
Prüfer Numbers: A Poor Representation
of Spanning Trees for Evolutionary Search

Jens Gottlieb
SAP AG

Neurottstr. 16
69190 Walldorf, Germany
jens.gottlieb@sap.com

Bryant A. Julstrom
Department of Computer Science

St. Cloud State University
720 Fourth Avenue South

St. Cloud, MN 56301, USA
julstrom@eeyore.stcloudstate.edu

Günther R. Raidl
Institute of Computer Graphics and Algorithms

Vienna University of Technology
Favoritenstr. 9–11/1861
1040 Vienna, Austria

raidl@ads.tuwien.ac.at

Franz Rothlauf
Illinois Genetic Algorithms Laboratory

University of Illinois at Urbana-Champaign
104 S. Mathews Avenue
Urbana, IL 61801, USA

rothlauf@uni-bayreuth.de

Abstract

The most important element in the design
of a decoder-based evolutionary algorithm is
its genotypic representation. The genotype-
decoder pair must exhibit efficiency, locality,
and heritability to enable effective evolution-
ary search. Prüfer numbers have been pro-
posed to represent spanning trees in evolu-
tionary algorithms. Several researchers have
made extravagant claims for the usefulness of
this coding, but others have pointed out that
Prüfer numbers, though concise and easy to
decode, lack the essential properties of local-
ity and heritability. This conflict motivates
our study. We examine the properties of
Prüfer numbers and compare Prüfer numbers
with other codings in evolutionary algorithms
for four problems that involve spanning trees.
Our conclusion is definite: Prüfer numbers
cause poor performance in evolutionary al-
gorithms and should be avoided.

1 Introduction

An evolutionary algorithm (EA) maintains a popula-
tion of data structures that represent candidate solu-
tions to a problem. In a decoder-based EA, each data
structure can be thought of as providing instructions
to a decoder that builds the solution the structure rep-
resents. The data structure is the solution’s genotype;
the decoded solution is its phenotype.

In EAs for problems of combinatorial optimization,

the decoder can consider problem-specific information
such as constraints; the EA’s author then need not de-
sign complex evolutionary operators or penalty func-
tions. The decoder should be fast, and the coding im-
plemented in the genotype-decoder pair should exhibit
locality and heritability: small changes in genotypes
should correspond to small changes in the solutions
they represent, and solutions generated by crossover
should combine features of their parents.

Decoder-based EAs have been applied to problems
that search spaces of spanning trees. Finding an un-
constrained minimum spanning tree is easy, but many
problems involving spanning trees are computation-
ally hard and thus suitable targets for heuristics such
as EAs. Prüfer numbers offer a deceptively elegant
coding of spanning trees whose decoding algorithm is
found in a constructive proof of Cayley’s formula.

This formula identifies the number of unconstrained
spanning trees in a complete undirected graph on n
nodes as nn−2 (Cayley, 1889; Even, 1973, pp.98–106).
Prüfer (1918) described a one-to-one mapping between
spanning trees on n nodes and strings of n − 2 node
labels. Conventionally, integers label the nodes, and
the strings of labels are called Prüfer numbers.

Prüfer numbers thus encode spanning trees, and re-
searchers have used Prüfer numbers in EAs for prob-
lems that search spaces of spanning trees. These
have included the probabilistic minimum spanning tree
problem (Abuali et al., 1994), the degree-constrained
minimum spanning tree problem (Zhou and Gen,
1997), the time-dependent minimum spanning tree
problem (Gargano et al., 1998), the fixed-charge trans-
portation problem (Li et al., 1998) and a bicriteria



version of it (Gen and Li, 1999), and a multi-objective
network design problem (Kim and Gen, 1999). Some
authors have made extravagant claims for the efficacy
of this coding, including Kim and Gen, who wrote

The Prüfer number is very suitable for encoding
a spanning tree, especially in some research fields,
such as transportation problems, minimum span-
ning problems, and so on.

Such claims are in error. In general, Prüfer numbers
do not support effective evolutionary search. Alternate
codings of spanning trees consistently provide better
results, as we show in four examples.

