
Variable Neighborhood Search for the Bounded Diameter

Minimum Spanning Tree Problem

Martin Gruber1, Günther R. Raidl1 ∗

1Institute of Computer Graphics and Algorithms
Vienna University of Technology

Favoritenstraße 9–11/186-1, 1040 Vienna, Austria
{gruber|raidl}@ads.tuwien.ac.at

Abstract

The bounded diameter minimum spanning tree problem is an NP-hard combinatorial optimiza-

tion problem with applications in various fields like communication network design. We propose

a general variable neighborhood search approach for it, utilizing four different types of neighbor-

hoods. They were designed in a way enabling an efficient incremental evaluation and search for

the best neighboring solution. An experimental comparison on instances with complete graphs

with up to 1000 nodes indicates that this approach consistently outperforms the so far leading

evolutionary algorithms with respect to solution quality and computation time.

Keywords: bounded diameter minimum spanning tree, variable neighborhood search

1 Introduction

The bounded diameter minimum spanning tree (BDMST) problem is a combinatorial optimization

problem appearing in various applications, for example in communication network design when

certain aspects of quality of service have to be considered or in ad-hoc wireless networks [3]. It is

also met in the areas of data compression or distributed mutual exclusion algorithms [16, 4].
∗This work is supported by the RTN ADONET under grant 504438 and the Austrian Science Fund (FWF) under

grant P16263-N04.

- 1 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

Given an undirected, connected graph G = (V,E) of n = |V | nodes and m = |E| edges with

associated costs ce ≥ 0, e ∈ E, the BDMST problem can be described as follows: Find a spanning

tree T = (V, ET) with edge set ET ⊆ E whose diameter does not exceed a given upper bound

D ≥ 2 and whose total costs
∑

e∈ET
ce are minimal. This problem is known to be NP-hard for

4 ≤ D < n− 1 [7].

The eccentricity of a node v is defined as the maximum number of edges on a path from v to

any other node in the tree T . The diameter of T is the maximum eccentricity of its nodes, thus, the

largest number of edges on any path. The center of T is the single node (in case the diameter of T is

even) or the pair of adjacent nodes (if T ’s diameter is odd) of minimum eccentricity. A BDMST can

also be interpreted as a spanning tree rooted at an unknown center having its height H restricted

to half of the diameter, i.e. H = bD
2 c.

In this work we will present a general variable neighborhood search (VNS) approach [11] based

on four different types of neighborhoods for the BDMST problem. Our experiments on complete

graphs with up to 1000 nodes illustrate that this algorithm consistently outperforms the so far

leading (meta-)heuristics.

2 Previous Work

Exact approaches for solving the BDMST problem mostly rely on flow-based multi-commodity mixed

integer linear programming formulations [2, 8, 9]. A model based on lifted Miller-Tucker-Zemlin

inequalities instead of network flows is presented in [6]. Recently, we suggested a branch-and-cut

algorithm based on a compact 0–1 integer linear programming formulation [10]. However, due to

the complexity of the BDMST problem the applicability of all these exact algorithms is, in practice,

restricted to instances with less than 100 nodes (complete graphs).

Fast greedy construction heuristics for the BDMST problem are primarily based on the well-

known minimum spanning tree (MST) algorithm by Prim. For example, the approach by Abdalla et

al. [1], named one-time tree construction (OTTC), starts with a tree consisting of a single, arbitrarily

chosen node and repeatedly extends it by adding the cheapest available edge connecting a new node.

To ensure the diameter bound the algorithm must keep track of the eccentricities of each node already

connected to the tree and discard infeasible edges; a relatively time-consuming update procedure is

- 2 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

required. In contrast to Prim’s MST algorithm the choice of the node to start with has a crucial

impact on the generated tree and its costs.

Julstrom [13] modified this approach to start from a predetermined center. This simplifies the

algorithms significantly since the diameter constraint can be replaced by restricting the height of the

generated tree to bD2 c. This center-based tree construction (CBTC) runs for one chosen center in time

O(n2) while OTTC requires O(n3). Although this approach yields relatively good results on random

instances its behavior is in general too greedy for Euclidean graphs. In this case a randomized version

of CBTC, called randomized center-based tree construction (RTC) [15], leads to much better results.

