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Abstract. The bounded diameter minimum spanning tree problem is
an NP-hard combinatorial optimization problem arising in particular in
network design. There exist various exact and metaheuristic approaches
addressing this problem, whereas fast construction heuristics are primar-
ily based on Prim’s minimum spanning tree algorithm and fail to produce
reasonable solutions in particular on large Euclidean instances.

In this work we present a method based on hierarchical clustering to
guide the construction process of a diameter constrained tree. Solutions
obtained are further refined using a greedy randomized adaptive search
procedure. Especially on large Euclidean instances with a tight diameter
bound the results are excellent. In this case the solution quality can also
compete with that of a leading metaheuristic.

1 Introduction

The bounded diameter minimum spanning tree (BDMST) problem is a com-
binatorial optimization problem appearing in applications such as wire-based
communication network design when quality of service is of concern, in ad-hoc
wireless networks, and also in the areas of data compression and distributed
mutual exclusion algorithms.

The goal is to identify a tree-structured network of minimum costs in which
the number of links between any pair of nodes is restricted by a constant D, the
diameter. More formally, we are given an undirected connected graph G = (V,E)
with node set V and edge set E and associated costs ce ≥ 0, ∀e ∈ E. We seek
a spanning tree T = (V,ET ) with edge set ET ⊆ E whose diameter does not
exceed D ≥ 2, and whose total costs c(T ) =

∑

e∈ET
ce are minimal. This task

can also be seen as choosing a center – one single node if D is even or an edge in
the odd-diameter case – and building a height-restricted tree where the unique
path from this center to any node of the tree consists of no more than H = ⌊D

2 ⌋
edges. The BDMST problem is known to be NP-hard for 4 ≤ D < |V | − 1 [1].



(a) CBTC (271.3976). (b) RTC (41.1799). (c) ACO (31.0903).

Fig. 1. A BDMST with D = 10 constructed using (a) CBTC, compared to (b) RTC
and (c) a solution obtained by an ACO (complete, Euclidean graph with 1000 nodes
distributed randomly in the unit square; objective values are given in parentheses).

2 Previous Work

To solve this problem to proven optimality there exist various integer linear
programming (ILP) approaches like hop-indexed multi-commodity network flow
models [2, 3] or a Branch&Cut formulation based on a more compact model
but strengthened by a special class of cutting planes [4]. They all have in com-
mon that they are only applicable to relatively small instances, i.e. significantly
less than 100 nodes when dealing with complete graphs. For larger instances,
metaheuristics have been developed, including evolutionary algorithms [5, 6], a
variable neighborhood search, and an ant colony optimization [7] which is cur-
rently the leading metaheuristic to obtain high-quality solutions.

In contrast to the large variety of metaheuristic approaches the number of
simple and fast construction heuristics applicable to very large instances is lim-
ited. They are primarily based on Prim’s minimum spanning tree (MST) algo-
rithm and grow a height-restricted tree from a chosen center. One such example
is the center based tree construction (CBTC) [8]. This approach works reason-
ably well on instances with random edge costs, but on Euclidean instances this
leads to a backbone (the edges near the center) of relatively short edges. The
majority of nodes have to be connected to this backbone via rather long edges,
see Fig. 1(a). On the contrary, a reasonable solution for this instance, shown in
Fig. 1(c), demonstrates that the backbone should consist of a few longer edges
to span the whole area to allow the majority of nodes to be connected as leaves
by much cheaper edges. In a pure greedy construction heuristic this observa-
tion is difficult to realize. In the randomized tree construction approach (RTC,
Fig. 1(b)) from [8] not the overall cheapest node is added to the partial span-
ning tree but a random one which then is connected by the cheapest feasible
edge. Thus at least the possibility to include longer edges into the backbone at
the beginning of the algorithm is increased. For Euclidean instances RTC has
been so far the best choice to quickly create a first solution as basis for exact or
metaheuristic approaches.
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Fig. 2. Hierarchical clustering (a), height-restricted clustering (b), and the resulting
BDMST with D = 4 (c) after choosing a root for each cluster in (b). In (a) ❶. . . ❾

denote the merge numbers, cf. Section 3.2.

