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Abstract. The performance of decoder-based evolutionary algorithms
(EAs) strongly depends on the locality of the used decoder and operators.
While many approaches to characterize locality are based on the fitness
landscape, we emphasize the explicit relation between genotypes and
phenotypes. Statistical measures are demonstrated to reliably predict lo-
cality properties of selected decoder-based EAs for the multidimensional
knapsack problem. Empirical results indicate that (i) strong locality is
a necessary condition for high performance, (ii) the concept of heuris-
tic bias also strongly affects solution quality, and (iii) it is important to
maintain population diversity, e.g. by phenotypic duplicate elimination.

1 Introduction

Locality is known as an important factor for well-working evolutionary algo-
rithms (EAs) [3, 11, 14, 22]. Although locality can be interpreted in several
ways, all interpretations are motivated by the same basic idea: Small changes in
genotype performed by evolutionary operators such as mutation and crossover
should result in small changes of phenotype, where phenotype is identified by
the represented solution or its fitness. EAs which do not fulfill this condition at
least partly act like pure random search, hence are not efficient. Thus, the design
process of EAs for any problem should be guided by the locality principle [22],
which is sometimes also termed principle of strong causality [21].

Many EAs are based on decoders, which map the genotype of a solution onto
its phenotype. Obviously, such approaches can only be successful if the employed
decoder supports locality. The goal of this paper is to present a new technique
for characterizing locality of decoder-based EAs with particular emphasis on the
multidimensional knapsack problem (MKP), which is stated as

maximize
∑

j∈J

pjxj (1)

subject to
∑

j∈J

rijxj ≤ ci, i ∈ I (2)

xj ∈ {0, 1}, j ∈ J (3)



with I = {1, . . . ,m} and J = {1, . . . , n} denoting the sets of resources and items,
respectively. The MKP is a prominent example for an NP-complete combinato-
rial optimization problem with a wide range of applications [4]. Therefore, many
exact and heuristic algorithms have been developed for the MKP and diverse
variants of it [2, 15], and in particular several EAs were proposed [7].

Since it is difficult to analyze even simple EAs using direct encoding and
primitive operators, most approaches to characterize locality are based on em-
pirical rather than theoretical investigations. Often, locality is characterized by
correlation measures based on fitness landscapes [3, 11, 14], however approaches
based on that idea do not directly consider the effects of the used decoder and
operators. Therefore we propose a locality concept which is independent of ac-
tual fitness values and explicitly examines the structural effects of decoder and
employed mutation and crossover operators. Our approach involves measure-
ments that can be applied without performing time-consuming EA runs. In this
way it becomes possible in advance to identify and discard EAs which do not
provide strong locality. Since the basic principle of our locality characterization
is presented in a general fashion, it can be adapted to other decoder-based EAs.

This paper is organized as follows. Section 2 provides an overview of decoder-
based EAs of varying complexity for the MKP together with an empirical com-
parison of the achieved performance on a standard MKP test suite. Our approach
to characterize locality is introduced in Sect. 3. Section 4 presents empirical mea-
surements performed for four selected decoder-based EAs. Our results point at
important properties and differences of these EAs, which help to explain the
achieved performance. Conclusions are given in Sect. 5.

2 Decoder-Based EAs for the MKP

Many EAs with different constraint handling strategies have been proposed for
the MKP, see [7] for a survey. On the one hand, there are approaches directly
working in the phenotyic search space P = {0, 1}n. They rely on penalizing or
repairing infeasible solutions. The currently best EAs for the MKP we are aware
of [2, 7, 17] are based on heuristic repair and local improvement methods to fo-
cus search on the boundary of the feasible region, which is known to contain the
optimum [6]. On the other hand, some EAs proceed by exploring an arbitrary
genotypic search space G, which is mapped into P by a decoder. Such a decoder
usually employs problem-specific knowledge ensuring to generate only feasible
solutions, hence no penalties or repair methods are necessary to deal with infea-
sible solutions, and usually simple operators can be used. These decoder-based
EAs perform an indirect search for solutions, and therefore their success strongly
depends on the employed decoder. Obviously, such EAs can only be successful
if the fittest parts of P are covered, i.e. there exist genotypes which decode into
these phenotypes. Furthermore, a decoder is required to be computationally fast,
since otherwise the evaluation of many solution candidates would be too time-
consuming. Another important factor is how well a decoder supports locality.
Since our goal is to characterize several decoder-based EAs concerning this last