It chooses the center as well as the order in which all other nodes are appended at random, but

again connects them with the cheapest possible edges. Other construction heuristics, for example a

modification of Kruskal’s MST algorithm, for the related height-constrained MST problem, can be

found in [5].

Beside these greedy heuristics various evolutionary algorithms (EAs) were developed for the

BDMST problem in order to obtain better results. Raidl and Julstrom [15] presented an EA em-

ploying a direct edge-set encoding and four variation operators being able to produce new candidate

solutions in almost O(n) expected time. In [14] the same authors suggested an EA using a permu-

tation representation, which determines the order in which the nodes are appended by an RTC-like

decoding heuristic. This approach leads to better solutions, but with the drawback of longer running

times for large instances since decoding a chromosome requires O(n2) time. Another EA based on

random-keys has been proposed in [12]. A comparison to the permutation-coded approach indicated

a similar performance.

3 Neighborhood Types for the BDMST

Our VNS for the BDMST problem uses a total of four different types of neighborhoods, which always

only consider feasible solutions. We represent a solution as an outgoing arborescence, i.e. a directed

tree rooted at the center, using the following data structures:

• An array pred containing for each node v ∈ V its direct predecessor in the directed path from

the center to it, respectively NULL in case v is a center node.

• For each node v ∈ V a list succ(v) of all its direct successors; for a leaf this list will be empty.

- 3 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

v

uv u

(a) Edge exchange neighborhood.

H = bD

2
c

0

1

.

H − 1

c1 c2

(c) Level change neighborhood.

v

u v

u

(b) Node swap neighborhood.

u

H = bD

2
c

0

1

c2

.

H − 1

c1

(d) Center exchange level neighborhood.

Figure 1: The four neighborhood types defined for the BDMST problem.

• An array lev storing the level for each node v ∈ V , which is the length of the path from the

center to v.

• For each level l = 0, . . . ,H a list Vl of all its nodes.

3.1 Tree Structure Based Neighborhoods

The following two neighborhoods are based on the tree structure defined by the relationship between

predecessors and successors in the tree.

3.1.1 Edge Exchange Neighborhood

The edge exchange neighborhood of a current solution T consists of all feasible trees differing from

T in exactly a single (directed) edge. The associated move can be interpreted as disconnecting some

subtree and reconnecting it at another feasible place, see Fig. 1-a.

This neighborhood consists of O(n2) solutions. A single neighbor can be evaluated in constant

time when only considering cost differences. We ensure that the diameter constraint is not violated

- 4 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

by predetermining for each node v ∈ V the height h(v) of the subtree rooted at it; feasible candidates

for becoming new predecessor of a node v after disconnecting it are all nodes at levels less than or

equal to H − h(v)− 1. Under this conditions, the total time for examining the whole neighborhood

in order to identify the best move is O(n2).

3.1.2 Node Swap Neighborhood

This neighborhood focuses on the relationship between nodes and their set of direct successors.

A neighboring solution is defined as a tree in which a node v and one of its direct successors u

exchange their positions within the tree: As illustrated in Fig. 1-b node u becomes predecessor of

v and successor of v’s former predecessor. While node u can keep its successors (u is moved to a

smaller level), the successors of v are reconnected to u in order to always ensure feasibility with

respect to the diameter constraint.

In contrast to edge exchange, a move in this neighborhood can result in several new connections.

Nevertheless the whole neighborhood has only size O(n) and it can be efficiently examined in time

O(n · dmax) where dmax is the maximum degree of any node in the current tree.

3.2 Level Based Neighborhoods

In the two remaining neighborhoods not the predecessor respectively successor information but the

level a node is assigned to is of main interest. Given the level information lev(v), ∀v ∈ V , it is

straight-forward to derive an optimal bounded diameter spanning tree with respect to lev : To each

non-center node v we assign a least cost predecessor from Vlev(v)−1.

In order to obtain even better solutions we go one step further and relax the meaning of “level”

in this decoding procedure: For a node at level l, any node at a level smaller than l (not just l − 1)

is allowed as predecessor, and an overall cheapest connection is chosen. In case of ties a node of

minimum level is selected.