3 Clustering-Based Construction Heuristic

The clustering-based construction heuristic is especially designed for very large
Euclidean instances and is based on a hierarchical clustering that guides the
algorithm to find a good backbone. It can be divided into three steps: Creating
a hierarchical clustering (dendrogram) of all instance nodes based on the edge
costs, deriving a height-restricted clustering (HRC) from this dendrogram, and
finding for each cluster in the HRC a good root (center) node. In the following
we will concentrate on the even-diameter case.

3.1 Hierarchical Clustering

For the purpose of creating a good backbone especially for Euclidean instances
agglomerative hierarchical clustering seems to provide a good guidance. To get
spatially confined areas, two clusters A and B are merged when max{ca,b : a ∈
A, b ∈ B} is minimal over all pairs of clusters (complete linkage clustering).

The agglomeration starts with each node being an individual cluster, and
stops when all nodes are merged within one single cluster. The resulting hi-
erarchical clustering can be illustrated as a binary tree, also referred to as a
dendrogram, with |V | − 1 inner nodes, each representing one merging operation
during clustering, and |V | leaves; see Fig. 2(a) for an example with |V | = 10.

3.2 Height-Restricted Clustering

After performing the agglomerative hierarchical clustering, the resulting den-
drogram has to be transformed into a height-restricted clustering (HRC) for the
BDMST, i.e. into a representation of the clustering respecting the diameter and
thus the height condition. In general, the dendrogram itself will violate this con-
straint, see Fig. 2(a). Therefore, some of the nodes in the dendrogram have to
be merged to finally get a HRC of height H − 1; see Fig. 2(b).

For the quality of the resulting tree this merging of dendrogram nodes is
a crucial step. It can be described by H − 1 cuts through the dendrogram.
Preliminary tests revealed that the information at which iteration two clusters



have been merged in the agglomeration process, the merge number, allows a fine-
grained control of the cutting positions (leaves are assigned a merge number of
zero). Based on these merge numbers cutting positions ς are computed as

ςi = (|V |−1) − 2 i·
log2 x

H−1 i = 1, . . . ,H−1 , (1)

where x is a strategy parameter that can be interpreted as the number of nodes
that shall form the backbone. An experimental evaluation showed that for D ≥ 6
promising values for x can be found close to |V |. Only in case of the smallest

possible even diameter of four x should be chosen near |V |10 . The approximately
best value for x for a specific Euclidean instance and D can be determined by

applying binary search for x ∈
[

|V |
10 , |V |

]

. These cutting positions can now be

utilized to build the HRC for the BDMST using a simple tree traversal algorithm.

3.3 Determining Root Nodes

Finally, from the height-restricted clustering a BDMST has to be derived by
identifying for each (sub-)cluster an appropriate root; cf. Figs. 2(b) and (c). This
can be done heuristically in a greedy fashion based on rough cost estimations for
each cluster followed by a local improvement step, or by a more sophisticated
approach based on dynamic programming.

In the following we will require a more formal and in some points augmented
definition of a height-restricted hierarchical clustering. Let C0 = {C0

1 , . . . , C0
|V |}

be the set of clusters at the lowest level 0, where each node of V forms an
individual cluster. Moreover, let Ck = {Ck

1 , . . . , Ck
ik
} be the clustering at the

higher levels k = 1, . . . ,H. All Ck
i , i = 1, . . . , ik, are pairwise disjoint, and

Ck
1 ∪ Ck

2 ∪ . . . ∪ Ck
ik

= Ck−1. CH is the highest level, and it is singleton, i.e.

CH = {CH
1 }; it refers to all nodes in V aggregated within one cluster. Fur-

thermore, by V (Ck
i ) we denote the set of nodes in V represented by the cluster

Ck
i , i.e. the nodes part of this cluster and all its sub-clusters at lower levels;

V (Ck) = V (Ck
1 ) ∪ . . . ∪ V (Ck

ik
) = V , and V (Ck

1 ) ∩ . . . ∩ V (Ck
ik

) = ∅, for all
k = 0, . . . ,H. This definition mainly corresponds to the simple height-restricted
clustering previously presented in Fig. 2(b) with the exception that clusters at
level zero corresponding to the individual nodes have not been realized explicitly.

