0106) 26.0630 (0.0045) 7.29 31.1366 (0.1379) 30.3145 (0.0216) 29.9866 (0.0529) 26.0620 (0.0419) 5.69
23 30.8813 (0.1560) 30.4239 (0.0006) 30.0385 (0.0079) 25.6814 (0.0107) 7.14 30.9327 (0.1654) 30.4208 (0.0038) 30.0190 (0.0121) 25.6549 (0.0307) 5.32
25 30.8831 (0.1375) 30.5146 (0.0024) 30.3881 (0.0099) 25.1329 (0.0071) 6.37 30.8937 (0.1435) 30.4967 (0.0093) 30.4331 (0.0245) 25.1675 (0.0179) 5.19

02 5 116.5611 (2.1222) 62.4420 (0.0000) 62.4420 (0.0000) 58.4183 (0.0000) 24.49 114.6258 (1.8058) 62.1294 (0.0080) 62.1334 (0.0227) 58.3889 (0.0838) 97.18
7 67.3661 (1.4986) 48.2742 (3.6418) 47.3346 (3.1856) 38.9682 (0.2020) 28.12 65.9766 (1.1568) 45.0743 (4.1764) 44.6519 (3.7817) 38.9060 (0.3107) 110.12
9 47.1804 (0.7465) 36.1488 (1.3038) 36.0173 (1.2930) 32.9709 (0.2365) 18.57 46.5164 (0.7095) 35.6095 (1.0858) 35.3966 (1.0097) 32.8876 (0.1751) 49.32
11 38.2710 (0.4864) 33.0853 (0.4668) 32.9922 (0.4547) 30.1451 (0.1226) 13.54 37.9126 (0.4763) 32.9404 (0.4897) 32.8667 (0.5506) 30.1769 (0.2571) 31.78
13 34.2332 (0.2254) 31.9303 (0.2754) 31.8529 (0.2843) 28.5969 (0.1753) 12.18 34.1001 (0.2260) 31.6198 (0.2464) 31.5702 (0.3049) 28.4633 (0.1632) 20.83
15 32.4176 (0.1511) 31.0055 (0.2245) 30.8224 (0.3058) 27.5169 (0.0895) 9.59 32.3443 (0.1604) 30.7569 (0.1402) 30.6213 (0.2016) 27.3341 (0.1012) 21.26
17 31.5436 (0.1497) 30.5276 (0.1441) 30.4415 (0.3387) 26.8676 (0.0816) 7.50 31.4812 (0.1215) 30.3853 (0.1211) 30.1961 (0.3073) 26.7540 (0.1548) 11.77
19 31.0371 (0.1483) 30.1239 (0.0829) 29.6545 (0.1794) 26.1395 (0.1227) 8.84 31.0742 (0.0890) 30.1096 (0.0613) 29.6050 (0.1276) 26.1057 (0.0746) 9.04
21 30.8056 (0.1304) 30.0757 (0.0433) 29.5529 (0.1027) 25.6117 (0.0721) 7.14 30.8845 (0.1158) 30.0601 (0.0335) 29.6016 (0.1152) 25.6669 (0.0542) 6.25
23 30.6848 (0.1367) 30.0851 (0.0558) 29.7227 (0.0584) 25.3746 (0.0370) 8.05 30.6805 (0.1267) 30.0892 (0.0552) 29.7079 (0.0732) 25.3524 (0.0578) 6.26
25 30.5773 (0.1447) 30.2409 (0.0237) 29.7407 (0.0416) 24.9809 (0.0654) 7.84 30.6665 (0.1282) 30.2018 (0.0202) 29.7607 (0.0088) 24.9281 (0.0044) 5.54

13
2

8.6 Computational Results

ming approach Cbrd
AL dominates Cbrd

BL (error probability always less than
2.13 · 10−9).

In Tables 8.3, 8.4, and 8.5, a version of GRASP was used to speed-up the computa-
tion in the odd-diameter case where a tree with center edge was only derived from
the actual height-restricted clustering if the corresponding even-diameter tree leads
to the so far best solution, cf. Section 8.4. Table 8.6 now compares this approach to
one where always an odd-diameter tree is used within the cut refinement step of the
clustering heuristic. In this table the better of the two corresponding result entries
is printed bold, the application of the VND is marked with V.

Especially if the diameter bound is tight, the runtime increases significantly when
only using odd-diameter trees, however, also the solution quality of the clustering
heuristic is in general higher in this case. Of course, RTC benefits from the en-
larged time limit, too. Interesting is the fact that with increasing diameter bound
the running times approach each other, and near a diameter of 21 the previously
slower implementation even becomes fastest. There are two different reasons for this
behavior. First, the number of potential center edges to be considered, determined
in a preprocessing step, decreases with rising diameter bound, so computing an
odd-diameter tree from a height-restricted clustering no longer requires significantly
more time. Additionally, when directly using odd trees in the cut refinement step
good solutions are found earlier; thus GRASP can be aborted after less iterations.

Finally, Tables 8.7 and 8.8 summarize results when using the clustering-based neigh-
borhood in the VND from Section 7.2. In general, the ordering of the neighborhoods
within the VND (V) is clear: First, whole subtrees are moved within the solution (arc
exchange (a)), and afterwards, the arrangement of nodes and their direct successors
is considered (node swap (n)). Then the usually more time consuming level based
neighborhoods are applied: The best center with respect to the center exchange level
neighborhood (c) is determined, and afterwards the levels of all non-center nodes are
refined by means of the level change neighborhood (l). Since the clustering-based
neighborhood (k) already requires a solution of some quality, and due to its high
computational complexity (BDMSTs are derived using Cbrd

BL), we performed ex-
periments with the clustering neighborhood being executed before and after the two
level neighborhoods (Vankcl and Vanclk). The initial solutions are computed using
RTC, whereas new trees are constructed as long as no better one could be found
within the last 100 iterations; the best BDMST is returned as input for the different
VNDs.

One conclusion is obvious: The application of the clustering neighborhood can im-
prove the solution quality, but only in case the diameter bound D is less than
(roughly) 14 on instances with 1000 nodes. Otherwise, the VND with the four stan-
dard neighborhoods is able to reach the same solution quality, and this typically in

133

C
h
ap

te
r

8
C

lu
st

er
in

g-
B

as
ed

C
on

st
ru

ct
io

n
H

eu
ri

st
ic

Table 8.7: Objective values and runtimes for RTC solutions improved by VNDs (V) with different neighborhoods
and neighborhood orders: arc exchange (a), node swap (n), center exchange (c), level (l), and cluster (k)
neighborhood. Results for the even diameter case.

Instance Objective Values Running Times [s]
D RTC Vancl Vanclk Vankcl RTC Vancl Vanclk Vankcl