This paper describes Prüfer numbers and their proper-
ties and compares Prüfer numbers with other codings
of spanning trees in EAs for four problems: the degree-
constrained spanning tree problem, the communica-
tion spanning tree problem, the rectilinear Steiner
problem, and the fixed-charge transportation problem.
In every case, evolutionary search is more effective
with other codings than with Prüfer numbers.

2 The Prüfer Number Representation

This section describes the algorithm that decodes a
Prüfer number to a spanning tree, examines the lo-
cality and heritability of the Prüfer coding under con-
ventional evolutionary operators, and finds that the
region of the search space where a Prüfer-coded EA
might perform well is vanishingly small.

2.1 Decoding Prüfer Numbers

Let a1a2 · · · an−2 ∈ {1, . . . , n}n−2 be a Prüfer number.
In the corresponding spanning tree, each node’s degree
is one more than the number of times the node’s label
appears. To identify the spanning tree’s edges:

1. Scan the Prüfer number to identify each node’s
degree. Initialize a variable i to 1.

2. Find the node v of degree 1 with the smallest la-
bel. (v, ai) is a spanning tree edge.

3. Decrement the degrees of v and ai; increment i.
4. Repeat steps (2) and (3) until all nodes have de-

gree 0, except two with degree 1. These form the
spanning tree’s last edge.

An efficient implementation of this algorithm uses a
priority queue implemented in a heap to hold the nodes
of degree 1. The algorithm’s time complexity is then
O(n log n). Figure 1 shows a Prüfer number of length
four and the tree on six nodes to which it decodes.

Several features of Prüfer numbers suggest that they
might support efficient evolutionary search of spaces

Prüfer number: 

651

2 3

4
22 3 3

Figure 1: A spanning tree and its Prüfer number.

of spanning trees. They can be decoded quickly; it
is easy to generate random Prüfer numbers by choos-
ing n − 2 times from n node labels; and Prüfer num-
bers support conventional evolutionary operators like
k-point crossover and position-by-position mutation.
However, Prüfer numbers’ poor locality and heritabil-
ity are not conducive to evolutionary search, as the
remainder of this section demonstrates.

2.2 Locality

A coding has high locality if mutating a genotype
changes the corresponding phenotype only slightly.
Several researchers, including Palmer and Kershen-
baum (1994) and Rothlauf and Goldberg (2000), have
pointed out the poor locality of Prüfer numbers with
respect to conventional position-by-position mutation.

In general, Prüfer numbers related by such mutations
do not represent similar spanning trees. For example,
changing the last digit in the Prüfer number of Figure 1
from 3 to 1 yields 2231, which decodes to the edges
(2,4), (2,5), (3,2), (1,3), and (1,6). Only two of the
original tree’s five edges remain.

Some Prüfer numbers do have high locality. A star is a
spanning tree in which every node but one is a leaf. A
star on n nodes has (n−1)(n−2) neighbors, obtained
by replacing one of its edges with another feasible edge.
In a star’s Prüfer number, all the symbols are the same.
A star’s neighbors are represented by the neighbors of
its Prüfer number, obtained by changing one of the
digits; these neighbors also number (n − 1)(n − 2).
For stars, the genotypic and phenotypic neighborhoods
coincide, and locality is maximal.

This seems auspicious, but Prüfer numbers’ locali-
ties vary with the shapes of the trees they repre-
sent. A list is a spanning tree with two leaves and
n − 2 nodes of degree 2. In a list’s Prüfer number,
all the symbols are distinct, and a list on n nodes has
1
6n(n−1)(n+1)−n+1 neighbors. Stars and lists have
the smallest and largest phenotypic neighborhoods, re-
spectively. All other spanning trees fall between these
extremes, which Figure 2 plots as a function of the
number n of nodes, and random trees are in general
more similar to lists than to stars.

Figure 3 illustrates the low locality of most Prüfer
numbers. For it, we examined the neighborhoods of



0
50

100
150
200
250
300

6 8 10 12 14 16 18 20nu
m

be
r 

of
 n

ei
gh

bo
rs

number of network nodes n

star
list

tree

Figure 2: Phenotypic neighborhood sizes for lists and
stars, as functions of the number of nodes. The values
for all other trees lie between these curves.

