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Thanks to my heart, it is pumping my blood,
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Abstract

Automated Calculation of Optimal Adjustment Parameters for Myoelectric Hand
Prostheses

by Sigrid GERGER

The adjustment of myoelectric arm prostheses is a very sensitive topic, as im-
proper choice of values for settable parameters causes dysfunction of the device and
frustration and rejection of the user. Due to the complexity of the system and the
rare occurrence of myoelectric treatments, the state of the art approach of manual
prosthesis adjustment leads to frequent failure, which is the reason why it was sen-
sible to come up with a way of supporting orthopedic technicians by developing a
reliably aiding algorithmic tool with a convenient user interface for data collection
and further parameter calculation. Therefore a prototype software has been set up
during a six-months research project completed at Otto Bock Holding GmbH & Co. KG
and refined in the following years at TU Wien, which guides both user and orthope-
dic technician through a process of data recording by giving a scheduled instruction
on movement generations and furthermore calculates required parameters based on
the user’s prevailing abilities.
This thesis presents these newly developed ideas to do so by firstly introducing basic
knowledge about prosthetic treatment and adjustment from its anatomical and tech-
nical point of view in Chapter 1 and 2. Furthermore, as developed approach is based
on ideas formulated in terms of mathematical optimization, an overview on the most
important definitions and techniques of latter is given in Chapter 3. After providing
these basics for further understanding, Chapter 4 presents a mathematically precise
description of given prosthetic system and its functionality components. Chapter 5
finally describes the idea of making use of mathematical optimization for a problem
solution by formulating given task as optimization problem, capable of being solved
algorithmically.
By realizing a first, naive, enumerative implementation derived in Section 5.3.1.2 and
enhancing it towards a generalized formulation, being very flexible and easily ex-
pandable to more complex systems, additionally turning capable of being solved by
commercially available optimization solvers (Section 5.3.1.6), these two approaches
could be analyzed and compared with each other and the former, manual approach.
Section 6.4 registers, that both the user feedback and the numerical outcome showed
great success of both algorithmic versions, while the mathematical interpretation ex-
pectedly indicated a significantly better result of the generalized, advanced imple-
mentation compared to the naive, enumerative method.
A summary of the previously presented findings can be found in conclusive Chapter
7, which also postulates encouraging reasons and motivating arguments about why
this topic deserves further attention due to both the technical and the humanitarian
side.

Keywords: Myoelectric prosthetic treatment; Michelangelo hand prosthesis; Pros-
thetic parameter adjustment; Algorithmic calculation of settable parameters; Math-
ematical optimization; Constraint linearization
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Automatisierte Berechnung optimaler Einstellungsparameter myoelektrischer
Handprothesen

Die Einstellung myoelektrischer Handprothesen ist ein sehr sensibles Thema, da
eine falsche Wahl der einzustellenden Parameter zu Fehlfunktionen der Prothese
und dementsprechend zu Frustration und Ablehnung der Anwender führt. Auf-
grund der Komplexität des Systems und des seltenen Auftretens myoelektrischer
Versorgungen kommt es im Zuge der gängigen Methode der manuellen Prothesen-
einstellung regelmäßig zu Fehlern, weswegen es sinnvoll wurde, eine Möglichkeit
der verlässlichen, algorithmischen, benutzerfreundlichen Unterstützung für
Orthopädietechniker zu entwickeln, um relevante Daten sammeln und in weiterer
Folge passende Parameter berechnen zu können. Darum wurde im Rahmen eines
sechs Monate dauernden Projekts bei Otto Bock Holding GmbH & Co. KG eine ex-
perimentelle Software entwickelt, die Orthopädietechniker und Prothesenanwender
gemeinsam durch einen Prozess der gezielten Datenaufnahme führt und in weiterer
Folge notwendige Parameter aufgrund der zuvor eruierten Fähigkeiten des Anwen-
ders errechnet.
Diese Diplomarbeit präsentiert eine Lösung des beschriebenen Problems, indem
zuerst die Grundlagen der Prothesenversorgung und -einstellung aus anatomischer
und technischer Sicht in Kapitel 1 bzw. Kapitel 2 erörtert werden. Weiters, da die
hier entwickelte Herangehensweise auf der Idee der mathematischen Optimierung
basiert, werden in Kapitel 3 grundlegende Begriffe und Techniken dieses Gebiets
vorgestellt. Nachdem genanntes Basiswissen für das weitere Verständnis zur Verfü-
gung gestellt wurde, präsentiert Kapitel 4 eine mathematisch präzise Formulierung
des vorliegenden Handprothesensystems und deren Funktionalitäten. Kapitel 5
beschreibt schlussendlich die Idee, wie mathematische Optimierung als Werkzeug
eingesetzt werden kann, um vorliegende Problemstellung algorithmisch zu lösen.
Indem eine Lösung zuerst als naives Aufzählungsverfahren implementiert und in
weiterer Folge zu einer verallgemeinerten, flexiblen und leicht erweiterbaren Form
umformuliert wurde, die zusätzlich die Benützung von kommerziellen Lösungspro-
grammen möglich macht, konnten genannte Ansätze miteinander und mit der ur-
sprünglichen, manuellen Variante verglichen werden.
Kapitel 6.4 hält fest, dass sowohl das Feedback der Anwender als auch die nu-
merischen Daten große Erfolge beider algorithmischer Versuche aufzeigen, während
aus der Interpretation der numerischen Ergebnisse sogar eine signifikante Verbes-
serung des verallgemeinerten, flexibleren Ansatzes im Vergleich zu ursprünglichem,
aufzählenden Verfahren zu folgern ist.
Kapitel 7 bietet eine Zusammenfassung der zuvor erörterten Resultate und liefert
weiters Motivation und Gründe für die Wichtigkeit der weiteren Forschung auf
diesem Gebiet in der Zukunft.

Schlüsselwörter: Myoelektrische Prothesenversorgung; Michelangelo Prothese;
Einstellung von myoelektrischen Handprothesen; Algorithmische Berechnung von
Parametern; Mathematische Optimierung; Constraint-Linearisierung
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”Die Hand ist offenbar nicht nur ein Werkzeug, sondern viele. Sie ist gewis-
sermaßen ein Werkzeug vor allen Werkzeugen. Demjenigen Wesen, das die
meisten Fertigkeiten sich anzueignen vermag, hat die Natur also die Hand als
das Organ verliehen, das von allen am vielfältigsten verwendbar ist.”

- Aristotle (384 - 322 BC)

Health – one of the most fundamental needs of every human being and an essen-
tial base in order to make an addition of passion, pleasure, interest and productivity
to an individual life possible. If this rooting requirement is not met, it is hardly man-
ageable to keep up a satisfactory way of existence. As people tend to forget about
the importance of their physical wellbeing within society’s demanding and tiring
daily routine, a sudden interruption of wholesomeness, even if it is just of slight ex-
tend, is often experienced very intensively and acts as an effective reminder of the
importance of appreciation and maintenance of a healthy physical state.

