A Simulated Annealing Based Approach for the
Roman Domination Problem

Jakob Greilhuber®)* @/ Sophia Schober* @, Enrico Iurlano @/, and
Giinther R. Raidl

Algorithms and Complexity Group, TU Wien,
Favoritenstrae 9-11/192-01, 1040 Vienna, Austria
{jakob.greilhuber,sophia.schober}@alumni.tuwien.ac.at
{eiurlano,raidl}@ac.tuwien.ac.at

Abstract. The Roman Domination Problem is an NP-hard combina-
torial optimization problem on an undirected simple graph. It repre-
sents scenarios where a resource shall be economically distributed over
its vertices while guaranteeing that each vertex has either a resource
itself or at least one neighbor with a sharable surplus resource. We pro-
pose several (meta-)heuristic approaches for solving this problem. First,
a greedy construction heuristic for quickly generating feasible solutions
is introduced. A special feature of this heuristic is an optional advanced
tiebreaker. This construction heuristic is then randomized and combined
with a local search procedure to obtain a greedy randomized adaptive
search procedure (GRASP). As an alternative, we further propose a sim-
ulated annealing (SA) algorithm to improve the solutions returned by
the construction heuristic. As we observe different pros and cons for the
GRASP and the SA, we finally combine them into a simulated annealing
hybrid, which interleaves phases of greedy randomized construction and
phases of simulated annealing. All algorithms are empirically evaluated
on a large set of benchmark instances from the literature. We compare
to an exact mixed integer linear programming model that is solved by
Gurobi as well as to a variable neighborhood search from the literature.
In particular the simulated annealing hybrid turns out to yield on av-
erage the best results, making it a new state-of-the-art method for the
Roman domination problem.

Keywords: Roman Domination Problem - Metaheuristics - GRASP - Simulated
Annealing

1 Introduction

The Roman Domination Problem (RDP) is a combinatorial optimization prob-
lem on graphs, formally introduced in ReVelle and Rosing [25]. It is related to
the classical dominating set problem and originates from the following scenario:

* The first two authors contributed equally.

The Version of Record of this contribution is the following:

Greilhuber, J., Schober, S., Iurlano, E., and Raidl, G.R. (2024). A Simulated Annealing Based Approach for the Roman Domination Problem.
In: Dorronsoro, B., Ellaia, R., Talbi, EG. (eds.) Metaheuristics and Nature Inspired Computing—META2023, Marrakech, Morocco, November
1-4, 2023. CCIS, vol. 2016, pages 28-43. Springer. https://doi.org/10.1007/978-3-031-69257-4_3

https://doi.org/10.1007/978-3-031-69257-4_3
https://orcid.org/0009-0001-8796-6400
https://orcid.org/0009-0009-8188-1463
https://orcid.org/0000-0001-7528-0834
https://orcid.org/0000-0002-3293-177X

2 J. Greilhuber, S. Schober, E. Iurlano, and G. R. Raidl

a Roman emperor might wonder how many legions it takes to ensure that all
provinces of the empire can be defended against a single attack, without leaving
any province vulnerable. A province in the empire is considered defended if a
legion is stationed in it or if there is a neighboring province with two stationed le-
gions, as such a neighbor can send one of its legions to help the attacked province.
More formally, the problem is defined as follows. Given an undirected simple
graph G = (V, E) with vertex set V (corresponding to the provinces) and edge
set E (representing the neighborhoods), a labeling function f : V' — {0,1,2}
assigns each vertex a label (the number of stationed legions). If this is done in
such a way that every vertex with label 0 has at least one neighbor labeled 2,
this function is called a Roman Domination Function (RDF) [4]. The weight of
this function is given by |f| = > .y f(v), and the lowest weight of any RDF of
G is the Roman domination number of G. The objective of the RDP is to find
an RDF of lowest weight. Beyond the historical background in military strategy
planning, practical applications can occasionally be found more generally when
an area represented as a graph shall be covered with a minimum amount of some
resource and neighboring vertices may share units of the resource. For instance,
Pagourtzis et al. [23] analyze different problem formulations concerning optimal
server placement and highlight that one of these corresponds to the RDP. Simi-
larly, Ghaffari et al. [10] describe how the RDP can be used in the deployment
of wireless sensor networks.

In terms of complexity, the RDP is known to be NP-hard [6]. Thus, optimally
solving the problem is in general not possible in polynomial time, unless P = NP,
which creates a desire for heuristic approaches that can produce reasonably good
solutions in a short amount of time also for large instances. We first introduce a
greedy construction heuristic, which is then randomized and extended to a greedy
randomized adaptive search procedure (GRASP). Moreover, we propose a simu-
lated annealing (SA) algorithm, as well as a simulated annealing hybrid (SAH)
that combines the randomized construction heuristic and simulated annealing
approaches. All these algorithms are experimentally evaluated and compared to
a former variable neighborhood search (VNS) from Ivanovi¢ and Urosevié [I5] on
benchmark instances from the literature. Results indicate that SAH performs
best in our tests.

The next Section 2] surveys related work. In Sections[3]to[f] we introduce the
construction heuristic, the GRASP, the SA, and the SAH approaches, respec-
tively. Results are discussed in Section[6} Finally, we give concluding remarks in
Section [

2 Related Work

The RDP is inspired by the strategy that the Roman emperor Constantine pro-
posed to defend the Roman empire, which is discussed in an article by Stew-
art [27] from 1999. ReVelle and Rosing [25] formally define the problem and pro-
pose the first binary linear programming formulation for it. Cockayne et al. [4]
introduce the term Roman domination, and give a variety of theoretical results

A Simulated Annealing Based Approach for the Roman Domination Problem 3

for the problem, such as the observation that the Roman domination number is
at least the size of the domination number (i.e., the cardinality of the smallest
dominating set) and at most twice this number for any graph. They also charac-
terize the graphs with a Roman domination number that exceeds the domination
number by at most two. Xing et al. [29], on the other hand, provide a character-
ization of graphs for which the difference between Roman domination number
and domination number equals a fixed constant not smaller than two.