00 4 161.8783 (7.7021) 65.9976 (0.2532) 65.9976 (0.2532) 66.0038 (0.2374) 0.12 (0.0420) 6.39 (1.1476) 6.47 (1.1397) 6.32 (0.8977)
6 89.6792 (4.0248) 41.7216 (0.2562) 41.3942 (0.3092) 41.4360 (0.2746) 0.21 (0.0607) 9.89 (1.2356) 13.27 (1.6011) 9.86 (1.4232)
8 57.4663 (2.2666) 35.1672 (0.2996) 34.7193 (0.2321) 34.8042 (0.2760) 0.49 (0.1703) 12.17 (2.5145) 16.87 (2.8460) 11.08 (1.5076)
10 42.9830 (1.1588) 32.2816 (0.2600) 31.8786 (0.3445) 31.9141 (0.3297) 0.94 (0.3361) 10.36 (2.7240) 13.02 (2.8968) 9.75 (2.8075)
12 36.6975 (0.5287) 30.5246 (0.2490) 30.5049 (0.2529) 30.3217 (0.3627) 1.39 (0.5321) 8.16 (2.7625) 8.85 (3.1728) 8.28 (2.7584)
14 33.9374 (0.2911) 29.3455 (0.2765) 29.3455 (0.2765) 29.3455 (0.2765) 1.75 (0.8572) 8.77 (3.0398) 8.85 (3.0625) 8.92 (3.0680)
16 32.4497 (0.1821) 28.4259 (0.1911) 28.4259 (0.1911) 28.4259 (0.1911) 2.74 (0.8054) 6.75 (2.0797) 6.72 (2.0321) 7.02 (2.2064)
18 31.8538 (0.1575) 27.8196 (0.2089) 27.8196 (0.2089) 27.8196 (0.2089) 2.55 (1.1343) 7.08 (2.2775) 6.97 (2.0670) 7.32 (2.2605)
20 31.5229 (0.1123) 27.2506 (0.1961) 27.2506 (0.1961) 27.2506 (0.1961) 2.30 (0.8107) 7.89 (2.0367) 8.05 (2.4166) 8.20 (2.4373)
22 31.3410 (0.0966) 26.8635 (0.2148) 26.8635 (0.2148) 26.8635 (0.2148) 2.71 (1.1098) 7.83 (2.5021) 7.81 (2.4104) 7.96 (2.4533)
24 31.2421 (0.0955) 26.5722 (0.2371) 26.5722 (0.2371) 26.5722 (0.2371) 3.14 (1.0602) 6.70 (1.6292) 6.79 (1.6335) 6.91 (1.6746)

01 4 160.2108 (6.6749) 64.6837 (0.1907) 64.6837 (0.1907) 64.6871 (0.2058) 0.11 (0.0467) 6.41 (1.1866) 6.49 (1.1994) 6.34 (0.8594)
6 87.1181 (4.7997) 41.1626 (0.2847) 40.8945 (0.2654) 40.9707 (0.2605) 0.23 (0.0729) 10.42 (1.8288) 13.52 (2.0571) 9.71 (1.0851)
8 56.5508 (2.2608) 34.8626 (0.3786) 34.3725 (0.3231) 34.3246 (0.3642) 0.53 (0.1925) 11.98 (1.8597) 17.27 (2.8641) 10.78 (1.9101)
10 43.0218 (0.9382) 32.0837 (0.2855) 31.5869 (0.3195) 31.6313 (0.3340) 0.99 (0.3593) 12.72 (3.1296) 17.67 (4.2997) 12.11 (3.3447)
12 36.3884 (0.6051) 30.2910 (0.2407) 30.2311 (0.3345) 30.1697 (0.3300) 1.37 (0.4601) 10.18 (3.4561) 10.63 (3.8704) 10.14 (3.1478)
14 33.6087 (0.3492) 29.1399 (0.2460) 29.1399 (0.2460) 29.1399 (0.2460) 1.87 (0.7503) 7.30 (2.6435) 7.43 (2.3950) 7.60 (2.3278)
16 32.2474 (0.1823) 28.2011 (0.2295) 28.2011 (0.2295) 28.2011 (0.2295) 2.36 (1.0345) 7.16 (2.7799) 7.30 (3.0455) 7.53 (3.1344)
18 31.6125 (0.1462) 27.5964 (0.2116) 27.5964 (0.2116) 27.5964 (0.2116) 2.55 (1.0174) 7.92 (2.6730) 7.89 (2.7209) 7.97 (2.7039)
20 31.3158 (0.1275) 27.0567 (0.2680) 27.0567 (0.2680) 27.0567 (0.2680) 2.56 (0.9852) 8.48 (2.8963) 8.60 (3.1304) 8.80 (3.2607)
22 31.1534 (0.1138) 26.6877 (0.2761) 26.6877 (0.2761) 26.6877 (0.2761) 2.56 (1.0313) 8.77 (3.3308) 8.87 (3.3486) 9.03 (3.4232)
24 31.0694 (0.1041) 26.4029 (0.2776) 26.4029 (0.2776) 26.4029 (0.2776) 2.35 (0.6786) 7.71 (3.8639) 7.80 (3.8730) 7.93 (3.9411)

02 4 159.8350 (6.8385) 64.7563 (0.2695) 64.7509 (0.2741) 64.7467 (0.2826) 0.12 (0.0387) 6.45 (0.9301) 6.54 (0.9526) 6.34 (0.8144)
6 90.7577 (3.7117) 41.2524 (0.2548) 40.9858 (0.2448) 40.9321 (0.2581) 0.25 (0.0866) 9.85 (1.2250) 12.79 (1.7230) 10.07 (1.1066)
8 57.3699 (1.7375) 34.7815 (0.3493) 34.3044 (0.3319) 34.3536 (0.3844) 0.46 (0.1481) 11.83 (2.0127) 17.20 (2.9043) 10.92 (2.1376)
10 42.7030 (1.0421) 31.8751 (0.2913) 31.4591 (0.2936) 31.5864 (0.3410) 0.81 (0.3673) 11.64 (2.1958) 14.73 (3.0356) 9.82 (1.8300)
12 36.1223 (0.6098) 30.1287 (0.3228) 30.0212 (0.3862) 29.9597 (0.3444) 1.44 (0.4987) 8.54 (2.3660) 9.13 (3.1152) 8.48 (2.0374)
14 33.2897 (0.3560) 28.8895 (0.2284) 28.8895 (0.2284) 28.8550 (0.2598) 2.04 (0.9013) 7.17 (1.7356) 7.25 (1.7475) 7.29 (1.7838)
16 32.0007 (0.2255) 27.9773 (0.2202) 27.9773 (0.2202) 27.9773 (0.2202) 2.01 (0.5390) 6.63 (2.0342) 6.63 (2.0343) 6.82 (2.0856)
18 31.3814 (0.2092) 27.3952 (0.1970) 27.3952 (0.1970) 27.3952 (0.1970) 2.17 (0.6694) 7.35 (2.0279) 7.44 (2.0334) 7.58 (2.0859)
20 31.0562 (0.1500) 26.8255 (0.2003) 26.8255 (0.2003) 26.8255 (0.2003) 2.42 (0.7805) 6.78 (2.7186) 6.85 (2.7235) 6.99 (2.7852)
22 30.8812 (0.1294) 26.4152 (0.2358) 26.4152 (0.2358) 26.4152 (0.2358) 2.55 (0.6151) 6.74 (2.5323) 6.82 (2.5366) 6.94 (2.5887)
24 30.7914 (0.1507) 26.1095 (0.1946) 26.1095 (0.1946) 26.1095 (0.1946) 2.62 (0.8620) 7.32 (2.7724) 7.37 (2.7697) 7.48 (2.8288)

13
4

8.6
C

om
p
u
tation

al
R

esu
lts

Table 8.8: Objective values and runtimes for RTC solutions improved by VNDs (V) with different neighborhoods
and neighborhood orders: arc exchange (a), node swap (n), center exchange (c), level (l), and cluster (k)
neighborhood. Results for the odd diameter case.

