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ABSTRACT

We consider the Bounded Diameter Minimum Spanning
Tree problem and describe four neighbourhood searches for
it. They are used as local improvement strategies within a
variable neighbourhood search (VNS), an evolutionary algo-
rithm (EA) utilising a new encoding of solutions, and an ant
colony optimisation (ACQO). We compare the performance in
terms of effectiveness between these three hybrid methods
on a suite of popular benchmark instances, which contains
instances too large to solve by current exact methods. Our
results show that the EA and the ACO outperform the VNS
on almost all used benchmark instances. Furthermore, the
ACQO yields most of the time better solutions than the EA in
long-term runs, whereas the EA dominates when the com-
putation time is strongly restricted.
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1. INTRODUCTION

The bounded diameter minimum spanning tree (BDMST)
problem is a combinatorial optimisation problem appearing
in applications such as wire-based communication network
design when certain aspects of quality of service have to
be considered, in ad-hoc wireless networks [3], and in the
areas of data compression and distributed mutual exclusion
algorithms [20, 6].

Given an undirected, connected graph G = (V, E) of n =
|V| nodes and m = |E| edges with associated costs c. >
0, e € F, the BDMST problem can be defined as follows:
Determine a spanning tree T = (V, Er) with edge set Er C
E whose diameter does not exceed a given upper bound
D > 2 and whose total costs EeeET ce are minimal. This
problem is known to be NP-hard for 4 < D < n — 1 [10].

The eccentricity of a node v is the maximum number of
edges on a path from v to any other node in the tree T.
The diameter of T is the maximum eccentricity of all nodes,
i.e., the largest number of edges on any path. The centre
of T is the single node (in case the diameter of T is even)
or the pair of adjacent nodes (if T’s diameter is odd) of
minimum eccentricity. A BDMST can also be interpreted
as a spanning tree rooted at an unknown centre having its
height H restricted to half of the diameter, i.e. H = |2 ].

In this work we describe four neighbourhood structures
for the BDMST problem which are utilised within a general
variable neighbourhood search (VNS) approach [15, 14] for
solving large instances heuristically. Furthermore, an evo-
lutionary algorithm (EA) based on a newly developed level
encoding and an ant colony optimisation approach are pro-
posed. Both also make use of the neighbourhood searches in
order to locally improve candidate solutions. All three meta-
heuristics are experimentally evaluated on a set of previously
used benchmark instances consisting of complete Euclidean
graphs with up to 1000 nodes. In comparison to previous
work, the EA and the ACO were able to obtain new, signif-
icantly better solutions on almost all instances. In particu-
lar in long-term runs on larger instances, the ACO performs
best with respect to solution quality, while the EA’s results
are better when the running time is strictly limited.



2. PREVIOUS WORK

Exact approaches for solving the BDMST problem mostly
rely on flow-based multi-commodity mixed integer linear
programming formulations [2, 11, 12]. A model based on
lifted Miller-Tucker-Zemlin inequalities instead of network
flows is presented in [9]. Recently, Gruber and Raidl [13]
suggested a branch-and-cut algorithm based on a compact
0-1 integer linear programming formulation. However, due
to the complexity of the BDMST problem the applicability
of all these exact algorithms is, in practice, restricted to in-
stances with less than 100 nodes when considering complete
graphs.

Fast greedy construction heuristics for the BDMST prob-
lem are primarily based on the well-known minimum span-
ning tree (MST) algorithm by Prim. For example, the one-
time tree construction (OTTC) by Abdalla et al. [1] starts
with a tree consisting of a single, arbitrarily chosen node and
repeatedly extends it by adding the cheapest available edge
connecting a new node. To ensure the diameter bound the
algorithm has to keep track of the eccentricities of each node
already connected to the tree and discard infeasible edges; a
relatively time-consuming update procedure is required. In
contrast to Prim’s MST algorithm the choice of the node to
start with has a crucial impact on the generated tree and its
costs.

