Heuristic Cut Separation in a Branch&Cut Approach for the
Bounded Diameter Minimum Spanning Tree Problem

Martin Gruber and Giinther R. Raidl
Institute of Computer Graphics and Algorithms
Vienna University of Technology, Austria
{gruber|raidl } @ads.tuwien.ac.at

Abstract

The bounded diameter minimum spanning tree problem
is an NP-hard combinatorial optimization problem aris-
ing for example in network design when quality of service
is of concern. We solve a strong integer linear program-
ming formulation based on so-called jump cuts by a novel
Branch&Cut algorithm, using various heuristics including
tabu search to solve the separation problem.

1. Introduction

The bounded diameter minimum spanning tree problem
(BDMST) is a combinatorial optimization problem appear-
ing in applications such as wire-based communication net-
work design when certain aspects of quality of service have
to be considered (limit interfering hops a signal has to pass
between any two nodes in a network), in ad-hoc wireless
networks, and in the areas of data compression and dis-
tributed mutual exclusion algorithms [12, 1].

More formally, the BDMST problem can be stated as
follows: Given an undirected, connected graph G = (V, E)
with node set V' and edge set E and associated costs ¢, > 0,
Ve € E, the goal is to determine a spanning tree 7' =
(V, Er) with edge set Er C F whose diameter — the max-
imum number of edges between any two nodes — does not
exceed a given upper bound D > 2, and whose total costs
D ee £, Ce are minimal. This problem is known to be NP-
hard for4 < D <n —1[5].

Here we present a new Branch&Cut approach, in which
a hierarchy of heuristics is used for efficiently separating
so-called jump cuts.

2. Previous Work

The algorithms published for this problem range from
greedy construction heuristics, e.g. [10], to various exact
(mixed) integer linear programming (ILP) approaches. The
latter include tight multi-commodity hop-indexed network

flow models [5], formulations based on Miller-Tucker-
Zemlin inequalities [4], and a compact Branch&Cut ap-
proach [7] utilizing cycle elimination constraints which was
the basis for this work. Due to the complexity of the prob-
lem, exact algorithms are limited to relatively small in-
stances with considerably less than 100 nodes when dealing
with complete graphs. For larger instances, metaheuristics
have been designed, for example evolutionary algorithms
(EAs) [11] and a variable neighborhood search (VNS) [8].
The so far leading metaheuristics to address instances up to
1000 nodes are to the best of our knowledge the EA and ant
colony optimization algorithm (ACO) from [9], which are
based on a special level encoding of solutions and strong
local improvement procedures.

Several publications address the related hop constrained
MST (HCMST) problem where the root of the tree is fixed
in advance, see for example [2, 3]. A well working approach
for smaller hop limits is the reformulation of the problem as
a Steiner tree problem in a layered graph [6].

3. The ILP Model

Our ILP model is defined on a directed graph G+ =
(V*, A1), with the arc set AT being derived from E by
including for each undirected edge (u,v) € F two oppo-
sitely directed arcs (u,v) and (v,u) with the same costs
Cu,v = Cy . In addition, we introduce an artificial root node
r that is connected to every other node with zero costs, i.e.
Vt =V U{r}and {(r,v) | v €V} C A*. This artificial
root allows us to model the BDMST problem as a directed
outgoing HCMST problem on GT with root 7, hop limit
(i.e., maximum height) H = [£] + 1, and the additional
constraint that the artificial root must have exactly one out-
going arc in the case of even D, and two outgoing arcs in the
case D is odd. From a feasible HCMST T+ = (V+, AT),
the corresponding BDMST 7" on G is derived by choosing
all edges for which a corresponding arc is contained in the
T+. In the odd diameter case, an additional center edge
connecting the two nodes adjacent to the artificial root must
further be included.

Our ILP makes use of the following variables: Depth
variables y,; € {0,1}, Yo € V, VI € {1,...,H},
where ¥, ; is set to 1 iff node v appears at depth [in the
HCMST T, arc variables z,, € {0,1}, V(u,v) € At,
where x,,,, is 1 iff (u,v) € T, and center edge variables
zZuw € {0,1}, ¥(u,v) € E, which are only relevant for the
odd diameter case and z,, is 1 iff (u,v) forms the center
of the BDMST. We can now formulate the ILP as follows:

minimize E Cuv * Tu,w + § Cu,v * Zu,v (1)

(u,v)€EA (u,v)€EE

H

st Y ey = 1 eV)
=1

Z Yp1 = (Dmod2)+1 (3)
veV

Try = Yol YvoeV (4)

Y auw = 1 eV (5)
|(u,v) €A+

Ly,v S 1- Yol + Yu,l—1 (6)