1 000 spanning trees—stars, arbitrary trees, and lists—
on n = 16 nodes. Figure 3(a) shows distributions
of genotypic distances for neighboring spanning trees;
that is, for spanning trees that differ in one edge. Fig-
ure 3(b) shows distributions of phenotypic distances
for neighboring Prüfer numbers; that is, for Prüfer
numbers that differ in one digit. Only for stars and
trees similar to stars is the locality of the Prüfer coding
high. In general, the phenotypes of genotypic neigh-
bors are very different, and conversely.

2.3 Heritability

A coding has high heritability, with respect to a
crossover operator, if offspring phenotypes consist
mostly of substructures of their parents’ phenotypes.
When genotypes encode spanning trees, offspring trees
should consist mostly or entirely of parental edges.
Usually, with conventional operators, heritability will
be low where locality is low. In Prüfer numbers, the

(a)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

cu
m

ul
at

iv
e 

fr
eq

ue
nc

y

different digits in the Prufer number

star
list

tree

(b)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

cu
m

ul
at

iv
e 

fr
eq

ue
nc

y

different edges in the graph

star
list

tree

Figure 3: Distributions of (a) genotypic distances for
neighboring spanning trees, and (b) phenotypic dis-
tances for neighboring Prüfer numbers, on 16 nodes.

5

10

15

20

25

30

10 20 30 40 50 60 70

be
st

 in
di

vi
du

al

generations

star
list

tree

Figure 4: Performance of a Prüfer-coded EA on One-
Max-Tree problems of 32 nodes, with optimum trees
of various structures.

meanings of genotypic symbols depend on their con-
texts, and k-point crossover will not preserve parental
substructures in offspring phenotypes. Thus Prüfer-
coded EAs using such a crossover will search effectively
only near stars, where locality is high.

Experiments with a simple problem confirm that this
is so. In the One-Max problem, a bit string’s fitness
is the number of 1s in it. In the One-Max-Tree prob-
lem (Rothlauf et al., 2000), an optimum spanning tree
is specified, and the fitness of any tree is the number
of edges that it shares with this target. An EA whose
coding has sufficient heritability should solve this prob-
lem easily, by preserving edges of the target tree from
parents to offspring.

A generational EA for One-Max-Tree encoded span-
ning trees as Prüfer numbers. It applied no muta-
tion, only one-point crossover, and used (µ + λ) se-
lection, with µ = λ = 1500. Figure 4 illustrates the
algorithm’s performance on several One-Max-Tree in-
stances with n = 32 nodes, whose target trees were
variously stars, random trees, and lists. Only when
the optimum tree’s locality was high—i.e., it was a
star—did the EA find it. In other cases, the EA’s
search failed, and failed badly.

2.4 Where Locality is High

An EA will search effectively in regions of high local-
ity, but when Prüfer numbers encode spanning trees,
these regions are tiny. We extend the definition of
neighbors to include trees whose Prüfer numbers dif-
fer in at most imax digits (imax ¿ n). The number
of neighbors of stars is then

∑imax
i=0

(
n−2

i

)
(n− 1)i; this

value is O(n2imax). The number of spanning trees on
n vertices, and thus the size of the search space, is
nn−2. As Figure 5 illustrates, the proportion of these
high-locality trees is small even for moderate n and
diminishes exponentially as n grows. On problems of
interesting size, Prüfer-coded EAs cannot succeed.



1e-14
1e-12
1e-10
1e-08
1e-06

0.0001
0.01

1

10 12 14 16 18 20 22

pr
op

. o
f h

ig
h 

lo
ca

lit
y 

in
d.

number of network nodes n

Figure 5: The proportion of spanning trees on n nodes
whose Prüfer numbers have high locality, defined as
differing from the Prüfer number of a star in no more
than imax = 5 digits.

The following four sections compare codings of span-
ning trees in EAs for four substantive problems. They
confirm the unsuitability of the Prüfer coding.

3 The Degree-Constrained Minimum
Spanning Tree Problem

Given a weighted undirected graph G, the degree-
constrained minimum spanning tree problem (d-
MSTP) seeks a spanning tree on G of minimum weight
whose degree does not exceed d > 1. This problem is
NP-hard (Garey and Johnson, 1979, p. 206). Figure 6
shows an unconstrained spanning tree of degree 5 and
a spanning tree with maximum degree d = 3 on n = 11
points in the plane.