Greedy Heuristic with Local Improvement: A simple greedy heuristic to
find an initial root for each cluster Ck

i can be based on stars, i.e. trees with a
diameter of two where a single node v of the cluster acts as center while the
remaining nodes V (Ck

i ) \ {v} are connected directly to it. Such a star can be
computed for every node v ∈ V (Ck

i ), the center leading to a star of minimal
costs for Ck

i is chosen as root for this cluster. The heuristic starts at cluster CH

and assigns roots to clusters top-down until reaching the leaves of the simple
height-restricted clustering. Note that a node already selected as root at a level
l no longer has to be considered in levels less than l, which can also cause an
empty cluster in case all nodes of it are already used as roots at higher levels.
This heuristic runs in time O(H · |V |2).



In a following local improvement step the selection of root nodes is refined.
In case a cluster Ck

i with chosen root v is no leaf of the simple HRC not all nodes
of V (Ck

i ) \ {v} will straightly connect to v in the final tree but only the roots of
the direct sub-clusters of Ck

i at level k − 1, cf. Fig. 2(c). This sub-cluster root
information was not available in the greedy construction process but now can be
used to adapt for each cluster the chosen root node iteratively. This refinement
of assigned roots to clusters requires for one iteration time O(H · δmax · |V |),
where δmax is the maximal branching factor in the HRC.

Dynamic Programming: There are multiple effects on the tree when choosing
a specific node v as root for a cluster, e.g. v no longer can act as root for one of
the sub-clusters, but it also has not be connected as leaf to the tree. These effects
increase the complexity of deriving an optimal BDMST for a given hierarchical
clustering to such an extent that it is in general computationally unattractive.
Nevertheless, when making certain assumptions it is possible to formulate an
efficient dynamic programming approach for this problem.

Let c(Ck
i , v) denote the minimum costs of the subtree of the BDMST defined

by the cluster Ck
i if it is rooted at node v ∈ V (Ck

i ), i.e. node v has been chosen as
root for cluster Ck

i . Beside other implications one major point when choosing a
node v as root is that it no longer has to be connected elsewhere in the tree. When
computing c(Ck

i , v) and selecting another node w from the same sub-cluster Ck−1
j′

that v is also part of, then the costs c(Ck−1
j′ , w) also contains the costs to connect

(perhaps as root of one of the sub-clusters, more likely as a leaf of the BDMST)
node v. To exactly compute the contribution of v to the costs of c(Ck−1

j′ , w) is in
practice usually not worth the (huge) effort, in particular when considering the
costs of edges between root nodes in relation to the costs of connecting a leaf to
the tree via a short edge, which is the goal of the whole clustering heuristic.

This observation can be used to formulate an approximate dynamic pro-
gramming approach utilizing a correction value κv for each node v ∈ V which
estimates the costs arising when v has to be connected as leaf to the BDMST.
There are various possibilities to define these correction values, preliminary tests
showed that a simple choice usually is sufficient: For each cluster at level one
the cheapest star is determined, and for a node v of such a cluster, κv are the
costs to connect it to the center of the best star. The costs c(Ck

i , v) can now be
recursively defined for each level and node of a cluster as follows:

c(C0
ord(v), v) = 0 ∀v ∈ V (2)

φ(Ck
i , v) =

X

C
k−1
j

∈Ck
i
\{C

k−1

j′
}

min
u∈V (Ck−1

j
)

“

cv,u + c(Ck−1
j , u)

”

c(Ck
i , v) = min

“

c(Ck−1
j′ , v), cv,w + c(Ck−1

j′ , w) − κv

”

+ φ(Ck
i , v)

∀k = 1, . . . , H; ∀v ∈ V (Ck
i ); C

k−1
j′ ∈ C

k
i | v ∈ V (Ck−1

j′ ); w ∈ V (Ck−1
j′ ) | w 6= v (3)



