
A Simulated Annealing Based Approach for the Roman

Domination Problem

Jakob Greilhuber⋆, Sophia Schober⋆, Enrico Iurlano, and Günther R. Raidl

Algorithms and Complexity Group, TU Wien, Favoritenstr. 9/1921, 1040 Vienna, Austria
jakob.greilhuber@student.tuwien.ac.at, sophia.schober@tuwien.ac.at

{eiurlano|raidl}@ac.tuwien.ac.at

Abstract. The Roman Domination Problem is an NP-hard combinatorial optimization
problem on an undirected simple graph. It represents scenarios where a resource shall be
economically distributed over its vertices while guaranteeing that each vertex has either a
resource itself or at least one neighbor with a sharable surplus resource. We propose several
(meta-)heuristic approaches for solving this problem. First, a greedy construction heuristic
for quickly generating feasible solutions is introduced. A special feature of this heuristic is
an optional advanced tiebreaker. This construction heuristic is then randomized and com-
bined with a local search procedure to obtain a greedy randomized adaptive search procedure
(GRASP). As an alternative, we further propose a simulated annealing (SA) algorithm to
improve the solutions returned by the construction heuristic. As we observe different pros
and cons for the GRASP and the SA, we finally combine them into a simulated annealing
hybrid, which interleaves phases of greedy randomized construction and phases of simulated
annealing. All algorithms are empirically evaluated on a large set of benchmark instances
from the literature. We compare to an exact mixed integer linear programming model that
is solved by Gurobi as well as to a variable neighborhood search from the literature. In par-
ticular the simulated annealing hybrid turns out to yield on average the best results, making
it a new state-of-the-art method for the Roman domination problem.

Keywords: Roman Domination Problem · Metaheuristics · GRASP · Simulated Annealing

1 Introduction

The Roman Domination Problem (RDP) is a combinatorial optimization problem on graphs, for-
mally introduced in ReVelle and Rosing [25]. It is related to the classical dominating set problem
and originates from the following scenario: a Roman emperor might wonder how many legions it
takes to ensure that all provinces of the empire can be defended against a single attack, without
leaving any province vulnerable. A province in the empire is considered defended if a legion is
stationed in it or if there is a neighboring province with two stationed legions, as such a neighbor
can send one of its legions to help the attacked province. More formally, the problem is defined
as follows. Given an undirected simple graph G = (V,E) with vertex set V (corresponding to the
provinces) and edge set E (representing the neighborhoods), a labeling function f : V → {0, 1, 2}
assigns each vertex a label (the number of stationed legions). If this is done in such a way that every
vertex with label 0 has at least one neighbor labeled 2, this function is called a Roman Domination
Function (RDF) [4]. The weight of this function is given by |f | =

∑
v∈V

f(v), and the lowest weight
of any RDF of G is the Roman domination number of G. The objective of the RDP is to find an
RDF of lowest weight. Beyond the historical background in military strategy planning, practical
applications can occasionally be found more generally when an area represented as a graph shall be
covered with a minimum amount of some resource and neighboring vertices may share units of the
resource. For instance, Pagourtzis et al. [23] analyze different problem formulations concerning op-
timal server placement and highlight that one of these corresponds to the RDP. Similarly, Ghaffari
et al. [10] describe how the RDP can be used in the deployment of wireless sensor networks.

In terms of complexity, the RDP is known to be NP-hard [6]. Thus, optimally solving the prob-
lem is in general not possible in polynomial time, unless P = NP , which creates a desire for
heuristic approaches that can produce reasonably good solutions in a short amount of time also

⋆ The first two authors contributed equally.

This is a preliminary version of the paper. It was presented at the 9th International Conference on Metaheuristics and
Nature Inspired Computing (META), Marrakech, Morocco, 3rd of November 2023.

2 J. Greilhuber, S. Schober, E. Iurlano, and G. R. Raidl

for large instances. We first introduce a greedy construction heuristic, which is then randomized
and extended to a greedy randomized adaptive search procedure (GRASP). Moreover, we propose a
simulated annealing (SA) algorithm, as well as a simulated annealing hybrid (SAH) that combines
the randomized construction heuristic and simulated annealing approaches. All these algorithms
are experimentally evaluated and compared to a former variable neighborhood search (VNS) from
Ivanović and Urošević [15] on benchmark instances from the literature. Results indicate that SAH
performs best in our tests.