3.2.1 Level Change Neighborhood

In the level change neighborhood an adjacent solution is reached by incrementing or decrementing

the level of exactly one node v at level 1 ≤ lev(v) ≤ H − 1 and 2 ≤ lev(v) ≤ H, respectively, and

reapplying the above decoding procedure; see Fig. 1-c.

- 5 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

The size of this neighborhood is O(n) and an exhaustive examination can be implemented in

time O(n2). Incremental evaluation speeds up the computation substantially but does not reduce

this worst-case time complexity.

If a node v at level l is connected to a predecessor u assigned to a level smaller than l − 1, as

it is allowed by our improved decoding procedure, it is advantageous to reduce lev(v) further by

consecutive moves until lev(v) = lev(u) + 1 because v can act as potential predecessor for more

nodes. This is accomplished by accepting decrement moves even if they have no instant impact on

the objective value.

3.2.2 Center Exchange Level Neighborhood

The level change neighborhood never affects the center. In order to complement it, we introduce

the center exchange level neighborhood. It replaces exactly one center node by any non-center node

u. The replaced center node is set to level H, maximizing the number of potential predecessors, see

Fig. 1-d.

To better exploit the potential of such a center exchange a local improvement step is appended:

As long as there exists a node w whose predecessor v has level lev(v) < lev(w) − 1, we assign this

node w to level lev(v)+1. Following such an improvement, node w can serve as potential predecessor

for a larger number of other nodes and cheaper connections might be enabled.

Restricting the exchange to exactly one center node leads to a neighborhood size of O(n). A

local improvement step requires in the worst-case time O(n2), yielding a total time complexity of

O(n3) for evaluating the whole neighborhood.

4 The General Variable Neighborhood Search Framework

Our framework follows the general VNS scheme as proposed in [11] using variable neighborhood

decent (VND) as local search strategy.

An initial solution is created by one of the fast greedy construction heuristics. In our imple-

mentation we applied RTC using the best solution from several runs. Within VND we always use

a best improvement strategy, i.e. each neighborhood is completely explored and the best move is

performed as long as it yields an improvement. The following order of neighborhoods has proven to

- 6 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

Algorithm 1: VNS for the BDMST

create initial solution using RTC heuristic;1

number of shaking moves k ←− kstart;2

while termination condition not met do3

perform VND with best improvement strategy: begin4

neighborhood l←− 1;5

while l ≤ 4 and time limit not reached do6

switch l do perform local search to a local optimum using neighborhood7

case 1 : edge exchange;8

case 2 : node swap;9

case 3 : center exchange level;10

case 4 : level change;11

if solution improved and l 6= 1 then l←− 1 else l←− l + 1;12

end13

if best solution improved or k ≥ kmax then k ←− kstart else k ←− k + 1;14

choose neighborhood at random and shake currently best known solution using k moves;15

be successful: First, whole subtrees are moved within the solution (edge exchange), afterwards the

arrangement of nodes and their direct successors is considered (node swap). Then the usually more

time consuming level based neighborhoods are applied: The best center with respect to the center

exchange level neighborhood is determined, and finally the levels the non-center nodes are assigned

to are refined by means of the level change neighborhood.

When performing a local search using a single neighborhood and following a best improvement

strategy, it is sometimes possible to store information during the exploration of this neighborhood

allowing a faster incremental search for the successive best move. We implemented such a scheme for

the node swap and the level change neighborhoods. To benefit from this advantage and in contrast to

standard VND, we do not switch back to the first neighborhood immediately after an improvement

in neighborhoods two to four, but continue the local search within the current one until a local

optimum is reached. Only then we restart our search with the first neighborhood in order to exploit

further possible improvements.

Our general VNS framework is shown in Algorithm 1. Since VND always yields a solution that is

locally optimal with respect to all used neighborhoods, it makes usually no sense to shake a solution

in the VNS performing only one single random move in these neighborhoods. Therefore, shaking

is performed by applying k random moves within one of the four neighborhoods chosen at random,

with k running from kstart ≥ 2 to kmax.