V(u,v)e A, Vi=2,....H

Z Zuwy = Yu1 YueV, foroddD (7)
v|(u,v)EE

The objective is to minimize the total costs of all arcs in
T plus the costs of the BDMST’s center edge in the odd di-
ameter case (1). Eachnode v € V is assigned to exactly one
depth € {1,..., H} according to (2). Equation (3) ensures
the correct number of nodes having depth one, i.e. form-
ing the BDMST’s center. Note that variables x,.,, and v, 1
express the same fact namely node v belongs to the center.
Therefore, they are equal (4), and in our implementation
only one set of these variables is actually used. Here, we
keep both for notational convenience. Every node except r
has exactly one predecessor (5), and a node u can only be
the predecessor of a node v if w’s depth is exactly one less
than v’s depth (6).

Strengthening Inequalities

The model presented so far already correctly describes the
BDMST problem. Its linear programming (LP) relaxation
can, however, substantially be strengthened by including

further classes of valid inequalities. At first place, we con-
sider the widely used directed connection cuts

Z Ty > 1

(u,v)ed+ (V")

YW cVTreV. ®8)

In a Branch&Cut approach they can be efficiently separated
by max-flow/min-cut computations.

In [2] Dahl et al. proposed a Relax&Cut approach for the
HCMST based on so-called jump inequalities. We adopt
them to further strengthen our ILP.

We consider a partitioning of V1 into pairwise disjoint
nonempty sets Sy to Sp41, with r € Sp. Let o(v) de-
note the index of the partition a node v is assigned to.
Then J(P) is defined as the set of arcs (u,v) € AT with
o(u) < o(v) — 1. The jump inequality associated with this
partitioning states that in a feasible HCMST T+ at least
one of the arcs in J(P) must appear in 7F. Otherwise,
there would be a path connecting nodes from Sy to Sg41
of length [+ 1 violating the hop constraint. Considering
all possible partitionings P(V ™) of VT, we can write:

Z Ty > 1

(u,v)eJ (P)

VPeP(VY)|reSy. (9

4. Jump Cut Separation

Our main focus now is to separate (find) a jump inequal-
ity violated by the current solution to the LP relaxation of
our ILP. Thus, we seek a partitioning P of all nodes into sets
S0, ---» Sg41 such that the LP values ;vffz of all arc vari-
ables in J(P) sum up to a value less than 1. Dahl et al. [2]
utilized the jump formulation within a Relax&Cut approach
where violated jump inequalities only need to be separated
in integer solutions, which is straightforward. Here we must
solve this separation problem on fractional solutions, which
has been conjectured to be hard [2].

In a first attempt we formulated this subproblem as an
ILP, but the required computation time prohibits this ap-
proach for practical use. One key issue is that the size of
the separation problem increases quickly: more and more
variables of the LP solution have values greater than 0 when
jump cuts are added consecutively to the model.

Nevertheless, this approach gives an indication for the
achievable strengthening of the model helping in the evalu-
ation of the following heuristics.

4.1. Heuristics

To separate jump cuts we use a hierarchy of heuristics: A
construction heuristic to find a first partitioning which is im-
proved by local search, and — in case this was not successful
— a tabu search procedure.

Construction Heuristic

Let A™ = {(u,v) € A* | 2%, > 0}. To avoid that an arc
(u,v) € A becomes part of J(P), o(u) > o(v) — 1 must
hold in the partitioning P. Our heuristic iterates through
all arcs in A" in decreasing LP value order and checks for
each arc whether or not its associated constraint on the par-
titioning can be realized, i.e. if it is compatible with previ-
ously accepted ones. Compatible arcs are collected within a
constraint graph Go = (V' Ac), while arcs raising con-
tradictions w.r.t. previously accepted arcs stored in G¢ will

Algorithm 1: Jump Cuts: Construction Heuristic

Algorithm 2: Jump Cuts: Tabu Search

input : V1, AP
output: partitioning P of V+

1 sort AP according to decreasing LP values;

2 forall nodes v € V do

3 all sets S; < 0, except So < {r}, Sg+1 «— {v};
4 b, < [0,0]; b, «— [H+1, H+1];
5 forall w € V' \ {v} do by, «— [1, H];
6 initialize Go: Ao — 0;
7 initialize jump J < 0;
forall arcs (u,v) € AMF (sorted) do
if Ac U (u,v) allows for a feasible assignment
of all nodes then
10 Ac — Ac U (u,v);
11 L perform recursive update;
12 else
13 | J— JU(u,v);
14 assign nodes according to constraints in G¢;
15 evaluate partitioning and store it if best so far;

16 return best found partitioning;

be part of J. At the end, a partitioning P respecting all
constraints associated with G is derived.