The next Section 2 surveys related work. In Sections 3 to 5, we introduce the construction heuristic,
the GRASP, the SA, and the SAH approaches, respectively. Results are discussed in Section 6.
Finally, we give concluding remarks in Section 7.

2 Related Work

The RDP is inspired by the strategy that the Roman emperor Constantine proposed to defend the
Roman empire, which is discussed in an article by Stewart [27] from 1999. ReVelle and Rosing [25]
formally define the problem and propose the first binary linear programming formulation for it.
Cockayne et al. [4] introduce the term Roman domination, and give a variety of theoretical results
for the problem, such as the observation that the Roman domination number is at least the size
of the domination number (i.e., the cardinality of the smallest dominating set) and at most twice
this number for any graph. They also characterize the graphs with a Roman domination number
that exceeds the domination number by at most two. Xing et al. [29], on the other hand, provide
a characterization of graphs for which the difference between Roman domination number and
domination number equals a fixed constant not smaller than two.

Dreyer [6] dedicates a chapter of their doctoral thesis to theoretical findings regarding the problem,
also providing a proof for the NP-hardness of the problem. Favaron et al. [7] provide an optimal
upper bound for the Roman domination number of connected graphs, as well as bounds for the
number of vertices labeled with 0, 1, or 2 in an RDF of minimal weight. Shang and Hu [26] consider
the problem on unit disk graphs. They provide an approximation algorithm and a polynomial-time
approximation scheme for graphs of this class. Moreover, they show that the RDP is NP-hard on
unit disk graphs. Bounds and exact results for the Roman domination number on cardinal products
of paths, cycles, and general graphs are given by Klobučar and Puljić [18, 19]. Peng and Tsai [24]
prove that the problem can be solved in linear time on graphs of bounded treewidth. Liedloff et
al. [20, 21] show that the RDP can be solved in linear time on interval graphs and cographs, among
other algorithmic results. Currò [5] dedicates their doctoral thesis to the RDP on grid graphs,
proving lower and upper bounds on the Roman domination number of such graphs.

A wide variety of related domination problems have also been investigated by researchers over the
past decades, including the Weak Roman Domination Problem (WRDP) devised by Henning and
Hedetniemi [12], the Signed Roman Domination Problem introduced by Abdollahzadeh Ahangar
et al. [1], the Signed Total Roman Domination Problem proposed by Volkmann [28] and the Double
Roman Domination Problem [2].

Burger et al. [3] propose another binary programming formulation for the RDP. The formulations
by ReVelle and Rosing [25] and Burger et al. [3] are examined by Ivanović [13], who further provides
improved versions of both formulations.

The first heuristic approaches for the RDP appear to stem from Nolassi [22] and Currò [5]. In
their doctoral theses, multiple construction heuristics are proposed and evaluated. Furthermore,
Currò [5] presents genetic algorithms for the problem. Later, Ivanović and Urošević [15] propose a
VNS algorithm for the RDP and the WRDP, and report mostly superior results on many instances
in comparison to the earlier solution approaches. Moreover, Ghaffari et al. [10] describe two simple
construction heuristics. The only other heuristic approach for the RDP we found in the literature is
a genetic algorithm by Khandelwal et al. [16]. These authors, however, test their genetic algorithm
on a different instance set than previous publications and do not reference earlier heuristic ap-
proaches. Therefore, we compare primarily to an exact mixed binary linear programming approach
as well as to the VNS from [15]. Filipović et al. [9] provide heuristic and exact solution methods
for the signed and signed total RDP variants.

A Simulated Annealing Based Approach for the Roman Domination Problem 3

Algorithm 1: Construction heuristic

Input: Graph G = (V,E)
1 du(v)← |N [v]| ∀v ∈ V

2 if using tiebreaker then

3 d2u(v)← number of vertices with distance exactly 2 from v ∀v ∈ V

4 end

5 f(v)← unlabeled ∀v ∈ V

6 S ← V

7 while ∃v ∈ S du(v) ≥ 2 do

8 v ← vertex of S with largest du value (prefer vertices with lower d2u value if tiebreaker is used)
9 forall n ∈ N(v) do