aspect, we proceed by a brief introduction and empirical comparison of them.

2.1 Permutation Based EA

The permutation based EA (PBEA) has been proposed by Hinterding for the
(unidimensional) knapsack problem [9] and can easily be adapted to the MKP
[17, 24]. A solution candidate is represented by a permutation π : J → J of
the items. The decoder starts with the feasible solution x = (0, . . . , 0) and tra-
verses all variables xj in the order determined by π, increasing the corresponding
variable from 0 to 1 if this does not violate any resource constraint. Hinterding
employs standard permutation operators, namely uniform order based crossover
and swap mutation which randomly exchanges two different positions.

2.2 Ordinal Representation Based EA

The ordinal representation based EA (OREA) was originally considered for
the traveling salesperson problem (TSP) [8], however its application to MKP
is straightforward. Solution candidates are represented by a vector v with
va ∈ {1, . . . , n − a + 1} for a ∈ J = {1, . . . , n}. The decoder is based on a
list initially containing all items in a predefined order and starts with the MKP
solution x = (0, . . . , 0). Items are iteratively removed from the list and checked
for inclusion in the solution. In detail, v is scanned from the first to its last
position, interpreting each entry va as a position in the current list. Such a po-
sition identifies the next item j, for which xj is increased to 1 if the resource
constraints remain satisfied. Since each checked item is removed from the list,
its size decreases by 1 during each step and reaches length 1 when the last item
is to be selected. This representation has the interesting property that classical
one-point crossover is applicable because resulting offsprings always represent
legal solutions. Moreover, a simple mutation operator can be used which ran-
domly chooses a position a and then draws va from {1, . . . , n−a+1}. However,
a closer look at the decoding procedure reveals that a change in a single position
of v might have a major impact on the decoded solution since each item selection
modifies the list, thus, influences all following item selections. According to our
locality conception we expect OREA to yield bad results due to its weak locality.

2.3 Surrogate Relaxation Based EA

Raidl proposed the surrogate relaxation based EA (SREA) which represents so-
lution candidates by real-valued weights for the items [18]. These weights are
used to temporarily modify the profits pj in the objective function (1) yielding a
similar but slightly different MKP instance. This biased problem is then solved
by a surrogate duality based heuristic. The solution obtained in this way is also
feasible for the original, unbiased problem since the resource constraints (2) re-
main unchanged. The heuristic, which has originally been proposed by Pirkul
[16], starts with the solution x = (0, . . . , 0) and traverses all items according



to decreasing profit/pseudo-resource consumption ratio. Variables xj are set to
1 if no resource constraint is violated. Pseudo-resource consumptions are deter-
mined via reasonable surrogate multipliers which are obtained from the linear
programming (LP) relaxed MKP. Since this process would result in solving the
LP relaxation for each solution candidate, Raidl suggests to determine the sur-
rogate multipliers only once for the original problem in a preprocessing step
to decrease the computational effort [18]. SREA uses uniform crossover and a
mutation operator which is applied 3 times to each new genotype, modifying a
randomly chosen weight by resetting it to a new random value. The results of
SREA are the best among all decoder-based EAs for the MKP we are aware of.

