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Abstract

The success of decoder-based evolutionary
algorithms (EAs) strongly depends on the
achieved locality of operators and decoders.
Most approaches to investigate locality prop-
erties are static and consider only parts of
the complex interactions within an EA, and
sometimes, these techniques give misleading
results. We suggest an explicit analysis of
the dynamic behavior, emphasizing the ef-
fects of locality on evolutionary search. The
impact of our methodology is twofold since it
confirms previous statically obtained results
and allows to gain reliable additional insight
about the actual dynamics. The approach is
successfully applied to four EAs for the mul-
tidimensional knapsack problem, and it can
easily be adapted to other problems and EAs.

1 Introduction

Locality is an important prerequisite to prevent evo-
lutionary search resembling pure random search. Usu-
ally, locality is implicitly considered throughout a se-
rious design process of evolutionary algorithms (EAs)
in a rather intuitive fashion. Only few approaches are
known to characterize the achieved locality properties
in more detail. Several static investigations rely on fit-
ness landscapes, e.g. operator correlation (Manderick
et al. (1991)) and fitness distance correlation (Jones
and Forrest (1995)). However, these approaches may
be misleading since they do not consider the complete
dynamics of evolutionary search (Altenberg (1997)).

In particular decoder-based EAs are hard to analyze
in a theoretical way due to the complex interactions
of variation operators and the decoding procedure.
Therefore, we suggested in (Gottlieb and Raidl (1999))

a methodology based on random sampling and dis-
tance measures in genotype and phenotype space to
characterize locality properties without performing ac-
tual EA runs. For several EAs, this approach is able to
successfully predict bad performance due to weak lo-
cality and hence represents a useful method of a priori
analyzing static features of decoder-based EAs, leading
to hypotheses concerning the actual dynamic behavior.

Nevertheless, this approach does not consider aspects
like the used selection method, replacement strategy,
and population size. Locality properties of the vari-
ation operators highly depend on the distribution of
parental solutions in the population. Our previous
approach regarded different population diversities by
artificially generating random solutions of certain dis-
tances, but obviously, this method is only a rough ap-
proximation of the conditions in a real population.

Due to the strong relation between locality and the
search dynamics, there is a need for tracing locality-
related properties continuously during real runs. We
propose statistical measures to allow an empirical in-
vestigation of the population dynamics. This paper
complements our previous study on locality by (i) ver-
ifying and supporting previous hypotheses based on a
priori measurements and (ii) gaining more reliable in-
sight about the actual effects of locality on the search
dynamics and hence the overall success of an EA.

Empirical results for selected decoder-based EAs for
the multidimensional knapsack problem (MKP) will be
presented. The MKP is stated as

maximize
∑

j∈J

pjxj (1)

subject to
∑

j∈J

rijxj ≤ ci, i ∈ I (2)

xj ∈ {0, 1}, j ∈ J (3)

with I = {1, . . . , m} and J = {1, . . . , n} denoting sets



of resources and items, respectively. Each resource i is
limited by its capacity ci > 0, and each item j yields a
profit pj > 0 and requires a certain amount rij ≥ 0 of
each resource i. The goal is to find a subset of items
with maximum total profit that does not exceed the
resource capacities. As the MKP has a wide range of
applications (Martello and Toth (1990)) and is NP-
complete (Garey and Johnson (1979)), several heuris-
tics – and in particular EAs – were proposed, see (Chu
and Beasley (1998), Gottlieb (1999)) for comprehen-
sive surveys. Recently, Leguizamón and Michalewicz
(1999) presented an ant system for this problem.

The decoder-based EAs we consider here are described
in Sect. 2. Section 3 proposes general statistical mea-
sures for tracing locality-related properties during an
EA run. Empirical results are presented and discussed
in Sect. 4, and conclusions are given in Sect. 5.

2 Decoder-Based EAs for the MKP

The best EAs for the MKP we are aware of em-
ploy direct encoding, heuristic repair, and local opti-
mization methods (Chu and Beasley (1998), Gottlieb
(1999), Raidl (1998)). However, several decoder-based
EAs are also capable of obtaining high-quality solu-
tions (Hinterding (1999)). Generally, the latter ap-
proaches are based on an individual’s duality of geno-
type and phenotype, where an arbitrary genotypic
search space G is mapped into the phenotypic search
space P = {0, 1}n by some decoder; while the EA ex-
plores G in an explicit fashion, P is explored implicitly.

