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Abstract

The bounded diameter minimum spanning tree (BDMST) problem is NP-hard and appears e.g. in
communication network design when considering certain quality of service requirements. Prior exact
approaches for the BDMST problem mostly rely on network flow-based mixed integer linear program-
ming and Miller-Tucker-Zemlin-based formulations. This article presents a new, compact 0–1 integer
linear programming model, which is further strengthened by dynamically adding violated connection
and cycle elimination constraints within a branch-and-cut environment. The proposed approach is
empirically compared to two recently published formulations. It turns out to work well in particular
on dense instances with tight diameter bounds.
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1 Introduction

In the bounded diameter minimum spanning tree (BDMST) problem, we are given an undirected,
connected graph G = (V, E) of n = |V | nodes and m = |E| edges. Each edge (i, j) ∈ E has associated
costs ci,j ≥ 0. The goal is to find a minimum spanning tree T = (V, ET ) with ET ⊆ E whose diameter
does not exceed a given upper bound D ≥ 2. The BDMST problem is known to be NP-hard for
4 ≤ D < n− 1 [6].

The eccentricity of a node v is the maximum number of edges on a path from v to any other node
in the tree T . The diameter of T is the maximum eccentricity of its nodes, thus the largest number of
edges on any path. The center of T is the one node (if T ’s diameter is even) or the pair of adjacent
nodes (if T ’s diameter is odd) of minimum eccentricity.

The computation of a BDMST is an optimization problem found in communication network design
when certain aspects of quality of service are considered, e.g., when a maximum communication delay
or a minimum signal-to-noise ratio must be guaranteed, and thus the number of relaying nodes on any
path needs to be restricted. It is also met in the fields of data compression and distributed mutual
exclusion and arises as a subproblem in other combinatorial optimization problems such as vehicle
routing [2].

Prior exact approaches for determining a BDMST mostly rely on network flow-based mixed integer
linear programming (MIP) and Miller-Tucker-Zemlin (MTZ) based formulations. We present a new 0–1
integer linear programming model involving only Θ(m + n ·D) variables and Θ(m ·D) constraints. It
is strengthened by dynamically adding violated connection and cycle elimination constraints within a
branch-and-cut environment. The proposed approach is empirically compared to two recently published
models based on network flows and the MTZ formulation, respectively.

Work supported by the Austrian Science Fund (FWF) under grant P16263-N04.
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2 Previous Work

Fundamental work of using MIPs in the field of network design was done by Magnanti and Wong
[12], who proposed multi-source multi-destination network flow models. Achuthan and Caccetta [3]
suggested a simpler multi-commodity formulation specifically for the BDMST by introducing virtual
source and destination nodes. An improved version was published by Achuthan et al. in [4] together
with a branch-and-bound framework.

Gouveia and Magnanti [8] investigated different extended variants of multi-commodity flow (MCF)
formulations for the BDMST problem, in which they count and limit the hops on paths from a virtual
root node to any other node. They achieved in particular tight lower bounds with the LP-relaxations
of their models, however, at the expense of a large number of flow variables (O(|E| · |V | ·D)). In [9],
Gouveia et al. introduced an extended flow formulation for the odd diameter case. The BDMST is
viewed as being composed of a variant of a directed spanning tree from an artificial root node together
with a shortest and a longest constrained path from the root to any node in the tree. Gouveia et al.
[8, 9] also applied modified MCF formulations to the related Steiner tree problem with hop constraints.

A formulation based on lifted Miller-Tucker-Zemlin inequalities responsible for avoiding cycles and
ensuring the maximum diameter are presented in Santos et al. [5]. This approach is claimed to work
well in particular on dense graphs. See Voß [17] for the use of MTZ constraints to compute Steiner
trees.

Simple greedy heuristics for the BDMST have been published by Abdalla et al. [1] and by Julstrom
[11]. Evolutionary algorithms are described in Raidl and Julstrom [15] and Julstrom [10].

3 A Compact 0–1 ILP Formulation

As an alternative to the various existing formulations, we model the BDMST problem as a 0–1 integer
linear program (ILP) using only Θ(m + n ·D) variables and Θ(m ·D) constraints.