The degree constraint suggests that Prüfer numbers
might perform well in an EA for this problem, since
the degree of each node in a spanning tree is one more
than the number of times its label appears in the tree’s
Prüfer number. Thus, it is easy to identify and repair
Prüfer numbers whose trees violate the constraint.

Zhou and Gen (1997) presented an EA for the d-MSTP
that encodes spanning trees as Prüfer numbers. How-
ever, it was tested only on very small, random prob-
lem instances. These were shown to be easily solved to
optimality by greedy heuristics, branch-and-bound, or
EAs using other encodings (Knowles and Corne, 2000;
Krishnamoorthy et al., 1999; Raidl, 2000).

Other researchers have used other codings. Knowles
and Corne (2000) described an EA in which geno-

(a) (b)

Figure 6: An unconstrained spanning tree (a) and a
spanning tree with maximum degree d = 3 (b).

types are strings of integers that influence the order
in which a variation of Prim’s minimum spanning tree
algorithm connects nodes to the spanning tree.

Palmer and Kershenbaum (1994) encoded spanning
trees as strings of real-valued weights. The tree such
a genotype represents is found by temporarily adding
each node’s weight to all the distances in which it par-
ticipates, then applying Prim’s algorithm to the mod-
ified distances. Raidl and Julstrom (2000) adapted
this coding to the d-MSTP, using normally distributed,
multiplicative weights.

Krishnamoorthy et al. (1999) compared two Prüfer-
coded EAs, which differed in their crossover operators
and breeding schemes, to a weight-coded EA and other
optimization techniques. The Prüfer-coded EAs failed
on all instances except the simplest; on average, the
weight-coded EA performed best.

Recently, Raidl (2000) described an EA for the d-
MSTP that stores the edges of each candidate span-
ning tree directly in lists. The recombination opera-
tor uses parental edges to build a new spanning tree;
to avoid violating the degree constraint it must occa-
sionally introduce edges that appear in neither parent.
Mutation inserts a new edge and then removes an edge
from the cycle so created.

Table 1 shows some characteristic results from Raidl
(2000) on six hard, misleading 5-MSTP instances due
to Knowles and Corne (2000). The table presents re-
sults for an EA that encoded spanning trees as Prüfer
numbers (PR) and for three other algorithms: the EA
of Knowles and Corne (K&C), the weight-coded EA
of Raidl and Julstrom (2000) (Wts), and the edge-list
EA of Raidl (2000) (LoE). Aside from its coding and
operators, the Prüfer-coded algorithm was identical to
the edge-list EA. Each algorithm was run 20 indepen-
dent times on each instance. As in Krishnamoorthy
et al. (1999), the Prüfer-coded EA performed worst,
and its performance deteriorated most quickly as the
problem size increased.

Table 1: Average weights of the best spanning trees
found on 20 trials with four codings on six hard 5-
MSTP instances.

5-MSTP n PR K&C Wts LoE
m050n1 50 13.0 8.5 6.7 6.6
m050n2 50 14.1 7.8 6.0 5.8
m100n1 100 35.8 13.7 11.4 11.1
m100n2 100 39.2 15.5 11.9 11.4
m200n1 200 80.5 20.9 18.8 18.4
m200n2 200 87.3 26.4 20.3 19.5



4 The Optimal Communication
Spanning Tree Problem

Consider a collection of nodes for which the commu-
nication demand between each pair of nodes is given.
In the Optimal Communication Spanning Tree Prob-
lem (OCSTP), we seek a tree-structured network of
minimum total cost that connects all the nodes. A
link’s flow is the sum of the communication demands
between all pairs of nodes communicating directly or
indirectly over the link. The cost for each link is not
fixed a priori but depends on the length and capacity
of the link. A link’s capacity must satisfy the link’s
flow and this flow depends on the entire tree struc-
ture. Like other constrained spanning tree problems,
the OCSTP is NP-hard (Garey and Johnson, 1979,
p. 207). Figure 7 shows a communication spanning
tree on 15 nodes and emphasizes the path connecting
nodes 3 and 14.