- 7 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

In case the center exchange level neighborhood has been chosen for the shaking process we make

an exception and use a combination of it and the level change neighborhood because iterated center

exchange moves alone cannot gain the desired larger variation: The first 1 + D mod 2 (the number

of center nodes) moves are executed within the center exchange level neighborhood, and for the

remaining k − (1 + D mod 2) shaking moves we switch to the level change neighborhood.

5 Computational Results

We will now experimentally compare our VNS implementation with state-of-the-art meta-heuristics

for the BDMST problem. As in [15, 12] we use instances from Beasley’s OR-Library 1 which have

been originally proposed for the Euclidean Steiner tree problem. These instances contain coordinates

of points in the unit square, and the Euclidean distances between any pair of points are the edge

costs. For our experiments we used the first five instances of each size n =100, 250, 500, and 1000.

The maximum diameters were set to 10, 15, 20, and 25, respectively. All tests were performed on a

Pentium r©4 2.8GHz system using Linux 2.4.21 as operating system.

We compare our VNS approach with the leading evolutionary algorithms from [12] based on

permutation and random-key representations. VNS uses a least-cost tree identified in multiple runs

of RTC as initial solution: This construction heuristic is repeatedly performed until no better solution

was obtained during the last n iterations. As stopping condition for VNS we used a combination of a

CPU time limit (2000, 3000, and 4000 seconds for the 100, 250, and 500 node instances, respectively)

and a maximum of 1000 consecutive applications of shaking without further improvement of the best

solution. Depending on the problem size we also used different values kstart and kmax for shaking as

indicated in Table 1.

Table 1 further lists for each instance the number of nodes, the maximum diameter, the instance

number, and for each approach the best found solution, the mean, and the standard deviation of

50 (EAs) respectively 30 (VNS) independent runs. In addition, for VNS the mean times to find the

best solutions are given.

The results are clear and consistent among all instances: VNS outperforms both EAs with respect

to the best found solutions as well as with respect to the mean values. Sometimes, especially on

larger instances, even the mean over all VNS runs is better than the overall best solutions identified
1http://people.brunel.ac.uk/~mastjjb/jeb/orlib/esteininfo.html

- 8 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

Instance permutation coded EA random-key coded EA VNS
n D nr. best mean stddev best mean stddev kstart kmax best mean stddev time (sec.)

100 10 1 7.818 7.919 0.07 7.831 7.919 0.05 3 15 7.759 7.819 0.03 37.35
2 7.873 8.017 0.08 7.853 8.043 0.09 7.852 7.891 0.03 41.52
3 7.990 8.139 0.08 7.982 8.137 0.09 7.904 7.962 0.04 38.66
4 8.009 8.143 0.07 7.996 8.122 0.06 7.979 8.046 0.03 34.27
5 8.193 8.335 0.08 8.198 8.313 0.08 8.165 8.203 0.03 39.31

250 15 1 12.440 12.602 0.08 12.448 12.580 0.08 4 20 12.301 12.430 0.05 1584.31
2 12.237 12.432 0.10 12.222 12.393 0.10 12.024 12.171 0.06 1678.90
3 12.117 12.282 0.08 12.178 12.315 0.07 12.041 12.112 0.04 1309.21
4 12.572 12.824 0.11 12.632 12.802 0.07 12.507 12.615 0.06 1572.39
5 12.358 12.608 0.12 12.382 12.623 0.10 12.281 12.423 0.07 1525.39

500 20 1 17.216 17.476 0.10 17.156 17.429 0.10 5 25 16.974 17.129 0.07 3718.54
2 17.085 17.311 0.11 17.097 17.291 0.10 16.879 17.052 0.07 3762.02
3 17.173 17.449 0.11 17.164 17.369 0.11 16.975 17.148 0.07 3849.42
4 17.215 17.484 0.13 17.266 17.432 0.09 16.992 17.166 0.06 3687.97
5 16.939 17.137 0.11 16.872 17.092 0.11 16.572 16.786 0.07 3693.13

Table 1: Long-term runs on Euclidean instances; results for the EAs are taken from [12].

by both EAs. For VNS the time limit was of no significance for the 100 and 250 nodes instances,

whereas on graphs with 500 nodes the optimization was usually terminated due to the time constraint

before 1000 successive applications of shaking without further improvement were achieved.