Like most of the existing formulations, we view the task of finding a BDMST as a directed graph
problem. However, we do not introduce any artificial nodes. Let A be the arc set derived from E by
including for each undirected edge (i, j) ∈ E two oppositely directed arcs (i, j) and (j, i) with the same
costs ci,j = cj,i. In our formulation of the BDMST only the two center nodes in case of an odd diameter
are connected by an undirected edge. All other edges are directed in such a way that there exists a
directed path from the center to any other node. Let the depth d(v) of a node v ∈ V be the number of
arcs on the path from the center to node v. The center node(s) have depth d(v) = 0. The height of this
rooted tree is then at most H = bD

2 c. The BDMST can be seen as a variation of the hop constrained
minimum spanning tree problem with a root not fixed in advance [7].

We formulate the BDMST problem by assigning each node v a depth 0 ≤ d(v) ≤ H. Furthermore,
each node of depth d(v) > 0 has to have one predecessor denoted by pred(v). In order to get a feasible
spanning tree, d(pred(v)) = d(v)− 1 must hold for all nodes v ∈ V | d(v) > 0.

The ILP uses the following variables:
• ui,l ∈ {0, 1}; i ∈ V , l = 0, . . . , H: ui,l = 1 ↔ d(i) = l.

• pi,j ∈ {0, 1}; (i, j) ∈ A: pi,j = 1 ↔ pred(j) = i, i.e., (i, j) ∈ ET .

• if D is odd:
ri,j ∈ {0, 1}; (i, j) ∈ E: ri,j = 1 ↔ edge (i, j) ∈ ET and connects the center nodes.

3.1 The Even Diameter Case

In the simplest form, the even diameter case can be modeled as follows:

minimize
∑

(i,j)∈A

pi,j · ci,j (1)
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subject to
H∑

l=0

ui,l = 1 ∀i ∈ V (2)

∑

i∈V

ui,0 = 1 (3)

∑

i|(i,j)∈A

pi,j = 1− uj,0 ∀j ∈ V (4)

pi,j ≤ 1− uj,l + ui,l−1 ∀(i, j) ∈ A, ∀l = 1, . . . ,H. (5)

The objective (1) is to minimize the total costs of all used arcs (pi,j = 1). Equations (2) ensure that
each node i is assigned to exactly one depth. Depth zero must be assigned to exactly one node, the center
(3). Constraints (4) guarantee that each node except the center always has exactly one predecessor.
Finally, we have to model the fact that node i can only be predecessor of node j if d(i) = d(j)− 1, or
in other words pi,j = 1 → ∃ l | uj,l = 1 ∧ ui,l−1 = 1. This is assured by inequalities (5).

To strengthen the LP-relaxation we further add constraints which explicitly express that a node
assigned to depth zero cannot have a predecessor, nor can a node assigned to depth H be predecessor
of any other node:

uj,0 ≤ 1− pi,j and ui,H ≤ 1− pi,j ∀(i, j) ∈ A. (6)

3.2 The Odd Diameter Case

In case the diameter D is odd, we can formulate the BDMST problem as follows:

minimize
∑

(i,j)∈A

pi,j · ci,j +
∑

(i,j)∈E

ri,j · ci,j (7)

subject to
∑

i∈V

ui,0 = 2 (8)

∑

j|(i,j)∈E

ri,j = ui,0 ∀i ∈ V (9)

Constraints (2), (4), (5) and (6) are adopted unchanged.

Starting from the ILP (1) to (6) we have to adapt the objective function (1) to include the costs of
the edge connecting the two center nodes (7) as well as equation (3) to reflect the fact that now there
are two nodes assigned to depth zero (8). In addition, constraints (9) are required in order to get the
edge connecting the two center nodes at depth zero.

Equations (9) together with (8) imply the following constraint that does not actually strengthen
the LP-relaxation, but nevertheless speeds up the integer optimization in practice as our experiments
indicate: ∑

e∈E

re = 1. (10)

Finally, Gouveia and Magnanti [8] suggested to exploit the fact that in a BDMST with odd D, the
nodes of depth one are always connected to the nearer one of the two center nodes. We consider this
aspect in the following way.