The considered decoder-based EAs employ a common
general setup, namely a population of size 100, parent
selection via binary tournaments, producing one off-
spring per generation by always performing crossover
and mutation, steady-state replacement (deleting the
worst individual), phenotypic duplicate elimination,
and an evaluation limit of 1 000 000 non-duplicate so-
lutions. Phenotypic duplicate elimination means that
an offspring is rejected if its phenotype is already
represented by some genotype in the current popu-
lation (Raidl and Gottlieb (1999)). Obviously, this
mechanism enforces a minimum population diversity.
Overviews of four selected EAs are presented in the
following, together with results concerning final solu-
tion qualities and locality properties obtained from our
previous static studies (Gottlieb and Raidl (1999)).

2.1 Permutation Based EA

The permutation based EA (PBEA) has been proposed
by Hinterding (1994) for the unidimensional knapsack
problem and has also been applied to the MKP (Gott-

lieb (2000), Raidl (1998), Thiel and Voss (1994)). Per-
mutations π : J → J of the items form the genotypic
search space and are decoded as follows. Starting with
the feasible solution x = (0, . . . , 0), all variables xj are
traversed in the order determined by π, increasing each
variable from 0 to 1 if this does not violate any resource
constraint. We employ standard permutation opera-
tors, namely uniform order based crossover and swap
mutation, which randomly exchanges two different po-
sitions. This operator setup was suggested by Hinter-
ding (1994) and confirmed to be effective by Gottlieb
(2000).

2.2 Ordinal Representation Based EA

The ordinal representation based EA (OREA) has orig-
inally been examined in the context of the travel-
ing salesperson problem (TSP) (Grefenstette et al.
(1985)), but is easily adapted to the MKP. Solution
candidates for the MKP are represented by vectors v
with va ∈ {1, . . . , n − a + 1} for a ∈ J = {1, . . . , n}.
The decoder initially generates a list containing all
items in some predefined order and starts with the fea-
sible solution x = (0, . . . , 0). The vector v is traversed
from the first to its last position, interpreting each en-
try va as a position in the current list. Such position
identifies the next item j which is removed from the
list and then checked for inclusion in the current MKP
solution; the corresponding variable xj is increased if
the resource capacities are not exceeded. This repre-
sentation allows the use of classical one-point crossover
since the decoder ensures to generate feasible solutions
only. We employ a simple mutation operator which
randomly chooses a position a and then draws va uni-
formly from {1, . . . , n−a+1}. OREA fails to achieve
a high degree of locality since some change in a sin-
gle position of v modifies the meaning of all following
genes and, therefore, often leads to a huge phenotypic
change (Gottlieb and Raidl (1999)).

2.3 Surrogate Relaxation Based EA

The surrogate relaxation based EA (SREA) was sug-
gested by Raidl (1999). Solution candidates are rep-
resented by vectors of real-valued weights, which are
used to temporarily modify the profits pj in the objec-
tive function (1) yielding a similar but slightly different
MKP instance. This biased problem is solved by a sur-
rogate duality based heuristic that has originally been
proposed by Pirkul (1987). The heuristic starts with
the feasible solution x = (0, . . . , 0) and traverses all
items according to decreasing profit/pseudo-resource
consumption ratio. Variables xj are increased if the
resource constraints remain satisfied. Pseudo-resource



consumptions are determined via reasonable surrogate
multipliers obtained from the result of the linear pro-
gramming (LP) relaxed MKP. As the resource con-
straints (2) are not affected by the real-valued weights,
the decoded solution is feasible with respect to the
original constraints. Raidl (1999) proposed to deter-
mine the surrogate multipliers only once for the orig-
inal problem in a preprocessing step to decrease the
computational effort. SREA uses uniform crossover
and a mutation operator which modifies three ran-
domly chosen weights by resetting them to new ran-
dom values. The results obtained for SREA are the
best among all decoder-based EAs for the MKP we
are aware of.

2.4 Lagrangian Relaxation Based EA

The Lagrangian relaxation based EA (LREA) was also
proposed by Raidl (1999) and employs the same repre-
sentation and variation operators as SREA. However,
LREA employs a different heuristic to generate a so-
lution for the biased problem, namely the Lagrangian
relaxation based procedure introduced by Magazine
and Oguz (1984). As exact Lagrange multipliers are
difficult to obtain, some reasonable (but usually sub-
optimal) multipliers are calculated by a simple heuris-
tic. Each obtained solution is then locally improved by
traversing the variables according to decreasing profit
and increasing them if feasibility can be maintained.