2.4 Lagrangian Relaxation Based EA

The Lagrangian relaxation based EA (LREA) was also proposed by Raidl and is
basically equivalent to SREA, except for the heuristic used to generate a solution
for the biased problem [18]. LREA employs the procedure introduced by Mag-
azine and Oguz [13] to obtain a solution via Lagrangian relaxation. Since the
determination of exact Lagrange multipliers is too time-consuming, some reason-
able (but usually suboptimal) multipliers are calculated by a simpler heuristic.
Each obtained solution is then locally improved by traversing the variables ac-
cording to decreasing profit and increasing them if feasibility can be maintained.

2.5 Comparison of Decoder-Based EAs

All considered EAs are based on decoders which use resource information to
produce only solutions on the boundary of the feasible region, hence the search
concentrates on the most promising parts of the phenotype space. Nevertheless
the EAs significantly differ in the employed problem specific knowledge. While
the decoders of PBEA and OREA ignore profit information, the heuristics em-
ployed by LREA and SREA strongly depend on it. Thus, SREA and LREA
exploit more knowledge about the problem structure. We remark another inter-
esting relation between the decoders of PBEA, OREA, and SREA: Both OREA
and SREA internally produce a permutation of the items which is then inter-
preted in exactly the same fashion as PBEA decodes solution candidates.

We compare the described decoder-based EAs on a standard test suite
of MKP benchmark problems introduced by Chu [2] and available from the
OR-Library3. The test suite contains 10 instances for each combination of
m ∈ {5, 10, 30}, n ∈ {100, 250, 500}, and tightness ratio α ∈ {0.25, 0.5, 0.75}
(each problem has been generated randomly such that ci = α

∑
j∈J rij holds

for all i ∈ I). We selected the first problem of each category yielding a total
of 27 problems and performed three runs for each instance. A similar general
setup as in [2, 7, 17, 18] was chosen for all EAs, namely population size 100,
parent selection via tournaments of size 2, steady-state replacement (replacing
the worst individual), crossover probability 1.0, duplicate elimination (a newly
3 http://mscmga.ms.ic.ac.uk/info.html



Table 1. Average results of the EAs

gap [%] duplicate ratio [%]
m n

PBEA OREA SREA LREA PBEA OREA SREA LREA

5 100 0.53 1.19 0.53 0.52 6.40 34.92 12.11 5.89
5 250 0.25 2.05 0.17 0.16 4.33 33.34 4.28 2.97
5 500 0.21 3.18 0.07 0.10 4.62 34.00 3.62 2.56

10 100 1.00 1.59 1.00 1.00 5.12 36.14 6.84 3.81
10 250 0.57 2.33 0.34 0.35 4.88 36.14 5.11 2.39
10 500 0.54 3.29 0.19 0.25 4.93 36.62 4.58 2.24

30 100 1.78 2.76 1.67 1.70 7.72 38.76 8.73 3.62
30 250 0.97 3.46 0.75 0.87 6.36 38.27 7.52 2.94
30 500 0.85 4.00 0.47 0.59 7.30 37.98 6.49 2.87

total 0.74 2.65 0.58 0.62 5.74 36.24 6.65 3.27

generated individual is only accepted if it is not already contained in the popu-
lation), and an evaluation limit of 200 000 non-duplicate solutions. We observed
that in particular duplicate avoidance is essential to prevent an overcrowding
of the population by many duplicates of only few different solutions (premature
convergence) [19]. Duplicates should be identified on phenotypic rather than
genotypic level, i.e. an individual is rejected if its decoded solution is already
represented in the current population. The solution quality is measured by the
gap of the objective value w.r.t. the optimal value of the LP-relaxed problem, i.e.
1−maxEA/optLP with maxEA and optLP denoting the best objective value found
by the EA and the optimal value of the LP relaxation of MKP, respectively.