Several researchers have encoded candidate communi-
cation trees as Prüfer numbers in EAs for this and
related problems. For example, Kim and Gen (1999)
considered problems in which the nodes were parti-
tioned into users and service centers. Each user con-
nected to exactly one service center, and Prüfer num-
bers represented spanning trees on the service centers.

Rothlauf et al. (2000) adapted NetKeys (Bean, 1992)
to represent communication trees. In this representa-
tion, a genotype is a sequence of real-valued priorities
associated with the edges that might appear in a com-
munication tree. The decoding algorithm builds the
represented tree by including edges in order of these
priorities, skipping edges that form cycles. NetKeys
support conventional evolutionary operators.

Prüfer numbers and NetKeys were compared in a gen-
erational EA on four instances of the OCSTP derived
from a real-world problem whose nodes represent lo-
cations throughout Germany. Depending on the flow,
each link is assigned one of four line types; these have
distinct costs per unit length. In two of the instances
(Type 1), each link’s cost includes a fixed installation
cost that does not depend on the link’s length. For
these instances, optimal solutions resemble stars. In
the other two instances (Type 2), each link’s cost de-

14

3

Figure 7: A communication spanning tree on 15 nodes,
with the path connecting nodes 3 and 14 emphasized.

pends only on its length and capacity. Here, opti-
mal solutions are similar to simple minimum spanning
trees.

The EA in which the two codings were compared was
that of Rothlauf et al. (2000). Its population size was
2 000 on all the problem instances. It selected parents
in tournaments of size three and generated all offspring
with uniform crossover; mutation was not used. The
algorithm was run 50 independent times through 100
generations with each coding on each instance.

Table 2 summarizes the results of these trials. It
presents the average percentages by which the costs
of the best trees in each trial exceeded the costs of the
single best tree identified on each instance. The al-
gorithm’s performance with Prüfer numbers was infe-
rior to its performance with NetKeys and deteriorated
more quickly with increasing problem size.

Table 2: The average percentage by which the best
trees’ costs with each coding exceeded the cost of the
single best tree found, on each OCSTP instance.

OCSTP size Prüfer NetKey
16 3.38 0.02Type 1
32 9.58 0.92
16 5.71 0.78Type 2
32 14.31 2.07

5 The Rectilinear Steiner Problem

Given a collection of points in the plane, a rectilinear
Steiner tree (RStT) is a tree of horizontal and vertical
line segments that connects them all. A RStT’s length
is the sum of its segments’ lengths, with overlapping
segments included only once. The search for a RStT
of minimum length on a set of points is the rectilinear
Steiner problem (RStP), and it is NP-hard (Garey and
Johnson, 1979, p. 209).

In a rectilinear Steiner tree, the additional points
where the segments meet are called Steiner points. In
searching for a minimal RStT, we need consider as
Steiner points only the unoccupied corners of the rect-
angles, with sides parallel to the axes, that each pair of
points defines (Hanan, 1966). Each pair of points also
defines an edge that may appear in a simple spanning
tree. Assigning a Steiner point to each of the n − 1
edges in a spanning tree specifies a RStT. Figure 8
shows a RStT and its underlying spanning tree.

Augmenting a Prüfer number with a string of n − 1
binary symbols that indicate Steiner points encodes a
rectilinear Steiner tree. Prüfer numbers and binary
strings support conventional evolutionary operators.



(a)(b)

Figure 8: A rectilinear Steiner tree (a) and its under-
lying spanning tree (b).

An alternate coding augments Palmer and Kershen-
baum’s (1994) strings of weights, mentioned in Sec-
tion 3, with binary strings. The binary symbols spec-
ify Steiner points for the edges of the spanning tree the
weights represent. This coding also supports conven-
tional operators; mutation changes parental weights
and flips Steiner points.

A third coding of rectilinear Steiner trees is as lists
of spanning tree edges augmented by Steiner point
choices: the entry (17,25,1) represents the pair of rec-
tilinear edges joining points 17 and 25 via, say, their
right Steiner point. A list of n−1 such entries encodes
a RStT. Crossover and mutation operators are based
on union-find partitions of the given points.