Dreyer [6] dedicates a chapter of their doctoral thesis to theoretical find-
ings regarding the problem, also providing a proof for the NP-hardness of the
problem. Favaron et al. [7] provide an optimal upper bound for the Roman dom-
ination number of connected graphs, as well as bounds for the number of vertices
labeled with 0, 1, or 2 in an RDF of minimal weight. Shang and Hu [26] consider
the problem on unit disk graphs. They provide an approximation algorithm and
a polynomial-time approximation scheme for graphs of this class. Moreover, they
show that the RDP is NP-hard on unit disk graphs. Bounds and exact results
for the Roman domination number on cardinal products of paths, cycles, and
general graphs are given by Klobuc¢ar and Pulji¢ [I8/19]. Peng and Tsai [24] prove
that the problem can be solved in linear time on graphs of bounded treewidth.
Liedloff et al. [2120] show that the RDP can be solved in linear time on interval
graphs and cographs, among other algorithmic results. Curro [5] dedicates their
doctoral thesis to the RDP on grid graphs, proving lower and upper bounds on
the Roman domination number of such graphs.

A wide variety of related domination problems have also been investigated
by researchers over the past decades, including the Weak Roman Domination
Problem (WRDP) devised by Henning and Hedetniemi [12], the Signed Roman
Domination Problem introduced by Abdollahzadeh Ahangar et al. [I], the Signed
Total Roman Domination Problem proposed by Volkmann [28] and the Double
Roman Domination Problem [2].

Burger et al. [3] propose another binary programming formulation for the
RDP. The formulations by ReVelle and Rosing [25] and Burger et al. [3] are
examined by Ivanovié¢ [I3], who further provides improved versions of both for-
mulations.

The first heuristic approaches for the RDP appear to stem from Nolassi
[22] and Curro [5]. In their doctoral theses, multiple construction heuristics are
proposed and evaluated. Furthermore, Curro [5] presents genetic algorithms for
the problem. Later, Ivanovi¢ and UroSevi¢ [I5] propose a VNS algorithm for
the RDP and the WRDP, and report mostly superior results on many instances
in comparison to the earlier solution approaches. Moreover, Ghaffari et al. [10]
describe two simple construction heuristics. The only other heuristic approach
for the RDP we found in the literature is a genetic algorithm by Khandelwal
et al. [I6]. These authors, however, test their genetic algorithm on a different
instance set than previous publications and do not reference earlier heuristic
approaches. Therefore, we compare primarily to an exact mixed binary linear
programming approach as well as to the VNS from [I5]. Filipovi¢ et al. [9]

4 J. Greilhuber, S. Schober, E. Iurlano, and G. R. Raidl

provide heuristic and exact solution methods for the signed and signed total
RDP variants.

In general, the literature has been mostly focusing on theoretical results thus
far. This lack of focus on heuristic algorithms for the RDP in the literature
indicates that the potential of such algorithms may not have been exhausted yet
and promising approaches might be left to discover, which motivates our work.

3 Greedy Construction Algorithm

We now present our (deterministic) greedy construction heuristic. It is inspired
by the algorithms described by Ghaffari et al. [I0]. We later realized that its
core principle is shared by the “GainFactor” heuristic described by Curro [5],
however, our algorithm differs from the latter by including a tiebreaker, using the
unlabeled degree instead of the GainFactor, incorporating a label-reduction step
in the end, and other smaller differences. The general idea of our construction
heuristic is that assigning the label 2 to vertices of high degree is frequently a
good decision. For a vertex v € V, N(v) = {u € V | uv € E} denotes the open
neighborhood of v, while we write N[v] = N(v)U{v} for the closed neighborhood.
Vertex w dominates vertex v if w € N[v] and w is labeled 2 or w = v and w is
labeled 1. A vertex v is dominated if it is dominated by some vertex w.
Algorithm [T] shows the heuristic in pseudocode. The procedure takes a graph
G as input. For a vertex v € V, dy(v) represents the number of unlabeled
vertices in N[v]. This number is updated accordingly whenever changes to the
labeling function are made. Intuitively, d,(v) is the number of vertices that are
not yet dominated in the current partial solution, but that would be dominated
when assigning the label 2 to v. Our algorithm can be used with an optional
tiebreaker, which will be described in Section If this tiebreaker is used, one
must also manage the d2 values, for each vertex v € V, where d2(v) is the
number of unlabeled vertices with distance exactly two from v. In other words,
d?(v) is the number of unlabeled vertices that are reachable in two hops from
v, but that are not reachable with less than two hops. After initializing d, and
possibly dZ?, the label f(v) of each node v € V is set to unlabeled and a set S
is initialized with all nodes to be processed. As long as there exists some vertex
in S, such that labeling it with 2 would dominate at least two vertices that are
undominated so far, the following is iterated. A vertex with largest d,, is selected
(potentially breaking ties by preferring vertices of lower d2-value), labeled with
2, and all its still unlabeled neighbors are labeled with 0. Vertices with label 2
are removed from the set of vertices S. Once no vertex v with d,(v) > 2 exists
anymore, labeling further vertices with 2 is not beneficial anymore. Therefore, the
loop is finished and the algorithm proceeds by labeling all remaining unlabeled
vertices with 1. Thereafter, the resulting labeling f is already an RDF, but some
vertices may have a higher label than necessary. As a post-processing step, the
algorithm therefore performs a local improvement by attempting to reduce the
label of each vertex so far labeled with 2. Finally, the obtained locally optimal
labeling function f is returned as a solution. To improve the efficiency of our