2.5 Comparison of the EAs

We compared the considered decoder-based EAs on
selected problems of Chu’s test suite of MKP bench-
marks introduced in (Chu and Beasley (1998)) and
available from the OR-Library1. Ten runs were per-
formed for the first problem instances of sizes m ∈
{5, 10, 30}, n ∈ {100, 250, 500} and tightness ra-
tios α ∈ {0.25, 0.5, 0.75} (which means that ci =
α

∑
j∈J rij for all i ∈ I). The solution quality is

measured by the relative gap of the objective value
to the optimal value of the LP-relaxed problem, i.e.
1−maxEA/optLP with maxEA and optLP denoting the
best objective value found by the EA and the optimal
value of the LP relaxation of MKP, respectively. The
duplicate ratio represents the ratio of rejected dupli-
cates among all generated solutions.

Table 1 presents obtained average results. In partic-
ular SREA yielded most of the time the best results.
The solution qualities achieved by OREA are signifi-
cantly worse than those of the other EAs. As discussed
in the empirical studies in Sect. 4, a major reason for

1http://mscmga.ms.ic.ac.uk/info.html

Table 1: Obtained average gaps and duplicate ratios
for the EAs on Chu’s benchmark suite

PBEA OREA SREA LREA
gap [%] 0.74 2.65 0.58 0.62
duplicate ratio [%] 5.74 36.24 6.65 3.27

the difference of an order of magnitude between OREA
and the other EAs is the weak locality of OREA, which
does not allow a meaningful exploration of the search
space, see also (Gottlieb and Raidl (1999)). Further-
more, it will be shown that OREA also suffers from a
lack of efficiency since many duplicates are produced
due to missing innovation capabilities of the variation
operators. The remaining sections of this work explic-
itly focus on the search dynamics to analyze the effects
of locality and related concepts such as innovation in
greater detail.

3 Statistical Measures

In the following, several statistical measures are pro-
posed that describe locality-related properties of bi-
nary crossover and mutation. These measures are sup-
posed to be continuously traced over the generations
of an evolutionary search in order to gather informa-
tion about the search dynamics. As will be shown in
Sect. 4, important strengths and weaknesses of specific
encodings and evolutionary operators can be revealed
and moreover, typical behaviors of decoder-based evo-
lutionary search can be explained with these data.

For the purpose of quantifying the similarity of two
different solutions, a problem-dependent distance mea-
sure is needed. For the MKP, the definition of the
phenotypic distance metric

d(x, y) :=
∑

j∈J

|xj − yj | for x, y ∈ P

is straightforward. The Hamming distance counts the
number of variables with different values – i.e. pheno-
typic properties – in the two solutions. This definition
of d(x, y) satisfies the metric conditions, namely iden-
tity, symmetry, and the triangular inequality.

For other combinatorial optimization problems, a phe-
notypic distance usually needs to be defined in a dif-
ferent, meaningful way, which might not always be as
obvious as for the MKP. E.g. in case of the TSP, the to-
tal number of different edges might be an appropriate
measure since edges can be seen as the most important
phenotypic properties of TSP solutions (Grefenstette
et al. (1985)).

In the following, we propose several measures dealing



with binary crossover. Let xp1 , xp2 ∈ P be the selected
parent solutions that undergo crossover to generate an
offspring xc ∈ P .

3.1 Parent Distance PD t

The behavior and locality properties of crossover are
in general strongly influenced by the similarity of the
two selected parents. We therefore define the parent
distance as

PD t := d(xp1 , xp2)

and regard it as random variable which depends on the
EA’s population at generation t (especially its diver-
sity) and the used selection technique.

In the special case xp1 = xp2 , i.e. the same solution
is selected twice, crossover is usually not able to cre-
ate a new, meaningful solution different to its parents
or degenerates to some kind of mutation. We denote
the probability of this unwanted case as P (PD t = 0),
and high values thereof obviously indicate premature
convergence or selection pressure that is too high. For
avoiding a bias of other measures by this ineffective
case, we consider in the following the meaningful case
xp1 6= xp2 , i.e. PD t > 0, only. The expected value
E(PD t |PD t > 0), which again depends on the popu-
lation at generation t, is then a measure for the degree
of population diversity from the crossover viewpoint.
In a typical evolutionary search, E(PD t |PD t > 0) is
high at the beginning of a run and decreases over time.

