
(Meta-)Heuristic Separation of Jump Cuts
for the Bounded Diameter

Minimum Spanning Tree Problem

Martin Gruber and Günther R. Raidl

Institute of Computer Graphics and Algorithms
Vienna University of Technology, Vienna, Austria

{gruber|raidl}@ads.tuwien.ac.at,

Abstract. The bounded diameter minimum spanning tree problem is
an NP-hard combinatorial optimization problem arising, for example, in
network design when quality of service is of concern. We solve a strong
integer linear programming formulation based on so-called jump inequal-
ities by a Branch&Cut algorithm. As the separation subproblem of iden-
tifying currently violated jump inequalities is difficult, we approach it
heuristically by two alternative construction heuristics, local search, and
optionally tabu search. The overall algorithm performs excellently, and
we were able to obtain proven optimal solutions for some test instances
that were too large to be solved so far.

1 Introduction

The bounded diameter minimum spanning tree (BDMST) problem is a com-
binatorial optimization problem appearing in applications such as wire-based
communication network design when quality of service is of concern and, for ex-
ample, a signal between any two nodes in the network should not pass more than
a fixed number of routers. It also arises in ad-hoc wireless networks [1] and in
the areas of data compression and distributed mutual exclusion algorithms [2, 3].

The goal is to identify a tree structure of minimum costs connecting all nodes
of a network where the number of links between any two nodes is limited by a
maximum diameter D. More formally, we are given an undirected connected
graph G = (V, E) with node set V and edge set E and associated costs ce ≥ 0,
∀e ∈ E. We seek a spanning tree T = (V, ET ) with edge set ET ⊆ E whose
diameter does not exceed D ≥ 2, and whose total costs

∑
e∈ET

ce are minimal.
This problem is known to be NP-hard for 4 ≤ D < |V | − 1 [4].

The algorithms already published for this problem range from greedy con-
struction heuristics to various exact (mixed) integer linear programming (ILP)
approaches. The latter include formulations based on Miller-Tucker-Zemlin in-
equalities [5], a compact Branch&Cut approach strengthened by cycle elimi-
nation cuts [6], and in particular hop-indexed multi-commodity network flow
models [7, 8] whose linear programming (LP) relaxations yield tight bounds but



which involve a huge number of variables. Due to the complexity of the prob-
lem, exact algorithms are limited to relatively small instances with considerably
less than 100 nodes when dealing with complete graphs. For larger instances,
metaheuristics have been designed, for example evolutionary algorithms [9] and
a variable neighborhood search (VNS) [10]. The so far leading metaheuristics to
address instances up to 1000 nodes are to our knowledge the evolutionary algo-
rithm and the ant colony optimization from [11], which are based on a special
level encoding of solutions and strong local improvement procedures.

Strongly related to the BDMST problem is the hop constrained minimum
spanning tree (HCMST) problem, in which a root node is specified and the
number of edges (hops) on each path from the root to some other node must not
exceed a limit H. An overview on several ILP models and solution approaches
for this problem can be found in [12]. A well working approach in particular
for smaller H is the reformulation of the problem as a Steiner tree problem
on a layered graph [13]. Another strong formulation is based on so-called jump
inequalities [14]. Unfortunately, their number grows exponentially with |V |, and
the problem of separating them in a cutting plane algorithm is conjectured to be
NP-hard. Therefore, Dahl et al. [14] exploited them in a Relax&Cut algorithm
where violated jump inequalities only need to be identified for integer solutions,
which is straightforward.

In this work, we adopt the concept of jump inequalities to formulate a strong
model for the BDMST problem, which we then solve by Branch&Cut. A hier-
archy of two alternative construction heuristics, local search, and tabu search is
used for efficiently separating jump cuts.