Julstrom (2001) compared these codings in a genera-
tional EA with population size 2n and selection from
tournaments of size four. With each coding, the algo-
rithm was run 50 times on six RStP instances of from
50 to 150 points. Table 3 summarizes these tests; it
lists the average length of the best trees found in each
set of trials. The EA’s performance is poor with the
Prüfer coding, far better with augmented strings of
weights, and best with lists of edges.

Table 3: Average lengths of the shortest RStTs the
EA found with Prüfer numbers, augmented weights,
and lists of edges.

Prüfer Augmented Lists ofRStP n
numbers weights edges

eil50 50 629 461 436
st70 70 1287 730 695
eil75 75 823 574 554
rand80 80 1566 835 780
rand100 100 1920 890 824
rand150 150 5472 2168 2031

6 The Fixed-Charge Transportation
Problem

Consider distributing a commodity from m sources
(factories or warehouses) to each of n destinations
(consumers). The amounts of the commodity avail-

able at each source and required at each destination
are known, and any source can ship to any destination.
We seek a pattern of shipments, called a transporta-
tion plan, that minimizes the total cost of the deliv-
eries. Figure 9(a) shows an instance of this problem,
with m = 3 sources and n = 2 destinations. Fig-
ure 9(b) shows a transportation plan for it.

In the linear transportation problem, the cost of each
link between a source and a destination depends lin-
early on the amount shipped; this problem is solvable
in polynomial time (Edmonds and Karp, 1972). In
the fixed-charge transportation problem (FCTP), each
link also has a fixed cost that is invoked if that link is
used; this problem is NP-hard (Guisewite and Parda-
los, 1990).

A transportation tree consists of the links in a trans-
portation plan and possibly additional links with ca-
pacity zero, as Fig. 9(c) illustrates. In such a tree,
the amounts assigned to its edges are calculated by
traversing the edges, iteratively selecting an edge inci-
dent to a leaf, and then assigning the maximum fea-
sible amount to each. Transportation trees represent
a subset of the feasible transportation plans, and that
subset always contains at least one global optimum,
so it is reasonable to restrict search to trees on the
sources and destinations. Not all trees represent valid
transportation plans, as Fig. 9(d) shows.

Li et al. (1998) described an EA for the FCTP that
encodes transportation trees as Prüfer numbers. Gott-
lieb and Eckert (2000) extended this coding with re-
pair mechanisms to ensure that each Prüfer number
decodes to a feasible solution.

Vignaux and Michalewicz (1991) encoded transporta-
tion plans as permutations of the mn links between
sources and destinations. A decoder scans the links
in permutation order and assigns to each the largest
amount of the commodity consistent with previous as-
signments and the problem’s constraints. Gottlieb and
Paulmann (1998) used this coding in an EA for the
FCTP.

1

1

2

2

2

(a)1

1

2

2

2
2

1

1
(b)1

1

2

2

2
2

0

1

1
(c)1

1

2

2

2
2

0

0
1

(d)

Figure 9: (a) A transportation problem with m = 3
sources (circles) and n = 2 destinations (dots). (b)
A feasible transportation plan for the problem. (c) A
transportation tree corresponding to the plan of (b).
(d) A transportation tree whose plan violates the prob-
lem’s constraints.



A list of its positive edges, each with the amount of the
commodity assigned to it, can also represent a trans-
portation tree. For this coding, there are two mutation
operators. One introduces a new random edge and
adjusts the tree accordingly; the other rearranges the
edges incident to a randomly selected node. Crossover
inserts half the edges of one parent into the other par-
ent and removes existing edges as necessary.

These codings were compared in a steady-state EA
for the FCTP. Its population contained 100 individu-
als (200 for n3700 and n370e); it selected parents in
tournaments of size two; it generated all offspring by
crossover, then mutation; it always replaced the cur-
rent worst genotype; and it did not allow phenotypic
duplicates. The EA was run twelve independent times
with each coding on six FCTP instances ranging in
size from m = 8 and n = 12 to m = 50 and n = 100.

Table 4 summarizes these trials, some of which were
reported in (Gottlieb and Eckert, 2000). For each in-
stance and each coding, the table presents the percent-
age by which the average cost of the trials’ best plans
exceeded the cost of the single best plan found. Again,
the EA performed worst with the Prüfer coding. Its
performance was better with permutations and best
when lists of edges represented transportation plans.