Table 1 shows average results determined from the 9 runs per m, n-
combination and EA. The duplicate ratio (DR) represents the ratio of rejected
duplicates among all generated solutions. As expected, OREA yields the worst
gap. Furthermore, the high DR indicates that the used operators tend to pro-
duce many duplicates. The other EAs perform quite well compared to OREA,
so they should also provide locality. The best quality is obtained by SREA,
probably due to the employed heuristic. LREA achieves the lowest DR, however
PBEA and SREA also yield an acceptable DR which is an order of magnitude
smaller than that of OREA. We conclude that the operators of PBEA, SREA,
and LREA mostly generate new solutions. In general, we consider PBEA, SREA,
and LREA to be well adapted to the MKP, in contrast to OREA which is viewed
as an example for a badly designed decoder-based EA. The rest of this paper
examines the effects of locality, which helps to explain the results from Table 1.

3 Measures for Locality Characterization

Many approaches were proposed to predict an EA’s performance for a given
problem. Since several techniques are based on different interpretations of local-
ity, we briefly review them to enable a clear distinction from our new approach to
measure the locality of decoder-based EAs. Many proposals from literature are



based on the fitness landscape which enables an examination of the relation be-
tween solution candidates and their fitness values. Beside some theoretical proofs
of convergence rates for EAs applied to relatively simple test functions (e.g. evo-
lution strategies applied to the corridor or the sphere model [20]), Manderick et
al. proposed to use correlation measures to examine the effects of operators [14].
They randomly generated parents, applied crossover to produce offsprings, and
then calculated the correlation coefficient for the average fitness of parents and
offsprings. Their approach predicted the performance of several operators in case
of NK-landscapes and the TSP and has also been used for several other prob-
lems, e.g. minimum span frequency assignment [25]. Fogel and Ghozeil suggested
to focus on the operators’ abilities to produce offsprings with higher fitness than
the parents [3]. Their model also considers the parent selection strategy to reflect
actual EA dynamics and has been used for real-valued problems and the TSP.
A different approach termed fitness distance correlation (FDC) was investigated
by Jones and Forrest for classical genetic algorithms using binary encoding [11].
FDC is based on the intuition that fitness values should reflect the distance to an
optimal solution. They proposed to randomly generate solution candidates and
calculate the correlation of their fitness values to the distances to the optimum.
For this purpose the Hamming distance is used, but a distance metric relying
on the operators which actually define the edges of the landscape graph would
be more appropriate. Jones and Forrest reported their approach being a reliable
predictor of performance on the examined problems [11], however Altenberg
provided a counterexample to show that such approaches might be misleading
if actual EA dynamics are not considered [1]. In general, all formerly discussed
approaches have some drawbacks limiting their ability to predict performance
[1, 12], hence alternative approaches should be devised.

While most fitness based techniques only implicitly consider the encoding and
used operators, in particular for decoder-based EAs the locality characteristics of
these parts seem to be most important, hence should rather be explicitly exam-
ined. Locality should alternatively be interpreted in terms of the explicit relation
between genotypes and phenotypes, which emphasizes the structural effects of
operators and the employed decoder. Sendhoff et al. derived such locality condi-
tions, motivated by the claim that small genotypic changes should imply small
phenotypic changes [23]. Their probabilistic measures, which are solely focused
on the mutation operator, were successfully applied to continuous parameter
optimization and structure optimization. Based on Sendhoff et al.’s approach,
Igel examined the probabilistic measures for NK-landscapes and problems in the
genetic programming context [10]. He concluded that the proposed conditions
are helpful to compare several codings and operators for a given problem.

We propose a statistical locality concept which considers crossover and mu-
tation operators, enabling a separate analysis of each.

3.1 Distance Metrics in Genotype and Phenotype Spaces

To characterize the locality of the operators within the genotype space G and
the phenotype space P , we quantify the distance of two arbitrary solutions in



both G and P . Therefore we introduce distance metrics to measure how many
different properties (either genotypic or phenotypic) are present in two solutions.