2 The Jump Model

Our ILP model is defined on a directed graph G+ = (V +, A+), with the arc
set A+ being derived from E by including for each undirected edge (u, v) ∈ E
two oppositely directed arcs (u, v) and (v, u) with the same costs cu,v = cv,u.
In addition, we introduce an artificial root node r that is connected to every
other node with zero costs, i.e. V + = V ∪ {r} and {(r, v) | v ∈ V } ⊂ A+.
This artificial root allows us to model the BDMST problem as a special directed
outgoing HCMST problem on G+ with root r, hop limit (i.e., maximum height)
H = bD

2 c + 1, and the additional constraint that the artificial root must have
exactly one outgoing arc in the case of even diameter D, and two outgoing arcs
in the case D is odd. From a feasible HCMST T+ = (V +, A+

T ), the associated
BDMST T on G is derived by choosing all edges for which a corresponding arc is
contained in A+

T . In the odd diameter case, an additional center edge connecting
the two nodes adjacent to the artificial root is further included.

We use the following variables: Arc variables xu,v ∈ {0, 1}, ∀(u, v) ∈ A+,
which are set to 1 iff (u, v) ∈ T+, and center edge variables zu,v ∈ {0, 1}, ∀(u, v) ∈
E, which are only relevant for the odd diameter case and are set to 1 iff (u, v)
forms the center of the BDMST.



The even diameter case is formulated as follows:

minimize
∑

(u,v)∈A

cu,v · xu,v (1)

subject to
∑

u|(u,v)∈A+

xu,v = 1 ∀ v ∈ V (2)

∑

v∈V

xr,v = 1 (3)

∑

(u,v)∈δ+(V ′)

xu,v ≥ 1 ∀ V ′ ⊂ V + | r ∈ V ′ (4)

∑

(u,v)∈J(P )

xu,v ≥ 1 ∀ P ∈ P (V +) | r ∈ S0. (5)

The objective is to minimize the total costs of all selected arcs (1). All nodes
of the original graph (without artificial root node r) have exactly one predeces-
sor (2), and just one node is successor of r (3). To achieve a connected, cycle
free solution we include the widely used directed connection cuts (4).

The diameter restriction is enforced by the jump inequalities (5) as follows.
Consider a partitioning P of V + into H+1 pairwise disjoint nonempty sets S0 to
SH+1 with r ∈ S0. Let σ(v) denote the index of the partition a node v is assigned
to. Jump J(P ) is defined as the set of arcs (u, v) ∈ A+ with σ(u) < σ(v) − 1,
i.e. J(P ) contains all arcs leading from a partition to a higher indexed one
and skipping at least one in-between. The jump inequality associated with this
partitioning states that in a feasible HCMST T+ at least one of these arcs in J(P )
must appear. Otherwise, there would be a path connecting the root contained
in S0 to a node in SH+1 with length H + 1 violating the hop constraint. Such
jump inequalities must hold for all possible partitionings P (V +) of V +.

The odd diameter case additionally makes use of the center edge variables zu,v:

minimize
∑

(u,v)∈A

cu,v · xu,v +
∑

(u,v)∈E

cu,v · zu,v (6)

subject to
∑

v∈V

xr,v = 2 (7)

∑

v|(u,v)∈E

zu,v = xr,u ∀ u ∈ V (8)

1
2
·

∑

v∈V ′
xr,v +

∑

(u,v)∈δ+(V−V ′)

xu,v +
1
2
·

∑

(u,v)∈δ(V ′)

zu,v ≥ 1 ∀ ∅ 6= V ′ ⊂ V (9)

(2), (4), and (5) are adopted unchanged.

Now, two nodes are connected to the artificial root node r (7), and they are
interlinked via the center edge (8). The costs of this edge are also accounted for
in the new objective function (6). The special directed connection inequalities (9)
are not necessary for the validity of the model but strengthen it considerably.
They are essentially derived from observations in [8].



As there are exponentially many directed connection inequalities (4, 9) and
jump inequalities (5), directly solving these models is not a practical option.
Instead, we start without these inequalities and apply Branch&Cut, thus, sep-
arating inequalities that are violated by optimal LP solutions on the fly. While
directed connection cuts – including our special variants (9) – can efficiently be
separated by series of max-flow/min-cut computations, this subproblem unfor-
tunately is conjectured to be NP-hard for the jump inequalities [14].

3 Jump Cut Separation

We have to identify a node partitioning P and corresponding jump J(P ) for
which the current LP solution (xLP, zLP) violates

∑
(u,v)∈J(P ) xLP

u,v ≥ 1.

