
Exploiting Hierarchical Clustering for Finding
Bounded Diameter Minimum Spanning Trees

on Euclidean Instances

Martin Gruber
gruber@ads.tuwien.ac.at

Günther R. Raidl
raidl@ads.tuwien.ac.at

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Favoritenstraße 9–11/186-1, 1040 Vienna, Austria

ABSTRACT
The bounded diameter minimum spanning tree problem is
an NP-hard combinatorial optimization problem arising, for
example, in network design when quality of service is of
concern. There exist various exact and metaheuristic ap-
proaches addressing this problem, whereas fast construction
heuristics are primarily based on Prim’s minimum spanning
tree algorithm and fail to produce reasonable solutions in
particular on large Euclidean instances.

A method based on hierarchical clustering to guide the
construction process of a diameter constrained tree is pre-
sented. Solutions obtained are further refined using a greedy
randomized adaptive search procedure. Based on the idea of
clustering we also designed a new neighborhood search for
this problem. Especially on large Euclidean instances with
a tight diameter bound the results are excellent. In this
case the solution quality can also compete with that of a
leading metaheuristic, whereas the computation only needs
a fraction of the time.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; G.1.6 [Numerical Analysis]: Opti-
mization—Constrained optimization

General Terms
Algorithms

Keywords
Bounded Diameter Minimum Spanning Tree, Construction
Heuristics, Greedy Randomized Search, Dynamic Program-
ming, Local Improvement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07 ...$5.00.

1. INTRODUCTION
The bounded diameter minimum spanning tree (BDMST)

problem is a combinatorial optimization problem appearing
in applications such as wire-based communication network
design when quality of service is of concern, in ad-hoc wire-
less networks [1], and also in the areas of data compression
and distributed mutual exclusion algorithms [16, 5].

The goal is to identify a tree-structured network of min-
imum costs in which the number of links between any pair
of nodes is restricted by a constant D, the diameter. More
formally, we are given an undirected connected graph G =
(V,E) with node set V and edge set E and associated costs
ce ≥ 0, ∀e ∈ E. We seek a spanning tree T = (V,ET) with
edge set ET ⊆ E whose diameter does not exceed D ≥ 2,
and whose total costs c(T) =

P
e∈ET

ce are minimal. This
task can also be seen as choosing a center – one single node if
D is even or an edge in the odd-diameter case – and building
a height-restricted tree where the unique path from this cen-
ter to any node of the tree consists of no more than H = bD

2
c

edges. The BDMST problem is known to be NP-hard for
4 ≤ D < |V | − 1 [6].

2. PREVIOUS WORK
To solve this problem to proven optimality there exist

various integer linear programming (ILP) approaches like
hop-indexed multi-commodity network flow models [7, 8]
or a Branch&Cut formulation based on a more compact
model but strengthened by a special class of cutting planes
[9]. They all have in common that they are only appli-
cable to relatively small instances, i.e. significantly fewer
than 100 nodes when dealing with complete graphs. For
larger instances, metaheuristics have been developed, in-
cluding evolutionary algorithms [15, 18], a variable neigh-
borhood search, and an ant colony optimization [11] which
is currently the leading metaheuristic to obtain high-quality
solutions.

In contrast to the large variety of metaheuristic approaches
the number of simple and fast construction heuristics that
can also be applied to very large instances is limited. They
are primarily based on Prim’s minimum spanning tree (MST)
algorithm [14] and grow a height-restricted tree from a cho-
sen center. One such example is the center based tree con-
struction (CBTC) [13]. This approach works reasonably well
on instances with random edge costs, but on Euclidean in-
stances this leads to a backbone (the edges near the center)

(a) CBTC (271.4). (b) RTC (41.18). (c) ACO (31.09).

Figure 1: A diameter constrained tree with D = 10
constructed using (a) the CBTC heuristic, compared
to (b) RTC (best solution from 1000 runs) and (c) a
solution obtained by an ant colony optimization ap-
proach (complete, Euclidean graph with 1000 nodes
distributed randomly in the unit square, the corre-
sponding objective values are given in parentheses).

of relatively short edges and the majority of the nodes have
to be connected to this backbone via rather long edges, see
the example in Fig. 1(a). On the contrary, a reasonable so-
lution for this instance, shown in Fig. 1(c), demonstrates
that the backbone should consist of a few longer edges to
span the whole area to allow the large number of remaining
nodes to be connected as leaves by much cheaper edges. In
a pure greedy construction heuristic this observation is diffi-
cult to realize. In the randomized tree construction approach
(RTC, Fig. 1(b)) from [13] not the cheapest of all nodes is
always added to the partial spanning tree but the next node
is chosen at random and then connected by the cheapest
feasible edge. Thus at least the possibility to include longer
edges into the backbone at the beginning of the algorithm
is increased. For Euclidean instances RTC has been so far
the best choice to quickly create a first solution as basis for
exact or metaheuristic approaches.

In the following we will introduce a new construction heu-
ristic for the BDMST problem which is especially suited for
very large Euclidean instances. It is based on a hierarchical
clustering that guides the algorithm to find a good back-
bone. This approach is then refined by a local improvement
method and extended towards a greedy randomized adap-
tive search procedure (GRASP) [17]. A preliminary version
of this work can be found in [10].

3. THE CLUSTERING HEURISTIC
The clustering-based construction heuristic can be divided

into three steps: Creating a hierarchical clustering (dendro-
gram) of all instance nodes based on the edge costs, deriving
a height-restricted clustering (HRC) from this dendrogram,
and finding for each cluster in the HRC a good root (center)
node.