3.2 Crossover Innovation CI t

For PD t > 0 we define the crossover innovation

CI t := min(d(xc, xp1), d(xc, xp2))

as the phenotypic distance of the offspring xc to its
closer parent. CI t is viewed as random variable de-
pending on the selected parents – therefore strongly
on PD t – and the crossover operator. Obviously, CI t

is 0 if either xc = xp1 or xc = xp2 . Letting P (CI t = 0)
be the likelihood for crossover generating an offspring
that is phenotypicly identical to one of its parents, we
expect P (CI t = 0) to be small when E(PD t |PD t > 0)
is high. Obviously, high values for P (CI t = 0) de-
grade performance. A high P (CI t = 0) for an at least
moderate E(PD t |PD t > 0) indicates that crossover
either does not mix the two parental genotypes well
enough or there is a high degree of redundancy in the
genotype space G. There are two possible reasons for
such high redundancy: Firstly, |G| might be signifi-
cantly larger than |P |. Often such a representation
redundancy decreases performance, but sometimes it

may also be beneficial and lead to better final results
(Ronald (1997)). Secondly, the decoder might contain
local improvement techniques or heuristics that always
or mostly map genotypes to preferred phenotypes in a
restricted subset P ′ ⊂ P . We call this effect heuris-
tic bias. In this case, solutions x ∈ P \ P ′ cannot be
represented or have substantially smaller probabilities
to be generated. While such a restriction of P might
sometimes be advantageous, it must be ensured that
promising areas and particularly the global optima are
covered (Ronald (1997)). The four EAs of Sect. 2 work
with such heuristic bias since they restrict the search
space to the boundary of the feasible region.

Considering only the case of crossover actually pro-
ducing new, distinct solutions, i.e. CI t > 0, the ex-
pectation E(CI t |CI t > 0) and corresponding stan-
dard deviation σ(CI t |CI t > 0) are indicators for lo-
cality during crossover: In case of strong locality,
E(CI t |CI t > 0) should be relatively large for large
PD t and become increasingly smaller for smaller PD t .
In particular when PD t is small, large values for both,
E(CI t |CI t > 0) and σ(CI t |CI t > 0), imply weak lo-
cality.

3.3 Crossover Loss CLt

In addition to the ability to generate new solutions
with adequate distances to the parents, another impor-
tant aspect of crossover is that an offspring mainly con-
sists of phenotypic properties inherited from its par-
ents; only few new properties should be introduced.
Only under this condition, meaningful building blocks
can emerge as described by the building-block hypo-
thesis (Holland (1975)). To consider this aspect, we
define for PD t > 0 the crossover loss CLt in general
as the number of phenotypic properties of the offspring
xc that are newly introduced and not inherited from
either of the parents xp1 or xp2 . In the case of MKP,

CLt :=
∑

j∈J

δ(xc
j , x

p1
j , xp2

j )

with δ(xc
j , x

p1
j , xp2

j ) =
{

0 if xc
j = xp1

j or xc
j = xp2

j

1 otherwise.

Using the proposed phenotypic distance metric, we can
rewrite the crossover loss alternatively as

CLt :=
1
2
(d(xc, xp1) + d(xc, xp2)− d(xp1 , xp2)) .

Note that CI t = 0 implies CLt = 0. To prevent a
bias by that case in which crossover is not able to pro-
duce a new, distinct solution, we actually consider the
expected value E(CLt |CI t > 0) only. Large values
immediately indicate weak locality.



3.4 Mutation Innovation MI t

In order to analyze the effects of the mutation opera-
tor, xm is assumed to be the solution resulting from
mutating solution x. We define the mutation innova-
tion as the phenotypic distance between x and xm,

MI t := d(x, xm) .

This random variable describes how much phenotypic
“innovation” is introduced by the mutation and im-
mediately reflects several important aspects concern-
ing locality of mutation. Similarly to the crossover
innovation, we consider the measures P (MI t = 0),
E(MI t |MI t > 0), and σ(MI t |MI t > 0). Large val-
ues of P (MI t = 0) indicate that either mutation of-
ten does not change any genotypic properties or that
the mapping G → P induces a high degree of re-
dundancy (see Sect. 3.2). Large values for the ex-
pectation E(MI t |MI t > 0) or the standard deviation
σ(MI t |MI t > 0) indicate weak locality for mutation.

3.5 Duplicate Probability P t
dup

We further consider the duplicate probability P t
dup

that a solution newly generated by the evolutionary
operators is phenotypicly identical to any other solu-
tion already contained in the population. P t

dup de-
pends mainly on P (CI t = 0), P (MI t = 0), and the
crossover and mutation probabilities. Clearly, a high
duplicate probability immediately implies weak effi-
ciency of the EA. Note that the average duplicate
probability throughout the evolutionary search equals
the duplicate ratio which was introduced in Sect. 2.5.