For each arc (i, j) ∈ A, let L(i, j) be the set of all potential center edges when i is one of the center
nodes, j appears at depth one, and i is j’s predecessor:

L(i, j) = {(i, i′) ∈ E | j 6= i′ ∧ (ci,j < ci′,j ∨ ci,j = ci′,j ∧ i < i′)}. (11)

If uj,1 = 1, pi,j may only be set to one if the center edge appears in L(i, j):

pi,j ≤ 1− uj,1 +
∑

e∈L(i,j)

re ∀(i, j) ∈ A. (12)
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4 Branch-and-Cut

Achuthan et al. [4] already described the possibility to include constraints for explicitly avoiding cycles
in order to strengthen the LP-relaxation. Unfortunately, considering each possible cycle and adding an
appropriate inequality from the very beginning – as Achuthan et al. did – leads to a huge number of
constraints which increases exponentially with D. This limits the applicability to very small diameters
and/or instances.

We suggest a branch-and-cut approach, in which connectivity and cycle elimination constraints
violated in the solution of the LP-relaxation are iteratively determined and added as cuts throughout
the optimization process. These sorts of cuts are often used in cutting plane algorithms for various
network design problems, such as the traveling salesman problem [13].

4.1 Connection Cuts

A spanning tree always has to be connected, i.e., each non-empty subset S of all nodes V has to induce
a cut δ(S) of size greater than or equal to one. More formally,

∑

(i,j)∈δ(S)

(pi,j + ri,j) ≥ 1 ∀S ⊂ V, S 6= ∅, (13)

where variables ri,j are only required in case the diameter is odd. Using a minimum cut algorithm, it
is easy to identify a subset of nodes for which the above constraint is violated in the solution of the
LP-relaxation or to prove that no such set exists.

4.2 Cycle Elimination Cuts

In a tree no cycle may appear, and therefore we can consider the constraints
∑

(i,j)∈C

pi,j + pj,i + ri,j ≤ |C| − 1 ∀ cycles C ⊂ E, (14)

where again variables ri,j only have to be considered in the odd diameter case. We separate such cuts
by constructing an undirected graph from the solution of the LP-relaxation with node set V , edge set
E′

T = {(i, j) ∈ E | pi,j + pj,i + ri,j > 0}, and with associated costs max(0, 1− pi,j − pj,i − ri,j). A cycle
violating the corresponding constraint has total costs less than 1 and can be identified by calculating
the shortest path for each pair of nodes i and j with (i, j) ∈ E′

T .
From a theoretical point of view, connection and cycle elimination cuts are both covered by the more

general subtour elimination cuts, where C is replaced by the set of all edges induced by a subset of
vertices from V [14]. However, finding general subtour elimination cuts is much more time demanding
than identifying violated connection and cycle constraints. Therefore, it is usually a good idea to first
separate connection and cycle elimination constraints, before considering general subtour elimination
cuts. We have not yet implemented the latter and leave them for future research. Since the separation of
connection cuts is faster than looking for cycle elimination cuts, we first separate all violated connection
constraints and only then calculate cycle elimination cuts when using both.

5 Computational Results

We compare our approach to the MTZ-based formulation of Santos et al. [5] (variant (B) and (C)
for even and odd diameters, respectively) and the MCF formulation of Gouveia and Magnanti [8]
(HopDMCF and Enh-HopMCF, respectively). The same test instances as in these previous works are
used. Our experiments were performed on a Pentium r©4 2.8 GHz system with 2 GB of RAM using
Linux 2.4.21 and CPLEX 8.1 under default parameters as MIP solver.

Table 1 lists CPU times for finding optimal solutions and proving optimality on complete and sparse
instances for our reimplementation of Santos et al. and our ILP formulation. Variants marked by ‘+’
apply connection cuts, whereas those marked by ‘∗’ use cycle elimination cuts. Enclosed in parentheses
we list the percentage gap between the optimal solution (opt) and the LP-relaxation (lb) at the first
node within the branch-and-cut tree after performing all separations of our own and the standard cuts
of CPLEX: gap = (opt− lb)/opt · 100%. In case there are two values listed the first one depicts the gap
at the very beginning only depending on the model used and so invariant in terms of applying cuts.
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Table 2: CPU times (in seconds) and LP-relaxation gaps on incomplete instances from Gouveia and
Magnanti [8] (gaps for G&M at the beginning of the first branch-and-cut node without CPLEX gener-
ated cuts).

|V | |E| D G&M ILP ILP+ ILP∗ ILP+∗
Random 20 100 4 0.5 (0.0) 0.9 (35.8/23.9) 0.9 (23.9) 1.5 (24.3) 1.6 (23.4)