3.1 Hierarchical Clustering
For the purpose of creating a good backbone especially for

an Euclidean instance of the BDMST problem agglomerative
hierarchical clustering seems to provide a good guidance. To
get spatially confined areas, two clusters A and B are merged
when max{ca,b : a ∈ A, b ∈ B} is minimal over all pairs of
clusters (complete linkage clustering [12]).

The agglomeration starts with each node being an individ-
ual cluster, and stops when all nodes are merged within one

5

0 9

0 4 9

0 1 3 4 5 9
2 6 7 8

6 7
2 81 3

0 1 3 4 9

0 1 2 3 4 5 6 7 8 9

cut

(a)

(c)

0

1 2

3 4

5

6

7

8

9

0 1 3 2 749 8 6

(b)

2 85

0 1 2 3 4 5 6 7 8 9

6 70 1 3 4 9

Figure 2: Hierarchical clustering (a), height-restric-
ted clustering (b), and the resulting diameter con-
strained tree with D = 4 (c) after choosing a root for
each cluster in (b).

single cluster. The resulting hierarchical clustering can be il-
lustrated as a binary tree, also referred to as a dendrogram,
with |V | leaves and |V | − 1 inner nodes each representing
one merging operation during clustering; see Fig. 2(a) for
an example with |V | = 10. An inner node’s distance from
the leaves indicates when the two corresponding clusters –
relative to each other – have been merged.

3.2 Height-Restricted Clustering
After performing the agglomerative hierarchical cluster-

ing, the resulting dendrogram is transformed into a height-
restricted clustering (HRC) for the BDMST, i.e. into a repre-
sentation of the clustering respecting the diameter and thus
the height condition. The dendrogram itself cannot directly
act as HRC since in general it will violate this constraint, see
Fig. 2(a). Therefore, some of the nodes in the dendrogram
have to be merged to finally get a tree of height H − 1, the
HRC for the BDMST; see Fig. 2(b) for a diameter of D = 4.

For the quality of the resulting tree this merging of den-
drogram nodes is a crucial step, worth significant effort. It
can be described by H − 1 cuts through the dendrogram
defining which nodes of it will also become part of the height-
restricted clustering and which are merged with their parent
clusters. As an example, starting at the root containing all
instance nodes agglomerated within one single cluster the
cut illustrated in Fig. 2(a) defines the dendrogram nodes
{0, 1, 3, 4, 9}, {5}, {2, 8}, and {6, 7} to become direct suc-
cessors of the root cluster in the height-restricted clustering.

One fundamental question arising in this context is the
way of defining the cutting positions through the dendro-
gram. After preliminary tests, the identification of the pre-
cise iteration at which two clusters have been merged in the
agglomeration process turns out to be a good criterion. This
merge number (or merge#), which allows a fine-grained con-
trol of the cutting positions, can be stored within each node
of the dendrogram, with the leaves having a merge number
of zero and the root |V | − 1.

Based on the merge numbers cutting positions ς are com-
puted as

ςi = (|V |−1)− 2 i· log2 x
H−1 i = 1, . . . , H−1, (1)

where x is a strategy parameter. This formula is motivated
by a perfectly balanced tree, where parameter x can be inter-
preted as the number of nodes that shall form the backbone.

These cutting positions can now be used to build the
height-restricted clustering for the BDMST, as depicted in

Algorithm 1: buildHRC(pd, pp, ς, j)

input : reference to dendrogram node pd; reference to
parent cluster in the HRC pp; cutting positions
ςi, i = 1, . . . , H−1; current cut index j

output: height-restricted clustering for the BDMST

if pd.merge# > ςj then
forall children pc of pd do

buildHRC(pc, pp, ς, j);

else
create new HRC node pn for instance nodes
agglomerated in pd;
connect pn to its parent cluster pp within the HRC;
if j < H−1 then

forall children pc of pd do
buildHRC(pc, pn, ς, j + 1);

Algorithm 1. The recursion is started with the root of the
dendrogram (pd), a reference to the newly created root node
of the HRC (pp), the computed cutting positions (ς), and 1
for the current cut index j.

An experimental evaluation with a simple greedy con-
struction heuristic described in the next section revealed
that for D ≥ 6 promising values for x can be found close
to |V |; see Fig. 3. Only in case of the smallest possible even
diameter of four the picture is inverted and x should be cho-

sen near |V |
10

. The rather continuous and mostly monotonic
increase or decrease of the curve further suggests to apply
binary search to determine an approximately best value for
x for a specific Euclidean instance and diameter bound, if
time allows and the heuristic can be run multiple times.

3.3 Determining Root Nodes
Finally, from the height-restricted clustering a BDMST

has to be derived by identifying for each (sub-)cluster an
appropriate root; cf. Figs. 2(b) and (c). This can be done
heuristically in a greedy fashion based on rough cost estima-
tions for each cluster followed by a local improvement step,
or by more sophisticated approaches based on dynamic pro-
gramming [4].