Instance Objective Values Running Times [s]
D RTC Vancl Vanclk Vankcl RTC Vancl Vanclk Vankcl

00 5 132.6017 (4.5827) 59.8303 (0.2386) 59.7996 (0.2399) 59.7543 (0.1924) 0.14 (0.0496) 12.41 (2.1681) 32.62 (8.3574) 139.69 (31.3942)
7 74.2697 (2.5960) 39.7102 (0.2506) 39.3997 (0.2391) 39.3925 (0.2899) 0.32 (0.1046) 20.78 (3.2322) 53.66 (9.3268) 142.98 (26.2220)
9 50.5489 (1.3972) 34.2026 (0.2169) 33.7336 (0.2147) 33.6804 (0.2512) 0.68 (0.2018) 20.56 (3.9809) 44.35 (6.3030) 87.85 (19.5879)
11 39.9851 (0.8436) 31.4815 (0.2271) 31.1696 (0.3413) 31.1751 (0.2139) 1.15 (0.4205) 19.49 (4.6865) 33.41 (6.6998) 46.56 (15.6605)
13 35.2966 (0.4075) 29.9683 (0.2638) 29.9683 (0.2638) 29.9072 (0.2729) 1.60 (0.5998) 17.74 (6.3709) 23.42 (6.3915) 44.69 (15.0085)
15 33.0914 (0.2528) 28.8962 (0.2024) 28.8962 (0.2024) 28.8962 (0.2024) 2.06 (0.6189) 12.82 (3.9334) 17.63 (4.2317) 29.99 (11.6301)
17 32.1307 (0.1828) 28.1730 (0.2012) 28.1730 (0.2012) 28.1730 (0.2012) 2.23 (0.7387) 15.53 (5.2475) 19.50 (5.8640) 31.27 (10.2896)
19 31.6462 (0.1490) 27.4792 (0.2050) 27.4792 (0.2050) 27.4792 (0.2050) 2.58 (0.9212) 16.32 (6.1735) 19.85 (6.8190) 29.39 (11.7954)
21 31.3840 (0.1628) 27.0608 (0.2209) 27.0608 (0.2209) 27.0608 (0.2209) 2.17 (0.8354) 14.29 (5.1124) 16.50 (4.8330) 24.04 (9.0761)
23 31.1936 (0.1524) 26.6370 (0.2061) 26.6370 (0.2061) 26.6370 (0.2061) 2.82 (0.8530) 19.58 (8.0326) 22.08 (7.9138) 29.66 (10.6472)
25 31.1080 (0.1523) 26.3423 (0.2287) 26.3423 (0.2287) 26.3423 (0.2287) 3.11 (1.0837) 14.32 (5.3013) 16.25 (5.3269) 20.62 (7.2469)

01 5 130.8494 (4.7108) 58.8675 (0.3998) 58.8503 (0.4005) 58.8025 (0.3927) 0.14 (0.0516) 12.81 (2.9093) 33.48 (8.9670) 141.79 (31.6241)
7 74.2996 (2.5268) 39.2226 (0.2535) 38.8871 (0.2425) 38.9195 (0.2138) 0.35 (0.0935) 22.33 (4.9935) 60.58 (10.8401) 179.54 (44.8222)
9 49.7791 (1.4454) 33.7868 (0.2304) 33.3282 (0.1944) 33.3965 (0.2700) 0.73 (0.2628) 22.47 (5.1301) 48.71 (9.4672) 86.16 (17.9768)
11 39.7409 (0.6931) 31.3436 (0.2837) 30.9745 (0.4081) 31.0046 (0.3652) 1.13 (0.2893) 22.87 (5.9728) 37.64 (8.3419) 48.58 (12.3373)
13 35.0445 (0.4010) 29.8522 (0.2012) 29.8522 (0.2012) 29.8263 (0.2236) 1.44 (0.4088) 18.29 (5.9684) 22.61 (6.0956) 40.84 (11.9887)
15 32.9889 (0.2712) 28.7303 (0.1849) 28.7303 (0.1849) 28.7303 (0.1849) 2.05 (0.6516) 16.15 (6.2645) 20.94 (6.9014) 36.73 (14.3601)
17 32.0092 (0.1572) 27.9137 (0.1839) 27.9137 (0.1839) 27.9137 (0.1839) 2.36 (0.7946) 15.97 (5.8454) 19.60 (5.5265) 32.30 (12.4138)
19 31.5166 (0.1689) 27.3046 (0.2555) 27.3046 (0.2555) 27.3046 (0.2555) 2.38 (1.0861) 14.13 (4.2241) 16.93 (4.5415) 25.35 (9.4874)
21 31.2039 (0.1640) 26.8179 (0.2614) 26.8179 (0.2614) 26.8179 (0.2614) 2.36 (0.7271) 18.22 (5.4003) 20.46 (5.3809) 27.89 (8.6915)
23 31.0512 (0.1406) 26.4495 (0.2139) 26.4495 (0.2139) 26.4495 (0.2139) 2.41 (0.9568) 13.59 (4.7919) 15.49 (4.8347) 20.37 (7.4603)
25 30.9905 (0.1483) 26.1427 (0.1972) 26.1427 (0.1972) 26.1427 (0.1972) 2.33 (0.7701) 15.01 (6.0368) 16.82 (5.8542) 20.86 (6.8823)

02 5 131.3578 (4.2625) 58.7303 (0.2589) 58.7069 (0.2557) 58.7067 (0.2383) 0.12 (0.0334) 12.38 (2.7238) 32.82 (9.0611) 152.80 (39.3996)
7 74.1247 (3.1031) 39.1472 (0.2447) 38.8581 (0.2559) 38.8831 (0.2949) 0.34 (0.1192) 20.29 (3.1990) 51.01 (8.8465) 163.57 (41.6844)
9 50.2263 (2.0036) 33.7039 (0.2716) 33.2137 (0.2986) 33.2035 (0.2496) 0.67 (0.2194) 20.98 (4.3867) 46.12 (8.0497) 94.49 (24.7316)
11 39.3963 (0.8967) 31.1349 (0.2561) 30.7978 (0.3835) 30.7735 (0.2955) 1.22 (0.4649) 21.12 (5.3085) 34.44 (9.9576) 49.40 (12.6640)
13 34.8063 (0.3678) 29.5023 (0.1467) 29.4584 (0.1795) 29.3826 (0.2473) 1.98 (0.5853) 15.89 (5.6456) 21.32 (6.2728) 38.55 (15.0540)
15 32.7143 (0.2359) 28.4464 (0.2615) 28.4464 (0.2615) 28.4464 (0.2615) 1.97 (0.7709) 14.25 (4.1149) 18.58 (4.1961) 33.84 (10.2553)
17 31.7155 (0.1834) 27.6687 (0.2027) 27.6687 (0.2027) 27.6687 (0.2027) 2.35 (1.0918) 13.15 (5.6503) 16.70 (5.5626) 26.79 (9.7479)
19 31.2432 (0.1137) 27.1137 (0.1836) 27.1137 (0.1836) 27.1137 (0.1836) 2.36 (0.7516) 13.51 (3.9701) 16.35 (3.9731) 24.23 (7.2155)
21 30.9612 (0.1285) 26.6156 (0.2307) 26.6156 (0.2307) 26.6156 (0.2307) 2.52 (0.7635) 14.53 (4.5662) 16.90 (4.7514) 23.51 (7.5798)
23 30.8259 (0.1359) 26.2015 (0.2268) 26.2015 (0.2268) 26.2015 (0.2268) 2.51 (0.9871) 15.90 (5.7522) 17.98 (5.7360) 24.01 (8.2103)
25 30.7651 (0.1364) 25.8826 (0.2378) 25.8826 (0.2378) 25.8826 (0.2378) 2.47 (0.8915) 15.42 (6.8132) 17.20 (6.6964) 21.51 (8.5251)

135

Chapter 8 Clustering-Based Construction Heuristic

less time. When to execute the clustering neighborhood, before or after the level
neighborhoods, is not that clear and depends mostly on the diameter: If D is even
the clustering neighborhood should be the last one, whereas in case the diameter
is odd it seems to be more promising to apply it before the center exchange level
neighborhood. The bad runtime behavior for small odd diameters already discussed
for the clustering-based construction heuristic can, of course, be observed in this
context, too.

8.7 Conclusions and Future Work

On the more difficult to solve Euclidean BDMST instances fast construction heuris-
tics proposed so far fail to compute a good backbone consisting of few but long edges
to allow the majority of the nodes to connect to the tree via relatively short edges. In
this work we presented a constructive heuristic that exploits a hierarchical cluster-
ing to guide the process of building a backbone. The clustering heuristic constructs
diameter-constrained trees within three steps: building a hierarchical clustering, re-
ducing the height of this clustering according to the diameter bound, and finally
deriving a BDMST from this height-restricted clustering. Various techniques are
used within the individual phases like GRASP to refine cutting positions through
the dendrogram, or dynamic programming to assign each cluster a good root node.