Table 4: The average percentage by which the twelve
best plans’ costs, with each coding, exceeded the costs
of the best plans found, on six FCTP instances.

Prüfer Permu- Lists ofFCTP
numbers tations edges

bal8x12 0.00 0.00 0.00
ran4x64 21.34 0.54 0.21
ran14x18 14.07 4.19 1.60
ran16x16 10.58 2.61 0.63
n3700(50x100) 65.96 13.79 0.83
n370e(50x100) 70.44 18.67 0.97

7 Conclusion

Prüfer numbers encode spanning trees on n nodes as
strings of n − 2 node labels. Several researchers have
claimed that Prüfer numbers allow effective evolution-
ary search of spaces of spanning trees. We have demon-
strated that this is not so.

Though Prüfer numbers support conventional evolu-
tionary operators like k-point crossover and position-
by-position mutation, only a negligible fraction of the
genotype space of Prüfer numbers provides high local-
ity and heritability under those operators. In general,
mutated Prüfer numbers do not represent trees sim-

ilar to those of their parents, nor do the offspring of
crossover encode trees that consist mainly of substruc-
tures of the parental trees.

Empirical investigations on four NP-hard problems in-
volving spanning trees confirm that the Prüfer coding
is a poor choice in evolutionary algorithms. On ev-
ery problem, an EA returned the worst results when
Prüfer numbers encoded candidate trees, and much
better results with other codings. Also, the perfor-
mance of the Prüfer-coded versions deteriorated the
most quickly as the problem instances got larger.

Why have some researchers reported good results with
Prüfer numbers? In most cases, the problem instances
were very small, so that any representation was ade-
quate. In others, good solutions resembled stars, near
which evolutionary search can be effective in spaces of
Prüfer numbers.

Another disadvantage of Prüfer numbers is that they
correspond to unconstrained spanning trees in com-
plete graphs. When the underlying graph is not com-
plete or the problem is otherwise constrained, an off-
spring Prüfer number will not in general represent a
valid solution. Offspring can be repaired, but such
operations further degrade the representation’s local-
ity and heritability. More generally, operators that
could enforce locality and heritability on Prüfer num-
bers must decode them and operate on the decoded
representations.

For three of our four problems, one of the cod-
ings of candidate solutions was lists of spanning tree
edges, sometimes augmented with information such as
Steiner points or commodity amounts. The EAs re-
turned their best results with these codings. With
appropriate operators, lists of edges show high local-
ity and heritability, and they can be manipulated to
satisfy constraints. This suggests that lists of edges
may be a generally effective representation of spanning
trees for evolutionary search.

References

F. N. Abuali, D. A. Schoenefeld, and R. L. Wain-
wright. Designing telecommunications networks us-
ing genetic algorithms and probabilistic minimum
spanning trees. In E. Deaton, D. Oppenheim, J. Ur-
ban, and H. Berghel, editors, Proceedings of the 1994
ACM Symposium on Applied Computing, pages 242–
246. ACM Press, 1994.

P. J. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao,
A. Zalzala, and W. Porto, editors. Proceedings of the
1999 IEEE Congress on Evolutionary Computation,
1999. IEEE Press.

J. C. Bean. Genetics and random keys for sequenc-



ing and optimization. Technical Report 92-43, De-
partment of Industrial and Operations Engineering,
University of Michigan, Ann Arbor, MI, 1992.

A. Cayley. A theorem on trees. Quarterly Journal of
Mathematics, 23:376–378, 1889.

J. Edmonds and R. M. Karp. Theoretical improve-
ments in algorithmic efficiency for network flow
problems. Journal of the ACM, 19:248–264, 1972.

S. Even. Algorithmic Combinatorics. The Macmillan
Company, New York, 1973.

M. R. Garey and D. S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Complete-
ness. W. H. Freeman, New York, 1979.

M. L. Gargano, W. Edelson, and O. Koval. A ge-
netic algorithm with feasible search space for mini-
mal spanning trees with time-dependent edge costs.
In J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb,
M. Dorigo, D. B. Fogel, H. Iba, and R. L. Riolo, edi-
tors, Genetic Programming 1998: Proceedings of the
Third Annual Conference, page 495. Morgan Kauf-
mann, 1998.