In the following we will require a more formal and in some
points augmented definition of a height-restricted hierarchi-
cal clustering. Let C0 = {C0

1 , . . . , C
0
|V |} be the set of clus-

ters at the lowest level 0, where each node of V forms an
individual cluster. Moreover, let Ck = {Ck

1 , . . . , C
k
ik
} be

the clustering at the higher levels k = 1, . . . , H. All Ck
i ,

i = 1, . . . , ik, are pairwise disjoint, and Ck
1 ∪ Ck

2 ∪ . . . ∪
Ck

ik
= Ck−1. CH is the highest level, and it is single-

ton, i.e. CH = {CH
1 }; it refers to all nodes in V aggre-

gated within one cluster. Furthermore, by V (Ck
i) we de-

note the set of nodes in V represented by the cluster Ck
i ,

i.e. the nodes part of this cluster and all its sub-clusters
at lower levels; V (Ck) = V (Ck

1) ∪ . . . ∪ V (Ck
ik

) = V , and

V (Ck
1) ∩ . . . ∩ V (Ck

ik
) = ∅, for all k = 0, . . . , H.

This definition mainly corresponds to the simple height-
restricted clustering previously presented in Fig. 2(b) and
computed by Algorithm 1, with two exceptions: The clus-
ters at level zero corresponding to the individual nodes have
not been realized explicitly, and not all leaves of the HRC
created by Algorithm 1 have to be found at level one. In

Algorithm 2: greedyRoots(r)

input : root r of the HRC
output: a root node for each cluster, and if D is odd a

center edge for the root cluster of the HRC

forall v ∈ V do available[v] ← true;

if D is even then
assignRoot(r);

else
forall children rc of r do

rc.stars ← ();
foreach node v ∈ V (rc) do

compute star sv: connect to v all nodes
V (rc) \ {v} of cluster rc;
rc.stars.append(sv);

sort rc.stars ascending according to the costs of
the stars;
rc.root ← v of least cost star sv ∈ rc.stars;

r.root ← best center edge for the roots of the child
clusters rc;
for both center nodes c1 and c2 do

available[ci] ← false;

forall children rc of r do
if not available[rc.root] then

rc.root ← next best root node based on
rc.stars;

available[rc.root] ← false;
forall children pc of rc do assignRoot(pc);

Algorithm 3: assignRoot(p)

input : reference p to a node of the HRC
output: for cluster p a sorted list p.stars of diameter 2

trees and a root p.root

p.root ← ∅;
p.stars ← ();

foreach node v ∈ V (p) do
compute star sv: connect to v all nodes V (p) \ {v}
of current cluster p;
p.stars.append(sv);

sort p.stars ascending according to costs of the stars;

scan p.stars from beginning for first sv where
available[v] = true;
if such a star sv could be found then

p.root ← v;
available[v] ← false;
forall children pc of p do assignRoot(pc);

the latter case such a leaf can only contain exactly one node
v ∈ V , therefore the HRC can be augmented with (virtual)
nodes to connect the corresponding cluster at level zero with
a leaf at a level ≥ 2.

3.3.1 Greedy Heuristic with Local Improvement
A simple greedy heuristic to find an initial root for each

cluster Ck
i can be based on so-called stars, i.e. trees with

a diameter of two where a single node v of the cluster acts
as center while the remaining nodes V (Ck

i) \ {v} are con-

|V |/10 |V |x

min

max

c(
T

)

D=4

|V |/10 |V |x |V |/10 |V |x |V |/10 |V |x |V |/10 |V |x

D=6 D=12 D=16 D=22

CG (strict)

CG+L (strict)
CG (free)

CG+L (free)

Figure 3: Obtained objective values (scaled to minimal and maximal values) over parameter x of Equation (1)

(ranging from |V |
10

to |V |) for various diameter bounds on an Euclidean instance with 1000 nodes distributed
randomly in the unit square. The trees were computed using the simple greedy construction heuristic CG

(Section 3.3) with and without local improvement (L), respectively with free leaf nodes or leaves strictly
following the clustering (see Section 3.4 for details).

nected directly to it. Such a star can be computed for every
node belonging to the cluster, the center node v leading to
a star of minimal costs for Ck

i is chosen as root for this clus-
ter. The heuristic starts at cluster CH and assigns roots
to clusters top-down until reaching the leaves of the simple
height-restricted clustering. Note that a node already se-
lected as root at a level l no longer has to be considered in
levels less than l, which can also cause an empty cluster in
case all nodes of it are already used as roots at higher levels.

Algorithms 2 and 3 illustrate this heuristic in more detail.
An array available is used to indicate whether a node still
can be selected as root in a (sub-)cluster. The even-diameter
case is much simpler to handle: For each cluster represented
by a node in the simple HRC all possible stars are computed
and gathered within a list. This list is sorted in ascending
order according to the costs of the stars, and the still avail-
able node leading to the cheapest star is chosen as root for
the current cluster.

While this procedure can also be used for the root clus-
ter CH

1 of the height-restricted clustering when D is even,
not a single node but an edge has to be selected as cen-
ter of the BDMST in case the diameter bound is odd. The
corresponding algorithm would be to compute the cheapest
BDMST with a diameter of three for the whole instance and
use the resulting center edge also as center for the root clus-
ter. However, in general this would lead to a much too long
center edge because in a good BDMST this edge becomes
shorter with increasing diameter bound since it no longer has
to span a larger area. To make a better choice in a first step
a reasonable root node is computed for every cluster CH−1

i

at level H − 1. These roots are the only nodes that have to
be linked directly to the center edge. Based on this observa-
tion now a more suitable center edge can be determined by
computing a diameter three BDMST only considering the
connection costs of the root nodes of the clusters CH−1

i .
While this heuristic runs in time O(H · |V |2) when D is

even, the selection of the center edge in the odd-diameter
case adds a term of O(δr · |E|), with δr being the branching
factor of the root cluster in the HRC, leading to an overall
runtime complexity of O(δr · |E|+H · |V |2).