A Simulated Annealing Based Approach for the Roman Domination Problem 5

Algorithm 1: Construction heuristic

Input: Graph G = (V, E)

du(v) + |N[]| Vv € V

if using tiebreaker then
‘ d%(v) < number of vertices with distance exactly 2 from v Vo € V

end

f () < unlabeled Yv € V

S+V

while Jv € S dy(v) > 2 do

v < vertex of S with largest d, value (prefer vertices with lower d2 value if
tiebreaker is used)

9 forall n € N(v) do

0 N O Uk w N

10 if n is unlabeled then
11 | f(n)«0

12 end

13 end

14 fw) <2
15 S« S\ {v}
16 end
17 label all unlabeled vertices 1
// Post-processing: local improvement
18 forall v € V with f(v) =2 do
19 flw)«0
20 if RDF condition violated for any v € N(v) then

21 | flv) +2

22 else if RDF condition violated for v then
23 | fv)«1

24 end

25 end

26 return f

post-processing step, we keep track of the number of vertices dominating every
vertex. Using a heap data structure, the algorithm can be implemented to run
in time O(A|V|log(|V])) € O(|V|*log(|V|)) without the tiebreaker, where A is
the maximum degree of the graph (we assume A > 0).

3.1 Tiebreaker

Since many vertices with the same d, values can exist, one may want to employ a
meaningful tiebreaker. Our tiebreaker is inspired by the one used by Ghaffari et
al. [I0] in their second greedy algorithm. We also attempted to implement their
approach, however, we found it difficult to do so efficiently in conjunction with a
heap. In case of a tie, we select a vertex that has the lowest number of unlabeled
vertices with distance exactly two from it. The intuition behind this tiebreaker is
that a vertex v with a high d, value and a low d? value may have many neighbors
that cannot be dominated well by vertices other than v. These values adapt to

6 J. Greilhuber, S. Schober, E. Iurlano, and G. R. Raidl

Algorithm 2: GRASP vertex selection
Input: Vertex set S, unlabeled vertex degrees d,
1 dj = maxyes(du(v))
2 RCL={v € S| du(v) > 7d}}
3 return vertexr from RCL selected uniformly at random

changes made by the greedy algorithm and the required bookkeeping can easily
be implemented in a performant way. Efficiently computing the vertices with
distance exactly two for every vertex can initially be done via breadth-first-
search or by squaring the adjacency matrix of the graph. We opted for the first
approach. This computation generally dominates the run-time of the algorithm,
but the construction heuristic still terminates within seconds on all test instances
in our computational experiments discussed in Section [6]

4 GRASP

GRASP is a prominent metaheuristic consisting of a construction and a local
improvement phase [§]. These two phases are executed repeatedly until some
stopping criterion is met, and the best found solution is returned. Our GRASP
approach utilizes a randomized version of the above greedy heuristic and a k-flip
neighborhood local search. The k-flip neighborhood is inspired by an abstract
view of the RDP that is used by Curro [5] to encode individuals in their genetic
algorithms. In this view, solutions are encoded as binary strings where a bit 7 is
set to one iff vertex i has label 2, and set to zero otherwise. To obtain feasible
solutions from such encodings, all vertices with their corresponding bit set to one
receive the label 2, all vertices with their corresponding bit set to zero that are
adjacent to a vertex labeled 2 receive the label 0 and all remaining vertices receive
the label 1. Flipping a bit therefore causes a vertex to be relabeled either from
2 to a lower label, or the other way around, implicitly also adjusting the labels
of affected neighbors with labels different from 2. In our randomized version of
Algorithm [I} we do not always select the vertex of S with the highest d, value,
but use a threshold based approach instead. This selection procedure is shown
in Algorithm 2] We first determine the maximum unlabeled degree of any vertex
of the set S, df, and then form a restricted candidate list (RCL), consisting of
all vertices v € S with dy(v) > 7d}, where 7 € [0, 1] is a strategy parameter. In
the end, a vertex is selected uniformly at random from the RCL and returned. If
the returned vertex v has dy(v) < 2, it is skipped, since labeling such a vertex 2
would not be worth-while. Note that the randomized version of the construction
algorithm is performed without the tiebreaker.

5 Simulated Annealing

Simulated Annealing (SA) is another widely used metaheuristic, introduced un-
der its current name by Kirkpatrick et al. [I7]. Our SA approach computes an

A Simulated Annealing Based Approach for the Roman Domination Problem 7

Algorithm 3: Simulated Annealing
Input: Graph G = (V, E)
1 Tbest < deterministic construction heuristic with tiebreaker (G)
2 I 4 Thest // current solution
3 T < Tinit // current temperature
4 while time limit not exceeded do

5 flipVertices < k vertices selected uniformly at random with replacement
6 remove duplicates in flipVertices
7 x’ < solution resulting from flipping the flipVertices in x
8 if |2'| < |z| then
9 x4+ 2’

10 if |2']| < |Tpest| then

11 Thest — X’

12 end

13 else

14 d <+ |2'| — ||

15 if (random value € [0,1)) < e~%7 then

16 |z«

17 end

18 end

19 if T has not changed in |V|? iterations then

20 | T+a-T

21 end

22 if e72/T < 8 and |z| not improved in last k - ¢ iterations then
23 ‘ T+ % // reheating

24 end

25 end

26 return Tpest

initial solution using our greedy construction heuristic with the tiebreaker, and
then tries to refine it by using the k-flip neighborhood structure in the usual SA
fashion. This procedure is shown in Algorithm [3] It uses the following additional
strategy parameters: an initial temperature Tiy;t, a geometric cooling factor «, a
threshold 3 for the minimum probability of accepting worse moves, a parameter
~ controlling the probability of accepting worse moves after reheating, a number
¢ of steps without improvement that is used to determine when reheating should
occur, and a time limit for termination.