10 if n is unlabeled then

11 f(n)← 0
12 end

13 end

14 f(v)← 2
15 S ← S \ {v}

16 end

17 label all unlabeled vertices 1
// Post-processing: local improvement

18 forall v ∈ V with f(v) = 2 do

19 f(v)← 0
20 if RDF condition violated for any u ∈ N(v) then

21 f(v)← 2
22 else if RDF condition violated for v then

23 f(v)← 1
24 end

25 end

26 return f

In general, the literature has been mostly focusing on theoretical results thus far. This lack of
focus on heuristic algorithms for the RDP in the literature indicates that the potential of such
algorithms may not have been exhausted yet and promising approaches might be left to discover,
which motivates our work.

3 Greedy Construction Algorithm

We now present our (deterministic) greedy construction heuristic. It is inspired by the algorithms
described by Ghaffari et al. [10]. We later realized that its core principle is shared by the “GainFac-
tor” heuristic described by Currò [5], however, our algorithm differs from the latter by including a
tiebreaker, using the unlabeled degree instead of the GainFactor, incorporating a label-reduction
step in the end, and other smaller differences. The general idea of our construction heuristic is that
assigning the label 2 to vertices of high degree is frequently a good decision. For a vertex v ∈ V ,
N(v) = {u ∈ V |uv ∈ E} denotes the open neighborhood of v, while we write N [v] = N(v) ∪ {v}
for the closed neighborhood. Vertex w dominates vertex v if w ∈ N [v] and w is labeled 2 or w = v

and w is labeled 1. A vertex v is dominated if it is dominated by some vertex w.

Algorithm 1 shows the heuristic in pseudocode. The procedure takes a graph G as input. For a
vertex v ∈ V , du(v) represents the number of unlabeled vertices in N [v]. This number is updated
accordingly whenever changes to the labeling function are made. Intuitively, du(v) is the number
of vertices that are not yet dominated in the current partial solution, but that would be dominated
when assigning the label 2 to v. Our algorithm can be used with an optional tiebreaker, which
will be described in Section 3.1. If this tiebreaker is used, one must also manage the d2

u
values,

for each vertex v ∈ V , where d2
u
(v) is the number of unlabeled vertices with distance exactly two

from v. In other words, d2
u
(v) is the number of unlabeled vertices that are reachable in two hops

from v, but that are not reachable with less than two hops. After initializing du and possibly d2
u
,

the label f(v) of each node v ∈ V is set to unlabeled and a set S is initialized with all nodes to be

4 J. Greilhuber, S. Schober, E. Iurlano, and G. R. Raidl

processed. As long as there exists some vertex in S, such that labeling it with 2 would dominate at
least two vertices that are undominated so far, the following is iterated. A vertex with largest du
is selected (potentially breaking ties by preferring vertices of lower d2

u
-value), labeled with 2, and

all its still unlabeled neighbors are labeled with 0. Vertices with label 2 are removed from the set
of vertices S. Once no vertex v with du(v) ≥ 2 exists anymore, labeling further vertices with 2 is
not beneficial anymore. Therefore, the loop is finished and the algorithm proceeds by labeling all
remaining unlabeled vertices with 1. Thereafter, the resulting labeling f is already an RDF, but
some vertices may have a higher label than necessary. As a post-processing step, the algorithm
therefore performs a local improvement by attempting to reduce the label of each vertex so far
labeled with 2. Finally, the obtained locally optimal labeling function f is returned as a solution.
To improve the efficiency of our post-processing step, we keep track of the number of vertices
dominating every vertex. Using a heap data structure, the algorithm can be implemented to run in
time O(∆|V | log(|V |)) = O(|V |2 log(|V |)) without the tiebreaker, where ∆ is the maximum degree
of the graph (we assume ∆ > 0).

3.1 Tiebreaker

Since many vertices with the same du values can exist, one may want to employ a meaningful
tiebreaker. Our tiebreaker is inspired by the one used by Ghaffari et al. [10] in their second greedy
algorithm. We also attempted to implement their approach, however, we found it difficult to do so
efficiently in conjunction with a heap. In case of a tie, we select a vertex that has the lowest number
of unlabeled vertices with distance exactly two from it. The intuition behind this tiebreaker is that a
vertex v with a high du value and a low d2

u
value may have many neighbors that cannot be dominated

well by vertices other than v. These values adapt to changes made by the greedy algorithm and the
required bookkeeping can easily be implemented in a performant way. Efficiently computing the
vertices with distance exactly two for every vertex can initially be done via breadth-first-search or
by squaring the adjacency matrix of the graph. We opted for the first approach. This computation
generally dominates the run-time of the algorithm, but the construction heuristic still terminates
within seconds on all test instances in our computational experiments discussed in Section 6.