When considering even the easiest activity, not even recognized as actual effort
in everyday life, even small impairments of the body can turn out to make latter to
a hardly viable or even impossible task. Imagining actions such as getting dressed,
opening the water tap or scratching an itching spot, these movements are totally
natural and usually of no big conscious concern. These simple movements however
turn out to become an unbelievably huge obstacle for someone who is suffering from
restrictions of his body’s physiological capacity.

An example for one of these severe impacts in a human being’s life is the dys-
function or the total loss of a limb. Such an experience does not only change a lot of
mechanical and physiological circumstances, but furthermore has a tremendously
dramatic impact on the concerned person’s mental state and his environment. Of-
ten followed by deep desperation and depression, it is also not rarely accompanied
by temporary or chronic, actual or phantom limb pain and in many cases, due to
the complexity of the neuronal system changed and damaged in these instances, not
satisfactorily treatable.

As in the past, after an accident or illness and subsequent necessity of surgical
removal of an extremity, it was – and nowadays still is – the commonly considered
opinion and practice to surgically preserve as much of the body part as possible, re-
searchers and surgeons also came up with new approaches, concerning amputation
techniques which take also account of advantages towards a more harsh removal of
remained corporal matter. Both, appearing very beneficial in a lot of cases, as they
enable opportunities of treatment the conventional, preserving way of surgery does
not offer, but also very disputed concerning the ethical aspect, the newly developed
ideas arose high interest in more investigation within the topic of amputation and
further treatment.

But not only the initial step of surgical rescue, preservation respectively removal
of an insured limb has great influence on the further course of an impacted per-
son. The loss of extremity can be followed up by a series of further smaller or big-
ger interventions and often entails the necessity of a long and demanding period of
physiotherapy and training. As one very promising treatment for upper limb am-
putees is the one of the myoelectric prosthesis, which’s functionality is controlled by
the conscious contraction of certain remained muscle areas of the user and resulting
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myo-signal patterns measured by appropriately placed electrodes, a sophisticated
and professional therapy approach must be offered to the user and a sufficient level
of motivation towards the desire to put effort into the training must prevail within
the concerned person in order to provide him access to this promising tool.

Once latter mentioned circumstances are granted and guarantee an auspicious
path towards an enhancement of the user’s quality of life, there is still a long list of
obstacles to appear potentially. Despite a well-completed physiotherapy and a tech-
nically and mechanically perfectly working and suiting myoelectric prosthesis, the
final, very sensitive issue of the right setting of parameters for an individual user
within the prosthesis internal control unit is often the reason of total failure of the
whole treatment. As the settable parameters, defining the way of reaction of the
prosthesis regarding the actions of the user, are mostly dependent on latter’s muscle
performance and thus totally individual and differing from person to person, it is a
complex and tough task to determine suitable values from a given data set contain-
ing the required information about the user’s capability and manner of generating
activating movement patterns. In spite of an actually perfectly working device, the
wrong choice of adjustment can make the usage of a myoelectric prosthesis impossi-
ble. Functionality such as the opening, closing or rotation of the prosthetic hand can
become an exhausting or impossible task, degenerating into frustration and the loss
of motivation to keep on the training and usage of the treatment. This furthermore
does not only lead to a waste of available and enhancing opportunities and thus a
decrease of livability, but also to a potential loss of strength and capacity of remain-
ing body parts.

These emergences of failure unfortunately are of no rare character however, as
the state-of-the-art method of parameter adjustment in prosthetic treatment is the
manual approach of an orthopedic technician, usually with the aid of a graphical
user interface provided by the product’s fabricator, enabling the technician to visu-
ally analyze collected user data and putting his resulting perceptions into the deci-
sion of values. This again is very often accompanied by mistakes and failures, on
the one hand caused by the complexity of the topic itself, on the other hand due
to a widely common lack of experience of orthopedic technicians, which is indeed
highly understandable, when the rare occurrence of myoelectric treatment is taken
into account.

So the importance of consideration of this topic, arisen from the fact that it has
so much impact on an affected person’s capability of overcoming a tremendous loss
such as the one of the amputation of a part of his own body, encouraged the desire
and will to find more reliable methods for the determination of settable parameters
in prosthesis adjustment. By receding from the current practice of orthopedic tech-
nicians making decisions about the adjustment based on their visual estimate and
experience without granting them any more than the basic support of an educational
tutorial beforehand, but by rather enhancing old manners by the idea of searching
for automated, computer-aided ways using reliable, efficient and verified algorithms
for analysis and calculations in order to support the orthopedic technician’s process
of consideration, ideas towards a more stable way of prosthesis adjustment were
gathered and worked on.

This motivated the content of this thesis, based on a six month lasting research
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work at Ottobock1, which was intended to find alternative, software-grounded ways
of myo-prosthesis adjustment, test their potentialities and weaknesses and draw
conclusions about the reasonableness of putting effort in further investigation and
development towards alternative ways of amputee treatment. Within a working
period of half a year, data collection and analysis has been carried out, algorith-
mic approaches have been come up with and tested for functionality, reliability and
efficiency and have resulted in a prototype software, providing a graphical user in-
terface as a visually supporting and executing tool to orthopedic technicians, on
the one hand using physiotherapeutical associations, espoused by written instruc-
tions and pictures in order to present a guided path of data collection to the user
and his treating orthopedic technician, on the other hand making use of the con-
cept of mathematical optimization in order to achieve the postulated goals of proper
parameter determination. Furthermore, developed prototype software and its out-
come was compared with the current manual adjustment of a series of users in order
to draw conclusions about the quality of the developed alternative approach of pa-
rameter calculation. By both analyzing the resulted numerical data and gathering
user feedback by setting up questionnaires, the opportunities and vices of the newly
developed ideas were observed and lead to an interesting insight into the potential
of these new considerations.

Aiding as documentational material for carried out research, as well as contin-
uation of the mathematical aspect of the prototype software, which’s sophistication
was widely neglected due to the initially intended purpose of this project to be of
prototype nature, this thesis introduces the topic of amputation by providing the
basic terms and knowledge about anatomical aspects in Section 1.1 leading to actual
surgical matters in Section 1.2. After a brief overview of several amputation tech-
niques, this section is continued by the explanation of how upper limb treatment
can be categorized and controlled.
Chapter 2 aims to deliver more detailed information about the ideas of the usage and
control of myoelectric prostheses, as Ottobock’s Michelangelo prosthesis, which is the
one considered within this framework, belongs to the category of latter. By firstly
providing understanding of the concept of myoelectric control by giving a specific
example, it continues with the final path towards the topic of prosthesis adjustment,
its current methods and arising difficulties (Section 2.1). As completion of this intro-
ductory chapter, the research project, which is presented in this thesis, is reviewed
and the resulted prototype, called Guided APS-Software2, is pictured (Section 2.2).
The thesis continues with a discourse, explaining the basic concepts of mathemati-
cal optimization in Section 3, showing different types of optimization problems as
well as the most common ways to solve them. Furthermore, Section 3.4 gives an in-
sight into the opportunities of reformulating a given optimization problem towards
required ways in order to grant a basic knowledge about the techniques which are
later used in order to achieve the set goal for this thesis.
Knowledge about given Michelangelo prosthesis3 in mathematical terms is provided
in Section 4 as necessary foundation in order to understand following approach to
set up an appropriate optimization program for the given task (Section 5).
Starting with non-linear ideas in Section 5.3.1.1, several generalizing considerations
lead to a final linear mixed-integer program of the form, previously postulated as