Algorithm 1: refineCuts(ς)
input : cutting positions ςi, i = 1, . . . , H−1
output: improved cutting positions

T∗ ← buildTree(ς) ; // currently best BDMST T∗1

ς∗ ← ς ; // currently best cutting positions ς∗2

clear cache for sets of cutting positions and insert ς;3

lwi← 0 ; // loops without improvement4

repeat5

for i = 1, . . . , H − 1 do6

if i = 1 then ∆← (|V | − 1)− ς∗1 else ∆← ς∗i−1 − ς∗i ;7

repeat ςi ← ⌊ς
∗

i + ∆ ·N(µ, σ2) + 0.5⌋; until check(ςi) is ok8

if ς ∈ cache then lwi← lwi + 1 and continue;9

insert ς into cache;10

T ← buildTree(ς);11

if c(T ) < c(T∗) then T∗ ← T ; ς∗ ← ς; lwi← 0; else lwi← lwi + 1;12

until lwi ≥ lmax ;13

At level zero each node is a single cluster. Therefore, in (2) the costs of the
corresponding subtrees can be initialized with zero (ord(v) assigns each node
v ∈ V an unique index within 1 and |V |). Then the costs c(Ck

i , v) are composed
of two parts: The minimal costs of either using directly the subtree rooted at
v from level k − 1 or another node w from the same sub-cluster Ck−1

j′ , plus for
all remaining direct sub-clusters the minimal costs to connect a node u of a
sub-cluster with its subtree to v, referred to as φ(Ck

i , v) in (3). After deriving
all these costs in a bottom-up fashion, optimal root nodes leading to these costs
can be chosen top-down in a second pass. This dynamic programming approach
computes roots for clusters within time O(H · |V |2).

Connecting Leaf Nodes: When strictly following the clustering the leaves
of the BDMST has to connect to the root nodes of their respective clusters.
However, this strategy neglects the fact that there are in general much cheaper
opportunities since a leaf node can be attached to any root node of a cluster with-
out violating the height and therefore the diameter restriction. Thus, releasing
the leaves from their strict membership to a specific cluster and to allow them
to establish the cheapest possible connection to an arbitrary root can improve
the solution quality substantially.

4 Refining Cutting Positions

In Section 3.2 the computation of initial cutting positions ςi, i = 1, . . . ,H−1,
through the dendrogram to receive a height-restricted clustering has been pre-
sented. Since these ςi have a formidable impact on solution quality we addition-
ally implemented an approach similar to a greedy randomized adaptive search
procedure (GRASP) to further refine them, see Algorithm 1. In each iteration all
cutting positions of the currently best solution are perturbated using the differ-
ence ∆ to the next lower indexed cutting position (for ς1 the value (|V |− 1)− ς1
is used), multiplied with a Gaussian distributed random value N(µ, σ2).



Table 1. Averaged objective values over all 15 Euclidean Steiner tree instances from [9]
with 1000 nodes for various even diameter bounds and (meta-) heuristics, the standard
deviations are given parentheses.

without VND with VND
D CBTC RTC CL t(CL) [s] RTC CL ACO t(CL) [s]