3.1 Exact Separation Model

In a first attempt we formulate the separation problem as an ILP, making use of
the following variables: yv,i ∈ {0, 1}, ∀v ∈ V +, i = 0, . . . , H +1, is set to value 1
iff node v is assigned to partition Si, and xu,v ∈ {0, 1}, ∀(u, v) ∈ ALP, set to 1 iff
arc (u, v) is contained in the jump J(P ), with ALP = {(u, v) ∈ A+ | xLP

u,v > 0}.
This leads to the following model:

minimize
∑

(u,v)∈J(P )

xLP
u,v · xu,v (10)

subject to
H+1∑

i=1

yv,i = 1 ∀ v ∈ V (11)

yr,0 = 1 (12)∑

v∈V

yv,H+1 = 1 (13)

yu,i − 1 +
H+1∑

j=i+2

yv,j ≤ xu,v ∀ i ∈ {1, . . . , H − 1}, (u, v) ∈ ALP (14)

H+1∑

i=2

yv,i ≤ xr,v ∀v ∈ V | (r, v) ∈ ALP (15)

The objective is to minimize the total weight of the arcs in the jump J(P ) (10).
Each node in V is assigned to exactly one of the sets S1 to SH+1 (11), whereas
the artificial root r is the only node in set S0 (12). Exactly one node is assigned
to set SH+1 (13), as Dahl et al. [14] showed that a jump inequality is facet-
defining iff the last set is singleton. Finally, an arc (u, v) (14), respectively (r, v)
(15), is part of the jump J(P ) iff it leads from a set Si to a set Sj with j ≥ i+2.
Note that it is not necessary to explicitly address the condition that no partition
may be empty, as this is implied when directed connection cuts are separated in



advance and the objective value (10) is less than one, the case we are interested
in. This model contains O(|V | · H + |ALP|) variables and O(|V | + |ALP| · H)
constraints.

Solving this ILP by a general purpose solver each time when a jump cut
should be separated is, however, only applicable for small problem instances as
the computation times are high and increase dramatically with the problem size.
According to our experiments, between about 85% and almost 100% of the total
time for solving the BDMST problem is spent in this exact separation procedure
for jump cuts.

To speed up computation we developed heuristic procedures for this separa-
tion problem and apply them in a hierarchical fashion: Two alternative construc-
tion heuristics are used to find initial partitionings; they are improved by local
search and – in case a violated jump inequality has not yet been encountered –
finally by tabu search.

3.2 Simple Construction Heuristic CA

Heuristic CA greedily assigns the nodes V + to sets S1, . . . , SH+1 trying to keep
the number of arcs that become part of the jump J(P ) as small as possible,
see Algorithm 1. An independent partitioning is computed for each node v ∈ V
placed in the last set SH+1, and the overall best solution is returned. To derive
one such partitioning, all nodes u connected to r via an arc (r, u) ∈ ALP with
xLP

r,u exceeding a certain threshold (0.5 in our experiments) are assigned to set
S1. Then the algorithm iterates through partitions SH+1 down to S3. For each of
these sets Si all arcs (w, u) ∈ ALP with target node u ∈ Si are further examined.
In case w is still free (i.e., not already assigned to a set), it is placed in Si−1, in

Algorithm 1: Simple Construction Heuristic CA

input : V +, ALP

output: partitioning P of V +

forall nodes v ∈ V do1

S0 ← {r}; SH+1 ← {v}; ∀i = 1, . . . , H : Si ← ∅;2

forall arcs (r, u) | u 6= v do3

if xLP
r,u > 0.5 then S1 ← S1 ∪ {u};4

for i = H + 1, . . . , 3 do5

foreach node u ∈ Si do6

foreach arc (w, u) ∈ ALP | w not already assigned do7

Si−1 ← Si−1 ∪ {w};8

forall still unassigned nodes u ∈ V + do9

S1 ← S1 ∪ {u};10

evaluate partitioning and store it if best so far;11

return best found partitioning;12



order to avoid (w, u) becoming part of J(P ). At the end, eventually remaining
free nodes are assigned to set S1.