4 Empirical Analysis

The statistical measures introduced in Sect. 3 strongly
depend on the current population characteristics and
are therefore considered as functions of the genera-
tion number t. We apply an efficient empirical ap-
proach to obtain estimations for the considered mea-
sures P (PD t = 0), E(PD t |PD t > 0), P (CI t = 0),
E(CI t |CI t > 0), σ(CI t |CI t > 0), E(CLt |CI t > 0),
P (MI t = 0), E(MI t |MI t > 0), σ(CLt |CI t > 0), and
P t

dup during an actual EA run. At each generation
sample values for the basic random variables PD t , CI t ,
CLt and MI t are determined when applying crossover
and mutation, respectively. The complete dynamics
of the measures are approximated by dividing a run
into consecutive intervals of generations and determin-
ing estimations of the measures independently within
each interval. Since the population dynamics usually
change faster in early phases of a run, we increase the

size of the generation intervals over time. In the empir-
ical analysis of the EAs we consider here, we start with
intervals of size 10 and multiply the size by the factor
10 after the generations 100, 1 000, 10 000, and 100 000.
Note that the obtained approximations are more con-
fident for higher generation numbers due to these dif-
ferent interval sizes. In order to increase the overall
approximation confidence, we use data collected from
10 independent runs instead of just one single run.

Figure 1 shows resulting plots for an MKP instance
with m = 10, n = 250, and α = 0.5, namely the first
problem of Chu’s test suite with these parameters. Al-
though different absolute values have been obtained as
results for other instances, this specific problem is rep-
resentative in the sense that the same basic tendencies
have been observed for all other instances, too.

Due to the duplicate elimination strategy and tourna-
ment selection being used in all four EAs, the proba-
bility P (PD t = 0) of selecting two identical parents for
crossover is constant (≈1.3%). It depends only on the
population size and group size of tournament selection
and is therefore not shown in the figure.

The dynamics of E(PD t |PD t > 0) are more inter-
esting since they are good indicators for the diver-
sity in the population. PBEA and OREA start with
the largest values and therefore have a significantly
higher diversity in their early populations. An ob-
vious reason for the lower diversity of LREA and in
particular SREA is their stronger heuristic bias inside
the decoder; this heuristic bias focuses the search on
high-quality regions of P already from the beginning.
After about 10 000 generations, all four curves meet
at a lower bound (≈ 12). Obviously, the duplicate
elimination avoids smaller values and the total loss of
diversity. After reaching a minimal value at about
generation 20 000 in the case of PBEA, SREA, and
LREA, E(PD t |PD t > 0) and hence the population
diversity increase slightly but consequently again. A
reason for this behavior seems to be that the popula-
tion has already converged in highly fit regions of the
search space in this phase of a run. The neighborhoods
of identified local optima have already been searched,
and the best solutions of these regions are contained
in the population. New solutions will only remain in
the population for a longer time if they are at least
as good as the other solutions in the population. This
implies that such solutions usually do not lie in those
regions that have already been searched intensively.
Thus, these solutions have a higher distance from the
current population, leading to an increase in popu-
lation diversity. We call this effect post-convergence
diversity increase. This phenomenon is an immediate
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Figure 1: Empirical results for PBEA, OREA, SREA, and LREA applied to an MKP instance with 250 items



consequence of phenotypic duplicate elimination.

The duplicate probability P t
dup reflects population di-

versity, too. While P t
dup is relatively low as long as the

diversity is high, more duplicates are produced when
the population has converged and diversity is low. Be-
cause of the post-convergence diversity increase, P t

dup

decreases again in late stages of the run.

Looking at the probability P (CI t = 0) for crossover
generating a solution which is identical to one of its
parents, it is striking that OREA always yields large
values from about 40% up to 65%, while the other EAs
yield small values below 10% during the whole run.
The reason is that OREA uses one-point crossover,
which might frequently exchange genes having no ef-
fect on the decoded phenotype, because the phenotypic
properties are mainly determined by the first genes.
Note that the high P (CI t = 0) of OREA also implies
a high duplicate ratio P t

dup.

For each EA, P (CI t = 0) is relatively small at the be-
ginning and increases due to the decreasing population
diversity until the population has converged. During
the post-convergence diversity increase, P (CI t = 0)
slightly decreases again.