20 100 5 6.3 (0.0) 2.7 (35.5/27.0) 2.4 (26.9) 2.4 (25.6) 3.2 (25.6)
20 100 6 5.8 (1.0) 2.9 (34.7/21.0) 7.2 (20.6) 5.9 (16.3) 7.9 (18.0)
20 100 7 94.0 (1.5) 10.6 (31.6/17.1) 5.7 (16.2) 2.6 (13.1) 15.8 (13.2)
20 100 8 1.3 (0.0) 4.4 (28.1/10.0) 4.3 (9.4) 3.4 (5.8) 5.7 (5.8)

Random 30 200 4 0.8 (0.0) 3.5 (39.8/30.1) 6.1 (29.7) 6.3 (29.8) 8.7 (29.5)
30 200 5 58.6 (0.0) 377.8 (48.1/41.9) 283.8 (41.9) 428.1 (42.1) 482.4 (41.6)
30 200 6 2.9 (0.0) 5.7 (28.4/19.4) 20.4 (14.9) 11.5 (14.6) 39.6 (13.5)
30 200 7 529.4 (0.0) 112.4 (21.3/16.6) 261.1 (16.3) 53.9 (14.3) 100.8 (14.2)
30 200 8 2.3 (0.0) 10.6 (18.3/14.3) 13.9 (5.4) 3.67 (8.3) 4.9 (2.2)

Euclidian 20 100 4 0.1 (0.0) 1.1 (20.3/17.5) 1.4 (17.4) 2.3 (17.2) 2.2 (17.1)
20 100 5 5.3 (0.0) 1.7 (16.8/13.2) 2.0 (13.0) 2.5 (12.8) 3.5 (12.6)
20 100 6 3.1 (0.2) 7.3 (16.3/10.4) 9.5 (9.9) 15.5 (8.0) 21.2 (8.5)
20 100 7 49.5 (0) 10.0 (14.1/8.3) 24.3 (8.2) 11.2 (7.0) 31.3 (7.6)
20 100 8 1.1 (0.0) 10.7 (14.2/10.0) 12.9 (7.7) 18.9 (6.8) 31.2 (5.2)

Euclidian 30 200 4 130.8 (1.7) 148.6 (35.2/25.8) 84.9 (26.0) 59.5 (26.3) 107.0 (25.3)
30 200 5 25.1 (0.1) 36.1 (33.9/25.7) 42.2 (26.1) 65.3 (24.1) 61.5 (25.6)
30 200 6 1,381.9 (0.8) 348.0 (28.8/19.4) 4,022.7 (17.6) 7,224.2 (16.9) 17,144.3 (15.0)
30 200 7 6,912.1 (1.2) 1,339.7 (23.5/17.5) 3,713.8 (16.3) 1,014.4 (13.6) 4,205.4 (13.4)
30 200 8 1,111.0 (0.8) 2,864.7 (22.6/16.2) 9,298.8 (12.6) 2,430.6 (11.5) > 20,000.0 (9.4)

In general, no approach dominates any other. However, it can be observed that the ILP formulation
performs better on tighter constrained instances with rather small diameters, whereas the model of
Santos et al. becomes faster than the ILP for looser diameter constraints.

Applying our cuts to the different formulations lead to ambivalent results, except on sparse instances
where connection cuts show significantly better performance. It also turns out that the ILP model in
general benefits more from cycle elimination cuts, in particular on bigger instances with larger diameters.

Concerning the listed LP-relaxation gaps we further remark that in addition to our connection and
cycle elimination cuts, CPLEX sometimes adds additional general-purpose cuts, which further reduce
the LP-bound. In a few cases, this leads to the effect that the LP-bound of a variant where only one
type of our cuts is used is slightly smaller than when applying both of them.

Table 2 shows running times and LP-bounds for the ILP variants and Gouveia and Magnanti’s
(G&M) approach. The times listed for G&M are adopted from [8] and scaled by a factor of 1/8 to
account for different hardware. This factor has been determined by considering the widely used floating
point benchmarks published at http://www.spec.org. Nevertheless, we remark that this scaling is only
a rough estimation and running time comparisons should be taken with care.

Concerning the LP-relaxation gaps it can easily be seen that the ILP model cannot compete with
the flow formulations of G&M. When looking at the computation times no single variant dominates any
other. The different ILP approaches outperform G&M on several occasions. However, no real pattern
can be observed for conditions under which a certain method performs best; speed-up factors are in
general not as large as those of the first series of experiments (Table 1).