Results achieved with heuristic CA were encouraging, but also left room for
improvement when compared to the exact separation. In particular, this heuristic
does (almost) not consider differences in arc weights xLP

u,v when deciding upon
the assignment of nodes.

3.3 Constraint Graph Based Construction Heuristic CB

To exploit arc weights in a better way, we developed the more sophisticated
construction heuristic CB which makes use of an additional constraint graph
GC = (V +, AC). To avoid that an arc (u, v) ∈ ALP becomes part of J(P ), the
constraint σ(u) ≥ σ(v) − 1 must hold in partitioning P . Heuristic CB iterates
through all arcs in ALP in decreasing weight order (ties are broken arbitrarily)
and checks for each arc whether or not its associated constraint on the parti-
tioning can be realized, i.e. if it is compatible with previously accepted arcs and
their induced constraints. Compatible arcs are accepted and collected within
the constraint graph, while arcs raising contradictions w.r.t. previously accepted
arcs in GC are rejected and will be part of J(P ). After checking each arc in this
way, a partitioning P respecting all constraints represented by GC is derived.
Algorithm 2 shows this heuristic in pseudo-code.

In more detail, graph GC not only holds compatible arcs but for each node
u ∈ V + also an integer assignment interval bu = [αu, βu] indicating the feasible
range of partitions, i.e. u may be assigned to one of the sets {Si | i = αu, . . . , βu}.

Algorithm 2: Constraint Graph Based Construction Heuristic CB

input : V +, ALP

output: partitioning P of V +

sort ALP according to decreasing LP values;1

forall nodes v ∈ V do2

S0 ← {r}; SH+1 ← {v}; ∀i = 1, . . . , H : Si ← ∅;3

br = [0, 0]; bv = [H + 1, H + 1]; ∀w ∈ V \ {v}: bw ← [1, H];4

initialize GC : AC ← ∅;5

initialize jump J(P )← ∅;6

forall arcs (u, v) ∈ ALP (sorted) do7

if AC ∪ (u, v) allows for a feasible assignment of all nodes then8

AC ← AC ∪ (u, v);9

perform recursive update of bounds starting at bu and bv;10

else11

J(P )← J(P ) ∪ (u, v);12

assign nodes to partitions according to the constraints in GC ;13

evaluate partitioning and store it if best so far;14

return best found partitioning;15



When an arc (u, v) is inserted into AC , the implied constraint σ(u) ≥ σ(v) − 1
makes the following interval updates necessary:

bu ← [max(αu, αv − 1), βu] and bv ← [αv, min(βv, βu + 1)]. (16)

Changes of interval bounds must further be propagated through the constraint
graph by recursively following adjacent arcs until all bounds are feasible again
w.r.t. the constraints.

An arc (u, v) can be feasibly added to the graph GC without raising conflicts
with any stored constraint as long as the assignment intervals bu and bv do not
become empty, i.e. αu ≤ βu ∧ αv ≤ βv must always hold. In Algorithm 2 this
condition is tested in line 8, and the arc (u, v) is either accepted for AC or added
to J(P ), respectively.

Theorem 1. The recursive update of the assignment interval bounds in GC

after inserting an arc (u, v) always terminates and cannot fail if it succeeded at
nodes u and v.

Proof. Let GC be valid, i.e. it contains no contradicting constraints, and it was
possible to insert arc (u, v) into the graph without obtaining empty assignment
intervals for nodes u and v. Let (s, t) be any other arc ∈ GC , implying αs ≥ αt−1,
and βt ≤ βs + 1. Now let us assume that αt was updated, i.e. increased, feasibly
to α′t, α′t ≤ βt. If the lower bound of s must be modified, it is set to α′s = α′t− 1
according to the update rules. To prove that the interval at s will not become
empty we have to show that α′s ≤ βs:

α′s
(update rule)

= α′t − 1
α′t≤βt≤ βt − 1

βt≤βs+1

≤ βs (17)

The feasibility of the upper bound propagation can be argued in an analo-
gous way. This also proves that the recursive update procedure terminates, even
when there are cycles in GC (intervals cannot become empty, updates increase
respectively decrease bounds by at least one). �

3.4 Local Search and Tabu Search

Although the construction heuristics usually find many violated jump inequali-
ties, there is still room for improvement using local search. The neighborhood of
a current partitioning P is in principle defined by moving one node to some other
partition. As this neighborhood would be relatively large and costly to search, we
restrict it as follows: Each arc (u, v) ∈ J(P ) induces two allowed moves to remove
it from the jump: reassigning node u to set Sσ(v)−1 and reassigning node v to set
Sσ(u)+1. Moves modifying S0 or SH are not allowed. The local search is performed
in a first improvement manner until a local optimum is reached; see Algorithm 3.

In most cases, the construction heuristics followed by local search are able to
identify a jump cut. In the remaining cases, we give tabu search a try to eventu-
ally detect still undiscovered violated jump inequalities. Algorithm 4 shows our
tabu search procedure in pseudo-code.



Algorithm 3: Local Search
input : V +, ALP, current partitioning P and implied jump J(P )
output: possibly improved partitioning P of V +

forall arcs (u, v) ∈ J(P ) do1

if moving u to Sσ(v)−1 or v to Sσ(u)+1 is valid and improves solution then2

perform move; update P and J(P ) correspondingly;3

restart at 1;4

return partitioning P ;5

Algorithm 4: Tabu Search
input : V +, ALP, current partitioning P and implied jump J(P )
output: possibly improved partitioning P of V +

tabu list L = {};1

repeat2

search neighborhood of P for best move m considering tabu list L;3

perform move m; update P and J(P ) correspondingly;4

file move m−1 in tabu list: L← L ∪ {m−1};5

remove from L entries older than max(lmin, γ · |J(P )|) iterations;6

until stopping criterion met ;7

return best encountered partitioning;8

The neighborhood structure as well as the valid moves are defined as in the
local search, but now a best improvement strategy is applied. Having performed
a movement of a node v, we file as tabu the node v in combination with its
inverted direction of movement (towards set SH+1 or S0, respectively).

The tabu tenure is dynamically controlled by the number of arcs in jump
J(P ): Tabu attributes older than max(lmin, γ · |J(P )|) iterations are discarded,
where lmin and γ are strategy parameters.

We consider the following aspiration criterion: The tabu status of a move is
ignored if the move leads to a new so far best node partitioning. Tabu search
terminates when a predefined number imax of iterations without improvement of
the overall best partitioning is reached.

4 Computational Results

For our computational experiments we utilize Euclidean (TE) and random (TR)
instances as described and used by Gouveia et al. [7, 8] as well as complete
and sparse Euclidean instances of Santos et al. [5]. This instance type, together
with the number of nodes (|V |) and edges (|E|) and the diameter bound (D)
is specified for each test case in the following results tables. All experiments
have been performed on a dual-core AMD Opteron 2214 machine, and CPLEX
11.0 has been used as ILP solver and framework for Branch&Cut. The strategy
parameters of tabu search have been lmin = 5, γ = 0.1, and imax = 100.



Table 1. Success rates SR (%) in separating jump cuts for construction heuristics CA

and CB optionally followed by local search L and tabu search T in comparison to the
exact separation model on the same LP solutions.

Instance |V | |E| D #exact SR(CA) SR(CAL) SR(CB) SR(CBL) SR(CBLT)

TE 30 200 4 817 99.14% 99.63% 99.14% 99.39% 99.51%
6 1038 81.61% 98.80% 97.98% 98.81% 99.29%
8 378 90.08% 95.09% 95.77% 96.03% 97.09%

TR 30 200 4 272 100.00% 100.00% 100.00% 100.00% 100.00%
6 152 99.34% 99.34% 100.00% 100.00% 100.00%
8 22 100.00% 100.00% 100.00% 100.00% 100.00%

Santos 25 300 4 316 100.00% 100.00% 100.00% 100.00% 100.00%
6 126 99.21% 99.21% 100.00% 100.00% 100.00%
10 77 96.10% 97.40% 100.00% 100.00% 100.00%