As there was no time information published for the EAs in [12] and since we were particularly

interested in the short-term performance, we did additional experiments providing the algorithms

the same, very limited amount of time. For this comparison we chose the random-key coded EA from

[12] and the edge-set EA by Raidl and Julstrom [15]; the latter because it scales much better to larger

instances since it derives new candidate solutions in almost linear time. For these experiments, we

used instances with 500 and 1000 nodes and two different time limits for each instance size, namely

50 and 500 seconds for the 500 node graphs and 100 and 1000 seconds for the instance with 1000

nodes, respectively. For VNS kstart was set to 5 and kmax depending on the instance size. We

performed 30 runs for each instance and time limit.

Table 2 lists the results. As easily can be seen VNS again performs consistently better than

both EAs. The mean values of VNS with the tighter time limits are even always superior to the

objective values of the overall best solutions found by both EAs with 10 times more time available.

Comparing the performance of the EAs the complexity of the chromosome decoding procedure in

the random-key EA becomes noticeable, and the edge-set EA always gives better results since it can

perform much more iterations.

- 9 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

Instance time edge-set coded EA random-key coded EA VNS
n D nr. limit (sec.) best mean stddev best mean stddev kmax best mean stddev

500 20 1 50 19.368 19.830 0.17 21.223 21.440 0.07 25 17.753 18.108 0.12
2 19.156 19.522 0.13 20.836 21.097 0.09 17.688 17.966 0.10
3 19.321 19.888 0.16 21.042 21.304 0.11 17.799 18.114 0.10
4 19.464 19.866 0.19 21.129 21.432 0.09 17.930 18.161 0.11
5 19.209 19.477 0.17 20.728 21.017 0.11 17.464 17.863 0.12

500 20 1 500 18.470 18.976 0.13 19.658 19.908 0.14 25 17.290 17.460 0.08
2 18.442 18.810 0.22 19.332 19.651 0.13 17.215 17.373 0.08
3 18.619 19.056 0.18 19.618 19.887 0.10 17.252 17.464 0.05
4 18.745 19.116 0.17 19.654 19.905 0.11 17.318 17.514 0.07
5 18.197 18.685 0.20 19.312 19.635 0.10 16.932 17.139 0.09

1000 25 1 100 28.721 29.265 0.16 30.996 31.288 0.11 50 25.850 26.188 0.13
2 28.607 29.105 0.19 30.832 31.132 0.11 25.501 25.981 0.17
3 28.410 28.905 0.17 30.515 30.856 0.12 25.340 25.705 0.09
4 28.695 29.263 0.21 30.966 31.277 0.08 25.562 26.128 0.17
5 28.396 28.882 0.19 30.633 31.010 0.10 25.504 25.826 0.15

1000 25 1 1000 26.494 26.936 0.14 30.097 30.401 0.13 50 25.177 25.572 0.14
2 26.300 26.789 0.24 29.924 30.261 0.12 25.015 25.342 0.14
3 25.762 26.556 0.21 29.586 29.981 0.12 24.816 25.086 0.11
4 26.470 26.816 0.15 29.946 30.329 0.13 25.289 25.572 0.11
5 26.117 26.606 0.19 29.782 30.151 0.12 25.026 25.254 0.12

Table 2: Short-term runs on Euclidean instances.

6 Conclusions and Future Work

We proposed four different types of neighborhoods for the BDMST problem, namely edge exchange,

node swap, level change, and center exchange level. We combined these neighborhoods within a

general VNS/VND approach and compared the results on complete Euclidean instances with those

of three so-far leading meta-heuristics for this problem, namely a permutation, a random-key, and

an edge-set coded evolutionary algorithm.

In both categories, solution quality as well as computation time, VNS exhibits results clearly

superior to those of the EAs. In particular when the running time is strongly limited the solution

quality of our VNS approach is substantially better.