For the MKP, the definition of a phenotypic distance metric

dP (x, y) :=
∑

j∈J

|xj − yj | for x, y ∈ P (4)

is straightforward, since the Hamming distance counts the number of vari-
ables with different values (different phenotypic properties) in the two solutions.
For other combinatorial optimization problems, the phenotypic distance usually
needs to be defined in some different, meaningful way, which might not always
be as obvious as for the MKP. E.g. in case of the TSP, the total number of
different edges might be an appropriate measure since edges can be seen as the
most important phenotypic properties of TSP solutions [8].

The definition of a genotypic distance metric dG(X, Y ) for X,Y ∈ G is not
that straightforward as it depends on the specific encoding and the operators.
To remain general, we implicitly define dG(X, Y ) via the mutation operator:

1. Two identical genotypes have distance 0, i.e. dG(X, X) = 0 for X ∈ G.
2. Two distinct genotypes X, Y have distance dG(X, Y ) = 1 and are called

adjacent if the probability to produce Y from X by a single mutation is
greater than 0.

3. In general, a genotypic distance dG(X, Y ) = k means that at least k muta-
tions are necessary to transform X into Y .

For the considered EAs, the proposed definitions of dG(X, Y ) and dP (x, y) satisfy
the metric conditions, namely identity, symmetry, and the triangular inequality.

3.2 Mutation Innovation MI

Usually, the mutation operator is not applied exactly once but either with a given
probability or a certain number of times. Let Xm ∈ G represent the solution
obtained from X ∈ G by applying mutation with exactly this probability or
rate. Note that according to the previous definitions, k consecutive mutations
will produce an offspring with dG(X, Xm) ≤ k.

Let x and xm be the phenotypes corresponding to X and Xm. Assuming X
to be a random variable with uniform distribution within G, Xm, x, and xm are
dependent random variables. We define the mutation innovation as

MI := dP (x, xm) , (5)

which describes how much phenotypic “innovation” is introduced by the muta-
tion. MI is a random variable, whose distribution immediately reflects several
important aspects concerning locality of mutation.

We have to consider the case MI = 0, occurring with probability P (MI =
0) and meaning that the mutation has not affected the phenotypic properties.
Large values for P (MI = 0) indicate that either mutation often does not change
any genotypic properties or many different genotypes are mapped to the same



phenotype, which reflects a high degree of redundancy in G. There are two
possible reasons for such high redundancy.

Firstly, |G| might be significantly larger than |P |. Often such a representa-
tional redundancy decreases performance, but sometimes it may also be benefi-
cial and lead to better final results [22].

A second reason may be that the decoder contains local improvement tech-
niques or heuristics which always or mostly lead to preferred phenotypes in a
restricted subset P ′ ⊂ P . We call this effect heuristic bias. Therefore, solutions
x ∈ P \ P ′ cannot be represented or have substantially smaller probabilities to
be generated. While such a restriction of P might sometimes be advantageous,
it must be ensured that promising areas and particularly the global optima are
covered [18, 22]. As already mentioned, the four considered EAs for the MKP
restrict the search space to the boundary of the feasible region, therefore, they
work with heuristic bias.

P (MI = 0) can principally be controlled by tuning the mutation probability
or rate. Obviously, a higher mutation rate would decrease P (MI = 0), but the
usually resulting larger changes in genotype may also affect the EA to behave
more like inefficient random search. Now, consider only the cases in which muta-
tion produces an offspring xm which actually differs from x. Then the expected
value for MI under this restriction, called E(MI |MI > 0), and the standard
deviation σ(MI |MI > 0) are good indicators for the locality of mutation. Only
if both E(MI |MI > 0) and σ(MI |MI > 0) are reasonably small, successful mu-
tations lead in general to similar phenotypes. Large values signalize that very
different solutions are frequently generated, only negligible or none locality is
given, and hence the search of the EA tends to be a random search.