M. Gen and Y. Li. Spanning tree-based genetic algo-
rithms for the bicriteria fixed charge transportation
problem. In Angeline et al. (1999), pages 2265–2271.

J. Gottlieb and C. Eckert. A comparison of two repre-
sentations for the fixed charge transportation prob-
lem. In Schoenauer et al. (2000), pages 345–354.

J. Gottlieb and L. Paulmann. Genetic algorithms for
the fixed charge transportation problem. In Pro-
ceedings of the 1998 IEEE International Conference
on Evolutionary Computation, pages 330–335. IEEE
Press, 1998.

G. M. Guisewite and P. M. Pardalos. Minimum
concave-cost network flow problems: Applications,
complexity, and algorithms. Annals of Operations
Research, 25:75–100, 1990.

M. Hanan. On Steiner’s problem with rectilinear dis-
tance. SIAM Journal of Applied Mathematics, 14
(2):255–265, 1966.

B. A. Julstrom. Encoding rectilinear Steiner trees as
lists of edges. In Proceedings of the 2001 ACM Sym-
posium on Applied Computing, 2001. Las Vegas,
NV, March 11–14, 2001.

J. R. Kim and M. Gen. Genetic algorithm for solv-
ing bicriteria network topology design problem. In
Angeline et al. (1999), pages 2272–2279.

J. Knowles and D. Corne. A new evolutionary ap-
proach to the degree constrained minimum spanning
tree problem. IEEE Transactions on Evolutionary
Computation, 4(2):125–134, 2000.

M. Krishnamoorthy, A. T. Ernst, and Y. M. Sharaiha.
Comparison of algorithms for the degree constrained
minimum spanning tree. Technical report, CSIRO
Mathematical and Information Sciences, Clayton,
Australia, 1999.

Y. Li, M. Gen, and K. Ida. Fixed charge transporta-
tion problem by spanning tree-based genetic algo-
rithm. Beijing Mathematics, 4(2):239–249, 1998.

C. C. Palmer and A. Kershenbaum. Representing
trees in genetic algorithms. In D. Schaffer, H.-P.
Schwefel, and D. B. Fogel, editors, Proceedings of
the First IEEE Conference on Evolutionary Com-
putation, pages 379–384. IEEE Press, 1994.

H. Prüfer. Neuer Beweis eines Satzes ueber Permu-
tationen. Archiv für Mathematik und Physik, 27:
742–744, 1918.

G. R. Raidl. An efficient evolutionary algorithm for the
degree-constrained minimum spanning tree prob-
lem. In C. Fonseca, J.-H. Kim, and A. Smith, ed-
itors, Proceedings of the 2000 IEEE Congress on
Evolutionary Computation, pages 104–111. IEEE
Press, 2000.

G. R. Raidl and B. A. Julstrom. A weighted coding in
a genetic algorithm for the degree-constrained mini-
mum spanning tree problem. In J. Carroll, E. Dami-
ani, H. Haddad, and D. Oppenheim, editors, Pro-
ceedings of the 2000 ACM Symposium on Applied
Computing, pages 440–445. ACM Press, 2000.

F. Rothlauf and D. E. Goldberg. Pruefernumbers and
genetic algorithms: A lesson on how the low locality
of an encoding can harm the performance of GAs.
In Schoenauer et al. (2000), pages 395–404.

F. Rothlauf, D. E. Goldberg, and A. Heinzl. Network
random keys – a tree network representation scheme
for genetic and evolutionary algorithms. Technical
Report No. 8/2000, University of Bayreuth, Ger-
many, 2000.

M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lut-
ton, J. J. Merelo, and H.-P. Schwefel, editors. Paral-
lel Problem Solving from Nature – PPSN VI, num-
ber 1917 in Lecture Notes in Computer Science,
2000. Springer.

G. A. Vignaux and Z. Michalewicz. A genetic algo-
rithm for the linear transportation problem. IEEE
Transactions on Systems, Man, and Cybernetics, 21
(2):445–452, 1991.

G. Zhou and M. Gen. Approach to degree-constrained
minimum spanning tree problem using genetic al-
gorithm. Engineering Design & Automation, 3(2):
157–165, 1997.