In particular on large Euclidean instances with more than 500 nodes the BDMSTs
obtained by the clustering heuristic are in general of high quality and outperform
the other construction heuristics significantly, especially when the diameter bound
is tight. When using a strong VND to further improve these solutions they can
also compete with results from an ACO, currently the leading metaheuristic for this
problem. The computation of our heuristic followed by VND, however, requires only
a few seconds in comparison to one hour and more per run for the ACO.

The negative effects when strictly following the clustering as discussed in Sec-
tion 8.2.4 may be further addressed in two different ways. One simple approach
would be to let the clustering-based construction heuristic build only the first part
(near the center of the BDMST) of the backbone and to use a Prim based algorithm
(CBTC or RTC) for the remaining nodes. A more sophisticated version would allow
a root u of a sub-cluster not only to connect to the root of its direct parent cluster
v but to any node of the already built backbone on the path from the center of the
BDMST to u. In case a cheaper connection is possible than (u, v) some clusters
merged in the subtree rooted at u for the height-restricted clustering can again be
split since now u is connected at least one edge closer to the center of the BDMST,
and so this subtree would otherwise not fully exploit the available height.

136

Chapter 9

Conclusions

The bounded diameter minimum spanning tree problem is an NP-hard combina-
torial optimization problem in the area of network design when quality of services
is a major concern, i.e., when the number of hops between any two communication
partners in the network should be limited since they potentially introduce delays or
noise. However, it also appears as a subproblem in other fields like data compression
or distributed mutual exclusion algorithms.

In this thesis, a wide variety of different methods has been considered to deal with
the BDMST problem: Integer linear programming embedded within Branch&Cut to
solve moderate-sized instances to proven optimality, metaheuristics to handle large
problem instances of several hundreds of nodes obtaining high quality solutions,
and a new fast construction heuristic for particularly large Euclidean instances.
Almost all of these approaches are hybrids in the sense that they make further use
of other embedded exact and heuristic techniques to solve subordinate problems
arising. These hybrid algorithms demonstrated their effectiveness in comparison to
state-of-the-art approaches from the literature.

Five different neighborhood structures for the BDMST problem have been defined
to locally improve solutions. They operate on different solution representations,
namely the tree structure itself, the levels the nodes appear in within the tree, and
a hierarchical clustering of all nodes. Special attention has been paid to an efficient
implementation of the search procedures for the various neighborhoods. Not only
the objective value of a solution is evaluated incrementally when an improvement
move is executed but also neighboring solutions whenever possible: All improvement
moves are stored within a cache and only those moves affected by executing the move

137

Chapter 9 Conclusions

with the biggest gain are reevaluated. When following a best improvement strategy
to search a neighborhood to a local optimum this approach reduces the required
computational effort significantly.

Two different exact ILP formulations embedded within a Branch&Cut environment
have been proposed to solve moderate-sized BDMST instances to proven optimality.
Compared to the highly successful hop-index multi-commodity flow formulations
the level-based ILP model is very compact and can be strengthened by additional
cutting planes. Although giving comparable results on small instances, the relatively
weak LP bounds of this formulation prohibit its application on larger ones. The
jump model, which further reduced the number of required variables, makes use
of so-called jump inequalities to ensure the diameter bound in a solution. Since
the number of jump inequalities grows exponentially with the size of the problem
instance and the problem of separating them within an LP solution is conjectured to
be NP-hard a hierarchy of heuristics including a tabu search metaheuristic is used
to efficiently identify a high percentage of violated constraints. This approach leads
to an excellent overall performance; it was able to discover so long unknown optima
for various instances, and especially when the diameter bound is loose it is superior
to the so far leading flow formulations according to runtime and memory usage.

For larger instances different metaheuristics have been developed, namely a VNS,
an EA, and an ACO, making use of the local search neighborhoods defined for the
BDMST problem. In contrast to other state-of-the-art metaheuristics this new EA
and the very successful ACO operate on a special solutions representation optimizing
not directly the connections within the tree but the levels the nodes appear in the
final diameter-constrained tree. Till now, the ACO is the best choice to get solutions
of high quality within reasonable time on complete instances with some hundreds of
nodes.

Finally, for especially large and hard to solve Euclidean instances a new construc-
tion heuristic has been introduced. It is based on hierarchical clustering to guide
the construction process and makes use of a multitude of heuristics to improve and
refine the final BDMST. It outperforms standard heuristics from the literature sig-
nificantly, and for tight diameter bounds, locally improved trees computed with this
construction heuristic can also compete with solutions of the above mentioned ACO,
although requiring only a fraction of time.

Advances of Gouveia et al. [66] in formulating the BDMST as a Steiner tree problem
on layered graphs are encouraging to noticeably increase the size of instances that
can be solved to optimality. The progress of exact approaches also allows to explore
new opportunities in combining them with new and advanced (meta-)heuristics.
Beside the definition of new neighborhoods that can be searched efficiently by exact
algorithms, also the cooperative execution of different solving procedures in parallel

138

to benefit from synergy may lead to a significant boost of performance. Last but
not least, the clustering-based construction heuristic still has potential to achieve
better results when making the assignment of nodes to clusters more flexible, as well
as heuristics based on Kruskal’s instead of Prim’s MST algorithm used with success
for the related delay-constrained MST problem in recent time. Altogether, these are
some interesting research challenges for the near future.

139

140

Bibliography

[1] A. Abdalla, N. Deo, and P. Gupta. Random-tree diameter and the diameter
constrained MST. Congressus Numerantium, 144:161–182, 2000.

[2] N. R. Achuthan and L. Caccetta. Models for vehicle routing problems. Proc.
of the 10th National Conference of the Australian Society for Operations Re-
search, pages 276–294, 1990.

[3] N. R. Achuthan and L. Caccetta. Minimum weight spanning trees with
bounded diameter. Australasian Journal of Combinatorics, 5:261–276, 1992.

[4] N. R. Achuthan, L. Caccetta, P. Caccetta, and J. F. Geelen. Computational
methods for the diameter restricted minimum weight spanning tree problem.
Australasian Journal of Combinatorics, 10:51–71, 1994.

[5] C. Aggarwal, J. Orlin, and R. Tai. Optimized crossover for the independent
set problem. Operations Research, 45:226–234, 1997.

[6] O. Angel, A. D. Flaxman, and D. B. Wilson. A sharp threshold for minimum
bounded-depth and bounded-diameter spanning trees and Steiner trees in ran-
dom networks. arXiv:0810.4908v1 [math.PR] http://arxiv.org/, 2008.

[7] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook. On the solution
of the traveling salesman problem. Documenta Mathematica, Extra Volume
ICM III:645–656, 1998.

[8] P. Augerat, J. Belenguer, E. Benavent, A. Corberan, and D. Naddef. Separat-
ing capacity constraints in the CVRP using tabu search. European Journal of
Operational Research, 106(2):546–557, 1999.

141

Bibliography

[9] T. Bäck, D. B. Fogel, and Z. Michalewicz. Handbook of Evolutionary Compu-
tation. Oxford University Press, New York, 1997.

[10] J. E. Baker. Reducing bias and inefficiency in the selection algorithm. In
Proceedings of the Second International Conference on Genetic Algorithms on
Genetic algorithms and their application, pages 14–21, Hillsdale, NJ, USA,
1987. Lawrence Erlbaum Associates, Inc.

[11] K. Bala, K. Petropoulos, and T. E. Stern. Multicasting in a linear lightwave
network. In Proc. of the 12th IEEE Conference on Computer Communications,
pages 1350–1358. IEEE Press, 1993.

[12] E. Balas and E. Zemel. An algorithm for large zero-one knapsack problems.
Operations Research, 28:1130–1154, 1980.