The dynamics of E(CI t |CI t > 0), the distance of
a crossover-offspring to its nearer parent, are always
strongly correlated to the expected parent distance:
E(CI t |CI t > 0) ≈ E(PD t |PD t > 0)/2. Contrary to
what might have been expected, E(CI t |CI t > 0) gives
no indication of poor locality of any EA here. But the
partly very large standard deviation σ(CI t |CI t > 0)
of OREA reveals missing robustness, i.e. beside off-
springs with small distances to one parent, offsprings
with large distances to both parents are also gener-
ated frequently, which implies weak locality for the
crossover of OREA. In comparison to OREA, stan-
dard deviations of the other EAs are always relatively
low, and therefore we can expect stronger locality.

The plots for the crossover loss E(CLt |CI t > 0) vi-
sualize more locality properties of crossover. PBEA,
SREA, and LREA always yield relatively low values,
i.e. offsprings consist mainly of properties inherited
from the parents. For OREA, E(CLt |CI t > 0) is
very high, in particular at the beginning, which in-
dicates weak locality. When the population has con-
verged, i.e. PD t is low, all EAs exhibit small values for
E(CLt |CI t > 0). Since SREA nearly always yields the
smallest values for E(CI t |CI t > 0), σ(CI t |CI t > 0),
and E(CLt |CI t > 0), we claim that this best perform-
ing EA provides also the strongest crossover-locality.

Regarding mutation, we can observe for all EAs ex-
cept LREA nearly constant probabilities P (MI t = 0)

of the case that mutation leaves the phenotype un-
modified. These probabilities are surprisingly high
(SREA: ≈ 70%, PBEA and OREA: ≈ 50%, LREA:
≈ 15% to 30%) and can be explained by the high de-
gree of decoding redundancy because of heuristic bias
(see Sect. 3.2). In the case of LREA, P (MI t = 0) is
initially small and increases during the run; hence it
is more difficult for mutation to produce distinct solu-
tions from phenotypes of a converged population than
from those appearing in early generations.

Regarding E(MI t |MI t > 0) and σ(MI t |MI t > 0)
(which is not depicted here), we observe constantly
large values for OREA indicating poor locality. PBEA,
SREA, and LREA always exhibit nearly the same
small E(MI t |MI t > 0) below 7 and σ(MI t |MI t > 0)
below 3, and thus, these EAs provide stronger locality.

5 Conclusions

We proposed a new technique for analyzing the dy-
namics of decoder-based evolutionary search with par-
ticular emphasis on the effects of locality. In con-
trast to previous approaches for characterizing locality
properties, the suggested statistical measures allow to
investigate all the dynamic interactions between the
variation operators, namely binary crossover and mu-
tation, and the population with its selection and re-
placement strategies on phenotypic level. Thus, en-
codings and operators of weak locality can be identi-
fied more reliably, provided that a suitable problem-
dependent phenotypic distance measure is defined.
The methodology of tracing several EA runs and con-
sidering samples of subsequent generations provides a
simple yet effective way to obtain good approximations
for the measures.

Empirical results were presented for four EAs applied
to the multidimensional knapsack problem. These re-
sults confirm several hypotheses about dynamic be-
haviors of these EAs raised in our previous study
that is based on random sampling (Gottlieb and Raidl
(1999)). Most essentially, locality proved once again to
be a crucial requirement for any effective evolutionary
search. Moreover, the explicit analysis of the dynamics
revealed new aspects of the considered EAs. Of par-
ticular interest is the phenomenon which we called the
post-convergence diversity increase: The population
diversity decreases relatively fast due to the heuristic
bias, which also introduces a high redundancy in the
mapping G → P . Because of the phenotypic duplicate
elimination strategy, the diversity is lower-bounded
and increases slightly again during the remaining gen-
erations. The proposed statistical measures clearly
indicate reasons for the poor performance of OREA:



Besides weak locality, OREA tends to produce an off-
spring phenotypicly identical to one of its parents or
an offspring that does not share many similarities with
its parents. Thus, OREA cannot perform a meaningful
search. The other three EAs were confirmed to achieve
the desired level of locality that enables them to per-
form a meaningful search. SREA, which performed
best, also provides the strongest locality.

In general, this work complements our previous static
analysis concerning locality. Both studies together
provide a very useful methodology to analyze decoder-
based EAs. We expect our approach to be helpful
in the design of decoder-based EAs for other problem
domains, too. Recent (but yet unpublished) results
obtained by the first author for the fixed charge trans-
portation problem confirm this expectation.
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