3.3 Crossover Innovation CIk

When using binary crossover, a new genotype Xc ∈ G is generated from two
parental solutions Xp1 , Xp2 ∈ G. Let xp1 , xp2 , xc ∈ P be the phenotypes cor-
responding to Xp1 , Xp2 , Xc. Usually, the result of the crossover operation is
strongly influenced by the similarity of the parents. In early stages of an EA
run the population has high diversity, hence most selected parents differ signifi-
cantly, while in later stages the population is likely to be converged, i.e. similar
parents are frequently involved in crossover applications. To reflect population
diversity in an approximate way using our notion of genotypic distance, let us
assume that Xp2 is produced by applying k ≥ 1 consecutive mutations to Xp1 ,
i.e. the genotypic distance between the parents is dG(Xp1 , Xp2) ≤ k. Addition-
ally, we take the duplicate elimination of the EAs into account by considering
only phenotypicly non-identical parents, therefore we presume dP (xp1 , xp2) > 0.
We then define the crossover innovation

CIk := min(dP (xc, xp1), dP (xc, xp2)) (6)

as the phenotypic distance of xc to its closer parent. If we interpret the geno-
types Xp1 , Xp2 as random variables with the restriction dG(Xp1 , Xp2) ≤ k, then
Xc, xp1 , xp2 , xc, and in particular CIk are dependent random variables.



Obviously, CIk is 0 if either xc = xp1 or xc = xp2 . Analogously to P (MI = 0),
the probability P (CIk = 0) indicates the likelihood for crossover generating an
offspring which is phenotypicly identical to one of its parents. Usually, P (CIk =
0) is higher for parents with very similar or equal genotypes, i.e. for small k. A
high P (CIk = 0) for large k indicates that crossover does not mix genotypes well
or the degree of redundancy in the mapping G → P is high. Especially when
both probabilities P (MI = 0) and P (CIk = 0) are high, the EA cannot work
efficiently since many duplicate solutions are generated.

Analogously to the mutation, we restrict our considerations in the following
to the case of crossover actually producing new solutions with CIk > 0. The ex-
pectations E(CIk |CIk > 0) and standard deviations σ(CIk |CIk > 0) for different
maximum parent distances k are meaningful indicators for the existence or ab-
sence of locality during crossover: For strong locality, E(CIk |CIk > 0) should be
small for small k and become increasingly larger for larger k. In particular, large
values for both, E(CIk |CIk > 0) and σ(CIk |CIk > 0), for small k are strong
indicators for weak locality.

3.4 Crossover Loss CLk

Besides the ability to generate new solutions with adequate distances to their
parents, an important aspect of crossover is that a generated solution mainly
consists of properties inherited from its parents; only few new properties should
be introduced. The importance of such behavior is e.g. described by the building-
block hypothesis [5]. To consider this aspect, too, we define the crossover loss
CLk as the number of phenotypic properties of xc which are not inherited from
either xp1 or xp2 but are newly introduced. For the MKP this means

CLk :=
∑

j∈J

δ(xc
j , x

p1
j , xp2

j ) (7)

with δ(xc
j , x

p1
j , xp2

j ) =
{

0 if xc
j = xp1

j or xc
j = xp2

j

1 otherwise.
(8)

Considering also the proposed phenotypic distance metric, the crossover loss can
alternatively be written as

CLk :=
1
2
(dP (xc, xp1) + dP (xc, xp2)− dP (xp1 , xp2)) . (9)

Clearly, CIk = 0 implies CLk = 0. To prevent a bias by the case where
crossover does not produce a new solution, we preclude that case and consider
the expected values E(CLk |CIk > 0) for different maximum parent distances k.
Large values for any k immediately signalize weak locality.