Julstrom [17] modified this approach to start from a prede-
termined centre. This simplifies the algorithm significantly
since the diameter constraint can be replaced by restricting
the height of the generated tree to |2 ]. This centre-based
tree construction (CBTC) runs for one chosen centre in time
O(n?) while OTTC requires O(n*). Although this approach
yields relatively good results on random instances, its be-
haviour is in general too greedy for Euclidean graphs. In
this case a randomised version of CBTC, called randomised
centre-based tree construction (RTC) [19], leads to signifi-
cantly better results. It chooses the centre as well as the
order in which all other nodes are appended at random,
but again connects them with the cheapest possible edges.
Other construction heuristics, for example a modification of
Kruskal’s MST algorithm, for the related height-constrained
MST problem, can be found in [7].

Beside these greedy construction heuristics, also meta-
heuristics were developed for the BDMST problem in order
to obtain better results. Raidl and Julstrom [19] presented
an EA employing a direct edge-set encoding and four vari-
ation operators being able to produce new candidate solu-
tions in almost O(n) expected time. In [18] the same authors
suggested an EA using a permutation representation, which
determines the order in which the nodes are appended by an
RTC-like decoding heuristic. This approach leads to better
solutions, but with the drawback of longer running times
for large instances since decoding a chromosome requires
O(n?) time. Another EA based on random-keys has been
proposed in [16]. A comparison to the permutation-coded
approach indicated a similar performance. Recently in [14],
Gruber and Raidl described a variable neighbourhood search
approach involving four different neighbourhood structures,
which outperformed all the so-far proposed EAs.

In the following, we will recapitulate this VNS and its
four neighbourhoods and describe how they can be searched
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Figure 1: Decoding a level vector (Euclidean dis-
tances, D = 4).

efficiently. The subsequent sections introduce a new EA and
ACO which are based on these concepts.

3. SEARCH NEIGHBOURHOODS

All our metaheuristics for the BDMST problem make use
of one or more neighbourhood searches, which always only
consider feasible solutions. For an efficient implementation,
we represent a solution as an outgoing arborescence, i.e., a
directed tree rooted at a centre, using the following data
structures:

e an array pred containing for each node v € V' its direct
predecessor in the directed path from the centre to it,
respectively NULL in case v is a centre node;

o for each node v € V a list succ(v) of all its direct
successors; for a leaf this list is empty;

e an array lev storing the level for each node v € V,
which is the length of the path from the centre to v;

e for each level [ = 0,...,H a list V; of all nodes at
level .

Out of the four neighbourhoods, the first two are based
on the tree structure defined by the relationship between
predecessors and successors. For the two remaining neigh-
bourhoods we change the representation of a solution and
therefore the search space: Instead of the predecessor re-
spectively successor information, the level a node is assigned
to is of main interest. Given the level lev(v), Yv € V, it
is straight-forward to derive an optimal bounded diameter
spanning tree with respect to lev: To each non-centre node
v we assign a least-cost predecessor from Vi, (y)—1-

In order to obtain even better solutions we go one step
further and relax the meaning of “level” in this decoding
procedure: For a node at level [, any node at a level smaller
than ! (not just I — 1) is allowed as predecessor, and an
overall cheapest connection is chosen. In case of ties a node
of minimum level is selected. See Figure 1 for an example.
Note in particular that node 2 has level 2 and is connected
to the centre node 1 at level O since this is the nearest node
at a smaller level.

Algorithm 1 shows this decoding in a more detailed
pseudo-code. In order to find the least-cost predecessor of
a node i as quickly as possible, we use the following strat-
egy: Only if the number of nodes assigned to a level smaller
than lev() is less than a threshold J, we scan the lists Vj
t0 View(s)—1 for the cheapest connection. Otherwise we make
use of a precomputed nearest neighbour list for node 7, which
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Figure 2: The four neighbourhood types defined for the BDMST problem.

Algorithm 1: Decoding a level vector lev.

[uy

for every node v € V do

2 | if M7V < 6 then

3 search level lists V;,1 = 0...lev(v) — 1, for the
L cheapest predecessor p for node v

4 else
5 search sorted nearest neighbour list of v for the
first node p assigned to a level < lev(v)

6 | pred(v) «— p;

contains all nodes adjacent to ¢ in increasing edge cost order.
The first node in this nearest neighbour list at a level less
than lev(4) is chosen as predecessor for node 4. In prelimi-
nary experiments § =~ 0.1 -n turned out to be a good choice
in our implementation.