4 GRASP

GRASP is a prominent metaheuristic consisting of a construction and a local improvement
phase [8]. These two phases are executed repeatedly until some stopping criterion is met, and
the best found solution is returned. Our GRASP approach utilizes a randomized version of the
above greedy heuristic and a k-flip neighborhood local search. The k-flip neighborhood is inspired
by an abstract view of the RDP that is used by Currò [5] to encode individuals in their genetic
algorithms. In this view, solutions are encoded as binary strings where a bit i is set to one iff vertex
i has label 2, and set to zero otherwise. To obtain feasible solutions from such encodings, all vertices
with their corresponding bit set to one receive the label 2, all vertices with their corresponding bit
set to zero that are adjacent to a vertex labeled 2 receive the label 0 and all remaining vertices
receive the label 1. Flipping a bit therefore causes a vertex to be relabeled either from 2 to a lower
label, or the other way around, implicitly also adjusting the labels of affected neighbors with labels
different from 2. In our randomized version of Algorithm 1, we do not always select the vertex of
S with the highest du value, but use a threshold based approach instead. This selection procedure
is shown in Algorithm 2. We first determine the maximum unlabeled degree of any vertex of the
set S, d∗

u
, and then form a restricted candidate list (RCL), consisting of all vertices v ∈ S with

du(v) ≥ τd∗
u
, where τ ∈ [0, 1] is a strategy parameter. In the end, a vertex is selected uniformly

at random from the RCL and returned. If the returned vertex v has du(v) < 2, it is skipped,
since labeling such a vertex 2 would not be worth-while. Note that the randomized version of the
construction algorithm is performed without the tiebreaker.

5 Simulated Annealing

Simulated Annealing (SA) is another widely used metaheuristic, introduced under its current name
by Kirkpatrick et al. [17]. Our SA approach computes an initial solution using our greedy con-
struction heuristic with the tiebreaker, and then tries to refine it by using the k-flip neighborhood

A Simulated Annealing Based Approach for the Roman Domination Problem 5

Algorithm 2: GRASP vertex selection

Input: Vertex set S, unlabeled vertex degrees du
1 d∗u = maxv∈S(du(v))
2 RCL = {v ∈ S | du(v) ≥ τd∗u}
3 return vertex from RCL selected uniformly at random

Algorithm 3: Simulated Annealing

Input: Graph G = (V,E)
1 xbest ← deterministic construction heuristic with tiebreaker (G)
2 x← xbest // current solution

3 T ← Tinit // current temperature

4 while time limit not exceeded do

5 flipVertices ← k vertices selected uniformly at random with replacement
6 remove duplicates in flipVertices

7 x′ ← solution resulting from flipping the flipVertices in x

8 if |x′| < |x| then

9 x← x′

10 if |x′| < |xbest| then

11 xbest ← x′

12 end

13 else

14 d← |x′| − |x|

15 if (random value ∈ [0, 1)) < e−d/T then

16 x← x′

17 end

18 end

19 if T has not changed in |V |2 iterations then

20 T ← α · T
21 end

22 if e−2/T < β and |x| not improved in last k · φ iterations then

23 T ← −2k
ln γ

// reheating

24 end

25 end

26 return xbest

structure in the usual SA fashion. This procedure is shown in Algorithm 3. It uses the following ad-
ditional strategy parameters: an initial temperature Tinit, a geometric cooling factor α, a threshold
β for the minimum probability of accepting worse moves, a parameter γ controlling the probability
of accepting worse moves after reheating, a number φ of steps without improvement that is used
to determine when reheating should occur, and a time limit for termination.