Note that only one node is assigned to set Sg41 as Dahl
et al. proved that a cut is facet-defining iff the last set is
singleton. See Algorithm 1 for a pseudo-code of this node
partitioning heuristic.

In addition to the accepted arcs, G¢ holds for each node
uw € VT aninterval b, = [av,, 8.], the feasible range of sets
S; for node u: u € S;, 4 € o, By]. Inserting the arc (u, v)
into G, the implied inequalities lead to the following up-
dates of the lower and upper bounds at the involved nodes:

by: [max(cu,a, — 1), Bu] (o(u) > o(v) —1),
by: [avv Inin(ﬁv»ﬁu + 1)] (U(U) < U(U) + 1)

An arc (u, v) can be added to the graph G¢ without vi-
olating any stored constraints if the updates of the bounds
at the nodes v and v do not cause an empty interval, i.e.
a > 3. In case at least one interval is empty the inclusion
of (u,v) would not allow for a feasible assignment of all
nodes, therefore this arc is added to J. Otherwise, the arc
is inserted into G, the bounds at v and v are updated, and
these new bounds (if o and/or § were changed) need to be
propagated through the graph according to the above rules.

The recursive update of G¢ after inserting arc (u, v) can-
not fail if it succeeded at nodes » and v. This can be shown
as follows: Let G¢ be valid, i.e. it contains no contradicting
inequalities, and it was possible to insert a new arc (u,v)
into the graph without leading to an empty range of poten-

input : V' AP
output: (improved) partitioning P of V' *

1 tabulist L = ();

2 repeat

3 find best move m removing an arc from J;

4 execute m and update J;

5 | file tabu move m ! intabulist: L = (m~1) @ L;
6 truncate L to length max({min,y - |J]);

7 until stopping criterion met ;

tial sets at w and v. Let (s, t) be any other arc € G, imply-
ing ag > oy — 1, and By < G5 + 1. Now let us assume that
oy was updated, i.e. increased, consistently to o}, o < .

If the lower bound of s has to be modified, it is set to
ol = o} — 1 according to the update rules. To prove that
the interval at s will not become empty we have to show
that o, < f;:

o)< <Bs

o (updat:e rule) o~ 1 gﬁt 51 Bt,éﬁrl 5 .

The propagation of the upper bound can be shown in an
analogous way. Note that this also proves that the recursive
update procedure terminates (no infinite loop) even when
there are cycles in G¢ (intervals cannot become empty, up-
dates increase respectively decrease bounds by at least 1). It
can also be shown easily that no set .S; will be empty when
directed connection cuts are separated first.

Local Search

Although the construction heuristic already finds a lot of vi-
olated jump inequalities there is still room for improvement
using local search. The neighborhood of a current partition-
ing P is in principle defined by moving one node to some
new set S;. As this neighborhood would be relatively large,
we restrict it as follows: Each arc (u,v) € J induces two
allowed moves: node u to set S, (,)—1 and v to set Sy (y)41-
The local search is performed in a first improvement man-
ner until a local optimum is reached.

4.2. Tabu Search

The described heuristics already perform well, but statis-
tics using the exact separation approach show that there are
still undiscovered violated jump inequalities in the LP solu-
tions. Therefore, if the construction heuristic and the local
search fail to identify a jump cut we give a tabu search im-
plementation a try, see Algorithm 2.

The neighborhood structure as well as the valid moves
are defined as in the local search, but now a best improve-
ment strategy is applied. Having performed a move of node
v, we file as tabu the node v together with the direction (to-
wards set Sgr1 or Sy, respectively) it came from. The tabu

Table 1. Jump cut separation statistics.
ILP Model from [7], Exact separation, Construction heuris-
tic, Local search, Tabu search.

Instance M E C |CL CLT

[VI/|E|/D| tls] % t[s] % | % | % t[s]

TE 30/200/6| >1h{99.8 >1h|96.0{98.9/99.5 27.8
TE 30/200/7(2961.8(99.6 >1h|92.3195.7|99.1 45.1
TR 30/200/6| 17.6/98.6 1786.1|98.4|98.4|198.4 1.8
Santos 25/300/6| 44.4|98.6 640.1/95.4/95.4|954 2.7
Santos 25/300/9| 108.8/90.0 >1h|74.8/76.9|80.4 6.1
Santos 40/100/6| 11.5/95.6 1279.2(94.1(94.1(94.1 0.6

tenure is controlled by the length of the tabu list L, which
depends directly on the number of arcs in the current jump
J: L is limited to max(Iyin,7y - |J|) stored moves, where
Imin and -y are strategy parameters; the oldest entries are re-
moved. We use the standard aspiration criteria where a tabu
restriction is ignored in case the move would lead to the
so far best node partitioning. Tabu search terminates when
a predefined number of iterations without improvement of
the overall best partitioning is reached (¢ax)-

5. Results

In Table 1 the success rate (%) in separating violated
jump inequalities for an LP solution and some runtimes
(t[s]) are listed for a few representative benchmark instances
described and used by Gouveia et al. in [5] and Santos et al.
[4]. Tabu search was performed with the following strategy
parameters: i, = 95,7 = 0.1, ipyax = 100.