[13] J. Bar-Ilan, G. Kortsarz, and D. Peleg. Generalized submodular cover prob-
lems and applications. Theoretical Computer Science, 250(1-2):179–200, 2001.

[14] F. Barahona and R. Anbil. The volume algorithm: producing primal solutions
with a subgradient method. Mathematical Programming, 87:385–399, 2000.

[15] R. Battiti and G. Tecchiolli. The reactive tabu search. ORSA Journal on
Computing, 6:126–140, 1994.

[16] J. Beasley. OR-Library: Capacitated MST, 2005. http://people.brunel.

ac.uk/˜mastjjb/jeb/orlib/capmstinfo.html.

[17] J. E. Beasley. A heuristic for Euclidean and rectilinear Steiner problems.
European Journal of Operational Research, 58:284–292, 1992.

[18] J. E. Beasley. Lagrangean Relaxation, pages 243–303. John Wiley & Sons, Inc.
New York, NY, USA, 1993.

[19] R. E. Bellman. Dynamic Programming. Dover Publications Inc., 1957/2003.

[20] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena
Scientific, 1997.

[21] A. Bookstein and S. T. Klein. Compression of correlated bit-vectors. Infor-
mation Systems, 16(4):387–400, 1991.

[22] K. Büdenbender, T. Grünert, and H.-J. Sebastian. A hybrid tabu
search/branch-and-bound algorithm for the direct flight network design prob-
lem. Transportation Science, 34(4):364–380, 2000.

[23] L. Cassetta. Graph theory in network design and analysis. Recent Studies in
Graph Theory, pages 29–63, 1989.

[24] B. V. Cherkassky and A. V. Goldberg. On implementing the push-relabel
method for the maximum flow problem. Algorithmica, 19(4):390–410, 1997.

142

Bibliography

code available at http://www.avglab.com/andrew/CATS/maxflow˙solvers.

htm.

[25] A. E. F. Clementi, M. D. Ianni, A. Monti, G. Rossi, and R. Silvestri. Experi-
mental analysis of practically efficient algorithms for bounded-hop accumula-
tion in ad-hoc wireless networks. In Proc. of the 19th IEEE Int. Parallel and
Distributed Processing Symposium (IPDPS’05), workshop 12, volume 13, page
247.1, 2005.

[26] R. K. Congram, C. N. Potts, and S. L. van de Velde. An iterated Dynasearch
algorithm for the single-machine total weighted tardiness scheduling problem.
INFORMS Journal on Computing, 14(1):52–67, 2002.

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, second edition, 2001.

[28] T. S. D. Whitley and D. Fuquay. Scheduling problems and traveling sales-
man: The genetic edge recombination operator. In Proceedings on the Third
International Conference on Genetic Algorithms, pages 133–140, 1989.

[29] G. Dahl, T. Flatberg, N. Foldnes, and L. Gouveia. Hop-constrained spanning
trees: The jump formulation and a relax-and-cut method. Technical report,
University of Oslo, Centre of Mathematics for Applications (CMA), 2005.

[30] G. Dahl, L. Gouveia, and C. Requejo. On formulations and methods for the
hop-constrained minimum spanning tree problem. In Handbook of Optimiza-
tion in Telecommunications, chapter 19, pages 493–515. Springer Science +
Business Media, 2006.

[31] E. Danna, E. Rothberg, and C. Le Pape. Exploring relaxation induced neigh-
borhoods to improve MIP solutions. Mathematical Programming, Series A,
102:71–90, 2005.

[32] C. Darwin. The Origin of Species. John Murray, 1859.

[33] L. Davis. Applying adaptive algorithms to epistatic domains. In Proceedings
of the International Joint Conference on Artificial Intelligence (ĲCAI), pages
162–164, 1985.

[34] M. P. de Aragão, E. Uchoa, and R. F. Werneck. Dual heuristics on the exact
solution of large Steiner problems. Electronic Notes in Discrete Mathematics,
7:150–153, 2001.

[35] J. Denzinger and T. Offermann. On cooperation between evolutionary algo-
rithms and other search paradigms. In W. Porto et al., editors, Proceedings
of the 1999 Congress on Evolutionary Computation (CEC), volume 3, pages
2317–2324. IEEE Press, 1999.

143

Bibliography

[36] N. Deo and A. Abdalla. Computing a diameter-constrained minimum spanning
tree in parallel. In G. Bongiovanni, G. Gambosi, and R. Petreschi, editors,
Algorithms and Complexity, number 1767 in LNCS, pages 17–31, Berlin, 2000.
Springer-Verlag.

[37] I. Devarenne, H. Mabed1, and A. Caminada. Adaptive tabu tenure computa-
tion in local search. Evolutionary Computation in Combinatorial Optimization,
4972:1–12, 2008.

[38] E. W. Dĳkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[39] M. Dorigo and G. D. Caro. The Ant Colony Optimization Meta-Heuristic,
pages 11–32. McGraw-Hill, London, 1999.

[40] M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolution-
ary Computation, 1(1):53–66, 1997.

[41] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization by
a colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics-Part B, 26:29–41, 1996.

[42] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cambridge,
MA, 2004.

[43] A. C. dos Santos, A. Lucena, and C. C. Ribeiro. Solving diameter con-
strained minimum spanning tree problems in dense graphs. In Proc. of the
Int. Workshop on Experimental Algorithms, volume 3059 of LNCS, pages 458–
467. Springer, 2004.

[44] S. Dreyfus. Richard bellman on the birth of dynamic programming. Operations
Research, 50(1):48–51, January 2002.

[45] A. Eiben and J. Smith. Introduction to Evolutionary Computing. Springer,
Berlin Heidelberg, 2003.

[46] T. Feo and M. Resende. A probabilistic heuristic for a computationally difficult
set covering problem. Operations Research Letters, 8:67–71, 1989.

[47] P. Festa, Mauricio, and G. C. Resende. Grasp: An annotated bibliography.
In Essays and Surveys in Metaheuristics, pages 325–367. Kluwer Academic
Publishers, 2002.

[48] G. R. Filho and L. A. N. Lorena. Constructive genetic algorithm and column
generation: An application to graph coloring. In L. P. Chuen, editor, Proceed-
ings of APORS 2000, the Fifth Conference of the Association of Asian-Pacific
Operations Research Societies within IFORS, Singapore, 2000.

144

Bibliography

[49] M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98:23–
47, 2002.

[50] A. P. French, A. C. Robinson, and J. M. Wilson. Using a hybrid genetic
algorithm/branch and bound approach to solve feasibility and optimization
integer programming problems. Journal of Heuristics, 7:551–564, 2001.

[51] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, New York, 1979.

[52] F. Glover. Future paths for integer programming and links to artificial intel-
ligence. Decision Sciences, 8:156–166, 1977.

[53] F. Glover and G. Kochenberger. Handbook of Metaheuristics, volume 57 of
International Series in Operations Research & Management Science. Kluwer
Academic Publishers, Norwell, MA, 2003.

[54] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston,
MA, 1997.

[55] F. Glover, M. Laguna, and R. Mart́ı. Fundamentals of scatter search and path
relinking. Control and Cybernetics, 39(3):653–684, 2000.

[56] D. E. Goldberg and R. Lingle. Alleles, loci and the traveling salesman problem.
In Proceedings of the First International Conference on Genetic Algorithms,
pages 154–159, 1985.

[57] L. Gouveia. Using the Miller-Tucker-Zemlin constraints to formulate a mini-
mal spanning tree problem with hop constraints. Computers and Operations
Research, 22(9):959–970, 1995.

[58] L. Gouveia. Multicommodity flow models for spanning trees with hop con-
straints. European Journal of Operational Research, 95:178–190, 1996.

[59] L. Gouveia and T. L. Magnanti. Network flow models for designing diameter-
constrained minimum spanning and Steiner trees. Networks, 41(3):159–173,
2003.