In the following we consider the four neighbourhoods in
detail.

3.1 Arc Exchange Neighbourhood

The arc exchange neighbourhood of a current solution T’
consists of all feasible trees differing from 7' in exactly a
single arc (directed edge). The associated move can be in-
terpreted as disconnecting some sub-tree and reconnecting
it at another feasible place, see Figure 2-a.

This neighbourhood consists of O(n?) solutions. A sin-
gle neighbour can be evaluated in constant time when only
considering cost differences. We ensure that the diameter
constraint is not violated by predetermining for each node
v € V the height h(v) of the sub-tree rooted at it; feasible
candidates for becoming new predecessor of a node v after
disconnecting it are all nodes at levels less than or equal
to H — h(v) — 1. Under this conditions, the total time for

examining the whole neighbourhood in order to identify the
best move is in O(n?).

3.2 Node Swap Neighbourhood

This neighbourhood focuses on the relationship between
nodes and their set of direct successors. A neighbouring so-
lution is defined as a tree in which a node v and one of its
direct successors u exchange their positions within the tree:
As illustrated in Figure 2-b node u becomes predecessor of
v and successor of v’s former predecessor. While node u can
keep its successors (u is moved to a smaller level), the succes-
sors of v are reconnected to u in order to always ensure feasi-
bility with respect to the diameter constraint in an easy way.

In contrast to arc exchange, a move in this neighbour-
hood can result in several new connections. Nevertheless,
the whole neighbourhood has only size O(n) and it can be
efficiently examined in time O(n - dmax), where dmax is the
maximum degree of any node in the current tree.

3.3 Level Change Neighbourhood

In the level change neighbourhood an adjacent solution is
reached by incrementing or decrementing the level of exactly
one node v at level 1 < lev(v) < H—1 and 2 < lev(v) < H,
respectively, and reapplying the decoding procedure pre-
sented in Algorithm 1; see Figure 2-c.

The size of this neighbourhood is O(n) and an exhaustive
examination can be implemented in time O(n?). Incremen-
tal evaluation speeds up the computation substantially in
practice but does not reduce this worst-case time complexity.

If a node v at level [ is connected to a predecessor u as-
signed to a level smaller than | — 1, as it is allowed by our
decoding procedure, it is advantageous to reduce lev(v) fur-
ther by consecutive moves until lev(v) = lev(u)+1 because v
can act as potential predecessor for more nodes. This is ac-
complished by accepting decrement moves even if they have
no immediate impact on the objective value.



3.4 Centre Exchange Level Neighbourhood

The level change neighbourhood never affects the centre
node(s). In order to fill this gap, we use the centre exchange
level neighbourhood. It replaces exactly one centre node by
any non-centre node u. The replaced centre node is set to
level H, maximising the number of potential predecessors,
see Figure 2-d.

To better exploit the potential of such a centre exchange a
local improvement step is immediately appended: As long as
there exists a node w whose predecessor v has level lev(v) <
lev(w) — 1, we assign node w to level lev(v) 4+ 1. Following
such a reduction, node w can serve as potential predecessor
for a larger number of other nodes and — as a consequence
— cheaper connections might be enabled.

Restricting the exchange to exactly one centre node leads
to a neighbourhood size of O(n). A local improvement step
requires in the worst-case time O(n?), yielding a total time
complexity of O(n®) for evaluating the whole neighbour-
hood.

4. METHODOLOGIES
4.1 Variable Neighbourhood Search

The framework follows the general VNS scheme as pro-
posed in [15] using variable neighbourhood decent (VND) as
local search strategy.

An initial solution is created by one of the fast greedy
construction heuristics. In our implementation we repeat-
edly applied RT'C until no new improved solution has been
obtained within the last n repetitions. Within VND we
always use a best improvement strategy, i.e. each neigh-
bourhood is completely explored and the best move is per-
formed as long as it yields an improvement. The follow-
ing order of neighbourhoods has proven to be successful:
First, whole sub-trees are moved within the solution (arc
exchange), afterwards the arrangement of nodes and their
direct successors is considered (node swap). Then the usu-
ally more time consuming level based neighbourhoods are
applied: The best centre with respect to the centre exchange
level neighbourhood is determined, and finally the levels the
non-centre nodes are assigned to are refined by means of the
level change neighbourhood.