In each iteration, our procedure samples k vertices uniformly at random, and
then proceeds to remove duplicate entries from the sampled vertices. We sample
with replacement so that also moves flipping less than k vertices are possible.
These up to k vertices are then flipped in the current solution x to generate
a new neighboring solution z’. This solution is accepted if it is better, or, in
traditional simulated annealing fashion, with random probability depending on
the solution quality as well as the current temperature T if it is worse. The
temperature is cooled down by geometric cooling with a factor of a every [V|?

8 J. Greilhuber, S. Schober, E. Iurlano, and G. R. Raidl

iterations. Once the temperature has fallen to a point where the probability of
accepting a move that increases the objective value by two is smaller than 3,
and the objective value of the current solution has not improved in the last k - ¢
iterations, a reheating is performed such that worse moves are accepted again
with a higher probability. As an overall stopping criterion, we use a maximum
time limit, but also other stopping conditions, e.g., based on convergence, are
conceivable.

As will be shown in more detail in Section [6] this algorithm performed well
in our experiments, especially on graphs with substantial structure, like grid
and net graphs. However, even though the SA outperformed Gurobi on large in-
stances with less structure, i.e., randomly constructed graphs, the GRASP from
the last section yielded in general slightly better solutions on these instances.
This inspired us to investigate a combination we call Simulated Annealing Hy-
brid (SAH) to possibly get the best of both worlds: We decided to split the
algorithm into phases of randomized greedy construction and phases of refining
the best found greedy solution through simulated annealing. These two phases
are executed in an alternating fashion as shown in Algorithm [4 In the random-
ized greedy phase, we first generate an initial solution by using our deterministic
greedy construction with the tiebreaker, and then repeatedly generate solutions
using the randomized greedy construction with a threshold of 7. The best so-
lution found in the randomized greedy construction phase is then used as the
initial solution for the SA phase. This approach may improve upon the previous
ones by combining algorithms that are strong on different instance types, and
by potentially generating more diverse initial solutions for the simulated anneal-
ing phase. Both phases are executed multiple times, effectively making this a
multi-start approach. Even though we did not do this in our experiments, the
algorithm can easily be parallelized by running each pair of random construction
and simulated annealing phases on different cores.

6 Experimental Evaluation

In this section, we present the results of computational experiments that we
conducted with the proposed algorithms. All methods were implemented in Ju-
lia 1.8.5 and performed on a cluster with Intel Xeon E5540 quad-core CPUs with
2.53GHz and 24 GB RAM. Our benchmark instance set consists of instances al-
ready used by Curro [5], Ivanovi¢ [I4], Ivanovi¢ and UroSevi¢ [15], and Filipovié
et al. [9]. Thus, these instances appear to be the somewhat standard instances
for the empirical evaluation of algorithms for Roman domination problems. The
instance set includes graphs of different classes and sizes, with the largest graph
having 1,000 vertices and around 450,000 edges. More specifically, there are six
different types of graphs: grid, random, bipartite, net, planar, and recursive. We
evaluate the performance of our greedy construction heuristic when used with
and without the tiebreaker, as well as our GRASP, SA, and SAH approaches.
Moreover, we compare to the VNS from Ivanovi¢ and Urosevié [15] and the mized
binary integer linear programming (MBIP) formulation BV Viy,p2 by Ivanovié [13]

A Simulated Annealing Based Approach for the Roman Domination Problem 9

Algorithm 4: Simulated Annealing Hybrid
Input: Graph G = (V, E)

1 Zbest < nothing

2 while time limit not exceeded do

3 Thest greedy <— deterministic construction heuristic with tiebreaker (G)
4 if xb;t = nothing then
5 ‘ Thest < l’bestigreedy
6 end
7 while randomized greedy construction phase do
8 x’ < randomized construction heuristic using threshold 7 (G)
9 if [2| < [@best_greedy| then
10 xbestigreedy — 1'/
11 end
12 if |2'| < |Tbest| then
13 | Zbest < 2’
14 end
15 end
16 T < Tbest greedy
17 T < Tinit // current temperature
18 while simulated annealing phase do
19 flipVertices < k vertices selected uniformly at random with
replacement
20 remove duplicates in flipVertices
21 x’ < solution resulting from flipping the flipVertices in x
22 if |2'| < |z| then
23 x <+ 2
24 if |2'] < |Tpest| then
25 | Zbest + @’
26 end
27 else
28 d <+ |2’ — ||
29 if (random value € [0,1)) < e=%¥" then
30 |
31 end
32 end
33 if T has not changed in |V|? iterations then
34 | T+ a-T
35 end
36 if 72T < 8 and |z| not improved in last k - ¢ iterations then
37 ‘ T + % // reheating
38 end
39 end
40 end

41 return Tpest

solved with the Gurobi 10.0.0 mixed integer linear programming solver [I1]. The

10 J. Greilhuber, S. Schober, E. Iurlano, and G. R. Raidl

lower bounds found by Gurobi are used to express the qualities of solutions ob-
tained by the heuristic approaches in terms of percentage gaps. If z denotes the
value of a heuristic solution and zj, the corresponding lower bound obtained
from Gurobi, then the percentage gap is calculated as 100% - ==L

Time-gap cumulative distribution plots are used for comparison, in which
the y-axis indicates how many solutions were solved, whereas the time it took to
solve instances to optimality and —if not possible within the time limit— the
relative optimality gap are depicted on the x-axis. This way, one can observe
how many solutions were solved to proven optimality within the time-limit, as
well as the quality of all obtained solutions when compared to the lower bound
obtained via the MBIP model. The results for the VNS algorithm are taken from
the respective paper [15], and, thus, runtimes cannot directly be compared. Full
results of the experiments and the problem instances can be found onlineﬂ

6.1 Tiebreaker

In order to examine the performance of the (deterministic) greedy construction
heuristic with and without the tiebreaker, we performed one run of each variant
on all instances. Note that, even when using the tiebreaker, any remaining ties
are broken arbitrarily in a deterministic fashion. Figure [I] displays obtained re-
sults in a time-gap plot. Moreover, Figure [2] plots runtimes with the tiebreaker
(Greedy+TB) against the runtimes without the tiebreaker (Greedy) for each
instance. A summary of the results for each type of benchmark instance is given
in Table [I} We show these data in the same fashion as Filipovi¢ et al. [9] dis-
play their results on (a subset of) the instances. The table lists the number of
instances that were solved to proven optimality (#opt), the number of times
the approach achieved the best solution of the displayed approaches (#best),
the mean objective value, the mean time to the best solution found by the ap-
proach, as well as the mean percentage gap. We remark that values listed under
#opt do not necessarily represent the numbers of instances for which optimal
solutions were found, but only the numbers of instances for which optimality
could be proven by means of the lower bounds from Gurobi.