In each iteration, our procedure samples k vertices uniformly at random, and then proceeds to
remove duplicate entries from the sampled vertices. We sample with replacement so that also
moves flipping less than k vertices are possible. These up to k vertices are then flipped in the
current solution x to generate a new neighboring solution x′. This solution is accepted if it is
better, or, in traditional simulated annealing fashion, with random probability depending on the
solution quality as well as the current temperature T if it is worse. The temperature is cooled down
by geometric cooling with a factor of α every |V |2 iterations. Once the temperature has fallen to a
point where the probability of accepting a move that increases the objective value by two is smaller
than β, and the objective value of the current solution has not improved in the last k ·φ iterations,
a reheating is performed such that worse moves are accepted again with a higher probability. As
an overall stopping criterion, we use a maximum time limit, but also other stopping conditions,
e.g., based on convergence, are conceivable.

As will be shown in more detail in Section 6, this algorithm performed well in our experiments,
especially on graphs with substantial structure, like grid and net graphs. However, even though the
SA outperformed Gurobi on large instances with less structure, i.e., randomly constructed graphs,

6 J. Greilhuber, S. Schober, E. Iurlano, and G. R. Raidl

the GRASP from the last section yielded in general slightly better solutions on these instances.
This inspired us to investigate a combination we call Simulated Annealing Hybrid (SAH) to pos-
sibly get the best of both worlds: We decided to split the algorithm into phases of randomized
greedy construction and phases of refining the best found greedy solution through simulated an-
nealing. These two phases are executed in an alternating fashion as shown in Algorithm 4. In the
randomized greedy phase, we first generate an initial solution by running our deterministic greedy
construction using the tiebreaker, and then repeatedly generate solutions using the randomized
greedy construction with a threshold of τ . Since the randomized greedy phase will usually only
be run a handful of times, running the greedy algorithm using the tiebreaker once per phase is
not an issue in terms of run-time. The best solution found in the randomized greedy construction
phase is then used as the initial solution for the SA phase. This approach may improve upon the
previous ones by combining algorithms that are strong on different instance types, and by poten-
tially generating more diverse initial solutions for the simulated annealing phase. Both phases are
executed multiple times, effectively making this a multi-start approach. Even though we did not
do this in our experiments, the algorithm can easily be parallelized by running each pair of random
construction and simulated annealing phases on different cores.

6 Experimental Evaluation

In this section, we present the results of computational experiments that we conducted with the
proposed algorithms. All methods were implemented in Julia 1.8.5 and performed on a cluster
with Intel Xeon E5540 quad-core CPUs with 2.53GHz and 24 GB RAM. Our benchmark instance
set consists of instances already used by Currò [5], Ivanović [14], Ivanović and Urošević [15], and
Filipović et al. [9]. Thus, these instances appear to be the somewhat standard instances for the
empirical evaluation of algorithms for Roman domination problems. The instance set includes
graphs of different classes and sizes, with the largest graph having 1,000 vertices and around
450,000 edges. More specifically, there are six different types of graphs: grid, random, bipartite,
net, planar, and recursive. We evaluate the performance of our greedy construction heuristic when
used with and without the tiebreaker, as well as our GRASP, SA, and SAH approaches. Moreover,
we compare to the VNS from Ivanović and Urošević [15] and the mixed binary integer linear
programming (MBIP) formulation BVVImp2 by Ivanović [13] solved with the Gurobi 10.0.0 mixed
integer linear programming solver [11]. The lower bounds found by Gurobi are used to express the
qualities of solutions obtained by the heuristic approaches in terms of percentage gaps. If z denotes
the value of a heuristic solution and zlb the corresponding lower bound obtained from Gurobi, then
the percentage gap is calculated as 100% · z−zlb

z
.

Time-gap cumulative distribution plots are used for comparison, in which the y-axis indicates how
many solutions were solved, whereas the time it took to solve instances to optimality and —if not
possible within the time limit— the relative optimality gap are depicted on the x-axis. This way,
one can observe how many solutions were solved to proven optimality within the time-limit, as well
as the quality of all obtained solutions when compared to the lower bound obtained via the MBIP
model. The results for the VNS algorithm are taken from the respective paper [15], and, thus,
runtimes cannot directly be compared. Full results of the experiments and the problem instances
can be found online1.