[60] L. Gouveia, T. L. Magnanti, and C. Requejo. A 2-path approach for
odd-diameter-constrained minimum spanning and Steiner trees. Networks,
44(4):254–265, 2004.

[61] L. Gouveia, T. L. Magnanti, and C. Requejo. An intersecting tree model
for odd-diameter-constrained minimum spanning and Steiner trees. Annals of
Operations Research, 146(1):19–39, 2006.

[62] L. Gouveia, T. L. Magnanti, and C. Requejo. Tight models for special cases
of the diameter-constrained minimum spanning tree problem. In Proc. of the
Int. Network Optimization Conference, Spa, Belgium, 2007.

145

Bibliography

[63] L. Gouveia, A. Paias, and D. Sharma. Modeling and solving the rooted
distance-constrained minimum spanning tree problem. Computers and Op-
erations Research, 35(2):600–613, 2008.

[64] L. Gouveia and C. Requejo. A new Lagrangean relaxation approach for the
hop-constrained minimum spanning tree problem. European Journal of Oper-
ational Research, 132:539–552, 2001.

[65] L. Gouveia, L. Simonetti, and E. Uchoa. Modelling the hop-constrained mini-
mum spanning tree problem over a layered graph. In Proc. of the Int. Network
Optimization Conference, pages 1–6, Spa, Belgium, 2007.

[66] L. Gouveia, L. Simonetti, and E. Uchoa. Modelling hop-constrained
and diameter-constrained minimum spanning tree problems as Steiner
tree problems over layered graphs. Optimization Online, http://www.

optimization-online.org/DB˙HTML/2008/06/2013.html, 2008.

[67] M. Gruber and G. Raidl. A new 0–1 ILP approach for the bounded diameter
minimum spanning tree problem. In L. Gouveia and C. Mourão, editors,
Proc. of the Int. Network Optimization Conference, volume 1, pages 178–185,
Lisbon, Portugal, 2005.

[68] M. Gruber and G. R. Raidl. Variable neighborhood search for the bounded
diameter minimum spanning tree problem. In P. Hansen et al., editors, Proc.
of the 18th Mini Euro Conference on Variable Neighborhood Search, Tenerife,
Spain, 2005.

[69] M. Gruber and G. R. Raidl. Heuristic cut separation in a branch&cut approach
for the bounded diameter minimum spanning tree problem. In Proceedings of
the 2008 International Symposium on Applications and the Internet, SAINT
2008, pages 261–264, Turku, Finland, 2008. IEEE Computer Society.

[70] M. Gruber and G. R. Raidl. (Meta-)heuristic separation of jump cuts for
the bounded diameter minimum spanning tree problem. In P. Hansen et al.,
editors, Proceedings of Matheuristics 2008: Second International Workshop on
Model Based Metaheuristics, Bertinoro, Italy, 2008.

[71] M. Gruber and G. R. Raidl. Exploiting hierarchical clustering for finding
bounded diameter minimum spanning trees on Euclidean instances. In G. R.
Raidl et al., editors, Proc. of the Genetic and Evolutionary Computation Con-
ference 2009, Montréal, Québec, Canada, to appear 2009. ACM.

[72] M. Gruber and G. R. Raidl. (Meta-)heuristic separation of jump cuts in
a branch&cut approach for the bounded diameter minimum spanning tree
problem, to appear 2009. special issue on Matheuristics of Operations Re-
search/Computer Science Interface Series, Springer.

146

Bibliography

[73] M. Gruber and G. R. Raidl. Solving the Euclidean bounded diameter minimum
spanning tree problem by clustering-based (meta-)heuristics. In A. Quesada-
Arencibia et al., editors, Twelfth International Conference on Computer Aided
Systems Theory (EUROCAST 2009), Gran Canaria, Spain, to appear 2009.
Springer LNCS.

[74] M. Gruber, J. van Hemert, and G. R. Raidl. Neighborhood searches for the
bounded diameter minimum spanning tree problem embedded in a VNS, EA,
and ACO. In M. Keĳzer et al., editors, Proc. of the Genetic and Evolution-
ary Computation Conference 2006, volume 2, pages 1187–1194, Seattle, USA,
2006. ACM.

[75] P. Hansen and N. Mladenović. An introduction to variable neighborhood
search. In S. Voß, S. Martello, I. Osman, and C. Roucairol, editors, Meta-
heuristics, Advances and Trends in Local Search Paradigms for Optimization,
pages 433–458. Kluwer Academic Publishers, 1999.

[76] M. Haouari and J. C. Siala. A hybrid Lagrangian genetic algorithm for the
prize collecting Steiner tree problem. Computers & Operations Research,
33(5):1274–1288, 2006.

[77] J. Holland. Adaptation In Natural and Artificial Systems. University of Michi-
gan Press, 1975.

[78] H. Hoos and T. Stützle. Stochastic Local Search – Foundations and Applica-
tions. Morgan Kaufmann, San Francisco, CA, 2004.

[79] B. Hu and G. R. Raidl. Variable neighborhood descent with self-adaptive
neighborhood-ordering. In C. Cotta, A. J. Fernandez, and J. E. Gallardo,
editors, Proceedings of the 7th EU/MEeting on Adaptive, Self-Adaptive, and
Multi-Level Metaheuristics, Malaga, Spain, 2006.

[80] A. Jain, M. Murty, and P.J.Flynn. Data clustering: a review. ACM Computing
Surveys (CSUR), 31:264–323, 1999.

[81] B. A. Julstrom. Encoding bounded-diameter minimum spanning trees with
permutations and with random keys. In K. Deb et al., editors, Genetic and
Evolutionary Computation Conference – GECCO 2004, volume 3102 of LNCS,
pages 1282–1281. Springer, 2004.

[82] B. A. Julstrom. Greedy heuristics for the bounded diameter minimum span-
ning tree problem. Journal of Experimental Algorithmics (JEA), 14:1.1:1–
1.1:14, February 2009.

[83] B. A. Julstrom and G. R. Raidl. A permutation-coded evolutionary algo-
rithm for the bounded-diameter minimum spanning tree problem. In A. Barry,
F. Rothlauf, D. Thierens, et al., editors, in 2003 Genetic and Evolutionary

147

Bibliography

Computation Conference’s Workshops Proceedings, Workshop on Analysis and
Design of Representations, pages 2–7, 2003.

[84] N. Karmakar. A new polynomial-time algorithm for linear programming. Com-
binatorica, 4:373–395, 1984.

[85] R. M. Karp. Reducibility among combinatorial problems. In R. Miller and
J. Thatcher, editors, Complexity of Computer Computations, pages 85–103.
Plenum Press, New York, 1972.

[86] L. Khachiyan. A polynomial algorithm in linear programming (english trans-
lation). Soviet Mathematics Doklady, 20:191–194, 1979.

[87] S. Kirkpatrick, C. Gellat, and M. Vecchi. Optimization by simulated annealing.
Science, 220:671–680, 1983.

[88] G. Kortsarz and D. Peleg. Approximating shallow-light trees. In SODA ’97:
Proceedings of the eighth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 103–110, Philadelphia, PA, USA, 1997. Society for Industrial
and Applied Mathematics.

[89] G. Kortsarz and D. Peleg. Approximating the weight of shallow Steiner trees.
Discrete Applied Mathemathics, 93(2-3):265–285, 1999.

[90] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proc. of the American Mathematics Society, 7(1):48–50,
1956.

[91] H. R. Lourenço, O. Martin, and T. Stützle. Iterated local search. In Handbook
of Metaheuristics [53], pages 321–353.

[92] F. Maffioli. On constrained diameter and medium optimal spanning trees. In
5th Conference on Optimization Techniques Part II, volume 4, pages 110–117.
Springer, LNCS, 1973.

[93] T. Magnanti and R. Wong. Network design and transportation planning:
Models and algorithms. Transportation Science, 18(1), 1984.