Running the construction heuristic with the tiebreaker increases the run-time
on average by a factor of about ten, but significantly more instances were solved
to proven optimality when using it. Moreover, out of the 623 total instances
of the benchmark set, the algorithm with the tiebreaker managed to find bet-
ter solutions for 211 instances, while reporting slightly worse solutions for only
132 instances and yielding equally good results for the remaining 280 instances.
Obtained average gaps were about 0.5% lower when using the tiebreaker. The
largest difference in solution quality can be observed on the four tested net
graphs. Here, the construction heuristic with the tiebreaker manages to always
find the optimal solution, while the basic version obtained significantly worse
results. We conclude that using the tiebreaker within the construction heuristic

! 'https://wuw.ac.tuwien.ac.at/research/problem-instances/#Roman_
Domination_Problem

https://www.ac.tuwien.ac.at/research/problem-instances/#Roman_Domination_Problem
https://www.ac.tuwien.ac.at/research/problem-instances/#Roman_Domination_Problem

A Simulated Annealing Based Approach for the Roman Domination Problem 11

Table 1. Computational results of the greedy construction heuristic with and without
tiebreaker.

Grid Bipartite Net Planar | Random |Recursive All
Method Measure (172 inst.)| (135 inst.) | (4 inst.) [(17 inst.)| (288 inst.)| (7 inst.) |(623 inst.)
Greedy #opt 13 19 4 3 61 7 107
+TB #best 119 97 4 15 249 7 491
mean value 46.60 66.63 80.50 20.65 35.17 56.43 45.28
mean time (ms) 0.72 44.73 3.22 63.74 227.83 52.83 117.57
mean gap (%) 10.35 17.75 0.00 24.38 22.87 0.00 17.94
Greedy Fopt 5 15 0 3 58 7 88
#best 88 85 0 14 218 7 412
mean value 47.02 66.99 92.50 20.71 35.47 56.43 45.69
mean time (ms) 0.50 5.64 1.18 5.10 24.01 2.33 12.63
mean gap (%) 11.37 17.69 12.19 24.48 23.17 0.00 18.43
600 -Txebrezkev ,’7,‘ 0.25
No tiebreaker /("l =
§ 500 /1/ g 020 ® °
@ 400 A g oo
2 f 2 o1s ° 4 6
é 300 3 go I
5 -‘g 010 °on®
3 200 o ° "\
= 100 é 005 ° .s.
s3°°
000 05 1.0 15 2.0 2330 20 40 60 80 100 00000 05 1.0 15 20 25
Time (s) Gap (%) Runtime using tiebreaker (s)

Fig.1. Time-gap plot of the greedy Fig. 2. Scatter plot for the run-times of
construction heuristic with and with- the greedy construction heuristic with
out the tiebreaker. and without tiebreaker.

can make sense, especially if it is used on graphs with a similar structure as the
tested net graphs.

6.2 Metaheuristic Approaches

The performance of our GRASP, SA, and SAH was evaluated with a two-hour
time limit on each of our 623 problem instances. According to preliminary tests
we found the following parameter settings to be robust choices, which we em-
ployed in all successive tests discussed here. The GRASP algorithm was run with
a threshold value of 7 = 0.9 and uses the 1-flip neighborhood structure in con-
junction with the next-improvement step-function for the improvement phase.
For SA, we chose the parameter values k = 2, a = 0.95, 3 = 1076, v = 1074,
and ¢ = 2-10%. The initial temperature was set to ﬁ. The same parameter
values were chosen for the SAH algorithm, and we ran the randomized greedy
phase for 2 minutes followed by 8 minutes of the simulated annealing phase over
12 full rounds, for a total run-time of 2 hours. In the randomized greedy phase,
we used a threshold value of 7 = 0.9 for the randomization of the construction
heuristic.

The main results of the experiments are summarized in Table[2] Here included
are also the results of Gurobi on the MBIP model. Note that for this latter

12 J. Greilhuber, S. Schober, E. Iurlano, and G. R. Raidl

Table 2. Computational results of the MBIP solved by Gurobi, the greedy construction
heuristic with tiebreaker and our metaheuristics GRASP, SA, and SAH.