6.1 Tiebreaker

In order to examine the performance of the (deterministic) greedy construction heuristic with and
without the tiebreaker, we performed one run of each variant on all instances. Note that, even
when using the tiebreaker, any remaining ties are broken arbitrarily in a deterministic fashion.
Figure 1 displays obtained results in a time-gap plot. Moreover, Figure 2 plots runtimes with the
tiebreaker (Greedy+TB) against the runtimes without the tiebreaker (Greedy) for each instance.
A summary of the results for each type of benchmark instance is given in Table 1. We show these
data in the same fashion as Filipović et al. [9] display their results on (a subset of) the instances.
The table lists the number of instances that were solved to proven optimality (#opt), the number

1 https://www.ac.tuwien.ac.at/research/problem-instances/#Roman_Domination_Problem

A Simulated Annealing Based Approach for the Roman Domination Problem 7

Algorithm 4: Simulated Annealing Hybrid

Input: Graph G = (V,E)
1 xbest ← nothing

2 while time limit not exceeded do

3 xbest_greedy ← deterministic construction heuristic with tiebreaker (G)
4 if xbest = nothing then

5 xbest ← xbest_greedy

6 end

7 while randomized greedy construction phase do

8 x′ ← randomized construction heuristic using threshold τ (G)
9 if |x′| < |xbest_greedy| then

10 xbest_greedy ← x′

11 end

12 if |x′| < |xbest| then

13 xbest ← x′

14 end

15 end

16 x← xbest_greedy

17 T ← Tinit // current temperature

18 while simulated annealing phase do

19 flipVertices ← k vertices selected uniformly at random with replacement
20 remove duplicates in flipVertices

21 x′ ← solution resulting from flipping the flipVertices in x

22 if |x′| < |x| then

23 x← x′

24 if |x′| < |xbest| then

25 xbest ← x′

26 end

27 else

28 d← |x′| − |x|

29 if (random value ∈ [0, 1)) < e−d/T then

30 x← x′

31 end

32 end

33 if T has not changed in |V |2 iterations then

34 T ← α · T
35 end

36 if e−2/T < β and |x| not improved in last k · φ iterations then

37 T ← −2k
ln γ

// reheating

38 end

39 end

40 end

41 return xbest

of times the approach achieved the best solution of the displayed approaches (#best), the mean
objective value, the mean time to the best solution found by the approach, as well as the mean
percentage gap. We remark that values listed under #opt do not necessarily represent the numbers
of instances for which optimal solutions were found, but only the numbers of instances for which
optimality could be proven by means of the lower bounds from Gurobi.

Running the construction heuristic with the tiebreaker increases the run-time on average by a
factor of about ten, but significantly more instances were solved to proven optimality when using
it. Moreover, out of the 623 total instances of the benchmark set, the algorithm with the tiebreaker
managed to find better solutions for 211 instances, while reporting slightly worse solutions for only
132 instances and yielding equally good results for the remaining 280 instances. Obtained average
gaps were about 0.5% lower when using the tiebreaker. The largest difference in solution quality
can be observed on the four tested net graphs. Here, the construction heuristic with the tiebreaker
manages to always find the optimal solution, while the basic version obtained significantly worse

10 J. Greilhuber, S. Schober, E. Iurlano, and G. R. Raidl

Table 3. Comparison with the VNS from Ivanović and Urošević [15].

Algorithm #opt mean value mean time (s) mean gap (%)

VNS 218 41.004 113.171 0.163
GRASP 203 41.182 252.933 0.380
SA 230 40.771 55.077 0.048
SAH 231 40.766 33.238 0.000

net and recursive graphs, on which the greedy algorithm already obtains optimal solutions. The SA
approach is strong on grid graphs, achieving the optimal solution on all of them, whereas GRASP
only managed to optimally solve 151 out of 172 instances. Even compared to MBIP, the SA
approach showed promising performance on this graph class. On the random graph class GRASP
achieves the best solutions on 259 instances, and SA on only 193, making GRASP the better choice
for these instances. SAH is the most prospective approach in terms of solution quality, finding the
best solution on 586 instances, better than the MBIP approach that manages 439, GRASP that
manages 538, and SA that manages 490. Furthermore, there were only two instances which the
MBIP approach could solve to proven optimality, and on which SAH was not able to find an
optimum. The mean time to converge to the best solution of a run is lower for SAH than for
all the other metaheuristic approaches on average over all instances, indicating that SAH can in
general obtain better solutions on the tested instances without needing (much) more time. When
an algorithm for a specific graph class, e.g., grid graphs is needed, other tested approaches (in
the case of grid graphs, the basic simulated annealing algorithm) may however obtain solutions of
similar quality in less time.