In a following local improvement step the selection of root
nodes (and the center edge) is refined. In case a cluster Ck

i

with chosen root v is no leaf of the simple height-restricted
clustering not all nodes of V (Ck

i)\{v} will straightly connect
to v in the final tree but only the roots of the direct sub-
clusters of Ck

i at level k − 1, cf. Fig. 2(c). This sub-cluster

Algorithm 4: locallyImprove(r)

input : root r of the HRC
output: locally improved roots for each cluster of the

HRC

costs∗ ← costs c(T) of the current BDMST T derived
from the HRC;
T ∗ ← T ;

repeat
improved ← false;
forall v ∈ V do available[v] ← true;

r.root ← best center to connect current roots of all
child clusters rc of r;
update available[·] accordingly;
recursively find for each sub-cluster of r the
currently local optimal root:
• consider only nodes vi with

available[vi] = true,
• consider connection costs to root of parent

cluster,
• if no leaf of the HRC: consider costs to

connect the current roots of direct successor
clusters,
• always update available[·] accordingly;

evaluate current BDMST T derived from the
assigned roots in the HRC;
if c(T) < costs∗ then

T ∗ ← T ;
costs∗ ← c(T);
improved ← true;

until improved = false ;

restore best tree T ∗;

root information was not available in the greedy construction
process since the assignment from root nodes to clusters was
performed top-down but now can be used to adapt for each
cluster the chosen root node iteratively, see Algorithm 4.
This refinement of assigned roots to clusters requires for one
iteration time O(H ·δmax ·|V |) if D is even, where δmax is the
maximal branching factor in the height-restricted clustering,
and O(δr · |E|+H · δmax · |V |) in the odd-diameter case.

Attention has to be payed to the fact that a local improv-
ing move (new root for a specific cluster Ck

i) not necessarily

leads to an improvement of the overall BDMST. Choosing
a node u instead of v as root node for Ck

i can have various
effects on this part of the tree. E.g. u no longer can act
as root for one of the clusters at a lower level; moreover,
v now has to be connected as a new leaf to the BDMST if
not chosen as a root within one of the sub-clusters of Ck

i .
As a consequence, the stopping criterion is not based on the
existence or absence of an local improvement move but on
the costs of the whole derived BDMST.

3.3.2 Dynamic Programming
The multiple effects on the tree when choosing a specific

node as root for a cluster increase the complexity of deriv-
ing an optimal BDMST for a given hierarchical clustering to
such an extent that it is in general computationally unattrac-
tive. Nevertheless, when making certain restrictions on the
choice of root nodes, it is possible to formulate an efficient
dynamic programming approach for this problem.

Let c(Ck
i , v) denote the minimum costs of the subtree of

the BDMST defined by the cluster Ck
i if it is rooted at node

v ∈ V (Ck
i), i.e. node v has been chosen as root for cluster

Ck
i . These costs can now be recursively defined for each level

and node of a cluster as follows:

c(C0
ord(v), v) = 0 ∀v ∈ V (2)

φ(Ck
i , v) =

X
Ck−1

j ∈Ck
i \{C

k−1
j′ }

min
u∈V (Ck−1

j)

“
cv,u + c(Ck−1

j , u)
”

c(Ck
i , v) = c(Ck−1

j′ , v) + φ(Ck
i , v)

∀k = 1, . . . , H, ∀v ∈ V (Ck
i), v ∈ V (Ck−1

j′)

Ck−1
j′ ∈ Ck

i | v ∈ V (Ck−1
j′) (3)

At level zero each node is a single cluster. Therefore, in
(2) the costs of the corresponding subtrees can be initial-
ized with zero (ord(v) assigns each node v ∈ V an unique
index within 1 and |V |). In the remaining levels we restrict
the root for a cluster Ck

i to nodes that are already roots in
one of its direct sub-clusters Ck−1

j ∈ Ck
i . Then the costs

c(Ck
i , v) are composed of the costs of the subtree rooted at

v at level k− 1 plus – for all remaining direct sub-clusters –
the minimal costs to connect a node u of a sub-cluster with
its subtree to v, referred to as φ(Ck

i , v) in (3). After deriving
all these costs in a bottom-up fashion, optimal root nodes
leading to these costs can be chosen top-down in a second
pass.

Limiting the potential roots of a cluster to root nodes
within one of its sub-clusters obviously leads to suboptimal
trees, especially when the diameter bound is loose and each
root node only has very few connections. Moreover, using
the whole subtree rooted at v from a cluster at level k − 1
for a cluster at level k implies that this subtree is moved
one edge towards the center of the BDMST and therefore
does not exploit the full possible height, a problem arising
for every cluster at every level k ≥ 2.

Beside other implications one major point when choosing
a node v as root is that it no longer has to be connected else-
where in the tree. When computing c(Ck

i , v) and selecting

(a) BDMST with leaves fol-
lowing the clustering.

(b) Problematic path in the
solution (a).

Figure 4: Problem arising when strictly following
the clustering on a complete Euclidean instance with
100 nodes and D = 6. In (b) the interesting area of
(a) near the center of the BDMST is shown enlarged,
a problematic path is highlighted.

another node w from the same sub-cluster Ck−1
j′ that v is

also part of, then the costs c(Ck−1
j′ , w) also contains the costs

to connect (perhaps as root of one of the sub-clusters, more
likely as a leaf of the BDMST) node v. To exactly compute
the contribution of v to the costs of c(Ck−1

j′ , w) is in practice

usually not worth the (huge) effort, in particular when con-
sidering the costs of edges between root nodes in relation to
the costs of connecting a leaf to the tree via a short edge,
which is the goal of the whole clustering heuristic.