1Otto Bock Holding GmbH & Co. KG, https://www.ottobock.com/de/
2APS=Automated Prosthesis Setup
3prosthetic treatment for transradial amputees, http://www.ottobock.de/prothetik/

produkte-a-bis-z/armprothetik/michelangelo-hand/

https://www.ottobock.com/de/
http://www.ottobock.de/prothetik/produkte-a-bis-z/armprothetik/michelangelo-hand/
http://www.ottobock.de/prothetik/produkte-a-bis-z/armprothetik/michelangelo-hand/
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goal formulation for this work (Section 5.3.1.6).
To its end, Section 6 presents the experiment of testing the results of the Guided
APS-Software, set up during the six-month project at Ottobock, versus the outcome of
the approach of linearization, developed as continuation of latter within the frame-
work of this thesis. It gives ideas about the appearance of the optimization program,
which was conceived for a chosen prosthesis adjustment program and grants insight
into both approaches’ implementations (Section 6.3).
A conclusive summary can be read in Section 7, where virtues and vices of old and
new considerations are briefly recapitulated and an idea about the meaning of this
thesis’ revealings and outcomes is given.
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Chapter 1

Basics

To lead to the main topic of myoelectric prosthesis adjustment, this chapter intro-
duces the fundamental concepts of prosthesis treatment, beginning from passive,
cosmetic prostheses, followed by the more complex concepts of active prostheses
such as body-powered prostheses and externally powered myoelectric prostheses.
To understand the significance of the different prosthetic systems, a brief overview
of basic anatomical and surgical terms will be given in advance and the different
forms of amputations and their characteristics in treatment limitations and possibli-
ties are pointed up.

1.1 Anatomy

”Die Anatomie [. . .] zerlegt die Organismen in ihre [. . .] Bestandteile, un-
tersucht ihre äußeren, sinnlich wahrnehmbaren Eigenschaften und ihre innere
Structur [sic], und lernt aus dem Todten, was das Lebendige war. Sie zerstört
mit den Händen einen vollendeten Bau, um ihn im Geiste wieder aufzuführen,
und den Menschen gleichsam nachzuerschaffen. Eine herrlichere Aufgabe kann
sich der menschliche Geist nicht stellen.”1

FIGURE 1.1: Rough segmentation of the
body [2]

The human body can be roughly di-
vided into head (Caput), neck (Collum),
trunk (Truncus), upper limb (Membrum
superius) and lower limb (Membrum in-
ferius) (Figure 1.1).
The upper limb is connected to the trunk
by the pectoral girdle (Cingulum mem-
bri superioris), which itself consists of the
collarbone (Clavicula) and the blade bone
(Scapula). The free part of the upper limb
(Pars libera membris superioris) is seg-
mented into upper arm (Brachium), elbow
(Cubitus), underarm (Antebrachium) and
hand (Manus) (Figure 1.4) [2].

Muscle activity is activated by changes
in voltage of the cell membrane of their
connected neurons (action potentials) [31].
Myoelectric prostheses make use of these
voltage changes by measuring EMG sig-
nals via surface electrodes placed near well-
controllable muscles. Therefore, when it

1Joseph Hyrtl, 1811-1894, Anatomist
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comes to understanding surgical strategies and following decisions in prosthetic
treatment, it is important to comprehend the neuronal and muscular physiology
of the upper limb. Figure 1.2 and 1.3 give an overview of the neurons of the upper
limb respectively their corresponding muscles.

FIGURE 1.2: Upper limb muscles [30]
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FIGURE 1.3: Upper limb neu-
rons [30]

FIGURE 1.4: Upper limb bones [30]
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1.1.1 Main Axes, Directions and Locations of the Body Parts

In order to be able to talk about body parts and their locations in an unambiguous
way, it is sensible to define certain terms of location and direction.

FIGURE 1.5: Main axes [1]

The orientation of the body is divided
into three main axes: The vertical axis
(Figure 1.5 (1)), which proceeds length-
ways from vertex to sole (craniocaudal),
the sagittal axis (Figure 1.5 (3)), pro-
ceeding from back to forth through the
back and the front body plane and the
transversal axis Figure 1.5 (2)), which
runs from left to right, connecting sym-
metric parts of the two sides of the body.
The main axes define four main planes:
the median plane (Figure 1.5 (III)) and
its parallel shifted sagital plane, the
frontal plane (Figure 1.5 (I)) and the
transversal plane (Figure 1.5 (II)) ([1]).

The terms of directions are defined
independently from the spacial location
of the body, so a clear way of speak-
ing is possible [1]. Directions leading
trunk-wards are termed proximal, while
those leading limb-wards are called dis-
tal. Analogously, directions towards and
away from the median plane are called
medial and lateral. The cranial direc-
tion leads towards the head, the direc-

tion leading to the rump is termed caudal (Figure 1.6).

FIGURE 1.6: Directions and locations of the body parts [30]
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1.1.2 Terms of Body Movements

When it comes to using a myoelectric hand prosthesis, four important body move-
ments occur due to the EMG-based control system. Extension is the dilation of a
body part, e.g. the arm, flexion its inflection, the two directions of rotation are called
supination and pronation [30].

1.2 Upper Limb Amputation

”Am|pu|ta|tiōn [lat.], die kunftgemäße Ablösung einzelner Körperteile
mittels chirurg. Instrumente. [...] Die A. muss unternommen werden, wenn
das Leben durch ein örtliches Leiden gefährdet ist, das sich nur durch die Weg-
nahme des kranken Teils beseitigen lässt. [...] Die Entscheidung darüber, ob
ein Körperteil geopfert werden soll, muss auch nach sozialen Gesichtspunkten
getroffen werden.”

- Der große Brockhaus, Leipzig 1928

Despite great progressions in surgery and prosthetic within the last years, an am-
putation of the upper limb at any height is still a dramatic encroachment in human
health and denotes a great loss of physical integrity [3]. Due to the lack of reliable
statistics it is not possible to postulate accurate numbers of amuptation cases, but in
fact there are four main issues leading to amputations: Cancer, infection, lymphatic
circulatory disorders and the traumatic loss of a limb caused by an accident [34].
According to [3] the latter makes up 80− 90% of all cases.
If replantation of a lost extremity is no option, and beside certain other exceptional
situations such as certain cancer cases, the aim is to set a required amputation as
distal as possible, since a larger lever arm promotes an enhanced use of prostheses
due to better muscular conditions [23].

FIGURE 1.7: Heights of amputations [3]
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Figure 1.7 shows the classification of amputation hights, divided into amputation
heights along the antebrachium (transradial) respectively the brachium (transhumeral).