When performing a local search using a single neighbour-
hood and following a best improvement strategy, it is some-
times possible to store information during the exploration of
this neighbourhood allowing a faster incremental search for
the successive best move. We implemented such a scheme
for the node swap and the level change neighbourhoods.
To benefit from this advantage and in contrast to standard
VND, we do not switch back to the first neighbourhood
immediately after an improvement, but continue the local
search within the same neighbourhood until a local opti-
mum is reached. Only then we restart our search with the
first neighbourhood in order to exploit further possible im-
provements.

Our general VNS framework is shown in Algorithm 2.
Since VND always yields a solution that is locally optimal
with respect to all used neighbourhoods, it makes usually no
sense to shake a solution in the VNS performing only a sin-
gle random move in one of these neighbourhoods. Therefore,
shaking is performed by applying k random moves within
one of the four neighbourhoods chosen at random, with k
running from kstart > 2 t0 kmax-

Algorithm 2: VNS for the BDMST

1 create initial solution using RT'C heuristic;

2 number of shaking moves k «— kstart;

3 while termination condition not met do

4 perform VND with best improvement strategy:

begin
5 neighbourhood [ «— 1;
6 while [ < 4 and time limit not reached do
7 switch [ do perform local search to a local
optimum using neighbourhood
8 case 1 : arc exchange;
9 case 2 : node swap;
10 case 3 : centre exchange level;
11 case 4 : level change;
12 if solution improved and [ # 1 then
| l«——1 else | «—1+1;
13 end
14 if best solution improved or k > kmq. then
k «— kstart else k«+— k+1;
15 choose neighbourhood at random and shake

currently best known solution using k moves;

In case the centre exchange level neighbourhood has been
chosen for the shaking process we make an exception and use
a combination of it and the level change neighbourhood be-
cause iterated centre exchange moves alone cannot gain the
desired larger variation: The first 1 + D mod 2 (the num-
ber of centre nodes) moves are executed within the cen-
tre exchange level neighbourhood, and for the remaining
k — (1 + D mod 2) shaking moves we switch to the level
change neighbourhood.

4.2 Evolutionary Algorithm

The evolutionary algorithm uses a novel representation,
based on the concepts of the level neighbourhoods, to loosely
represent solutions to the BDMST problem. It then relies
on a decoding mechanism to transform this representation
into a specific tree. A BDMST is represented as a string of
levels, i.e., each gene represents the level of a corresponding
node in the directed tree. This level information on itself
does not completely encode a tree, and therefore, we use
the Algorithm 1 to derive the predecessor information, i.e.,
a specific tree. This predecessor information is also stored
in the individual and local improvement is applied.

The local improvement consists of applying only the arc
exchange neighbourhood search from Section 3.1. If an im-
provement can be made, which is the case more often than
not, the node level representation and fitness value are set
according to the new improvement. The arc exchange neigh-
bourhood is chosen to perform the local improvement as it is
computationally relatively cheap in practice and it comple-
ments the genetic operators, which provide new points in the
search space by changing level information, and especially,
by moving the centres around.

We decided not to include the other three neighbourhood
searches. This decision is based on preliminary experiments
where we found including them almost always extremely in-
creased the necessary running times for converging to high-
quality solutions. These experiments consisted of including
the three neighbourhood searches with equal probability to



the arc exchange neighbourhood search, including each of
them with the small probability of 0.10, and including each
of them with a very small probability of 0.01.

An important aspect of the representation is that an in-
dividual is allowed a limited number of centre nodes only.
These nodes have a level of zero. If the BDMST problem
has an even diameter, one node is allowed, if it is odd, two
nodes form the center. When generating the initial pop-
ulation, genes are assigned levels of one to the maximum
height of the tree. Thereafter, one or two nodes are ran-
domly assigned to level zero, depending on the parity of the
problem.