[94] T. L. Magnanti and L. A. Wolsey. Handbooks in Operations Research and Man-
agement Science: Network Models, chapter 9. Optimal Trees. Massachusetts
Institute of Technology, Operations Research Center, 1994.

[95] P. Manyem and M. F. M. Stallmann. Some approximation results in multicas-
ting. Technical Report TR-96-03, North Carolina State University at Raleigh,
NC, USA, 1996.

[96] G. Mendel. Versuche über Pflanzen-Hybriden (experiments on plant hybridiza-
tion). Verhandlungen des naturforschenden Vereins Brünn (Proceedings of the
Natural History Society of Brünn), 4:3–47, 1866.

148

Bibliography

[97] R. Montemanni and D. H. Smith. A tabu search algorithm with a dynamic
tabu list for the frequency assignment problem. Technical report, University
of Glamorgan, UK, 2001.

[98] B. M. E. Moret and H. D. Shapiro. An empirical analysis of algorithms for
constructing a minimum spanning tree. In DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, pages 400–411. Springer, 1991.

[99] P. Moscato. On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms. Technical Report C3P 826, California
Institute of Technology, Pasadena, CA, 1989.

[100] P. Moscato. Memetic algorithms: A short introduction. In D. Corne et al.,
editors, New Ideas in Optimization, pages 219–234. McGraw Hill, 1999.

[101] S. B. Needlemana and C. D. Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology, 48(3):443–453, 1970.

[102] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
Wiley-Interscience, 1988.

[103] T. F. Noronha, A. C. Santos, and C. C. Ribeiro. Constraint programming for
the diameter constrained minimum spanning tree problem. Electronic Notes
in Discrete Mathematics, 30:93–98, 2008.

[104] M. W. Padberg and L. A. Wolsey. Trees and cuts. Annals of Discrete Mathe-
matics, 17:511–517, 1983.

[105] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall, 1982.

[106] S. Pirkwieser, G. R. Raidl, and J. Puchinger. Combining Lagrangian decompo-
sition with an evolutionary algorithm for the knapsack constrained maximum
spanning tree problem. In C. Cotta and J. van Hemert, editors, Evolutionary
Computation in Combinatorial Optimization – EvoCOP 2007, volume 4446 of
Lecture Notes in Computer Science, pages 176–187. Springer, 2007.

[107] A. Plateau, D. Tachat, and P. Tolla. A hybrid search combining interior point
methods and metaheuristics for 0–1 programming. International Transactions
in Operational Research, 9:731–746, 2002.

[108] M. Prandtstetter and G. R. Raidl. A variable neighborhood search approach
for solving the car sequencing problem. In P. Hansen et al., editors, Proceedings
of the 18th Mini Euro Conference on Variable Neighborhood Search, Tenerife,
Spain, 2005.

[109] R. C. Prim. Shortest connection networks and some generalizations. Bell
System Technical Journal, 36:1389–1401, 1957.

149

Bibliography

[110] J. Puchinger and G. R. Raidl. An evolutionary algorithm for column gener-
ation in integer programming: An effective approach for 2D bin packing. In
X. Yao et al., editors, Parallel Problem Solving from Nature – PPSN VIII,
volume 3242 of Lecture Notes in Computer Science, pages 642–651. Springer,
2004.

[111] J. Puchinger and G. R. Raidl. Combining metaheuristics and exact algorithms
in combinatorial optimization: A survey and classification. In Proceedings of
the First International Work-Conference on the Interplay Between Natural and
Artificial Computation, volume 3562 of LNCS, pages 41–53. Springer, 2005.

[112] J. Puchinger and G. R. Raidl. Relaxation guided variable neighborhood search.
In Proceedings of the XVIII Mini EURO Conference on VNS, Tenerife, Spain,
2005.

[113] J. Puchinger, G. R. Raidl, and M. Gruber. Cooperating memetic and branch-
and-cut algorithms for solving the multidimensional knapsack problem. In
Proc. of the 6th Metaheuristics Int. Conference, pages 775–780, Vienna, Aus-
tria, 2005.

[114] J. Puchinger, G. R. Raidl, and U. Pferschy. The core concept for the mul-
tidimensional knapsack problem. In J. Gottlieb and G. R. Raidl, editors,
Evolutionary Computation in Combinatorial Optimization – EvoCOP 2006,
volume 3906 of Lecture Notes in Computer Science, pages 195–208. Springer,
2006.

[115] G. R. Raidl and H. Feltl. An improved hybrid genetic algorithm for the gen-
eralized assignment problem. In H. M. Haddadd et al., editors, Proceedings of
the 2003 ACM Symposium on Applied Computing, pages 990–995. ACM Press,
2004.

[116] G. R. Raidl and B. A. Julstrom. Greedy heuristics and an evolutionary algo-
rithm for the bounded-diameter minimum spanning tree problem. In G. Lam-
ont et al., editors, Proc. of the ACM Symposium on Applied Computing, pages
747–752. ACM Press, 2003.

[117] G. R. Raidl and J. Puchinger. Combining (integer) linear programming tech-
niques and metaheuristics for combinatorial optimization. In C. Blum, M. J. B.
Augilera, A. Roli, and M. Sampels, editors, Hybrid Metaheuristics – An Emer-
gent Approach for Combinatorial Optimization, volume 114 of Studies in Com-
putational Intelligence, pages 31–62. Springer, 2008.

[118] G. R. Raidl, J. Puchinger, and C. Blum. Metaheuristic hybrids. In M. Gen-
dreau and J. Y. Potvin, editors, Handbook of Metaheuristics. Springer, 2nd
edition, submitted 2008 (invited).

150

Bibliography

[119] K. Raymond. A tree-based algorithm for distributed mutual exclusion. ACM
Transactions on Computer Systems, 7(1):61–77, 1989.

[120] I. Rechenberg. Evolutionsstrategie, Optimierung Technischer Systeme nach
Prinzipien der Biologischen Evolution. Frommann-Holzboog Verlag, 1973.

[121] W. Rei, J.-F. Cordeau, M. Gendreau, and P. Soriano. Accelerating Benders
decomposition by local branching. INFORMS Journal on Computing, 2008.
In press.

[122] A. Rényi and G. Szekeres. On the height of trees. Journal of the Australian
Mathematical Society, 7:497–507, 1967.

[123] M. Resende and C. Ribeiro. Greedy randomized adaptive search procedures.
In F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, pages
219–249. Kluwer Academic Publishers, 2003.

[124] J. Riordan. The enumeration of trees by height and diameter. IBM Journal
of Research and Development, 4(5):473–478, 1960.

[125] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Pro-
gramming. ELSEVIER, 2006.

[126] M. Ruthmair and G. R. Raidl. A Kruskal-based heuristic for the rooted delay-
constrained minimum spanning tree problem. In A. Quesada-Arencibia et al.,
editors, Twelfth International Conference on Computer Aided Systems Theory
(EUROCAST 2009), Gran Canaria, Spain, to appear 2009. Springer LNCS.

[127] H. F. Salama, D. S. Reeves, and Y. Viniotis. An efficient delay constrained
minimum spanning tree heuristic, 1996. Submitted to the Fifth Int. Conference
on Computer Communications and Networks, October 1996.

[128] H.-P. Schwefel. Evolution and Optimum Seeking. Wiley, New York, 1995.

[129] A. Singh and A. K. Gupta. Improved heuristics for the bounded-diameter
minimum spanning tree problem. Soft Computing – A Fusion of Foundations,
Methodologies and Applications, 11(10):911–921, 2007.

[130] A. T. Staggemeier, A. R. Clark, U. Aickelin, and J. Smith. A hybrid genetic
algorithm to solve a lot-sizing and scheduling problem. In B. Lev, editor,
Proceedings of the 16th triannual Conference of the International Federation
of Operational Research Societies, Edinburgh, U.K., 2002.