4 329.026 (6.02) 146.492 (3.88) 68.323 (0.70) 2.54 (0.09) 65.206 (0.55) 65.160 (0.56) 65.801 (0.48) 5.56 (1.01)
6 306.266 (9.02) 80.864 (2.40) 47.170 (4.61) 4.55 (0.49) 41.458 (0.36) 41.313 (0.50) 42.117 (0.29) 9.94 (1.52)
8 288.384 (7.52) 53.253 (1.33) 36.941 (1.34) 5.92 (0.42) 35.051 (0.35) 34.217 (0.29) 34.749 (0.21) 11.61 (1.61)
10 266.366 (9.01) 41.120 (0.68) 33.341 (0.66) 6.79 (0.42) 32.118 (0.31) 30.970 (0.24) 31.039 (0.22) 13.43 (2.16)
12 250.002 (8.01) 35.759 (0.47) 31.956 (0.44) 7.11 (0.33) 30.290 (0.29) 29.180 (0.26) 28.636 (0.22) 14.68 (2.49)
14 237.140 (6.28) 33.364 (0.30) 31.018 (0.33) 7.00 (0.64) 29.094 (0.28) 28.009 (0.23) 26.652 (0.30) 15.05 (3.00)
16 224.312 (5.72) 32.196 (0.24) 30.429 (0.29) 7.20 (0.72) 28.243 (0.28) 27.136 (0.19) 25.576 (0.15) 15.63 (2.89)
18 210.987 (7.63) 31.583 (0.24) 30.135 (0.27) 7.32 (0.81) 27.601 (0.27) 26.560 (0.20) 24.881 (0.18) 16.78 (3.61)
20 197.177 (7.99) 31.268 (0.22) 30.038 (0.28) 7.57 (0.76) 27.109 (0.26) 26.108 (0.23) 24.370 (0.14) 18.54 (3.89)
22 183.016 (8.03) 31.086 (0.22) 30.074 (0.28) 8.56 (0.98) 26.698 (0.28) 25.805 (0.21) 24.013 (0.16) 21.39 (5.19)
24 172.825 (10.59) 30.992 (0.23) 30.160 (0.27) 8.28 (1.41) 26.365 (0.27) 25.452 (0.24) 23.772 (0.19) 21.36 (6.42)

To derive an actual BDMST from the cutting positions ς in buildTree(ς) a
fast construction heuristic should be applied like the greedy heuristic with local
search presented in the previous Section 3.3. To avoid redundant computations
a cache is used to identify sets of cutting positions ς already evaluated. Fur-
thermore, a new cutting position ςi is only accepted if it lies within the interval
[|V | − 2, 1] and if it differs from all ςj , j < i, which is tested in check(ςi). The
whole refinement process is stopped when lmax iterations without improvement
have been performed, or no sets of new cutting positions could be found.

5 Computational Results

The experiments have been performed on an AMD Opteron 2214 (2.2GHz) uti-
lizing benchmark instances already used in the corresponding literature from
Beasley’s OR-Library [9] originally proposed for the Euclidean Steiner tree prob-
lem. These complete instances contain point coordinates in the unit square, and
the Euclidean distances between each pair of points are taken as edge costs. As
performance differences are more significant on larger instances, we restrict our
attention here to the 15 largest instances with 1000 nodes.

Table 1 summarizes the results obtained for various heuristics. Given are
the objective values averaged over all 15 instances (30 independent runs per in-
stance), together with the standard deviations in parentheses. Considered are
the two established construction heuristics CBTC and RTC as well as the clus-
tering heuristic CL. In GRASP a mean µ of 0 and, after preliminary tests, a
variance σ2 of 0.25 was used, and the procedure was aborted after lmax = 100
iterations without improvement. The time (in seconds) listed is the over all in-
stances averaged running time of the clustering heuristic which was also used
as time limit for the corresponding executions of CBTC and RTC. To verify
statistical significance paired Wilcoxon signed rank tests have been performed.

Clearly, CBTC is not suited for this type of instances, its strength lies in prob-
lems with random edge costs. CL outperforms RTC for every diameter bound



significantly, where the gap in solution quality is huge when D is small. When
applying a strong variable neighborhood descend (VND) as proposed in [7] to the
best solutions of the various construction heuristics the differences are flattened.
Nevertheless, the BDMSTs derived from CL solutions are of higher quality in
general. On instances with a small diameter bound these trees – computed in a
few seconds – can also compete with results from the leading metaheuristic, the
ACO from [7], obtained after one hour of computation.

6 Conclusions

On the more difficult to solve Euclidean BDMST instances fast construction
heuristics proposed so far were primarily based on Prim’s MST algorithm and
were too greedy to compute reasonable results. We presented a constructive
heuristic that exploits a hierarchical clustering to guide the process of building
a diameter-constrained tree.

In particular on large Euclidean instances the BDMSTs obtained by the clus-
tering heuristic are in general of high quality and outperform the other construc-
tion heuristics significantly, especially when the diameter bound is tight. When
using a strong VND to further improve these solutions they can also compete
with results from an ACO, currently the leading metaheuristic for this problem.
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