In this context we want to point out that the above results are not sufficient to draw more general
conclusions on expected running times for specific classes of instances. During our tests we experienced
highly varying computation times for instances randomly generated all the same way. For example,
when running ILP+ on 10 different complete Euclidean graphs with 20 randomly distributed nodes,
CPU times ranged from 51 to 54,400 seconds. A similar behavior was observed for the model of Santos
et al. and the flow formulations as well.

In addition to the presented results we also made first experiments on instances with 40 nodes and
more. As expected due to the observed LP-relaxation gaps the size of the branch-and-cut tree grows
fast and so does the computation time. Without further improvements the ILP results will not be
competitive to recently published flow formulations.

We also tried to reduce the initialization overhead always involved when calculating connection or
cycle elimination cuts. A number of two to three cuts generated at once (i.e. cuts added to the model
before a new LP is solved) has proven to be a good choice.
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6 Additional Constraints

In this section we present some additional constraints we made experiments with, some of them strength-
ening the LP-relaxation of the ILP model. However, exhaustive benchmarks led to the conclusion not
to include them into the model in general, because over all tested instances the running time behavior
was not significantly better.

∑

(i,j)∈A

pi,j = n− 1− (D mod 2) (15)

A spanning tree of n nodes contains n − 1 edges. In case of an odd diameter we have to subtract
the center edge encoded separately using the variables ri,j . When including this equation to the model
the calculation times are undifferentiated; they range from three times faster and more to about two
times slower.

pi,j ≤ 1− ui,l−1 + uj,l ∀(i, j) ∈ A, ∀l = 1, . . . ,H. (16)

These constraints are a modification of the inequalities (5). Replacing (5) by them yields a poorer
LP-relaxation. Using both types of constraints strengthens the LP-relaxation noticeable, but in either
case the running times are substantially higher.

pi,j + pj,i ≤ 1 ∀(i, j) ∈ A (17)

A node i cannot be predecessor and successor of a node j at the same time. These inequalities
strengthen the LP-relaxation significantly and often speed up computation for instances with larger
diameter (approx. 8 and above) and sparse graphs. For other instances, however, running times are
usually increased.

pi,j ≤ 1− uj,l +
l−1∑

l′=0

ui,l′ ∀(i, j) ∈ A, ∀l = 1, . . . , H (18)

A relaxed alternative for inequalities (5), where an edge from a node at depth l may be attached
to any node at depth ≤ l − 1, not just l − 1. This formulation leads to weaker LP-bounds as well as a
poorer running time behavior.

δi,j + (H + 1)pi,j + (H − 1)pj,i ≤ H ∀(i, j) ∈ A with (19)

δi,j =
H∑

l=0

l · ui,l − l · uj,l ∀(i, j) ∈ A (20)

being the difference of the depths of nodes i and j. These lifted MTZ constraints from [5] strengthen
the LP-relaxation, but the computational results do not exhibit a conclusive pattern.

7 Conclusions and Future Work

A compact 0–1 ILP for the BDMST problem has been introduced. When solving this ILP with the
general purpose MIP-solver CPLEX, the performance can be improved by separating violated con-
nectivity and/or cycle constraints and adding them in a branch-and-cut manner at each node of the
branch-and-bound tree. The new approach has been compared to two recently published formulations.
It turns out that in particular dense instances with small to moderate diameter bounds are solved
significantly faster than with the approach from Santos et al. [5]. This MTZ-base model, however,
exhibits its strengths on instances where D approaches the diameter of the unconstrained minimum
spanning tree.

In [9], Gouveia et al. introduced a specific improvement for the odd diameter case we did not consider
so far. Further theoretical investigations and experiments on more and larger benchmark instances are
necessary to get a closer insight into the specific assets and drawbacks of the different formulations.

Besides the implementation of tighter subtour elimination cuts as a substitute for the cycle elim-
ination cuts another future objective will be to combine exact algorithms like those discussed here
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with (meta-)heuristic approaches. This will be done not just in the classical sense – for example by
heuristically determining a good starting solution for an exact algorithm – but also by running different
algorithms in parallel and letting them exchange information relevant for the optimization in order to
benefit from synergy [16].
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