[131] T. Stützle and H. Hoos. The MAX−MIN ant system and local search for
combinatorial optimization problems: Towards adaptive tools for combinato-
rial global optimisation. Meta-Heuristic, Advances and Trends in Local Search
Paradigm for Optimization, pages 313–329, 1998.

151

Bibliography

[132] G. Syswerda. Schedule optimization using genetic algorithms. In L. Davis, edi-
tor, Handbook of Genetic Algorithms, pages 332–349. Int. Thomson Computer
Press, 1991.

[133] G. Szekeres. Combinatorial Mathematics X, volume 1036 of Lecture Notes
in Mathematics, chapter Distribution of Labeled Trees by Diameter, pages
392–397. Springer-Verlag, 1983.

[134] S. Talukdar, S. Murthy, and R. Akkiraju. Asynchronous teams. In Handbook
of Metaheuristics, pages 537–556. Kluwer Academic Publishers, 2003.

[135] M. Vasquez and Y. Vimont. Improved results on the 0–1 multidimensional
knapsack problem. European Journal of Operational Research, 165(1):70–81,
2005.

[136] V. V. Vazirani. Approximation algorithms. Springer, 2001.

[137] S. Voß. The Steiner tree problem with hop constraints. Annals of Operations
Research, 86:321–345, 1999.

[138] L. A. Wolsey. Integer Programming. Wiley-Interscience, 1998.

[139] D. L. Woodruff. A chunking based selection strategy for integrating meta-
heuristics with branch and bound. In S. Voss et al., editors, Metaheuristics:
Advances and Trends in Local Search Paradigms for Optimization, pages 499–
511. Kluwer Academic Publishers, 1999.

[140] K. A. Woolston and S. L. Albin. The design of centralized networks with
reliability and availability constraints. Computers and Operations Research,
15(3):207–217, 1988.

152

Appendix A

Curriculum Vitae

Personal Information

• Name: Martin Gruber

• Date of birth: September 3rd, 1971

• Place of birth: Vienna, Austria

Education

• since 06/2004: PhD student at Vienna University of Technology. Main re-
search: “Network Design: The Bounded Diameter Minimum Spanning Tree
Problem”, supervised by Günther Raidl

• 2006 – 09/2007: Computer Management studies at Vienna University of Tech-
nology with graduation to “Magister rer.soc.oec.” (MSc) with distinction.

• 1990 – 11/2003: Computer Science studies at Vienna University of Technology
with graduation to “Diplom Ingenieur” (MSc) with distinction. Diploma the-
sis: “Effiziente Gestaltung der Wortanalyse in SiSiSi (efficient implementation
of the word analysis for a reliable and sense-conveying German hyphenation
system)”, supervised by Wilhelm Barth and Gabriele Koller

• 09/1982 – 06/1990: Comprehensive secondary school (Bundesrealgymnasium)
BG/BRG 15 in Vienna, Austria.

• 09/1978 – 06/1982: Primary school (Volksschule) in Vienna, Austria.

153

Appendix A Curriculum Vitae

Work Experience (Academic)

• since 03/2005: Research and teaching assistant, Algorithms and Data Struc-
tures Group, Institute of Computer Graphics and Algorithms, Vienna Univer-
sity of Technology

• 06/2004 – 01/2006: Employed in the FWF project Combining Memetic Al-
gorithms with Branch&Cut&Price for Some Network Design Problem under
grant P16263-N04, Algorithms and Data Structures Group, Institute of Com-
puter Graphics and Algorithms, Vienna University of Technology

• 1995 – 2000:
Tutor (”Studienassistent”) for the course ”Algorithms and Datastructures 2”,
Institute of Computer Graphics and Algorithms, Vienna University of Tech-
nology, Austria.
Tutor (”Studienassistent”) for the course ”Introduction to Programming for
Electrical Engineering Technician”, Institute of Computer Graphics and Algo-
rithms, Vienna University of Technology, Austria.
Tutor (”Studienassistent”) for the course ”Process Automation”, Institute of
Computer Aided Automation, Vienna University of Technology, Austria.
Tutor (”Studienassistent”) for the course ”Socio-scientifical Fundamentals of
Computer Science”, Institute of Design and Assessment of Technology, Vienna
University of Technology, Austria.

Publications

Refereed Journal Articles

• Martin Gruber and Günther R. Raidl. (Meta-)heuristic separation of jump
cuts in a Branch&Cut approach for the bounded diameter minimum spanning
tree problem. To appear in Matheuristics of Operations Research, Computer
Science Interface Series, Springer, 2009.

Refereed Conference Papers

• Martin Gruber and Günther R. Raidl. Exploiting Hierarchical Clustering for
Finding Bounded Diameter Minimum Spanning Trees on Euclidean Instances.
To appear in Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO 2009), Montréal Québec, Canada, 2009, ACM.

• Martin Gruber and Günther R. Raidl. Solving the Euclidean bounded diame-
ter minimum spanning tree problem by clustering-based (meta-)heuristics. To

154

appear in Proceedings of the Twelfth International Conference on Computer
Aided Systems Theory (EUROCAST 2009), LNCS, Gran Canaria, Spain, 2009.

• Martin Gruber and Günther R. Raidl. (Meta-)heuristic separation of jump
cuts for the bounded diameter minimum spanning tree problem. Proceedings
of Matheuristics 2008: Second International Workshop on Model Based Meta-
heuristics, Bertinoro, Italy, 2008.

• Günther R. Raidl and Martin Gruber. A Lagrangian relax-and-cut approach
for the bounded diameter minimum spanning tree problem. Numerical Anal-
ysis and Applied Mathematics, volume 1048 of AIP Conference Proceedings,
pages 446–449. American Institute of Physics, 2008.

• Martin Gruber and Günther R. Raidl. Heuristic cut separation in a
Branch&Cut approach for the bounded diameter minimum spanning tree prob-
lem. Proceedings of the 2008 International Symposium on Applications and the
Internet (SAINT 2008), pages 261–264, Turku, Finland, 2008, IEEE Computer
Society.

• Martin Gruber, Jano van Hemert, and Günther R. Raidl. Neighborhood
searches for the bounded diameter minimum spanning tree problem embedded
in a VNS, EA, and ACO. Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO 2006), volume 2, pages 1187–1194, Seattle, USA,
2006, ACM.

• Martin Gruber and Günther R. Raidl. Variable neighborhood search for the
bounded diameter minimum spanning tree problem. Proceedings of the 18th
Mini Euro Conference on Variable Neighborhood Search, Tenerife, Spain, 2005.

• Jakob Puchinger, Günther R. Raidl, and Martin Gruber. Cooperating memetic
and Branch&Cut algorithms for solving the multidimensional knapsack prob-
lem. Proceedings of MIC2005, the 6th Metaheuristics International Confer-
ence, pages 775-780, Vienna, Austria, 2005.

• Martin Gruber and Günther R. Raidl. A new 0-1 ILP approach for the
bounded diameter minimum spanning tree problem. Proceedings of the 2nd
International Network Optimization Conference, volume 1, pages 178–185, Lis-
bon, Portugal, 2005.

Master Thesis

• Martin Gruber. Effiziente Gestaltung der Wortanalyse in SiSiSi. Master’s the-
sis, Vienna University of Technology, Institute of Computer Graphics and Al-
gorithms, November 2003. Supervised by Wilhelm Barth and Gabriele Koller.

155

Appendix A Curriculum Vitae

Textbooks

• Martin Schönhacker and Martin Gruber. Programmieren 2. Textbook for the
lecture with the same title at the Vienna University of Technology, Austria,
1998.

Organizational and Reviewing Activities

• Member of organizing committee of the Graph Drawing Conference GD 2001
(Software Exhibition). Vienna, Austria, September 2001.

• Evolutionary Computation Journal, 2008, 2009.

• Operations Research Letters, 2009.

156