1.2.1 Transradial Amputations

Transradial amputations are the most common amputations performed and also the
most beneficial ones, since in distal transradial amputations the length of remain-
ing extremity engendering full shoulder and elbow function and a long lever arm
provides good conditions for prosthesis adjustment and an optically pleasing result
[36].

1.2.2 Elbow Disarticulations

Elbow disarticulations still provide satisfying conditions for prosthetic treatments
due to a well-remained ability of suspension, supination and pronation. However,
compared with transradial amputations, disadvantages like cosmetic issues related
to an inequality in length of the prosthetically treated and the healthy side of the
body [36], or problems concerning the stump padding [34] occur.

1.2.3 Transhumeral Amputations

Transhumeral amputations signify the most restricting loss of upper limb function
and impact on prosthesis treatment complications. A functional prosthesis in case of
a more distal level of amputation can be considered, while prosthetic treatment after
amputation above the diaphyseal brachium is very problematic and mostly leaves
only options of cosmetic prostheses, often combined with special constructions to
fixate the device [34].

1.2.4 Specialties

Amputations are rare and always very individual surgeries. In the following, to
give an idea of the contrasting variety of treatment options and their differences in
practicability, strongly depending on prevailing circumstances, two extraordinary
and very diverging surgery methods should shortly be introduced.

1.2.4.1 Krukenberg Plastic

FIGURE 1.8: Double sided Krukenberg treat-
ment [23]

The so called Krukenberg-Plastic is
a surgical technique developed by
Hermann Krukenberg2 during World
War I. Within this procedure, ulna
and radius are separated and covered
with skin graft, such that not only a
very intuitive way of grasping is pro-
vided by the surgically constructed
grasping forceps, but also tactile sen-
sation is preserved, which is of ines-
timable value especially for blind up-
per limb amputees.

21863-1935, German doctor and orthopedist
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Due to the aesthetic aspect how-
ever, this kind of treatment nowadays is only considered as surgical option for am-
putees in developing countries and war zones [23]. In [13], an example of 15 Kruken-
berg procedures is given, which were done by the International Committee of the
Red Cross on 11 single or double hand amputees in the civil war region of Sierra
Leone in West Africa. The impressive results of this surgical mission show that the
Krukenberg treatment gives back essential skills such as dressing or feeding oneself,
making a survival for people living under dangerous circumstances possible.

1.2.4.2 Targeted Muscle Reinnervation

FIGURE 1.9: Prosthesis control scheme after glenohumeral TMR [23]

FIGURE 1.10: Surgical
Plan for transhumeral
TMR – nerves and re-
lated target muscles are

color-coded. [7]

In contrast to the indeed practical but obviously very
pragmatic and old-fashioned Krukenberg method, a very
innovative surgical option called Targeted Muscle Rein-
nervation has appeared recently. Performed in cases
of transhumeral and glenohumeral3 amputation levels,
this surgery technique makes use of residual nerves,
formally connected to muscles of the now amputated
arm, transferring them into muscle regions of the re-
maining limb in order to enable them to generate sig-
nals for myoprosthesis control [32]. Figure 1.10 shows
typically involved nerve fivers and their target muscles
[7]. In this way, well working signal spots for up to
six surface electrodes can be created, opening a whole
new range of opportunities for myoelectric prosthetics
[36].

In glenohumeral amputation, regions of the Muscu-
lus Pectoralis Major (Figure 1.2) are used for reinnervation
and provide a scheme of prosthesis control like shown in
Figure 1.9, making a variety of functionality components
such as opening and closing of a prosthetic hand, flexion
and extension of an elbow joint and pronation respectively

3Shoulder Disarticulation
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supination of a rotational joint possible. The newly inner-
vated muscles provide very intuitive prosthesis control to the user and at some point
even leaves the option of activating several functionality components synchronously
[23].

1.3 Prosthetic Treatment

In [5], available prosthetic treatments are categorized in terms of their capability of
function and the way of controlling latter (Figure 1.11).

FIGURE 1.11: Upper limb prostheses classification [5]

1.3.1 Passive Prostheses

The term passive should be taken unbiased, since it only emphasizes the fact that
those kind of prostheses are not able to generate any movement, neither by the
help of a person’s working parts of the body (1.3.2.1) nor by any mechatronic de-
vice (1.3.2.2) [23]. These kinds of prostheses can be used in any level of amputation,
however they mostly occur in minor amputations4 and transhumeral amputations
where a more advanced treatment is not realizable, and either serve as cosmetic de-
vice only, or as support to grasp or hold objects or compensate unbalanced weight
of the two sides of the body [5].

1.3.2 Active Prostheses

Unlike passive upper limb prostheses, active prosthetic treatments support the user
by being able to generate movements such as grasping and rotating with artifical
hand and rotation joint or extention and flexion in case of an existent artificial elbow
joint [23]. Depending on the source of power used for generating these movements,
active prostheses are subdivided into two further categories, body-powered and ex-
ternally powered prostheses [5].

4Amputation of phalanx, finger or parts of the hand [34].
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1.3.2.1 Body-Powered Prostheses

Movements of body-powered prostheses are realized by cable constructions between
the harness and the movable prosthetic component (Figure 1.12). Movements gener-
ated by the user such as glenohumeral flexion or scapular protraction produce ten-
sion within the cable system, resulting in prosthesis function, e.g. hand opening or
closing or elbow flexion [36]. A big advantage of body-powered prostheses is the in-
dependence of any external power source, which also implies a positive effect on the
device’s weight.

FIGURE 1.12: Body-powered prostheses – ca-
ble construction [5]

However, challenging, training-intense
movements [5] and long transmission
paths reduce the convenience of this sort
of active prostheses, leading to the desire
of externally powered or hybrid systems
whenever possible [34].

1.3.2.2 Externally Powered Prostheses

This kind of prosthesis consists of at
least one motorized component, such as
a hand being capable of opening and
closing or a rotation joint, driven by a
battery [36] the user can recharge though
certain access spots on the socket when-
ever needed.
Of course, a way of information flow
between user and prosthesis is needed
in order to tell the device, which move-
ments are intended to being performed.
The most common method to achieve
this sort of conscious prosthesis control

nowadays is to make use of surface electrodes (Figure 1.13), which measure changes
in neuronal membran voltage caused by muscle contractions and relaxations (Figure
1.14, Section 1.1) and transmit them to the prosthesis internal control unit for further
processing [23].