4 Empirical Measurements

Determining the different measures introduced in Sect. 3 for specific encoding
techniques and crossover and mutation operators in a theoretical way is in general
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Fig. 1. Empirically determined distributions of MI for the different EAs

Table 2. Empirically estimated characteristics for MI

measure PBEA OREA SREA LREA

P (MI = 0) [%]: 49.06 49.04 65.22 14.43
E(MI |MI > 0): 5.34 27.87 4.47 6.16
σ(MI |MI > 0): 1.55 22.93 1.44 2.72

a very hard task and especially for more complex EAs like SREA or LREA
practically nearly impossible. Therefore, we use an efficient empirical approach to
obtain good estimations for specific problem instances. Since these measurements
can be performed a priori to any EA run, inadequate encoding techniques or
operators providing weak locality can be early recognized.

The empirical results presented in this section are based on an average sized
MKP instance with m = 10, n = 250, and α = 0.5, namely the first problem of
Chu’s benchmarks with these parameters [2]. Although different absolute values
have been obtained as results for other instances, this specific problem is rep-
resentative in the sense that the same basic tendencies have been observed for
other instances, too.

MI has been empirically estimated by randomly drawing 20 000 genotypes
X ∈ G and applying mutation to each with the same probability or rate as
in the EA. Figure 1 shows histograms for the distributions of MI gained in



this way, while Table 2 subsumes the estimations for the measures P (MI = 0),
E(MI |MI > 0), and σ(MI |MI > 0) introduced in Sect. 3.2.

Most noticeable are the generally large values for P (MI = 0). One reason for
this effect is that all four EAs generate only phenotypes on the boundary of the
feasible region, therefore in a substantially restricted phenotype subset P ′ ⊂ P .
Furthermore, there exists an encoding redundancy in all EAs due to the different
sizes of G and P . While |P | = 2n, the genotype space has size |G| = n! in PBEA
and OREA and is even larger for SREA and LREA since real values are allowed
for each weight. Although the used mutation rate for both SREA and LREA was
3 (instead of only 1 as in PBEA and OREA), SREA has the highest probability
P (MI = 0). The reason is the small biasing factor4 γ of SREA, which means
that the original problem is in general significantly less biased than in LREA
[18]. Therefore, the heuristic bias of SREA is clearly stronger than that of LREA.
Note that P (MI = 1) = 0 for all EAs since dP (x, y) ≥ 2 for two distinct solutions
x, y ∈ P lying on the boundary of the feasible region. Regarding E(MI |MI > 0)
and σ(MI |MI > 0), OREA yields substantially higher values than the other
EAs. This result is an immediate indicator for the weak locality of the mutation
operator and encoding in OREA and can be explained by the strong dependency
of each gene’s interpretation from all its predecessors in the genotype. According
to the other values for E(MI |MI > 0) and σ(MI |MI > 0), SREA provides the
highest locality followed by PBEA and LREA.

CIk and CLk were empirically estimated for k ∈ {2i | i = 0, . . . , 9} by
randomly generating 20 000 parents Xp1 for each k, applying k mutations to
each Xp1 to obtain the associated second parent Xp2 , and then producing off-
springs Xc via crossover. According to Sect. 3.3, parents representing identi-
cal phenotypes (dP (xp1 , xp2) = 0) were discarded. Obtained estimations for
P (CIk |CIk = 0), E(CIk |CIk > 0), σ(CIk |CIk > 0), and E(CLk |CIk > 0) are
shown in Fig. 2.

The curves for P (CIk = 0) indicate that PBEA has in general the lowest
probability for generating a child identical to one of its parents. Especially for
k = 1, no other EA is able to produce a solution different from its parents. While
P (CIk = 0) decreases with increasing k down to 0 for PBEA, SREA, and LREA,
P (CIk = 0) remains above 45% for OREA. The reason is that OREA uses one-
point crossover, which might frequently exchange genes having no effect on the
decoded phenotype, because the phenotypic properties are mainly determined
by the first genes. Note that the large duplicate ratio of OREA during actual EA
runs (see Sect. 2.5) could have been predicted by the high probabilities P (CIk =
0) and P (MI = 0). Especially for SREA but also for LREA, k must be relatively
high to mostly obtain new solutions that are different from their parents. This
observation emphasizes the importance of taking care of the population diversity
in the EA by discarding generated phenotypic duplicates in order to enable
crossover to work efficiently (and hence prevent premature convergence).