The genetic operators are of a simple, straight-forward
nature, with the exception where they cater for the centre
nodes. A uniform crossover is performed where for each
gene a level is chosen with equal probability from the two
parents. The locations of the centre nodes of both parents
are put into a pool. Then one or two are selected randomly
to represent the centre nodes of the offspring. The remaining
locations are checked in the offspring, if they contain centre
nodes inherited from the uniform crossover, then these genes
are overwritten with a random level between one and the
maximum tree height. The mutation operator generates a
new level for each gene with a probability of 1/n, skipping
centre nodes. Afterwards, the centre nodes are swapped
with other nodes selected randomly with equal probability.

A steady-state evolutionary model with binary tourna-
ment selection for choosing the parents is used. A new
candidate solution always replaces the worst solution in the
population, with one exception: duplicate individuals are
not allowed to enter the population. Crossover and muta-
tion are always applied, as well as local improvement.

4.3 Ant Colony System

In our ant colony system (ACS, Dorigo and Gambardella
[8]) we also exploit the idea that a solution to the BDMST
problem can be derived from an assignment of nodes to levels
0...H by Algorithm 1.

Therefore we make use of a nx (H+1) pheromone matrix 7
where each value 7;; denotes the pheromone value for a node
i at level [. The pheromone matrix is uniformly initialised
with 7,; = (n-Tp)™*, with To being the objective value
of a heuristic solution to the BDMST problem computed
using one of the presented greedy construction heuristics,
e.g. RTC for Euclidean instances (see Section 2).

To derive a valid solution we have to restrict the number
of centre nodes, so they are chosen first: A node 7 is selected
in proportion to its pheromone value 75,0 at level 0, i.e., with
a probability

Ti.0
2jev Tio
In case the diameter is odd, the second centre node is se-
lected analogously from all remaining nodes.

After the centre has been determined all other nodes are
assigned to the available levels 1... H independently from
each other. The probability for a node i to be set to level [
is defined similar as for the centre nodes, namely

Pio =

Ti.l
=T
Zl’:l Ti.l

Note in particular that these probabilities do not include
any local heuristic component.

P, =

After each node has been assigned to a level, a corre-
sponding BDMST is derived using Algorithm 1, where every
node at a level > 1 is connected to the cheapest available
predecessor at any smaller level. Afterwards, this tree is
locally improved using a VND exploiting only the arc ex-
change and node swap neighbourhoods. The ideas of the
level based neighbourhoods are already captured in the con-
struction and decoding phase. In practice, the use of these
neighbourhoods does not lead to a further improvement of
the solution quality, but only significantly increases running
time.

After each ant has built a BDMST the pheromone evap-
oration 7;; < (1 — p) - 7.1, where p € [0,1) represents the
pheromone decay coefficient, is triggered on all entries of the
pheromone matrix. Only the best ant of an iteration is al-
lowed to deposit pheromone: if node i is assigned to level [
we set 7. — T+ p- T% with Tt being the objective value
of the best BDMST in the current iteration.

5. EXPERIMENTS AND RESULTS
5.1 Experimental Setup

We will now experimentally compare the three method-
ologies from Section 4 for the BDMST problem. As in [19,
16] we use instances from Beasley’s OR-Library [5, 4], which
were originally proposed for the Euclidean Steiner tree prob-
lem. These instances contain coordinates of points in the
unit square, and the Euclidean distances between any pair
of points are the edge costs. For our experiments we used
the first five instances of each size n =100, 250, 500, and
1000. The maximum diameters were set to 10, 15, 20, and
25, respectively. All tests were performed on a Pentium®4
2.8 GHz PC using Linux as operating system.

For the different approaches the following parameters were
used: For the EA a population size of 100 was chosen. The
number of artificial ants in the ACO was 25, the value for
the pheromone decay coeflicient p was studied in depth by
extensive preliminary tests and was set in dependence on
the size of the instance, namely p =0.003, 0.005, 0.006, and
0.008 for the 100, 250, 500, and 1000 node instances. The
VNS also used different values for the shaking parameters
kstart and kmax based on the instance size: they were set to
(3,15), (4,20), (5,25), and (5,50), respectively.