FIGURE 1.13: Surface electrode placed on
myo-signal providing muscle [23]

FIGURE 1.14: Nervous conduction
of musculus flexor carpi radialis [17]

Figure 1.15 shows the measurement of two electrodes placed on two different
muscle region spots of the user’s limb being in state of relaxation. As long as the
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signals stay under a certain, internally-defined threshold, no action of the prosthesis
is triggered. In the moment of contraction of one muscle, the measured EMG signal
changes to a higher level (Figure 1.16) and generates corresponding activities in case
of threshold overshoot (Chapter 4).

cON

cOFF

cHIGH

t

s(t)

EMG Signal (Electrode 2)
EMG Signal (Electrode 1)

FIGURE 1.15: Measured EMG sig-
nal of a relaxed limb – signals be-
low a certain threshold are ignored
by the internal control unit and not
transmitted for further processing or
movement generation. No arising

prosthesis activity.

cON

cOFF

cHIGH

t

s(t)

EMG Signal (Electrode 2)
EMG Signal (Electrode 1)

Begin of Activity
End of Activity

FIGURE 1.16: Measured EMG signal of a
moving limb – muscle contractions lead
to changes in measured EMG signal and
initialize corresponding prosthesis move-
ments. Movement stops as signal under-

shoots threshold again.

FIGURE 1.17: Effect of different electode positions
[23]

For good prosthesis control,
it is necessary to position the
electrodes on well-controllable re-
mained muscle areas on the user’s
residual limb. Hereby, a proper
placement of the electrodes within
the manufacturing of the prosthe-
sis socket is a demanding task
for the orthopaedic technician and
essential to make a use of the
device possible at all. Fig-
ure 1.17 shows the significant
influence of the electrode posi-
tion on the quality of EMG sig-
nal within one single muscle re-
gion.

A sensible number of elec-
trodes depends strongly on the
condition of the user’s limb, the
standard number for nowadays’
myoelectric5 prostheses such as the Michelangelo hand or the Myobock hand by Otto-
bock use two electrodes for a maximum of comfort and functionality.

5mỹs, gr., muscular
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FIGURE 1.18: Commonly used muscle groups for electrode po-
sitioning within myoelectric prosthesis treatment [9]

The muscles used for
a two-electrode treatment
must provide well sep-
arated, strong enough
EMG signals and are of-
ten chosen as antagonis-
tic muscles, since syn-
chronous contraction re-
spectively relaxation is
their natural behavior
[23]. Figure 1.18 gives
an overview of the most
commonly used muscle
regions for myoelectric
prosthesis control. Once
the electrodes are placed
properly, the aim of the
user is to train his or her
residual muscle regions
in order to be able to

consciously generate specific contraction respectively relaxation patterns, which are
recognized by the prosthesis’ internal control unit as certain commands, leading to
intended movements of the motorized components (Chapter 2).
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Chapter 2

Parameter Adjustment

As shortly introduced in Section 1.3.2.2, the idea of functionality control of myoelec-
tric hand prostheses is to consciously generate EMG signal patterns by contracting
respectively relaxing muscle regions, measured by surface electrodes, which previ-
ously must have had been appropriately placed in the socket.
In order to tell the prosthesis’ internal control unit, which shapes of EMG signals
should be recognized as commands for certain prosthesis activities, several param-
eters have to be set and the different patterns have to be associated with desired
actions.

FIGURE 2.1: Ottobock’s Michelangelo hand

Example: In case of a myoelectric treatment, consisting of a prosthetic hand, which
is capable of performing hand opening and closing in two different modes of grasp-
ing for instance, a common way of closing the hand would be to generate mus-
cle contractions, which produce EMG signals in the shape of Figure 1.16 (Section
4.4.2.2). The signal of electrode 1, overshooting the internally defined threshold cON

is then connected to the functionality of hand-closing and initializes this certain kind
of activity, as long as the measured EMG signal is strong enough. In order to stop
the movement, the user has to relax the observed muscle region such that the signal
falls below a certain threshold – cOFF – again. If, on the other side, hand opening is
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intended to be performed, the user has to contract the antagonistic muscle in order
to bring measured EMG signal of electrode 2 to an appropriate level. A parameter,
influencing this functionality component of the device, would for example be the so
called amplify factor (Section 4.2). This factor is applied to the user’s measured, raw
EMG signal, in case his or her signals are too weak or too strong to appropriately
generate required EMG signal patterns for a proper or comfortable use of the de-
vice. The challenge is to find an amplify factor, which perfectly supports the user in
generating required EMG signal patterns, such that an easy, comfortable control of
the device is possible.
The two different grasps (Section 4.4.1.1) as second functionality component in this
example also need to be connected to EMG signal patterns in order to provide access
on whatever grasp is currently desired to be performed. There is a various number
of such patterns, the so-called switch methods (Section 4.4.2.1). In this example, let the
defined switch method for changing from one grasp to the other be the Short Cocon-
traction. As Figure 4.7 shows, the user has to contract both observed muscle regions
synchronously for a short period of time, before he has to relax the limb again in
order to make the EMG signal fall below the required threshold again. This pattern
is defined by three settable parameters: On the one hand, there are thresholds called
Cocontraction borders (xC1 and xC2 in Figure 4.7), which have to be overshot by the
signals, measured by electrode 1 and 2 within a certain, internally defined period
of time cT. On the other hand, there is the parameter of signal length, defining the
maximal amount of time, the user is allowed to use in order to bring his or her sig-
nal below the internally defined threshold of recognition cOFF again. The challenge
hereby is to define the Short Cocontraction parameters individually for each user,
such that his or her way of generating a Short Cocontraction signal is recognized by
his or her device without any severe problems.

Same concepts of EMG signal pattern generation is used for getting access on all
other prosthesis functionality components such as pronation and supination in case
of a connected rotation joint or extention and flexion of an elbow joint in case of an
upper limb treatment.

2.1 State of the Art – Manual Prosthesis Adjustment

In orthopedic technology, the proper parameter setting of a myoelectric prosthesis
is a difficile topic. State of the art is the manual parameter adjustment based on
visually observed and interpreted EMG signals of the user. Therefore, the user is
asked to generate a range of different movements, contraction and relaxation pat-
terns, which are recorded by the surface electrodes. The orthopedic technician must
then tell from the EMG signal patterns the user generated, which patterns are best to
connect to which functionality components and to what values to set related param-
eters to, in order to make an easy and comfortable use of a maximum of functionality
components possible. To provide the technician a convenient work environment, Ot-
tobock has developed a graphical user interface called Ottobock Data Station (Figure
2.2), where EMG signals can in real-time be tracked, paused and zoomed within the
Myo-Graph (Section 4.3). Furthermore, all connections between patterns and func-
tionality components, as well as their related parameters can be set easily via button
clicks and sliders within Ottobock’s Data Station.
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FIGURE 2.2: Ottobock Data Station – graphical user interface for man-
ual parameter setting

Nevertheless, analyzing myo-signals is a very sophisticated issue, since a lot of
interconnected aspects concerning functionality components and related parameters
have to be considered synchronously in order to provide a working adjustment of
the myo-prosthesis. This again demands a lot of experience in myo-prosthesis ad-
justment of the orthopedic technician, reaching far beyond the standard workshop
of instruction, an orthopedic technician receives in the course of becoming certified
for myoelectric prosthesis adjustments.

