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1 Introduction

The bounded diameter minimum spanning tree (BDMST) problem is a com-
binatorial optimization problem appearing in applications such as wire-based
communication network design when quality of service is of concern, in ad-hoc
wireless networks, and also in the areas of data compression and distributed
mutual exclusion algorithms.

The goal is to identify a tree of minimum costs connecting all nodes of a
network where the number of links between any two nodes is restricted by a
constant D, the diameter. More formally, we are given an undirected connected
graph G = (V, E) with node set V' and edge set E and associated costs ¢, > 0,
Ve € E. We seek a spanning tree T' = (V, Er) with edge set Epr C E whose
diameter does not exceed D > 2, and whose total costs Zee B, Ce are minimal.
This task can also be seen as choosing the center (one single node if D is even
or an edge in the odd diameter case) and building a height-restricted tree where
the unique path from this center to any node of the tree consists of no more than
H = | 2| edges. This problem is known to be NP-hard for 4 < D < [V| -1 [1].

To solve this problem to proven optimality there exist various integer lin-
ear programming (ILP) approaches like hop-indexed multi-commodity network
flow models [2, 3] or a Branch&Cut formulation based on a more compact model
but strengthened by a special class of cutting planes [4]. They all have in com-
mon that they are only applicable to relatively small instances, i.e. significantly
less than 100 nodes when dealing with complete graphs. For larger instances,
metaheuristics have been developed, including evolutionary algorithms [5, 6], a
variable neighborhood search, and an ant colony optimization [7] which is cur-
rently the leading metaheuristic to obtain high quality solutions.

In contrast to the large variety of metaheuristic approaches the number of
simple and fast construction heuristics that can also be applied to very large
instances is limited. They are primarily based on Prim’s MST algorithm [8] and
grow a height restricted tree from a chosen center, for example the center based
tree construction (CBTC) [9]. This works reasonably well on instances with
random edge costs, but on Euclidean instances this leads to a backbone (the
edges near the center) of relatively short edges where the majority of the nodes
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(a) CBTC (8.284). (b) RTC (5.725). (c) Optimum (5.195).
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Fig. 1. A diameter constrained tree D = 6 constructed using (a) the CBTC heuris-
tic, compared to (b) RTC (best solution from 100 runs) and (c) the optimal solution
(complete, Euclidean graph with 40 nodes distributed randomly in the unit square, the
corresponding objective values are given in parenthesis).

has to be connected to the backbone via relatively long edges, see the example
in Fig. 1(a). On the contrary, the optimal solution for this instance shown in
Fig. 1(c) demonstrates that the backbone should consist of a few longer edges to
span the whole area so the large number of remaining nodes can be connected
as leaves by much cheaper edges. In a pure greedy construction heuristic this
observation is difficult to realize. In the randomized tree construction approach
(RTC, Fig. 1(b)) not the cheapest but a random node is connected to the tree
in the construction phase using the shortest available edge. Thus at least the
possibility to include longer edges into the backbone at the beginning of the
algorithm is increased. For Euclidean instances RTC is so far the best choice
to quickly create a first reasonable solution as basis for exact or metaheuristic
approaches.

The aim of this work is to introduce a new construction heuristic for the
Euclidean BDMST problem, especially suited for very large instances. It is based
on a hierarchical clustering that guides the algorithm to find a good backbone.

2 Cluster-Based Heuristics

The cluster-based construction heuristic can be divided into three steps: Cre-
ating a hierarchical clustering (dendrogram) based on the Euclidean distances,
deriving a cluster representation (CR) of the BDMST from this dendrogram,
and finding for each cluster in the CR a good (sub-) center node.

For the first step complete linkage agglomerative cluster [10] is used, i.e. two
clusters A and B are merged when max{c,; : « € A,b € B} is minimal over
all pairs of clusters. The agglomeration starts with each node being a separate
cluster, and stops when all nodes are merged within one single cluster, the root
of the dendrogram.

The dendrogram itself, a binary tree, cannot directly act as cluster represen-
tation of the BDMST since in general it will violate the height restriction, see
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Fig. 2. Dendrogram (a), cluster representation (b) of the BDMST (centers printed in
bold), and the resulting diameter constrained tree with D =4 (c).
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Fig. 2(a). Therefore, some of the nodes in the dendrogram have to be merged
to finally get a tree of height H — 1, the CR of the BDMST as illustrated in
Fig. 2(b) for a diameter of D = 4. For the quality of the resulting tree this merg-
ing of dendrogram nodes, i.e. where to cut through the dendrogram to reduce
the height, is a crucial step. Initial cutting position can easily be calculated but
are refined using a greedy randomized adaptive search procedure (GRASP).

Finally, from the CR a BDMST has to be derived by identifying for each
(sub-)cluster the best possible center to act as a node of the backbone. This can
be done heuristically in a greedy fashion based on rough cost estimations for
each cluster, followed by a local improvement step. We also designed a dynamic
programming approach to solve this subproblem exactly, however, the selection
of possible center nodes for each cluster has to be limited to handle the complex-
ity. A variation of this dynamic program uses correction values to approximate
the effect on the tree costs when utilizing a node for the backbone instead of
connecting it as a leaf.

Deriving a good tree from a height restricted clustering can also directly be
used to locally improve solutions obtained from another (meta-)heuristic since
each valid solution also defines an hierarchical clustering of all nodes.

3 Preliminary Results

First results obtained from the cluster construction heuristic on large Euclidean
instances with 1000 nodes are promising. Especially when the diameter bound
is extremely tight the costs of the computed trees are near the half of the best
tree constructed with RTC when using the same time limit, see Table 1 for
details. When applying a strong variable neighborhood descend (VND) as pro-
posed in [7], the differences between the construction heuristics flatten, but still
the BDMSTs derived from a cluster heuristic solutions are in general of higher
quality. On instances with small diameter bounds these trees — computed in a
few seconds — can also compete with results from the ACO with computation
times of one hour and more.



Table 1. Objective values of CBTC, RTC and the cluster construction heuristic uti-
lizing the enhanced dynamic programming approach (CL), computed on a complete
Euclidean instance with 1000 nodes which are distributed randomly in the unit square.
The running time t(CL) was used as stopping criterion for CBTC and RTC (without
VND). For comparison, the objective values of the ACO presented in [7] after one hour
are listed.

[D] CBTC  RTC CL [t(CL)[RTC+VND CL+VND[ ACO |

41333.1778 144.3722 71.4471| 2.84 66.0137  65.7060 | 66.5841
61319.1373 82.3505 55.8774| 2.73 41.6183  41.3944 |42.2784
81298.7454  54.3798 44.2476| 2.69 35.2035 34.3103 | 34.8716
10(271.3976 41.8200 38.0715| 3.13 32.1746  31.5035 |31.2361
20(205.1811 31.4913 30.2756| 2.97 27.2665 26.3760 | 24.5238
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