Grid Bipartite Net Planar | Random [Recursive All
Method Measure (172 inst.)| (135 inst.)|(4 inst.)| (17 inst.) | (288 inst.)| (7 inst.) |(623 inst.)
MBIP F#opt 172 68 4 8 123 7 382
#best 172 84 4 10 162 7 439
mean value 41.30 63.08 80.50 19.53 33.72 56.43 42.34
mean time (s) 4.57 |3745.79 0.01 [4041.80 [4356.68 0.03 [2937.25
mean gap (%) 0.00 12.92 0.00 18.33 19.72 0.00 12.42
Greedy #opt 13 19 4 3 61 7 107
+TB #best 13 21 4 3 91 7 139
mean value 46.60 66.63 80.50 20.65 35.17 56.43 45.28
mean time (s)| <0.01 0.04 <0.01 0.06 0.23 0.05 0.12
mean gap (%)| 10.35 17.75 0.00 24.38 22.87 0.00 17.94
GRASP #opt 151 53 2 8 111 7 332
#best 151 102 2 17 259 7 538
mean value 41.72 62.72 85.25 18.71 32.85 56.43 41.99
mean time (s)| 292.02 889.67 |755.81 | 508.21 434.10 <0.01 492.80
mean gap (%) 0.38 12.14 3.21 16.67 17.82 0.00 11.45
SA #opt 172 66 4 8 117 7 374
#best 172 102 4 12 193 7 490
mean value 41.30 62.59 80.50 19.24 33.27 56.43 42.02
mean time (s) 2.81 787.28 <0.01 | 998.69 431.47 0.05 398.09
mean gap (%) 0.00 12.72 0.00 17.69 19.49 0.00 12.25
SAH #opt 172 66 4 8 123 7 380
#best 172 124 4 17 262 7 586
mean value 41.30 62.27 80.50 18.71 32.80 56.43 41.72
mean time (s)| 36.16 540.57 <0.01 | 715.74 470.69 0.06 364.24
mean gap (%) 0.00 11.96 0.00 16.67 17.91 0.00 11.33

approach, we do not display the average time it took to find the best solution,
but the average time reported by Gurobi (for a given instance, this is either the
time it took to find and prove optimality, or the time limit). Thus, these times
cannot be directly compared to the times of the heuristic approaches. Moreover,
the table includes the results of Greedy+TB again for a direct comparison. We
further display the results of GRASP, SA, SAH, and MBIP also in the form of
time-gap plots for all instances as well as only selected subsets in Figure [3|

We can observe that the metaheuristic approaches obtained better results
than the greedy-heuristic, achieving much higher scores in the #opt and #best
metrics. The only exceptions to this are the net and recursive graphs, on which
the greedy algorithm already obtains optimal solutions. The SA approach is
strong on grid graphs, achieving the optimal solution on all of them, whereas
GRASP only managed to optimally solve 151 out of 172 instances. Even com-
pared to MBIP, the SA approach showed promising performance on this graph
class. On the random graph class GRASP achieves the best solutions on 259
instances, and SA on only 193, making GRASP the better choice for these in-
stances. SAH is the most prospective approach in terms of solution quality,
finding the best solution on 586 instances, better than the MBIP approach that
manages 439, GRASP that manages 538, and SA that manages 490. Further-
more, there were only two instances which the MBIP approach could solve to
proven optimality, and on which SAH was not able to find an optimum. The
mean time to converge to the best solution of a run is lower for SAH than for
all the other metaheuristic approaches on average over all instances, indicating

A Simulated Annealing Based Approach for the Roman Domination Problem 13

200 -

Number of instances solved
Number of instances solved

o
0 2000 4000 6000 7200/0 20 40 60 80 100 o 2000 4000 6000 72000 20 40 60 80 100
Time (s) Gap (%) Time (s) Gap (%)

All Bipartite
’

150

100 -

50 -

SAH L—san

s =
—GRASP

MBIP MBIP

0 0
0 2000 4000 6000 72000 20 40 60 80 100 o 2000 2000 G000 72000 20 40 60 80 100

Time (s) Gap (%) Time (s) Gap (%)

Grid Random

Number of instances solved
Number of instances solved

Fig. 3. Time-gap plots comparing the approaches on different graph classes.

that SAH can in general obtain better solutions on the tested instances without
needing (much) more time. When an algorithm for a specific graph class, e.g.,
grid graphs is needed, other tested approaches (in the case of grid graphs, the
basic simulated annealing algorithm) may however obtain solutions of similar
quality in less time.

Finally, we compare our algorithms also to the VNS from Ivanovi¢ and Urose-
vié [15] in Table In their article, only results for instances for which the optimal
solution is known are reported, and thus we also had to restrict the comparison
to the respective subset benchmark instances. Note that in contrast to our other
displayed results, the lower bounds used now do not stem from our MBIP re-
sults, but from [I5]. Ivanovi¢ and UroSevi¢ [15] employ a time limit of two hours
together with an early stopping criterion, and report the time it took to obtain
the best solution found as well as the obtained solution value. Their CPU is
slightly slower than the one we used, having a frequency of 2.4GHz compared to
ours with 2.53GHz. Unlike for our experiments, Ivanovi¢ and UroSevi¢ [15] report
results for the best out of 20 independent runs per instance. Nevertheless, our
SA and SAH show clearly better performance on these instances, solving more
of them to optimality in a much shorter mean time. Especially SAH performed
particularly well, solving all instances optimally in the shortest mean time of all
tested approaches.

Overall, SAH successfully manages to combine the strengths of the simulated
annealing and the randomized construction heuristic, and is an algorithm with
excellent practical performance on all considered instances.

14 J. Greilhuber, S. Schober, E. Iurlano, and G. R. Raidl

Table 3. Comparison with the VNS from Ivanovi¢ and Urogevié¢ [15].

Algorithm| #fopt |mean value|mean time (s)|/mean gap (%)
VNS 218 41.004 113.171 0.163
GRASP 203 41.182 252.933 0.380
SA 230 40.771 55.077 0.048
SAH 231 40.766 33.238 0.000

7 Conclusion

We investigated several heuristic approaches to tackle the Roman Domination
Problem and also compared them to a mixed integer linear programming model
solved by Gurobi as well as the VNS by Ivanovi¢ and UroSevié [15]. We observed
that simulated annealing and GRASP can be applied as efficient metaheuristics
for the problem, as they provided stronger results over our benchmark instances
than the exact and greedy algorithms. The simulated annealing approach showed
especially good results on grid graphs, whereas GRASP prevailed on a class of
randomly generated graphs. Motivated by the individual strengths of these two,
we came up with a simulated annealing hybrid, that interleaves phases of ran-
domized solution construction with solution refinement according to simulated
annealing. In our experiments, this hybrid manages to achieve the overall best
results out of all considered approaches. When comparing our SAH algorithm
to the VNS from Ivanovi¢ and UroSevi¢ [15], our hybrid managed to solve all
considered instances to proven optimality, and this on average in less time.
Given the impressive results obtained by the MBIP, an interesting direction
for future work is to investigate hybrid metaheuristics that make use of a mixed
integer linear programming solver for solving smaller subproblems, such as in
large neighborhood search. This may be particularly appealing to address huge
instances. Moreover, there are many variants of the basic Roman domination
problem, such as the signed, double, or weak variants. Adapting our approaches
for these seems to be partly easy, but there are also some more challenging
questions that would need to be solved. Finally, evaluating the application of the
proposed algorithms on an actual use case from practice would be interesting.