As can be seen, the exact (E) approach almost always
identifies a jump cut, and the heuristics, namely construc-
tion heuristic (C), local search (L), and tabu search (T),
are close in general. The biggest differences between the
heuristics can be observed when the cut separation proce-
dure is called for more than 1000 times (e.g. TE-30/200/6,
or Santos-25/300/9).

To give an impression about the overall improvement in
runtime: The Branch&Cut ILP approach proposed in [7]
(M), with comparable runtime results to [5] and [4], re-
quires on an AMD Opteron 250 server about 3 hours to
solve a set of 50 benchmark instances (1 hour time limit for
each instance). Using exact jump cut separation the compu-
tation time increases to more than 14 hours, whereas with
heuristic jump cuts all instances of the benchmark set can
be solved to proven optimality within 5 minutes.

6. Conclusions

Based on the jump formulation for the HCMST by Dahl
et al. we developed various heuristics to solve the jump cut

separation problem within a Branch&Cut framework for the
BDMST problem. Obtained results document that runtimes
to gain optimal solutions are substantially reduced. Further
investigations on larger instances can now be done.

References

[1] A. Bookstein and S. T. Klein. Compression of correlated
bit-vectors. Information Systems, 16(4):387—400, 1991.

[2] G. Dahl, T. Flatberg, N. Foldnes, and L. Gouveia. Hop-
constrained spanning trees: the jump formulation and a
relax-and-cut method. Technical report, University of Oslo,
Centre of Mathematics for Applications (CMA), 2005.

[3] G. Dahl, L. Gouveia, and C. Requejo. On formulations and
methods for the hop-constrained minimum spanning tree
problem. In Handbook of Optimization in Telecommunica-
tions, chapter 19, pages 493-515. Springer Science + Busi-
ness Media, 2006.

[4] A. C. dos Santos, A. Lucena, and C. C. Ribeiro. Solv-
ing diameter constrained minimum spanning tree problems
in dense graphs. In Proc. of the Int. Workshop on Experi-
mental Algorithms, volume 3059 of LNCS, pages 458—467.
Springer, 2004.

[5] L. Gouveia and T. L. Magnanti. Network flow models
for designing diameter-constrained minimum spanning and
Steiner trees. Networks, 41(3):159-173, 2003.

[6] L. Gouveia, L. Simonetti, and E. Uchoa. Modelling the hop-
constrained minimum spanning tree problem over a layered
graph. In Proc. of the Int. Network Optimization Conference,
Spa, Belgium, 2007.

[7]1 M. Gruber and G. Raidl. A new 0-1 ILP approach for
the bounded diameter minimum spanning tree problem. In
L. Gouveia and C. Mourdo, editors, Proc. of the Int. Net-
work Optimization Conference, volume 1, pages 178-185,
Lisbon, Portugal, 2005.

[8]1 M. Gruber and G. R. Raidl. Variable neighborhood search
for the bounded diameter minimum spanning tree problem.
In P. Hansen et al., editors, Proc. of the 18th Mini Euro Con-
ference on Variable Neighborhood Search, Tenerife, Spain,
2005.

[9] M. Gruber, J. van Hemert, and G. R. Raidl. Neighborhood
searches for the bounded diameter minimum spanning tree
problem embedded in a VNS, EA, and ACO. In M. Keijzer
et al., editors, Proc. of the Genetic and Evolutionary Compu-
tation Conference 2006, volume 2, pages 1187-1194, 2006.

[10] B. A. Julstrom. Greedy heuristics for the bounded-diameter
minimum spanning tree problem. Technical report, St.
Cloud State University, 2004. Submitted for publication in
the ACM Journal of Experimental Algorithmics.

[11] G. R. Raidl and B. A. Julstrom. Greedy heuristics and an
evolutionary algorithm for the bounded-diameter minimum
spanning tree problem. In G. Lamont et al., editors, Proc.
of the 2003 ACM Symposium on Applied Computing, pages
747-752. ACM Press, 2003.

[12] K. A. Woolston and S. L. Albin. The design of centralized
networks with reliability and availability constraints. Com-
puters and Operations Research, 15(3):207-217, 1988.