In the near future we want to check the effectiveness of our VNS not only on Euclidean but also on

uniform random instances, because the behavior observed when applying construction heuristics or

exact approaches shows significant differences between these two classes. We also want to investigate

further neighborhoods for this problem.

- 10 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

Another promising research direction is the hybridization of different algorithms. For example

we plan to use integer linear programming approaches for the problem in order to solve larger

neighborhoods, and – on the other side – we aim at boosting the performance of exact approaches

by incorporating VND or VNS.

References

[1] A. Abdalla, N. Deo, and P. Gupta. Random-tree diameter and the diameter constrained MST.

Congressus Numerantium, 144:161–182, 2000.

[2] N. R. Achuthan, L. Caccetta, P. Caccetta, and J. F. Geelen. Computational methods for the

diameter restricted minimum weight spanning tree problem. Australasian Journal of Combina-

torics, 10:51–71, 1994.

[3] K. Bala, K. Petropoulos, and T. E. Stern. Multicasting in a linear lightwave network. In IEEE

INFOCOM’93, pages 1350–1358, 1993.

[4] A. Bookstein and S. T. Klein. Compression of correlated bit-vectors. Information Systems,

16(4):387–400, 1991.

[5] A. E. F. Clementi, M. D. Ianni, A. Monti, G. Rossi, and R. Silvestri. Experimental analysis

of practically efficient algorithms for bounded-hop accumulation in ad-hoc wireless networks.

In Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium

(IPDPS’05), workshop 12, volume 13, page 247.1, 2005.

[6] A. C. dos Santos, A. Lucena, and C. C. Ribeiro. Solving diameter constrained minimum

spanning tree problems in dense graphs. In Proceedings of the International Workshop on

Experimental Algorithms, volume 3059 of LNCS, pages 458–467. Springer, 2004.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman, New York, 1979.

[8] L. Gouveia and T. L. Magnanti. Network flow models for designing diameter-constrained min-

imum spanning and Steiner trees. Networks, 41(3):159–173, 2003.

[9] L. Gouveia, T. L. Magnanti, and C. Requejo. A 2-path approach for odd-diameter-constrained

minimum spanning and Steiner trees. Networks, 44(4):254–265, 2004.

- 11 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

[10] M. Gruber and G. R. Raidl. A new 0–1 ILP approach for the bounded diameter minimum span-

ning tree problem. In L. Gouveia and C. Mourão, editors, Proceedings of the 2nd International

Network Optimization Conference, volume 1, pages 178–185, Lisbon, Portugal, 2005.

[11] P. Hansen and N. Mladenović. An introduction to variable neighborhood search. In S. Voss,

S. Martello, I. Osman, and C. Roucairol, editors, Meta-heuristics, Advances and Trends in Local

Search Paradigms for Optimization, pages 433–458. Kluwer Academic Publishers, 1999.

[12] B. A. Julstrom. Encoding bounded-diameter minimum spanning trees with permutations and

with random keys. In K. Deb et al., editors, Genetic and Evolutionary Computation Conference

– GECCO 2004, volume 3102 of LNCS, pages 1282–1281. Springer, 2004.

[13] B. A. Julstrom. Greedy heuristics for the bounded-diameter minimum spanning tree problem.

Technical report, St. Cloud State University, 2004. Submitted for publication in the ACM

Journal of Experimental Algorithmics.

[14] B. A. Julstrom and G. R. Raidl. A permutation-coded evolutionary algorithm for the bounded-

diameter minimum spanning tree problem. In A. Barry, F. Rothlauf, D. Thierens, et al., editors,

in 2003 Genetic and Evolutionary Computation Conference’s Workshops Proceedings, Workshop

on Analysis and Desgn of Representations, pages 2–7, 2003.

[15] G. R. Raidl and B. A. Julstrom. Greedy heuristics and an evolutionary algorithm for the

bounded-diameter minimum spanning tree problem. In G. Lamont et al., editors, Proceedings

of the 2003 ACM Symposium on Applied Computing, pages 747–752, New York, 2003. ACM

Press.

[16] K. Raymond. A tree-based algorithm for distributed mutual exclusion. ACM Transactions on

Computer Systems, 7(1):61–77, 1989.

- 12 -