2.1.1 Occurring Problems

Amputations are rare surgical interventions. Therefore myoelectric prosthetic treat-
ments do not occur prevalently in orthopedic technicians’ daily routine. Due to this
lack of experience of many orthopedic technicians, parameters and adjustments are
set poorly in many cases, causing an inconvenient use of the prosthesis or even mak-
ing a use of the device impossible despite sufficient physical and technical condi-
tions. The resulting unpleasant prosthesis experience often leads to frustration of
the user, prompting him or her to stop utilizing the myo-prosthesis’ functionality,
rather using it as a cosmetic prosthesis only. This not only wastes the great benefit of
such myoelectric treatments, but also causes impairment of the muscle regions’ con-
dition, since the usage of myo-prostheses needs to come along with a lot of training
and routine.

2.1.2 Solution Ideas

Due to this doom loop of failure in parameter setting, which often results in frus-
tration and worsening of the user’s myo-signals, caused by a lack of motivation,
training and routine, the desire to an automated way of prosthesis adjustment arose
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and lead to Ottobock’s master degree project of the Guided APS-Software, which re-
ceived the aim to provide a fully automated, guided path, beginning from user data
recording, leading over data analysis towards the final values for settable parame-
ters, which in the end should be enabled to be programmed to the user’s prosthesis
by a simple button click. The idea was to avoid unnecessary failure of prosthesis
adjustment and further usage by providing the orthopedic technician a graphical
user interface, which is on the one hand comfortable and easy to use, on the other
hand automatically providing appropriate values for settable parameters by making
use of mathematical considerations, which should be capable of calculating proper
adjustment parameters, based on previously collected user data.

2.2 Guided APS-Software

Therefore, within a working period of six months, a prototype of a software package
has been developed, which for one thing supports technician and user in myo-signal
recording by interactively leading through a data recording schedule, demanding
various movements and muscle activities by giving visual and written explanations
and examples. Furthermore, these collected user data is then analyzed by an algo-
rithm, detecting the user’s strengths and weaknesses, determining all possibilities
of prosthesis adjustment and suggesting it to the technician as a list in the software’s
graphical user interface. A simple button-click lets technician and user choose from
the possible settings, depending on the user’s preferences of prosthesis control and
the technician’s recommendations. As a last step, related parameter values for de-
sired setting are calculated and written to the prosthesis’ internal control unit via a
connection between software and device.

The way to success in designing mentioned algorithm has turned out to be the
idea of mathematical optimization, so before specific terms and tools of given prob-
lem of prosthesis adjustment are defined and introduced in Chapter 4, a brief overview
of the mathematical background is given in Chapter 3.

FIGURE 2.3: Instructional data col-
lection – the user is prompted to pro-
vide certain movements by visual
and written instructions. Provided
data is recorded by properly posi-
tioned electrodes and stored for fur-

ther processing.

FIGURE 2.4: Program Choice – a list of
available programs is shown and possi-
ble reasons for the non-working of cer-
tain programs are given. Via button-
click, suitable parameters for available
programs can directly be transported to

the prosthesis.
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FIGURE 2.5: Guided APS-Software: main window – graphical user
interface, granting visual insight of collected data and access to pa-

rameter determining functionality of the software.
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Chapter 3

Optimization – Mathematical
Foundation

Optimization is a major topic in mathematics, since it applies in a large range of
working fields such as economy, engineering, finance, telecommunication [14] and
computer vision [35]. Very many tasks can be formulated as optimization prob-
lem by making use of given data, provided by preveiling real-life circumstances by
formulating an appropriate Objective Function g : S −→ R such that its maximiza-
tion or minimization (Section 3.4.1) on a certain domain, the so-called Feasible Set
S ⊆ Rn containing all Feasible Solutions x ∈ S leads to desired Optimal Solution
solution x∗ ∈ S of given task [15]:

x∗ = arg max
x∈S

g(x) (3.1)

Of course, modeling a real-world application can be a tricky task and solvability
of a formulated optimization problem is not guaranteed. If latter is the case, given
optimization problem is called infeasible. Infeasibility can occur either when the
feasible set is empty, i.e. S = ∅, or if the optimization problem is unbounded, mean-
ing an infinitely high value of the objective function can be achieved by elements
x ∈ S [33]. If the optimization problem formulated by maximization is bounded
however, lower bounds are usually called Primal Bounds and are given by any fea-
sible solution x ∈ S, whereas upper bounds are called Dual Bounds and require
other methods, e.g. Relaxation (Section 3.4.7) for determination [38]. In case of feasi-
bility, the optimization problem either has a unique optimal solution, or a bounded
or unbounded set of optimal solutions [12].

In [38] a systematic scheme for translating a given real-life problem description
into an optimization problem formulation is postulated:
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i) Define what appear to be necessary variables.

ii) Use these variables to define a set of constraints so that the feasible points
correspond to the feasible solutions of the problem.

iii) Use these variables to define the objective function.

iv) If difficulties arise, define an additional or alternative set of variables and
iterate.

TABLE 3.1: Systematic formulation of an optimization problem [38]

By demanding linearity of the objective function and the constraints or restricting
some or all of the Variables1 to be integer or binary, special cases of optimization
problems occur, which will be discussed in the following and formulated based on
notations in [24] and [38].

3.1 Linear Program

Usually, the feasible set of an optimization problem is formulated by equlity- and
inequality constraints, restricting the value of some function, which is dependent on
in the objective function’s variables [33]. If given objective function along with these
constraints are restricted to be of a linear form, a general optimization problem turns
into the special case of a Linear Program (LP). When modeling latter, it is important
to respect certain obligatory assumptions in order to guarantee a correct mathemat-
ical, linear formulation of the real-world task description. Hence, it is essencial to
keep Direct Proportionality of decisions to its values, i.e. the decision variables may
only be raised to the first power only. Furthermore, the assumption of Divisibility
demands the decision variables to be allowed to take on any real number. Additivity
claims the independence of a decision variable towards any other decision variable
within the objective function and the constraints. Finally, the insistence of Certainty
concerning the correctness of data used to model given task is the foundation of re-
ceiving a proper formulation for given problem [18], [21].

With the assumption of linearity, the objective function in Equation 3.1 can be
written as g(x) = cTxwith decision vector x ∈ Rn, where c ∈ Rn is an n-dimensional
column vector called cost vector, and the feasible set S ⊆ Rn can be described by the
m×nConstraint MatrixA ∈ Rm×n and the right-hand-side vector b ∈ Rm: S = {x ∈
Rn : Ax ≤ b} [18]. Due to the possibility of reformulating constraints in appropriate
ways (Section 3.4), the assumption of non-negativity of the components – the so-
called decision Variables – of the decision vector x, can be postulated without loss
of generality.
All in all, a linear program can be written in the form:

max
x∈Rn

+

{cTx : Ax ≤ b} (3.2)

1Also called Unknowns. Components making up the elements in S.
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where an Instance of the problem is defined as the tuple (c, A, b), consisting of
the data which emerges from given task [38].

Due to efficiency in certain algorithms, a transformation of the notation in Equa-
tion 3.2 towards Standard Form2 [8]:

min
x∈Rn

+

{cTx : Ax = b} (3.3)

is required, which is easily achievable however by transformation rules and
tricks explained in Section 3.4.