This observation can be used to formulate an approxi-
mate dynamic programming approach utilizing a correction
value κv for each node v ∈ V which estimates the costs
arising when v has to be connected as leaf to the BDMST.
There are various possibilities to define these correction val-
ues, preliminary tests showed that a simple choice usually
is sufficient: The subtrees computed at level one correspond
to stars with diameter two. For each cluster at level one
the cheapest star is determined, and for a node v of such a
cluster, κv are the costs to connect it to the center of the
best star. This now leads to the following reformulation of
the recursion to compute the costs c(Ck

i , v):

c(Ck
i , v) = min

“
c(Ck−1

j′ , v), cv,w + c(Ck−1
j′ , w)− κv

”
+

+ φ(Ck
i , v)

∀k = 1, . . . , H, ∀v ∈ V (Ck
i), Ck−1

j′ ∈ Ck
i | v ∈ V (Ck−1

j′),

w ∈ V (Ck−1
j′) | w 6= v (4)

Both dynamic programming approaches compute roots for
clusters within time O(H · |V |2) and O(|V | · |E|+H · |V |2)
for the even- and odd-diameter cases, respectively.

3.4 Inherent Problem of Clustering
One problem arising when strictly following the clustering

to the leaves of the BDMST – in particular when the diame-
ter bound is weak in comparison to the number of nodes – is
illustrated in Fig. 4. This situation can be observed when a
node of a (sub-)cluster is chosen to be part of the backbone
(a root node), and other nodes close to it not. The node

Algorithm 5: refineCuts(ς)

input : cutting positions ςi, i = 1, . . . , H−1
output: improved cutting positions

T ∗ ← buildTree(ς) ; // currently best BDMST T ∗

ς∗ ← ς ; // currently best cutting positions ς∗

clear cache for sets of cutting positions and insert ς;
lwi← 0 ; // loops without improvement

repeat
for i = 1, . . . , H − 1 do

if i = 1 then ∆← (|V | − 1)− ς∗1 else
∆← ς∗i−1 − ς∗i ;
repeat

ςi ← bς∗i + ∆ ·N(µ, σ2) + 0.5c;
until check(ςi) is ok ;

if ς ∈ cache then
lwi← lwi+ 1;
continue;

insert ς into cache;

T ← buildTree(ς);
if c(T) < c(T ∗) then

T ∗ ← T ;
ς∗ ← ς;
lwi← 0;

else
lwi← lwi+ 1;

until lwi ≥ lmax ;

right below the center of the BDMST in Fig. 4(a) and the
close-up (b) is connected to the root of the last sub-cluster
following the hierarchy of the clustering neglecting the fact
that there are much cheaper opportunities. The negative
effect on the solution quality is noticeable especially for leaf
nodes but is not restricted to them.

A possibility to deal with this problem is to free the leaves
from their strict membership to a specific cluster and to al-
low them to connect to the root of any cluster in the cheapest
possible way. This usually leads to – also visually observable
– better results.

4. REFINING CUTTING POSITIONS
In Section 3.2 the computation of initial cutting positions

ςi, i = 1, . . . , H−1, through the dendrogram to receive a
height-restricted clustering has been presented. Since these
ςi have a formidable impact on solution quality we addi-
tionally implemented an approach similar to a greedy ran-
domized adaptive search procedure (GRASP) [17] to further
refine them, see Algorithm 5. In each iteration all cutting
positions of the currently best solution are perturbated using
the difference ∆ to the next lower indexed cutting position
(for ς1 the value (|V | − 1) − ς1 is used), multiplied with a
Gaussian distributed random value N(µ, σ2).

To derive an actual BDMST from the cutting positions ς
in buildTree(ς) a fast construction heuristic should be ap-
plied like the greedy heuristic with local search presented in
the previous Section 3.3. To avoid redundant computations
a cache is used to identify sets of cutting positions ς already
evaluated. Furthermore, a new cutting position ςi is only ac-
cepted if it lies within the interval [|V |−2, 1] and if it differs
from all ςj , j < i, which is tested in check(ςi). The whole

refinement process is stopped when lmax iterations without
improvement have been performed, or no sets of new cutting
positions could be found, respectively.

5. THE ODD-DIAMETER CASE
In case the diameter bound D is odd no single node forms

the center of a BDMST but an edge, the center edge, con-
necting the two center nodes. This increases – when con-
sidering complete instance graphs – the number of tests to
determine the best center from O(|V |2) (when D is even)
to O(|V |3). Due to the large number of trees that have to
be derived from a height-restricted clustering in the various
steps of the clustering heuristic the complexity increase has
a substantial impact on the runtime.

An opportunity to speed-up computations in the odd-
diameter case is to reduce in a preprocessing step the number
of potential center edges that are considered. Given a height-
restricted clustering the center edge (building the backbone
at level H) will connect to every root node of the clusters
at level H − 1. In case the Euclidean instance is sufficiently
large the set of plausible center edges can be restricted to
edges where both endpoints are within the rectangle spanned
by these root nodes. Since the optimal roots for the clusters
at level H − 1 are not known they have to be heuristically
determined. This can easily be done by computing diame-
ter two stars for all these clusters and then choosing for each
cluster the center of the cheapest star as representative for
its root node. With increasing diameter bound the rectangle
spanned by these nodes at level H−1 becomes smaller, thus
the number of potential center edges is further reduced.