Finally, we compare our algorithms also to the VNS from Ivanović and Urošević [15] in Table 3. In
their article, only results for instances for which the optimal solution is known are reported, and
thus we also had to restrict the comparison to the respective subset benchmark instances. Note
that in contrast to our other displayed results, the lower bounds used now do not stem from our
MBIP results, but from [15]. Ivanović and Urošević [15] employ a time limit of two hours together
with an early stopping criterion, and report the time it took to obtain the best solution found as
well as the obtained solution value. Their CPU is slightly slower than the one we used, having a
frequency of 2.4GHz compared to ours with 2.53GHz. Unlike for our experiments, Ivanović and
Urošević [15] report results for the best out of 20 independent runs per instance. Nevertheless,
our SA and SAH show clearly better performance on these instances, solving more of them to
optimality in a much shorter mean time. Especially SAH performed particularly well, solving all
instances optimally in the shortest mean time of all tested approaches.

Overall, SAH successfully manages to combine the strengths of the simulated annealing and the
randomized construction heuristic, and is an algorithm with excellent practical performance on all
considered instances.

7 Conclusion

We investigated several heuristic approaches to tackle the Roman Domination Problem and also
compared them to a mixed integer linear programming model solved by Gurobi as well as the VNS
by Ivanović and Urošević [15]. We observed that simulated annealing and GRASP can be applied
as efficient metaheuristics for the problem, as they provided stronger results over our benchmark
instances than the exact and greedy algorithms. The simulated annealing approach showed espe-
cially good results on grid graphs, whereas GRASP prevailed on a class of randomly generated
graphs. Motivated by the individual strengths of these two, we came up with a simulated anneal-
ing hybrid, that interleaves phases of randomized solution construction with solution refinement
according to simulated annealing. In our experiments, this hybrid manages to achieve the overall
best results out of all considered approaches. When comparing our SAH algorithm to the VNS
from Ivanović and Urošević [15], our hybrid managed to solve all considered instances to proven
optimality, and this on average in less time.

Given the impressive results obtained by the MBIP, an interesting direction for future work is
to investigate hybrid metaheuristics that make use of a mixed integer linear programming solver

A Simulated Annealing Based Approach for the Roman Domination Problem 11

for solving smaller subproblems, such as in large neighborhood search. This may be particularly
appealing to address huge instances. Moreover, there are many variants of the basic Roman dom-
ination problem, such as the signed, double, or weak variants. Adapting our approaches for these
seems to be partly easy, but there are also some more challenging questions that would need to be
solved. Finally, evaluating the application of the proposed algorithms on an actual use case from
practice would be interesting.

Acknowledgments. We acknowledge the financial support of this project by Austria’s Agency
for Education and Internationalisation under grant BA05/2023. This project is partially funded
by the Doctoral Program “Vienna Graduate School on Computational Optimization”, Austrian
Science Foundation (FWF), grant W1260-N35.

References

1. Abdollahzadeh Ahangar, H., Henning, M.A., Löwenstein, C., Zhao, Y., Samodivkin, V.: Signed Roman
domination in graphs. Journal of Combinatorial Optimization 27 (2014) 241–255

2. Beeler, R.A., Haynes, T.W., Hedetniemi, S.T.: Double Roman domination. Discrete Applied Mathe-
matics 211 (2016) 23–29

3. Burger, A.P., De Villiers, A.P., Van Vuuren, J.H.: A binary programming approach towards achieving
effective graph protection. In: Proceedings of the 2013 ORSSA Annual Conference, ORSSA. (2013)
19–30

4. Cockayne, E.J., Dreyer, P.A., Hedetniemi, S.M., Hedetniemi, S.T.: Roman domination in graphs.
Discrete Mathematics 278 (2004) 11–22

5. Currò, V.: The Roman domination problem on grid graphs. PhD thesis, Università degli Studi di
Catania (2014)

6. Dreyer, P.: Applications and variations of domination in graphs. PhD thesis, Rutgers, The State
University of New Jersey (2000)

7. Favaron, O., Karami, H., Khoeilar, R., Sheikholeslami, S.M.: On the Roman domination number of a
graph. Discrete Mathematics 309 (2009) 3447–3451

8. Feo, T., Resende, M.: Greedy randomized adaptive search procedures. Journal of Global Optimization
6 (1995) 109–133

9. Filipović, V., Matić, D., Kartelj, A.: Solving the signed Roman domination and signed total Roman
domination problems with exact and heuristic methods (2022) arXiv:2201.00394.