For small k, the expected values E(CIk |CIk > 0) are reasonably small and
nearly equal for PBEA, LREA, and SREA, but relatively high for OREA. This

4 Biasing factors were set as proposed in [18]: LREA: γ = 0.2, SREA: γ = 0.05.
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Fig. 2. Empirically determined estimations for P (CIk = 0), E(CIk |CIk > 0),
σ(CIk |CIk > 0), and E(CLk |CIk > 0)

immediately indicates relatively strong locality for crossover of PBEA, LREA,
and SREA, but weak locality for OREA.5 With increasing k, E(CIk |CIk > 0)
becomes larger for all EAs. The final values which are quite different for the
four EAs indicate that PBEA and OREA are in general capable of generating
more innovative solutions than LREA and especially SREA. Since the uniform
crossover operator of SREA and LREA mixes genotypes at least as well as the
crossover operators in the other EAs, the reason for the smaller CIk for larger
k is again the higher heuristic bias towards a smaller phenotype subset P ′. The
weak locality of OREA is also clearly indicated by the large standard deviations
σ(CIk |CIk > 0) compared to the other EAs’ corresponding values.

The smallest expected crossover loss E(CLk |CIk > 0) is achieved by SREA
(always less than 3) which indicates that xc inherits nearly all phenotypic prop-
erties from its parents. The corresponding values for PBEA and LREA are also
reasonably low but slightly higher than for SREA (for increasing k), while for
OREA E(CLk |CIk > 0) is substantially larger for all values of k. This reflects
the poor capabilities of crossover in OREA to build offsprings by inheriting most
phenotypic properties, which once again implies weak locality.

5 Conclusions

We investigated four decoder-based EAs for the multidimensional knapsack prob-
lem (MKP), focusing on the locality achieved by the employed decoders and
5 Note that E(CI 1|CI 1 > 0), σ(CI 1|CI 1 > 0), and E(CL1|CI 1 > 0) are not defined

for OREA, LREA, and SREA since CI 1 is always 0.



operators (mutation and crossover). The performed experiments demonstrate
the ability of the proposed locality measures to predict poor performance due
to weak locality. In case of the MKP, SREA, which is the best performing EA
according to the results in Sect. 2.5, offers also the strongest locality regarding
mutation and crossover. This is clearly indicated by the small estimated values
for E(MI |MI = 0), E(CIk |CIk > 0) (for small k), associated standard devia-
tions, and E(CLk |CIk > 0). The weak locality of OREA, which is proved by the
substantially larger estimations for these measures, is one reason why this EA
performs significantly worse than the other considered EAs.

Another important aspect of all four EAs is signalized by the generally high
probabilities P (MI = 0) and P (CIk = 0) for small k: Due to heuristic bias
and/or redundancy in the coding, the proportion of operator applications which
actually lead to new, different phenotypes may be considerably small. It is there-
fore important to actively maintain enough diversity in the population, e.g. by
discarding generated phenotypic duplicates.

The prediction capabilities of the a priori measurements have also been veri-
fied by determining the proposed measures online during actual EA runs (details
were not presented here). The online results differed only slightly from the a pri-
ori results, provided that a proper k, which can be derived from the population
diversity during the EA run, is used for the comparisons regarding CIk and CLk .

Generally, our results confirmed locality to be a necessary condition for
decoder-based EAs to work well for MKP. However, we are aware that locality is
not sufficient for good performance. Also the concept of heuristic bias strongly
affects the achieved performance, thus should be examined more detailed. Al-
though the presented locality measures can be used as indicators, it is interesting
to check whether additional measures could also reliably predict heuristic bias
and hence the total performance. The proposed ideas should also be validated
on different problems to verify whether our results can be generalized to hold
for other problems, too.
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