Acknowledgements We acknowledge the financial support of this project
by Austria’s Agency for Education and Internationalization under grant
BA05/2023. This project is partially funded by the Doctoral Program “Vi-
enna Graduate School on Computational Optimization”, Austrian Science Fund
(FWF), grant W1260-N35.

References
1. Abdollahzadeh Ahangar, H., Henning, M.A., Lowenstein, C., Zhao, Y., Samodi-

vkin, V.: Signed Roman domination in graphs. Journal of Combinatorial Optimiza-
tion 27(2), 241-255 (2014). https://doi.org/10.1007/s10878-012-9500-0

https://doi.org/10.1007/s10878-012-9500-0
https://doi.org/10.1007/s10878-012-9500-0

A Simulated Annealing Based Approach for the Roman Domination Problem 15

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Beeler, R.A., Haynes, T.W., Hedetniemi, S.T.: Double Roman domination. Discrete

Applied Mathematics 211, 23—29 (2016). https://doi.org/10.1016/j.dam.2016.
03.017

Burger, A.P., de Villiers, A.P., van Vuuren, J.H.: A binary programming approach
towards achieving effective graph protection. In: Proceedings of the 2013 ORSSA
Annual Conference, ORSSA. pp. 19-30 (2013)

Cockayne, E.J., Dreyer, P.A., Hedetniemi, S.M., Hedetniemi, S.T.: Roman domina-
tion in graphs. Discrete Mathematics 278(1-3), 11-22 (2004). https://doi.org/
10.1016/j.disc.2003.06.004

Curro, V.: The Roman domination problem on grid graphs. Ph.D. thesis, Universita
di Catania (2014), https://hdl.handle.net/20.500.11769/585454

Dreyer, P.A.: Applications and variations of domination in graphs. Ph.D. thesis,
Rutgers University (2000)

Favaron, O., Karami, H., Khoeilar, R., Sheikholeslami, S.M.: On the Roman dom-
ination number of a graph. Discrete Mathematics 309(10), 3447-3451 (2009).
https://doi.org/10.1016/j.disc.2008.09.043

Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. Jour-
nal of Global Optimization 6(2), 109-133 (1995). https://doi.org/10.1007/
BF01096763

Filipovi¢, V., Mati¢, D., Kartelj, A.: Solving the signed Roman domination and
signed total Roman domination problems with exact and heuristic methods (2022).
https://doi.org/10.48550/arXiv.2201.00394, arXiv:2201.00394

Ghaffari, F., Bahrak, B., Shariatpanahi, S.P.: A novel approach to partial coverage
in wireless sensor networks via the Roman dominating set. IET Networks 11(2),
58-69 (2022). https://doi.org/10.1049/ntw2.12034

Gurobi Optimization, LLC: Gurobi optimizer reference manual (2023), https:
//www.gurobi.com

Henning, M.A., Hedetniemi, S.T.: Defending the Roman empire—a new strat-
egy. Discrete Mathematics 266(1-3), 239-251 (2003). https://doi.org/10.1016/
S0012-365X(02)00811-7

Ivanovié, M.: Improved mixed integer linear programing formulations for Ro-
man domination problem. Publications de I'Institut Mathematique 99(113), 51-58
(2016). https://doi.org/10.2298/PIM1613051T

Ivanovié, M.: Improved integer linear programming formulation for weak Roman
domination problem. Soft Computing 22(19), 6583-6593 (2018). https://doi.
org/10.1007/s00500-017-2706-4

Ivanovié, M., UroSevi¢, D.: Variable neighborhood search approach for solving Ro-
man and weak Roman domination problems on graphs. Computing and Informatics
38(1), 57-84 (2019). https://doi.org/10.31577/cai_2019_1_57

Khandelwal, A., Srivastava, K., Saran, G.: On Roman domination of graphs using
a genetic algorithm. In: Singh, V., Asari, V.K., Kumar, S., Patel, R.B. (eds.) Com-
putational Methods and Data Engineering. Advances in Intelligent Systems and
Computing, vol. 1227, pp. 133-147. Springer (2021). https://doi.org/10.1007/
978-981-15-6876-3_11

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated anneal-
ing. Science 220(4598), 671-680 (1983). https://doi.org/10.1126/science.220.
4598.671

Klobucar, A., Pulji¢, I.: Some results for Roman domination number on cardinal
product of paths and cycles. Kragujevac Journal of Mathematics 38(1), 83-94
(2014). https://doi.org/10.5937/KgIMath1401083K