40 100 4 204 100.00% 100.00% 100.00% 100.00% 100.00%
6 112 99.11% 99.11% 100.00% 100.00% 100.00%
10 85 52.94% 55.29% 96.47% 96.47% 96.47%

TE 30 200 5 2514 93.95% 97.21% 94.18% 96.53% 97.05%
7 2257 81.15% 95.49% 96.02% 97.14% 97.79%

TR 30 200 5 377 96.29% 97.08% 96.55% 97.35% 97.35%
7 89 71.91% 83.71% 92.13% 94.38% 95.51%

Santos 25 300 5 794 96.60% 97.36% 97.73% 98.36% 98.61%
7 188 87.23% 91.49% 95.21% 95.74% 96.81%
9 118 85.59% 93.22% 98.31% 98.31% 99.15%

40 100 5 186 100.00% 100.00% 100.00% 100.00% 100.00%
7 453 87.70% 92.09% 95.45% 96.17% 96.31%
9 529 77.54% 89.31% 93.66% 94.90% 95.70%

Table 2. Optimal solution values, running times t (in seconds) to find and prove these
solutions when using different strategies for jump cut separation, and optimality gaps
of the final LP relaxations in the root nodes of the Branch&Cut search trees when
using heuristic CB followed by local search and tabu search.

Instance |V | |E| D opt t(exact) t(CAL) t(CBL) t(CBLT) gap(CBLT)

TE 30 200 4 599 3522.73 11.25 12.02 10.69 1.69%
6 482 > 1h 11.68 9.15 3.20 2.61%
8 437 > 1h 16.46 2.04 0.77 1.98%

TR 30 200 4 234 328.09 1.51 1.40 1.40 0.52%
6 157 185.65 0.78 0.63 0.66 0.00%
8 135 0.59 0.13 0.12 0.12 0.74%

Santos 25 300 4 500 809.86 2.13 2.13 2.15 0.24%
6 378 215.30 0.84 0.72 0.73 0.53%
10 379 419.03 11.48 0.51 0.51 0.04%

40 100 4 755 105.34 1.17 1.20 1.21 0.06%
6 599 41.07 0.51 0.45 0.45 0.00%
10 574 440.55 25.22 0.40 0.38 0.13%

TE 30 200 5 534 > 1h 53.53 68.46 13.00 7.29%
7 463 > 1h 22.15 29.44 1.16 6.63%

TR 30 200 5 195 831.31 2.74 2.69 1.51 10.78%
7 144 139.08 0.35 0.30 0.31 4.57%

Santos 25 300 5 429 1122.52 7.69 10.56 2.94 8.87%
7 408 2489.67 2.08 2.17 1.64 4.65%
9 336 66.66 1.07 1.13 1.13 0.90%

40 100 5 729 238.24 0.93 0.92 1.03 0.11%
7 667 988.36 2.79 3.40 2.19 1.50%
9 552 > 1h 5.47 3.48 1.28 3.22%



The experiments were performed with modified jump cut heuristics to simul-
taneously identify violated directed connection cuts to avoid additional time-
consuming max-flow/min-cut computations. It is easy to show that this can be
achieved by not forcing the sets S1, . . . , SH to be nonempty.

For smaller instances where the exact jump cut separation can also be ap-
plied, Table 1 lists success rates SR(·) for finding existing violated jump inequal-
ities for the two construction heuristics (CA and CB), optionally followed by
local search (L) and tabu search (T). The number of cuts identified by the exact
model is given in column “#exact”. As can be seen, for even diameter already
the simple construction heuristic CA gives excellent results, in most cases further
improved by local search. The significantly better heuristic CB leaves not much
room for local and tabu search to enhance the success rate. A more differentiated
situation can be observed for odd diameter bounds. The number of jump cuts
identified directly by CB is significantly higher in contrast to CA, whereas local
search flattens the differences in the construction phase to a greater or lesser
extent. On all test instances, tabu search further improves the success rate to
more than 95%. In total, heuristic CB followed by local search and tabu search
was able to separate all jump inequalities for 9 out of 22 instances.