3.1.1 Geometric Interpretation

An equation of the form
n∑

j=1
aijx = bi with variable x ∈ Rn defines a hyperplane

in Rn. Thus, an inequation of the form
n∑

j=1
aijx ≤ bi, such as it is given in a lin-

ear program defining a restriction to the system which is desired to be optimized,
divides the space into a half-space of feasible-, and another half-space of infeasible
points. The intersection of all half-spaces of feasible points, defined by the rows
(aij)i∈{1,...,m} of constraint matrix A = (aij)(i,j)∈{1,...,m}×{1,...,n} in problem 3.2, make
up a convex polyhedron and define the feasible set S.

1 5

1

5

Linear Constraints
Optimization Direction

c = (0, 1)T

x1

x2

x2 ≥ 0

Feasible Set

FIGURE 3.1: Graphical interpretation of a linear program
– 2-dimensional polyhedron defined by LP’s linear con-

straints.

The cost vector c indi-
cates a direction, to which
the hyperplane {x ∈ S :
cTx = 0} representing the
objective function is ought to
be moved, in order to find
optimal solutions, which are
placed at vertices of the
polyhedron (Figure 3.1) [8],
[35]. Latter fact is used,
for instance, by the Simplex
Algorithm (Section 3.1.2.1),
whose idea is to move along
edges of the feasible set,
searching iteratively for an
optimal solution.

3.1.2 Algorithms

Due to the existence of al-
gorithms, which solve linear
programs even in polyno-
mial runtime, which makes

2Note, that problem 3.2 and problem 3.3 indeed differ in both instance-defining data and decision
variables usually, due to the transformations which are performed in order to translate one formulation
to the other. For the sake of readability however, the vectors c, b and x, respectively the matrix A are
used as notation in both problems equally and should therefore be read with consciousness.



28 Chapter 3. Optimization – Mathematical Foundation

them a member of the so-
called P-Class in the field of
Complexity Theory, linear programming is seen as a rather easy task in the field
of optimization. Examples of such efficient algorithms are Interior Point Methods,
the Ellipsoid Method3 or the Projective Method4 [8]. The most commonly used
algorithm for solving linear programs in practice is the Simplex Algorithm and its
variants, which makes use of the geometry of an LP’s feasible set, but is not guaran-
teed to always achieve polynomial runtime. [16].

Since in practice, the task of solving linear programs is often part of solving more
demanding problems such as Non Linear Optimization Problems, Mixed-Integer
Programs (Section 3.2) or Integer Programs (Section 3.2.1.1), the understanding and
improvement of solution approaches in linear programming affects a wide range
of applications [16]. In the following, basic ideas of the main algorithms of linear
programming are given.

3.1.2.1 Simplex Algorithm

One of the most commonly used algorithm in practice in solving linear programs is
the Simplex Algorithm, pioneered by George Danzig in 1947 [12], which, despite
the existence of examples of linear programs provoking runtime up to an exponen-
tial level, from the average point of view solves a majority of problems most effi-
ciently compared to other methods.
Another reason of this algorithm’s popularity is its capability of Warm-Starts [10],
i.e. it handles slight changes of given problem such as adding a constraint during
an already started iteration process efficiently by using already determined infor-
mation, usually taking only a few further calculations to solution with no need of
starting a whole new solution process [16].

The idea of the Simplex Algorithm makes use of the fact, that the feasible set
of a linear program complies with a polyhedron, whose vertices make up optimal
solutions of given problem. Graphically, the algorithm starts at one vertex, called the
(Initial) Basic Feasible Solution, iteratively moving along the polyhedron’s edges
to neighboring vertices, observing entailing behavior of the objective function, until
no improvement concerning latter is generable (Figure 3.2 [11]) [35], thus finding an
optimal solution or determining the case of unboundedness [12].

3Leonid G. Khachijan, 1979
4Narendra Karmarkar, 1984
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FIGURE 3.2: Graphical illustration of the Simplex Algorithm

There are several variations of the Simplex Algorithm and different approaches
to describe the method mathematically. The algorithm requests the linear program
to be formulated in standard form as defined in 3.3, the approach can however also
be made by observing the linear program formulated as maximization problem.
If additionally the constraints are given as inequalities, a transformation towards
equalities can easily be performed by introducing Slack Variables (Section 3.4.2.2),
even simplifying the finding of an inital basic feasible solution, since the so-called
Canonical Form of appearing only in one single equation with coefficient 1, in which
by definition the slack variables natually appear within the reformulted constraints,
leads to a feasible solution by setting all but the stack variables to zero [16].

If given problem is of the form 3.2, the problem can be reformulated to following
system of equations, the so-called Starting Dictionary:

z =
n∑

j=1

cjxj
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xn+i = bi −
n∑

j=1

aijxj , i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n+m

where xn+i, i = 1, . . . ,m are the slack variables, introduced at the beginning to
obtain equality constraints.
In the case of introduced slack variables, by setting all non-slack variables to zero,
an initial basic feasible solution, i.e. (0, . . . , 0, b1, . . . , bn), which corresponds to one
vertex of the feasible set, is found easily and provides a certain value of the objective
function. Variables set to zero are called Non-Basic Variables, whereas the remain-
ing ones are named Basic Variables. The aim in every interation step is to exchange
exactly one basic variable, which in this situation of exchange is called Leaving Vari-
able, with exactly one non-basic variable, the so-called Entering Variable, with the
intention to increase resulting value of the objective function. So with B as the set of
indices of the basic variables and N as the set of indices corresponding to all non-
basic variables, one iteration of the Simplex Algorithm provides the change to a new
dictionary by choosing entering and leaving variables and completing appropriate
row operations on the equations in order to bring the system to a canonical form
again [37]:

z = z̃ +
∑

j∈N
c̃jxj

xi = b̃i −
∑

j∈N
ãijxj , i ∈ B

where the value of the entering variable xk is chosen such that the basic variables
xi = b̃i − ãikxk, i ∈ B remain non-negative:

xk = min
i∈B,ãik>0

b̃i
ãik

Figure 3.3 shows a flowchart of the Simplex Algorithm, where xin and xout rep-
resent the entering- and the leaving variable.
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FIGURE 3.3: Scheme of the Simplex Algorithm [35]

3.1.2.2 Interior Point Methods

Another way of solving linear programs are Interior Point Methods (IPMs), some-
times also called Barrier Methods [35]. Originating from non-linear programming,
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Feasible Inner Point

Central Path

FIGURE 3.4: Graphical interpretation of Interior Point
Methods

they build concepts espe-
cially suitable for problems
represented by sparse ma-
trices and, from the theo-
retical point of view, due
to their polynomial runtime
are preferable to the Sim-
plex Algorithm. In practice
however, since latter in some
cases can take many, but
still cheap operations [16],
and IPMs are not capable
of warm-starts, which espe-
cially is of interest in solving
Mixed-Integer Programs (Sec-
tion 3.2), decisions between
the Simplex Algorithm and
IPMs strongly depend on
given problem [35]. In prac-
tice, satisfying runtime is
also achieved by hybrid ap-
proaches, combining IPM’s
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with the Simplex Algorithm in the solver’s implementation [16], [21].