Regarding the termination condition we performed two
different series of experiments: long-term and short-term
runs. For the long-term runs we used a CPU time limits of
2000, 3000, and 4000 seconds for the 100, 250, and 500 node
instances. In addition, in case of the VNS and ACO a run
was also terminated after 1000 iterations without further im-
provement of the best solution, since in this situation these
two algorithms — in contrast to the EA — can be considered
to have converged and further improvements are extremely
unlikely.

All statistical evaluations are based on 30 (VNS) respec-
tively 50 (EA, ACO) independent runs for each instance.

5.2 Results

Table 1 shows the results for long runs on instances with
100, 250, and 500 nodes, where the main focus lies on the
quality of the built tree. Listed are best and mean objec-
tive values, the corresponding standard deviations and the
average times to identify the finally best solutions for each
instance and the three metaheuristics under consideration.



Table 1: Final objective values of long-term runs on Euclidean instances.

Instance VNS level-encoded EA ACO
n D nr best mean stdev[ sec. best mean stdev[ sec. best mean stdev[ sec.
100 10 1| 7.759 7.819 0.03 37.35 7.760 7.785 0.03 678.70 7.759 7.768 0.02 27.78
2 7.852 7.891 0.03 41.52 | 7.849 7.860 0.02 734.65 7.850 7.864 0.01 25.10
3| 7.904 7.962 0.04 38.66 | 7.904 7.964 0.04 897.58 7.907 7.943 0.04 28.48
4 7.979 8.046 0.03 34.27 | 7.977 8.008 0.03 732.83 7.979 8.000 0.01 38.24
5 8.165 8.203 0.03 39.31 | 8.164 8.176 0.03 410.17 8.164 8.170 0.00 25.45
250 15 1 | 12.301 12.430 0.05 | 1584.31 | 12.280 12.377 0.05 | 1992.70 | 12.231 12.280 0.02 174.17
2| 12.024 12.171 0.06 | 1678.90 | 12.054 12.156 0.06 | 1969.42 | 12.016 12.038 0.01 156.71
3| 12.041 12.112 0.04 | 1309.21 | 12.026 12.095 0.04 | 1897.87 | 12.004 12.021 0.01 145.29
4 | 12.507 12.615 0.06 | 1572.39 | 12.487 12.594 0.05 | 1742.48 | 12.462 12.486 0.01 159.41
5 12.281 12.423 0.07 | 1525.39 | 12.319 12.423 0.06 | 1712.16 | 12.233 12.288 0.04 211.11
500 20 1| 16.974 17.129 0.07 | 3718.54 | 16.866 16.967 0.06 | 2609.28 | 16.778 16.850 0.03 906.17
2| 16.879 17.052 0.07 | 3762.02 | 16.764 16.858 0.05 | 2472.59 | 16.626 16.699 0.03 | 1012.91
31 16.975 17.148 0.07 | 3849.42 | 16.856 16.977 0.05 | 2808.15 | 16.792 16.844 0.03 | 1069.84
4| 16.992 17.166 0.06 | 3687.97 | 16.943 17.040 0.06 | 2837.81 | 16.796 16.923 0.04 | 1010.91
51 16.572 16.786 0.07 | 3693.13 | 16.501 16.590 0.05 | 2294.43 | 16.421 16.456 0.02 947.26
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(a) Best RTC solution after build-
ing 100 trees without further im-
provement;

objective value: 15.149.

(b) RTC solution from (a) im-
proved by VND exploiting all four
neighbourhoods;

objective value: 13.396.

(¢) Best solution found so far for

this instance by the ACO;
objective value: 12.231.

Figure 3: Euclidean instance number 1 with 250 nodes, D = 15.

Best results over the three algorithms are printed in bold.
The instances with n = 100 seem too small to provide a
proper comparison; each algorithm finds the best results for
some of the instances. Furthermore, the objective values
of the solutions over the three algorithms are rather similar
and do not allow any conclusion to be drawn.

On all larger instances with 250 and 500 nodes, the ACO
clearly outperforms VNS and the EA. In fact, the ACO’s ob-
served mean objective values are never worse than the single
best solutions identified by one of the other approaches. Fur-
thermore, the ACQO’s standard deviations are smallest indi-
cating a higher reliability of finding high-quality solutions.

Comparing VNS with the level-encoded EA on the 250
and 500 node instances, the mean values of the EA are al-
ways smaller than those of VNS with exception of the fifth
instance with 250 nodes, where they are equal.