https://doi.org/10.1016/j.dam.2016.03.017
https://doi.org/10.1016/j.dam.2016.03.017
https://doi.org/10.1016/j.dam.2016.03.017
https://doi.org/10.1016/j.dam.2016.03.017
https://doi.org/10.1016/j.disc.2003.06.004
https://doi.org/10.1016/j.disc.2003.06.004
https://doi.org/10.1016/j.disc.2003.06.004
https://doi.org/10.1016/j.disc.2003.06.004
https://hdl.handle.net/20.500.11769/585454
https://doi.org/10.1016/j.disc.2008.09.043
https://doi.org/10.1016/j.disc.2008.09.043
https://doi.org/10.1007/BF01096763
https://doi.org/10.1007/BF01096763
https://doi.org/10.1007/BF01096763
https://doi.org/10.1007/BF01096763
https://doi.org/10.48550/arXiv.2201.00394
https://doi.org/10.48550/arXiv.2201.00394
https://doi.org/10.1049/ntw2.12034
https://doi.org/10.1049/ntw2.12034
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1016/S0012-365X(02)00811-7
https://doi.org/10.1016/S0012-365X(02)00811-7
https://doi.org/10.1016/S0012-365X(02)00811-7
https://doi.org/10.1016/S0012-365X(02)00811-7
https://doi.org/10.2298/PIM1613051I
https://doi.org/10.2298/PIM1613051I
https://doi.org/10.1007/s00500-017-2706-4
https://doi.org/10.1007/s00500-017-2706-4
https://doi.org/10.1007/s00500-017-2706-4
https://doi.org/10.1007/s00500-017-2706-4
https://doi.org/10.31577/cai_2019_1_57
https://doi.org/10.31577/cai_2019_1_57
https://doi.org/10.1007/978-981-15-6876-3_11
https://doi.org/10.1007/978-981-15-6876-3_11
https://doi.org/10.1007/978-981-15-6876-3_11
https://doi.org/10.1007/978-981-15-6876-3_11
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.5937/KgJMath1401083K
https://doi.org/10.5937/KgJMath1401083K

16

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

J. Greilhuber, S. Schober, E. Iurlano, and G. R. Raidl

Klobucar, A., Pulji¢, I.: Roman domination number on cardinal product of paths
and cycles. Croatian Operational Research Review 6(1), 71-78 (2015). https:
//doi.org/10.17535/crorr.2015.0006

Liedloff, M., Kloks, T., Liu, J., Peng, S.L..: Roman domination over some graph
classes. In: Kratsch, D. (ed.) Graph-Theoretic Concepts in Computer Science.
Lecture Notes in Computer Science, vol. 3787, pp. 103-114. Springer (2005).
https://doi.org/10.1007/11604686_10

Liedloff, M., Kloks, T., Liu, J., Peng, S.L.: Efficient algorithms for Roman domina-
tion on some classes of graphs. Discrete Applied Mathematics 156(18), 3400-3415
(2008). https://doi.org/10.1016/].dam.2008.01.011

Nolassi, S.M.: Algoritmi euristici per il problema della dominazione romana. Ph.D.
thesis, Universita di Catania (2014), https://hdl.handle.net/20.500.11769/
586206

Pagourtzis, A., Penna, P., Schlude, K., Steinhofel, K., Taylor, D.S., Widmayer,
P.: Server placements, Roman domination and other dominating set variants. In:
Baeza-Yates, R., Montanari, U., Santoro, N. (eds.) Foundations of Information
Technology in the Era of Network and Mobile Computing. IFIP — The Interna-
tional Federation for Information Processing, vol. 96, pp. 280-291. Springer (2002).
https://doi.org/10.1007/978-0-387-35608-2_24

Peng, S.L., Tsai, Y.H.: Roman domination on graphs of bounded treewidth. In:
Proceedings of the 24th Workshop on Combinatorial Mathematics and Computa-
tion Theory. pp. 128-131 (2007)

ReVelle, C.S., Rosing, K.E.: Defendens imperium Romanum: A classical problem in
military strategy. The American Mathematical Monthly 107(7), 585-594 (2000).
https://doi.org/10.1080/00029890.2000.12005243

Shang, W., Hu, X.: The Roman domination problem in unit disk graphs. In: Shi,
Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) Computational Science —
ICCS 2007. Lecture Notes in Computer Science, vol. 4489, pp. 305-312. Springer
(2007). https://doi.org/10.1007/978-3-540-72588-6_51

Stewart, I.: Defend the Roman empire! Scientific American 281(6), 136-138 (1999).
https://doi.org/10.1038/scientificamerican1299-136

Volkmann, L.: Signed total Roman domination in graphs. Journal of Com-
binatorial Optimization 32(3), 855-871 (2016). https://doi.org/10.1007/
s10878-015-9906-6

Xing, H.M., Chen, X., Chen, X.G.: A note on Roman domination in graphs.
Discrete Mathematics 306(24), 3338-3340 (2006). https://doi.org/10.1016/j.
disc.2006.06.018

https://doi.org/10.17535/crorr.2015.0006
https://doi.org/10.17535/crorr.2015.0006
https://doi.org/10.17535/crorr.2015.0006
https://doi.org/10.17535/crorr.2015.0006
https://doi.org/10.1007/11604686_10
https://doi.org/10.1007/11604686_10
https://doi.org/10.1016/j.dam.2008.01.011
https://doi.org/10.1016/j.dam.2008.01.011
https://hdl.handle.net/20.500.11769/586206
https://hdl.handle.net/20.500.11769/586206
https://doi.org/10.1007/978-0-387-35608-2_24
https://doi.org/10.1007/978-0-387-35608-2_24
https://doi.org/10.1080/00029890.2000.12005243
https://doi.org/10.1080/00029890.2000.12005243
https://doi.org/10.1007/978-3-540-72588-6_51
https://doi.org/10.1007/978-3-540-72588-6_51
https://doi.org/10.1038/scientificamerican1299-136
https://doi.org/10.1038/scientificamerican1299-136
https://doi.org/10.1007/s10878-015-9906-6
https://doi.org/10.1007/s10878-015-9906-6
https://doi.org/10.1007/s10878-015-9906-6
https://doi.org/10.1007/s10878-015-9906-6
https://doi.org/10.1016/j.disc.2006.06.018
https://doi.org/10.1016/j.disc.2006.06.018
https://doi.org/10.1016/j.disc.2006.06.018
https://doi.org/10.1016/j.disc.2006.06.018

	A Simulated Annealing Based Approach for the Roman Domination Problem