When searching for a value of parameter x in Equation (1)
to determine a good set of initial cutting positions through
the dendrogram using binary search the charts as shown
in Fig. 3 (objective value of the BDMST over x) are almost
identical for an odd diameter D and the even diameter D−1.
That is, a good value of x for an even D usually is also an
appropriate choice for D+1 making it unnecessary to derive
odd BDMSTs with an center edge in this step.

Unfortunately, this strong connection between the odd-
diameter D case and its even correspondent D − 1 is no
longer observable in the greedy randomized adaptive search
procedure to refine the initially calculated cutting positions.
Since the runtime increases dramatically especially when the
diameter bound is tight we implemented the following addi-
tional variant: In general just BDMSTs with an even diame-
ter D−1 are derived during the refinement process. Only in
case a new best solution is found also a BDMST with the cor-
rect odd diameter D is computed based on the current HRC.

6. USAGE AS IMPROVEMENT METHOD
The heuristics presented so far to derive a good tree from

a height-restricted clustering can also be used to locally im-
prove solutions obtained from another (meta-)heuristic since
from each valid solution a corresponding hierarchical clus-
tering of the nodes can be determined easily.

Creating a simple height-restricted clustering as shown
in Fig. 2(b) from a diameter constrained tree (c) is straight-
forward, only root nodes not already part of the leaves of the
HRC (just node 9 in the figure) have to be treated separately.
Every such root has to be assigned to one of its direct sub-
clusters where it additionally has to be propagated to further
sub-clusters until a leaf of the HRC is reached. The decision

Table 1: Averaged objective values over all 15 Euclidean Steiner tree instances of Beasley’s OR-Library with
1000 nodes for various diameter bounds and (meta-)heuristics, the standard deviations are given parentheses.
In addition, the averaged maximum running times of the clustering heuristics that were used as time limit
for CBTC and RTC are listed.

without VND with VND
D CBTC RTC CdA CdB tmax(C) [s] RTC CdB ACO tmax(C) [s]

4 329.0261 (6.02) 146.4919 (3.88) 68.3241 (0.72) 68.3226 (0.70) 2.54 (0.09) 65.2061 (0.55) 65.1598 (0.56) 65.8010 (0.48) 5.56 (1.01)
6 306.2655 (9.02) 80.8636 (2.40) 47.4045 (4.85) 47.1702 (4.61) 4.55 (0.49) 41.4577 (0.36) 41.3127 (0.50) 42.1167 (0.26) 9.94 (1.52)
8 288.3842 (7.52) 53.2535 (1.33) 37.0706 (1.35) 36.9408 (1.34) 5.92 (0.42) 35.0511 (0.35) 34.2171 (0.29) 34.7489 (0.23) 11.61 (1.61)
10 266.3665 (9.01) 41.1201 (0.68) 33.5460 (0.67) 33.3408 (0.66) 6.79 (0.42) 32.1181 (0.31) 30.9704 (0.24) 31.0388 (0.20) 13.43 (2.16)
12 250.0016 (8.01) 35.7590 (0.47) 32.2571 (0.48) 31.9561 (0.44) 7.11 (0.33) 30.2897 (0.29) 29.1796 (0.26) 28.6356 (0.23) 14.68 (2.49)
14 237.1403 (6.28) 33.3644 (0.30) 31.3790 (0.37) 31.0176 (0.33) 7.00 (0.64) 29.0940 (0.28) 28.0093 (0.23) 26.6524 (0.32) 15.05 (3.00)
16 224.3123 (5.72) 32.1965 (0.24) 30.7937 (0.33) 30.4287 (0.29) 7.20 (0.72) 28.2433 (0.28) 27.1363 (0.19) 25.5760 (0.19) 15.63 (2.89)
18 210.9872 (7.63) 31.5826 (0.24) 30.5182 (0.29) 30.1348 (0.27) 7.32 (0.81) 27.6008 (0.27) 26.5601 (0.20) 24.8811 (0.16) 16.78 (3.61)
20 197.1772 (7.99) 31.2682 (0.22) 30.3116 (0.31) 30.0384 (0.28) 7.57 (0.76) 27.1091 (0.26) 26.1079 (0.23) 24.3698 (0.15) 18.54 (3.89)
22 183.0157 (8.03) 31.0864 (0.22) 30.2344 (0.30) 30.0739 (0.28) 8.56 (0.98) 26.6984 (0.28) 25.8048 (0.21) 24.0129 (0.17) 21.39 (5.19)
24 172.8251 (10.59) 30.9921 (0.23) 30.0202 (0.23) 30.1603 (0.27) 8.28 (1.41) 26.3648 (0.27) 25.4523 (0.24) 23.7723 (0.20) 21.36 (6.42)