The consequences of the success to reliably identify violated jump inequali-
ties can be seen in Table 2, where for the various approaches CPU-times t(·) to
identify proven optimal integer solutions are listed. It can clearly be seen that
the excessive running times of the exact jump cut separation prohibit its usage
on larger instances. Times of the overall optimization process are in general mag-
nitudes higher as when using our heuristics for jump cut separation, sometimes
even the given CPU-time limit of one hour is exceeded. The best performance
can be observed for CB with local and tabu search. Since tabu search is only ex-
ecuted in case the construction heuristic followed by local search fails to identify
a violated jump inequality, running times of CBL and CBLT considerably differ
only on few instances, especially when D is odd. Table 2 also lists optimal solu-
tion values (“opt”) as well as optimality gaps of the LP relaxations at the root
nodes of the Branch&Cut search trees for CBLT. Whereas our model is quite
tight in the even diameter case, the gaps for odd diameters reveal potential for
further investigations to strengthen the formulation.

Finally, Table 3 compares our approach to the so far leading hop-indexed
multi-commodity flow formulations from [7] (even diameter cases) and [8] (odd
diameter cases) on larger instances. The several columns list for each instance
the optimal objective value if known, otherwise an upper bound (opt/UB∗), the
LP relaxation value for construction heuristic CB with local search (LP(CBL)),
the gap for this approach and for the best model from [7] and [8] whenever the
optimum is available resp. the corresponding values were published (gap(CBL),
gap(GMR)), as well as the running time to proven optimality (t(CBL)); a time
limit of 10 hours was used for these experiments.

We were able to discover and prove previously unknown optima (bold) and
could show that instance TE 80/800/4 is infeasible. Concerning the LP gaps the
results are comparable on even diameter instances, while for odd diameters the



Table 3. Optimal values resp. upper bounds, LP relaxation values, LP gaps (for CBL
and GMR, the tightest models from [7] and [8]), and running times on Euclidean and
random instances with 40, 60, and 80 nodes.

Instance |V | |E| D opt/UB∗ LP(CBL) gap(CBL) gap(GMR) t(CBL)

TE 40 400 4 672 670.98 0.15% 0.04% 27.66
6 555 544.49 1.89% 0.60% 125.92
8 507 500.06 1.37% 0.50% 79.80

60 600 4 1180 1178.50 0.13% 0.10% 1140.70
6 837 816.85 2.41% 0.50% 10453.38
8 755 736.28 2.48% 34167.90

80 800 4 infeasible infeasible 2202.09
6 1066 1044.77 1.99% > 10h
8 968∗ 924.81 ∗4.46% > 10h

TR 40 400 4 309 307.92 0.35% 0.00% 23.29
6 189 189.00 0.00% 0.00% 2.86
8 161 161.00 0.00% 0.00% 0.77

60 600 4 326 323.36 0.81% 0.70% 1846.71
6 175 171.36 2.08% 1.30% 582.42
8 127 127.00 0.00% 0.00% 4.81

80 800 4 424 399.67 5.74% 5.70% > 10h
6 210 206.42 1.70% 2806.13
8 166 164.33 1.01% 27.18

TE 40 400 5 612 578.39 5.49% 0.00% 345.59
7 527 494.91 6.09% 0.30% 398.94
9 495 468.07 5.44% 0.30% 179.83

60 600 5 965 899.54 6.78% 0.00% > 10h
7 789 742.03 5.95% 0.00% > 10h
9 738 690.87 6.39% 0.50% > 10h

80 800 5 1313 1200.69 8.55% > 10h
7 1010∗ 942.41 ∗6.69% > 10h
9 964∗ 871.47 ∗9.60% > 10h

TR 40 400 5 253 224.90 11.11% 1.00% 17.95
7 171 169.11 1.11% 0.00% 2.17
9 154 154.00 0.00% 0.00% 1.09

60 600 5 256 217.14 15.18% 3.20% 1091.02
7 150 138.50 7.67% 0.30% 35.04
9 124 119.84 3.35% 0.00% 5.94

80 800 5 323 272.29 15.79% > 10h
7 185 176.44 4.63% 189.40
9 158 154.57 2.17% 17.89

flow models are significantly better. A fair runtime comparison to [7] and [8] is
not possible since the used hardware is too different. A rough estimation indi-
cates that the flow formulations have their strengths on small diameter bounds,
whereas Branch&Cut dominates when the diameter bound is looser.