After verifying our data are normally distributed, we per-
formed unpaired t-tests between each pair of algorithms for
each problem instance. With a significance level of 1%,
the difference in results between the EA and the VNS are
all significant with the exceptions of instance 2 to 5 for
n = 250,D = 15, and instance 3 for n = 100,D = 10.
The differences between the ACO and the VNS are all sig-
nificant, except for instance 3 for n = 100, D = 10. All
differences between the EA and the ACO are significant,
except for instances 2,4, and 5 for n = 100, D = 10.

When looking at the average times until the best solutions
have been found the ACO was in almost all cases substan-
tially faster than VNS and the EA. Furthermore, on smaller
instances the VNS found its final solutions in shorter time
than the EA; on the largest considered instances the situa-
tion was vice versa.



Table 2: Final objective values of short-term runs on Euclidean instances.

Instance | limit VNS level-encoded EA ACO

n D nr| sec. best mean stdev [ sec. best mean stdev [ sec. best mean stdev [ sec.

500 20 1 50 | 17.753 18.108 0.12 | 46.41 | 16.573 16.760 0.16 | 37.94 | 17.594 17.751 0.06 | 41.29

2 17.688 17.966 0.10 | 44.70 | 16.826 17.014 0.11 | 41.06 | 17.403 17.583 0.05| 40.33
3 17.799 18.114 0.10 | 46.23 | 16.947 17.192 0.13 | 43.15| 17.653 17.756 0.05 | 39.66
4 17.930 18.161 0.11 | 45.38 | 16.957 17.085 0.08 | 39.18 | 17.647 17.793 0.05| 41.41
5 17.464 17.863 0.12 | 4594 | 17.055 17.245 0.13| 39.54 | 17.331 17.438 0.05| 40.95
500 20 1| 500 |17.290 17.460 0.08 | 476.22 | 16.534 16.641 0.07 | 340.34 | 17.017 17.150 0.07 | 485.57
2 17.215 17.373  0.08 | 480.87 | 16.808 16.902 0.05 | 320.84 | 16.864 17.072 0.08 | 478.47
3 17.252 17.464 0.05 | 476.33 | 16.886 17.017 0.06 | 319.09 | 17.094 17.259  0.07 | 479.17
4 17.318 17.514 0.07 | 476.80 | 16.923 17.036 0.06 | 316.33 | 17.070 17.277  0.08 | 472.57
5 16.932 17.139  0.09 | 473.82 | 17.007 17.105 0.06 | 288.66 | 16.613 16.791  0.08 | 479.93
1000 25 1| 100 | 25.850 26.188 0.13 | 75.40 | 24.831 25.019 0.10 | 92.06 | 25.246 25.437 0.07 | 81.42
2 25.501 25.981 0.17 | 68.30 | 24.890 25.159 0.10 | 89.29 | 25.092 25.239 0.07| 80.17
3 25.340 25.705 0.09 | 62.33 | 25.021 25.338 0.14 | 92.27 | 24.870 25.007 0.06 | 73.96
4 25.562 26.128 0.17 | 73.89 | 25.133 25.524 0.12 | 92.17 | 25.329 25.450 0.06 | 76.56
5 25.504 25.826 0.15 | 74.75| 25.493 25.675 0.08 | 89.18 | 24.884 25.153 0.07 | 79.90
1000 25 1 | 1000 | 25.177 25.572 0.14 | 905.50 | 23.434 23.573 0.08 | 565.38 | 24.842 25.033 0.07 | 812.78
2 25.015 25.342 0.14 | 930.04 | 23.464 23.668 0.08 | 561.49 | 24.634 24.834 0.06 | 847.79
3 24.816 25.086  0.11 | 956.06 | 23.635 23.793 0.08 | 524.21 | 24.498 24.619 0.06 | 838.68
4 25.289 25.572  0.11 | 928.97 | 23.787 23.962 0.09 | 602.30 | 24.993 25.091 0.06 | 793.41
5 25.026 25.254  0.12 | 935.85 | 23.837 23.982 0.10 | 516.74 | 24.571 24.732  0.06 | 844.67