5 241.3032 (5.09) 117.3238 (2.22) 62.2867 (0.76) 62.0646 (0.67) 24.59 (2.02) 58.9883 (0.53) 58.7930 (0.56) 59.5964 (0.49) 30.82 (3.28)
7 222.1441 (4.50) 67.7577 (1.31) 46.7291 (3.92) 46.4112 (3.73) 27.94 (1.79) 39.4703 (0.34) 39.3817 (0.46) 39.9948 (0.25) 38.79 (4.03)
9 204.6141 (6.00) 47.3168 (0.85) 37.0224 (1.25) 36.8904 (1.27) 18.27 (1.68) 33.9677 (0.30) 33.2142 (0.25) 33.5907 (0.23) 32.51 (4.88)
11 189.7513 (4.62) 38.4754 (0.50) 33.4140 (0.70) 33.1749 (0.66) 13.97 (0.71) 31.3661 (0.29) 30.3683 (0.20) 30.2701 (0.19) 29.47 (4.70)
13 175.7382 (4.23) 34.5154 (0.32) 32.1094 (0.43) 31.8041 (0.41) 12.79 (1.17) 29.7644 (0.28) 28.7554 (0.21) 28.1224 (0.20) 29.94 (6.28)
15 163.1926 (4.31) 32.7069 (0.25) 31.2654 (0.35) 30.8941 (0.32) 11.03 (1.27) 28.6966 (0.26) 27.6899 (0.20) 26.3893 (0.25) 28.54 (6.29)
17 149.9852 (5.14) 31.8467 (0.23) 30.7699 (0.33) 30.3664 (0.30) 8.93 (0.94) 27.9309 (0.27) 26.9097 (0.19) 25.3794 (0.23) 28.47 (6.19)
19 139.9730 (4.32) 31.4048 (0.21) 30.5350 (0.29) 30.0837 (0.27) 7.91 (1.08) 27.3691 (0.26) 26.3784 (0.20) 24.7705 (0.18) 29.67 (7.37)
21 128.1830 (4.90) 31.1697 (0.23) 30.3017 (0.30) 30.0384 (0.27) 7.60 (0.71) 26.9015 (0.26) 25.9415 (0.20) 24.3128 (0.18) 30.05 (6.74)
23 119.5551 (4.46) 31.0421 (0.22) 30.0627 (0.24) 30.1166 (0.31) 6.96 (0.81) 26.5346 (0.27) 25.6021 (0.21) 23.9719 (0.21) 28.55 (7.05)
25 110.6725 (4.39) 30.9772 (0.23) 29.9450 (0.21) 30.1393 (0.24) 6.68 (0.89) 26.2126 (0.26) 25.2289 (0.21) 23.7773 (0.25) 25.59 (6.02)

which sub-cluster to choose can be based on the same crite-
rion as in the agglomeration process the choice which clus-
ters to merge, i.e. a root node is assigned to the sub-cluster
where the maximum distance to a node of it is minimal.

7. COMPUTATIONAL RESULTS
The experiments have been performed on an AMD Opte-

ron 2214 dual-core machine (2.2GHz) utilizing benchmark
instances already used in the corresponding literature (e.g.
[15, 11]) from Beasley’s OR-Library [3, 2] originally pro-
posed for the Euclidean Steiner tree problem. These com-
plete instances contain point coordinates in the unit square,
and the Euclidean distances between each pair of points are
taken as edge costs. As performance differences are more
significant on larger instances, we restrict our attention here
to the 15 largest instances with 1000 nodes.

Table 1 summarizes the results obtained for various heuris-
tics. Given are the objective values averaged over all 15 in-
stances, where for each instance 30 independent runs have
been performed, together with the standard deviations in
parentheses. Considered are the two previous construction
heuristics CBTC and RTC as well as the clustering heuristic
C where each cluster a good root node is assigned using one
of the two dynamic programming approaches dA (restricted
search space) and dB (approximating optimal cluster roots
using a correction value κ). Since dA and dB derive no op-
timal trees for a given clustering local improvement is used
to further enhance their solutions.

Binary search to identify a good value for x was performed

within |V |
2

and |V |, except when D < 6. In this latter case

the interval bounds have been set to |V |
20

and |V |
8

. In GRASP

a mean µ of 0 and, after preliminary tests, a variance σ2 of
0.25 was used, and the procedure was aborted after lmax =

100 iterations without improvement. The time (in seconds)
listed is the over all instances averaged maximum running
time of CdA and CdB , which was also used as time limit
for the corresponding executions of CBTC and RTC. To
verify statistical significance paired Wilcoxon signed rank
tests have been performed.

Clearly, CBTC is not suitable for this type of instances, its
strength lies in problems with random edge costs. The clus-
tering heuristic outperforms RTC for every diameter bound,
where the gap in solution quality is huge when D is small
and becomes less with increasing diameter bound. In gen-
eral, CdB outperforms all other heuristics significantly with
an error probability of less than 2.2 · 10−16. Only when the
diameter bound gets noticeably loose the first dynamic pro-
gramming approach CdA dominates CdB (error probability
always less than 2.13 · 10−9). It can also be seen that in
the even-diameter case the runtime of the clustering heuris-
tic only increases moderately with the number of levels in
the height-restricted clustering. When D is odd the search
for a good center edge dominates the runtime. Thus, with
increasing D the clustering heuristics even get faster since
the number of potential center edges to be considered, de-
termined in the presented preprocessing step, decreases (less
direct successors of the root cluster in the HRC).

We also performed test where a strong variable neighbor-
hood descend (VND) as proposed in [11] has been applied
to the best solutions of the various construction heuristics.
As expected, it flattens the differences but still the BDMSTs
derived from clustering heuristic solutions are in general of
higher quality. On instances with diameter bounds less than
approximately 10, these trees – computed in a few seconds –
can also compete with results from the leading metaheuris-
tic, the ACO from [11], which requires computation times
of one hour and more.

Experiments including the usage of the clustering heuristic
as improvement method (see Section 6) in the VND revealed
that it can significantly improve the solution quality, but
only in case the diameter bound D is less than (roughly) 14
on instances with 1000 nodes. Otherwise, the VND with the
four neighborhoods presented in [11] is usually able to reach
the same solution quality, and this typically in less time.