5 Conclusions and Future Work

In this work we presented a new ILP formulation for the BDMST problem uti-
lizing jump inequalities to ensure the diameter constraint and solve it with
Branch&Cut. For the separation of jump inequalities we considered an exact
ILP approach and two greedy construction heuristics followed by local and tabu
search. While our exact separation prohibits its use in practice due to its ex-
cessive computation times, the heuristic methods are substantially faster and



achieve convincing success rates in identifying violated jump inequalities; they
lead to an excellent overall performance of the Branch&Cut.

Results on smaller instances demonstrate the benefit of applying tabu search
to further increase the success rate in identifying violated cuts. Experiments and
more detailed statistical analysis are required for larger instances with 40 nodes
and more. Finally, improvements of our model seem to be possible especially for
the odd diameter case.

References

1. Bala, K., Petropoulos, K., Stern, T.E.: Multicasting in a linear lightwave network.
In: Proc. of the 12th IEEE Conference on Computer Communications, IEEE Press
(1993) 1350–1358

2. Raymond, K.: A tree-based algorithm for distributed mutual exclusion. ACM
Transactions on Computer Systems 7(1) (1989) 61–77

3. Bookstein, A., Klein, S.T.: Compression of correlated bit-vectors. Information
Systems 16(4) (1991) 387–400

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

5. dos Santos, A.C., Lucena, A., Ribeiro, C.C.: Solving diameter constrained mini-
mum spanning tree problems in dense graphs. In: Proc. of the Int. Workshop on
Experimental Algorithms. Volume 3059 of LNCS., Springer (2004) 458–467

6. Gruber, M., Raidl, G.: A new 0–1 ILP approach for the bounded diameter min-
imum spanning tree problem. In Gouveia, L., Mourão, C., eds.: Proc. of the Int.
Network Optimization Conference. Volume 1., Lisbon, Portugal (2005) 178–185

7. Gouveia, L., Magnanti, T.L.: Network flow models for designing diameter-
constrained minimum spanning and Steiner trees. Networks 41(3) (2003) 159–173

8. Gouveia, L., Magnanti, T.L., Requejo, C.: A 2-path approach for odd-diameter-
constrained minimum spanning and Steiner trees. Networks 44(4) (2004) 254–265

9. Raidl, G.R., Julstrom, B.A.: Greedy heuristics and an evolutionary algorithm for
the bounded-diameter minimum spanning tree problem. In Lamont, G., et al., eds.:
Proc. of the ACM Symposium on Applied Computing, ACM Press (2003) 747–752

10. Gruber, M., Raidl, G.R.: Variable neighborhood search for the bounded diameter
minimum spanning tree problem. In Hansen, P., et al., eds.: Proc. of the 18th Mini
Euro Conference on Variable Neighborhood Search, Tenerife, Spain (2005)

11. Gruber, M., van Hemert, J., Raidl, G.R.: Neighborhood searches for the bounded
diameter minimum spanning tree problem embedded in a VNS, EA, and ACO.
In Keijzer, M., et al., eds.: Proc. of the Genetic and Evolutionary Computation
Conference 2006. Volume 2. (2006) 1187–1194

12. Dahl, G., Gouveia, L., Requejo, C.: On formulations and methods for the hop-
constrained minimum spanning tree problem. In: Handbook of Optimization in
Telecommunications. Springer Science + Business Media (2006) 493–515

13. Gouveia, L., Simonetti, L., Uchoa, E.: Modelling the hop-constrained minimum
spanning tree problem over a layered graph. In: Proc. of the Int. Network Opti-
mization Conference, Spa, Belgium (2007)

14. Dahl, G., Flatberg, T., Foldnes, N., Gouveia, L.: Hop-constrained spanning trees:
The jump formulation and a relax-and-cut method. Technical report, University
of Oslo, Centre of Mathematics for Applications (CMA) (2005)