Figure 4 shows the mean objective value over time for
multiple runs of the VNS, EA and ACO on instance number 185 | oPiective value. ‘ ‘ ‘

2 with 500 nodes and a diameter of 20. The bottom of the mean objective value =+ standard deviation: -
chart displays the distributions of running times required 180 N S . :
to identify the best solution of a run, where mean running

times are indicated by a vertical line each. 17.5 : ‘

In our short-term experiments, we tested the approaches szf’“*f**;*ff——%w\]s
under CPU-time limits of 50 and 500 seconds for the 500 170 feeee NN ) EA
node instances, as well as 100 and 1000 seconds for the 1000 165 ‘ ‘ ‘ !
node instances. Table 2 shows results of these short-term 0 1000 2000 3000 time (sec)
runs. Here we see that roles are reversed, as in most cases distribution of running times:
the mean results of the EA are better than those of the ACO ‘ } V/N_S/_|j\
ACO. Both, the EA and the ACO, almost always outper- ‘ —a j ‘
form the VNS. Interesting to note is that, with only a few : : : E/Ai/\ : :
exceptions, the mean results of the EA are already better 6'\ = 1()300‘MA 20&)\‘ 305 A "2\0300

than the best results found by the VNS, and this also holds
true for the mean values of the ACO over the best of the
VNS. Furthermore, when looking at the average computa-
tion times to identify the finally best solutions, the EA is
usually faster than the ACO and VNS.

The objective value differences between all algorithms are
statistically significant on an error-level of 1%, except for
the EA and ACO on instances 3 and 5 for n = 1000, D = 25
with a time limit of 100 seconds.

In this comparison, we used for the short-term runs the
same strategy parameters as for the high-quality experi-
ments, which proved to be robust in excessive preliminary
tests. However, there would be different possibilities to tune
the algorithms to better perform when time is short. For
example the VNS can omit the very time consuming centre
exchange level neighbourhood; the idea of the level represen-
tation is still captured with the level change neighbourhood.
The population size of the EA can be reduced, as well as
the number of ants in the ant colony. In addition, a higher
pheromone decay coefficient p can be used to influence the
convergence behaviour of the ACO.

Figure 4: Objective value over time and running
time distribution; long-term runs, n = 500, D = 20,
instance 2.

Figure 3 shows exemplary solutions for the first 250 node
instance with diameter bound D = 15 created by the it-
erated randomized tree construction heuristic (RTC), RTC
followed by VND using all four neighbourhoods, and the
ACO. Quality differences are visually clearly perceptible.

6. CONCLUSIONS

We have introduced two new methods for solving the
Bounded Diameter Minimum Spanning Tree problem, which
make use of neighbourhood searches that were developed for
a variable neighbourhood search metaheuristics. The latter
approach was until now the most successful in providing
high-quality solutions for instances too large to be solved by
exact methods. Our first new method is an evolutionary al-



gorithm that encodes candidate trees only incompletely by
node levels and uses a decoding procedure to complement
solutions. Similarly, an ant colony optimisation algorithm is
introduced where pheromone values are associated to the as-
signment of nodes to levels and the same decoding procedure
is applied. In both metaheuristics, candidate spanning trees
are further improved by a choice of neighbourhood searches.

We tested the two new methods on complete Euclidean
benchmark instances with up to 1000 nodes and compared
our results to those of variable neighbourhood search. Long-
term runs were performed with the major aim to produce
solutions of highest possible quality, while in short-term ex-
periments, we investigated the performance under tight time
restrictions.

Our results show that the evolutionary algorithm with
the arc exchange neighbourhood search as local optimisation
leads to significantly better results in runs with a tight limit
on execution time when compared to the variable neigh-
bourhood search and the ant colony optimisation algorithm.
When running time is less critical, the tables turn, and it is
the ant colony optimisation algorithm, also introduced here,
that improves on the previous best known optima found by
the variable neighbourhood search.

More study is required to accurately set parameters de-
pending on the maximum time allowed for execution in order
to maximise the potential of the algorithms. Furthermore,
we anticipate performing experiments on problem instances
where a specific structure is present, which should aid in
better understanding both the strengths and weaknesses of
each algorithm.
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