8. CONCLUSIONS AND FUTURE WORK
On the more difficult to solve Euclidean BDMST instances

fast construction heuristics proposed so far fail to compute
a good backbone consisting of few but long edges to allow
the majority of the nodes to connect to the tree via rela-
tively short edges. In this work we presented a constructive
heuristic that exploits a hierarchical clustering to guide the
process of building a backbone.

The clustering heuristic constructs diameter constrained
trees within three steps: determining a hierarchical clus-
tering, reducing the height of this clustering according to
the diameter bound, and finally deriving a BDMST from
this height-restricted clustering. Various techniques are used
within the individual phases, e.g. a GRASP-like strategy to
refine cutting positions through the dendrogram, or dynamic
programming to assign each cluster a good root node.

In particular on large Euclidean instances with more than
500 nodes the BDMSTs obtained by the clustering heuris-
tic are in general of high quality and outperform the other
construction heuristics significantly, especially when the di-
ameter bound is tight. When using a strong VND to fur-
ther improve these solutions they can also compete with re-
sults from an ACO, currently the leading metaheuristic for
this problem. The computation of our heuristic followed by
VND, however, requires only a few seconds in comparison
to one hour and more per run of the ACO.

The negative effects when strictly following the clustering
as discussed in Section 3.4 may be further addressed in two
different ways. One simple approach would be to let the
clustering-based construction heuristic build only the first
part (near the center of the BDMST) of the backbone and
to use a Prim based algorithm (CBTC or RTC) for the re-
maining nodes. A more sophisticated version would allow a
root u of a sub-cluster not only to connect to the root of its
direct parent cluster v but to any node of the already built
backbone on the path from the center of the BDMST to
u. In case a cheaper connection is possible than (u, v) some
clusters merged in the subtree rooted at u for the height-
restricted clustering can again be split since now u is con-
nected at least one edge closer to the center of the BDMST,
and so this subtree would otherwise not fully exploit the
available height.

9. REFERENCES
[1] K. Bala, K. Petropoulos, and T. E. Stern.

Multicasting in a linear lightwave network. In Proc. of
the 12th IEEE Conference on Computer
Communications, pages 1350–1358. IEEE Press, 1993.

[2] J. Beasley. OR-Library: Capacitated MST, 2005.
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/

capmstinfo.html.

[3] J. E. Beasley. A heuristic for Euclidean and rectilinear
Steiner problems. European Journal of Operational
Research, 58:284–292, 1992.

[4] R. E. Bellman. Dynamic Programming. Dover
Publications Inc., 2003.

[5] A. Bookstein and S. T. Klein. Compression of
correlated bit-vectors. Information Systems,
16(4):387–400, 1991.

[6] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, New York, 1979.

[7] L. Gouveia and T. L. Magnanti. Network flow models
for designing diameter-constrained minimum spanning
and Steiner trees. Networks, 41(3):159–173, 2003.

[8] L. Gouveia, T. L. Magnanti, and C. Requejo. A 2-path
approach for odd-diameter-constrained minimum
spanning and Steiner trees. Networks, 44(4):254–265,
2004.

[9] M. Gruber and G. R. Raidl. (Meta-)heuristic
separation of jump cuts in a branch&cut approach for
the bounded diameter minimum spanning tree
problem, 2008. submitted to a special issue on
Matheuristics of Operations Research/Computer
Science Interface Series, Springer.

[10] M. Gruber and G. R. Raidl. Cluster-based
(meta-)heuristics for the Euclidean bounded diameter
minimum spanning tree problem. In
A. Quesada-Arencibia et al., editors, Extended
Abstracts of the Twelfth International Conference on
Computer Aided Systems Theory (EUROCAST 2009),
pages 228–231, Gran Canaria, Spain, 2009.

[11] M. Gruber, J. van Hemert, and G. R. Raidl.
Neighborhood searches for the bounded diameter
minimum spanning tree problem embedded in a VNS,
EA, and ACO. In M. Keijzer et al., editors, Proc. of
the Genetic and Evolutionary Computation
Conference 2006, volume 2, pages 1187–1194, 2006.

[12] A. Jain, M. Murty, and P.J.Flynn. Data clustering: a
review. ACM Computing Surveys (CSUR),
31:264–323, 1999.

[13] B. A. Julstrom. Greedy heuristics for the bounded
diameter minimum spanning tree problem. Journal of
Experimental Algorithmics (JEA), 14:1.1:1–1.1:14,
February 2009.

[14] R. C. Prim. Shortest connection networks and some
generalizations. Bell System Technical Journal,
36:1389–1401, 1957.

[15] G. R. Raidl and B. A. Julstrom. Greedy heuristics and
an evolutionary algorithm for the bounded-diameter
minimum spanning tree problem. In G. Lamont et al.,
editors, Proc. of the ACM Symposium on Applied
Computing, pages 747–752. ACM Press, 2003.

[16] K. Raymond. A tree-based algorithm for distributed
mutual exclusion. ACM Transactions on Computer
Systems, 7(1):61–77, 1989.

[17] M. Resende and C. Ribeiro. Greedy randomized
adaptive search procedures. In F. Glover and
G. Kochenberger, editors, Handbook of Metaheuristics,
pages 219–249. Kluwer Academic Publishers, 2003.

[18] A. Singh and A. K. Gupta. Improved heuristics for the
bounded-diameter minimum spanning tree problem.
Soft Computing – A Fusion of Foundations,
Methodologies and Applications, 11(10):911–921, 2007.