10. Ghaffari, F., Bahrak, B., Shariatpanahi, S.P.: A novel approach to partial coverage in wireless sensor
networks via the Roman dominating set. IET Networks 11 (2022) 58–69

11. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023)
12. Henning, M.A., Hedetniemi, S.T.: Defending the Roman empire–a new strategy. Discrete Mathematics

266 (2003) 239–251
13. Ivanović, M.: Improved mixed integer linear programing formulations for Roman domination problem.

Publications de l’Institut Mathematique 99 (2016) 51–58
14. Ivanović, M.: Improved integer linear programming formulation for weak Roman domination problem.

Soft Computing 22 (2018) 6583–6593
15. Ivanović, M., Urošević, D.: Variable neighborhood search approach for solving Roman and weak Roman

domination problems on graphs. Computing and Informatics 38 (2019) 57–84
16. Khandelwal, A., Srivastava, K., Saran, G.: On Roman domination of graphs using a genetic algorithm.

In Singh, V., Asari, V.K., Kumar, S., Patel, R.B., eds.: Computational Methods and Data Engineering.
Volume 1227 of Advances in Intelligent Systems and Computing., Springer (2021) 133–147

17. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220 (1983)
671–680

18. Klobučar, A., Puljić, I.: Some results for Roman domination number on cardinal product of paths and
cycles. Kragujevac Journal of Mathematics 38 (2014) 83–94

19. Klobučar, A., Puljić, I.: Roman domination number on cardinal product of paths and cycles. Croatian
Operational Research Review 6 (2015) 71–78

20. Liedloff, M., Kloks, T., Liu, J., Peng, S.L.: Efficient algorithms for Roman domination on some classes
of graphs. Discrete Applied Mathematics 156 (2008) 3400–3415

21. Liedloff, M., Kloks, T., Liu, J., Peng, S.L.: Roman domination over some graph classes. In Kratsch,
D., ed.: Graph-Theoretic Concepts in Computer Science. Volume 3787 of Lecture Notes in Computer
Science., Springer (2005) 103–114

22. Nolassi, S.M.: Algoritmi euristici per il problema della dominazione romana. PhD thesis, Università
degli Studi di Catania (2013)

12 J. Greilhuber, S. Schober, E. Iurlano, and G. R. Raidl

23. Pagourtzis, A., Penna, P., Schlude, K., Steinhöfel, K., Taylor, D.S., Widmayer, P.: Server placements,
Roman domination and other dominating set variants. In: Foundations of Information Technology in
the Era of Network and Mobile Computing: IFIP 17th World Computer Congress—TC1 Stream/2
nd IFIP International Conference on Theoretical Computer Science (TCS 2002) August 25–30, 2002,
Montréal, Québec, Canada, Springer (2002) 280–291

24. Peng, S.L., Tsai, Y.H.: Roman domination on graphs of bounded treewidth. In: Proceedings of the
24th Workshop on Combinatorial Mathematics and Computation Theory. (2007) 128–131

25. ReVelle, C.S., Rosing, K.E.: Defendens imperium Romanum: A classical problem in military strategy.
The American Mathematical Monthly 107 (2000) 585–594

26. Shang, W., Hu, X.: The Roman domination problem in unit disk graphs. In Shi, Y., van Albada,
G.D., Dongarra, J., Sloot, P.M.A., eds.: Computational Science – ICCS 2007. Volume 4489 of Lecture
Notes in Computer Science., Springer (2007) 305–312

27. Stewart, I.: Defend the Roman empire! Scientific American 281 (1999) 136–139
28. Volkmann, L.: Signed total Roman domination in graphs. Journal of Combinatorial Optimization 32

(2016) 855–871
29. Xing, H.M., Chen, X., Chen, X.G.: A note on Roman domination in graphs. Discrete Mathematics

306 (2006) 3338–3340