In contrast to the Simplex Algorithm, which starts at a vertex of the feasible set
and performs its movements along the polyhedron’s edges, an IPM’s basic idea is
to start within the feasible set [35], remaining inside the polyhedron when moving
towards an optimal solution, i.e. a polyhedron’s vertex, during the process of iter-
ation (Figure 3.4 [16]). Finally, after the iteration process of an IPM determined an
inner point of the feasible set, satisfying predefined termination criterion, methods
such as Cross-Over Schemes or Pivoting Procedures are required in order to reach
an actual vertex from within the feasible set [16].

IPMs can be classified into three categories of solution strategy:

i) An Affine Scaling Method5 is an iterative, two-phase method for solving lin-
ear programs by moving through the feasible set, making use of the Steep-
est Ascent Direction, i.e. the gradient of the objective function – which is
the direction of the objective function’s best improvement – modifying it by
additional restrictions and scaling, such that resulting directions do not lead
outside the feasible region [37].

ii) Potential Reduction Methods6 base on reformulating given problem towards
the so-called Potential Function as objective function, optimizing latter along
with linear constraints, which are postulated to ensure feasibility [16].

iii) Central Trajectory-, or also called Central Path Methods find optimal solu-
tions to a given linear program by starting at an appropriate inner point of
the feasible set, iteratively moving along the so-called Central Path [16], using
linear combinations of the Direction towards Optimality, towards Feasibility
and towards Centrality [37].

An example of a central trajectory method is the Logarithmic Barrier Method.
Given a problem in standard form 3.3, the approach of this method is to replace
initial linear program by a sequence of non-linear minimization problems

x̃∗k = min
x∈Rn

+



c

Tx− µ
n∑

j=1

lnxj : Ax = b, µ = µk



 (3.4)

with logarithmic Penalty Term µ
n∑

j=1
lnxj by iteratively generating an appropriate

sequence7 µk ∈ R, such that the solutions x̃∗k of the sequence of non-linear problems
converges to an optimal solution x∗ of the original problem 3.3 [16]:

lim
k−→∞

µk

n∑

j=1

lnxj = 0

lim
k−→∞

x̃∗k = x∗ := min
x∈Rn

+

{cTx : Ax = b}

5I. I. Dikin, 1967 [37]
6Narendra Karmarkar, 1984 [16]
7There are several heuristics available in order to calculate appropriate choices of µ, to be found for

example in [6], [19] and [22]
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The objective function of the family of non-linear auxiliary problems 3.4 is called
Logarithmic Barrier Function and, as a function of µ, generates a path though the
feasible set, the so-called Central Path [37].

3.2 Linear Mixed-Integer Program

If the additional claim of some, but not necessarily all of the decision variables to be
integer is postulated, the LP turns into a Linear Mixed-Integer Program (MIP). In
this special case of a linear optimization problem, the objective function as well as
the part of the formulation made up by the Feasible Set is divided into an integer-
and a continuous part and the problem can be written as:

max
xreal∈R

p
+,xint∈Zn−p

+

{cTxreal + hTxint : Axreal +Gxint ≤ b} (3.5)

where xreal is a p-dimensional column vector of decision variables which can take
up any value in R, xint is an n − p-dimensional column vector of decision variables
required to be integer c ∈ Rp and h ∈ Rn−p are related cost vectors and A ∈ Rm×p

and G ∈ Rm×(n−p) the Constraint Matrices of the optimization problem.

3.2.1 Special Cases

If further restrictions to the decision variables are postulated, e.g. banning non-
integer values totally from being feasible or even restricting them to take on binary
values only, following special cases of MIPs occur:

3.2.1.1 Linear Integer Program

In case all decision variables are demanded to be integer, the optimization problem
3.5 reduces to a Linear Integer Program (IP):

max
x∈Zn

+

{cTx : Ax ≤ b} (3.6)

with n-dimensional decision vector x only permitted to take on integer values
and A ∈ Rm×n and b ∈ Rm related Constraint Matrix respectively right-hand-side
vector.

3.2.1.2 Binary Integer Program

In many applications, decision variables bound to the restriction to only take on
binary values lead to a successful problem formulation, so by assuming the decision
vector to be in {0, 1}n, one receives the special case of a Binary Integer Program
(BIP):

max
x∈{0,1}n

{cTx : Ax ≤ b}
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3.2.2 Geometry

As opposed to an LP and its feasible set’s favorable properties and well-known pos-
sibilities of solutions’ locations, a MIP or an IP is of much more difficult nature [37].
Despite the fact, that an IP’s feasible set only contains a finite number of points in
contrast to an LP’s infinite number of probable solutions, the restriction to some or
all decision variables to be integer causes a discontinuity within a (M)IP’s feasible
set, making the traditional use of calculus impossible, thus leaving questions such as
the number or location of potential solutions a major issue to answer. Furthermore,
discontinuity of the feasible area refuses a ”free” movement amongst potential so-
lutions, raising the challenge to remain feasible during the process of optimization
[21].
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FIGURE 3.5: Graphical interpretation of an integer pro-
gram – feasible set of an LP vs. feasible set of an IP

Figure 3.5 gives an idea
about the difference between
the feasible set of an LP and
that one of an IP. While the
feasible set of the LP forms
a polyhedron with its fa-
vorable property of having
placed optimal solutions at
its vertices, the finitely many
feasible solutions making up
the IP’s feasible set lie within
constrained-defined polyhe-
dron, generally with no ad-
ditional information about
their specific relation to op-
timality. Figure 3.5 also
gives a first insight into the
idea of Relaxation (Section
3.4.7) being used in solving
(M)IPs (Section 3.2.3.2, Sec-
tion 3.2.3.3), since the LP,
generated by neglecting the
integer-constraints of a given (M)IP, forms a feasible set, which is superset of the
initial (M)IP’s feasibe set, thus providing dual bounds of latter.

3.2.3 Algorithms

The geometry of a (M)IP (Section 3.2.2) already leads to an educated guess, that – in
contrast to linear programs belonging to class P of problems, which can be solved
in polynomial runtime (Section 3.1.2) – a (M)IP brings along a much wider range of
difficulties concerning solvability [37]. Indeed, most (M)IPs are of the class of NP-
Hard Problems, meaning, that there no yet exists any algorithm, solving latter in
polynomial, but rather in exponential runtime [8].
There are several different approaches in order to find optimal solutions to a given
MIP, which can be categorized into the principle of Exact Methods, which provide
optimal solutions by perfoming a finite number of algorithmic steps, and Heuristic
Methods, which are based on the idea of using specific rules for specific problems
which have appeared to be sensible in these certain situations, but do not guarantee
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optimality [8] or give an idea about the closeness to latter in general, but can some-
times be judged in quality by certain bounding statements derived from methods
such as the Lagrangian Relaxation Technique [21]. Figure 3.6 shows a classification
of the principles developed in order to solve MIPs, a more detailed overview is given
in [8].

EXACT

HEURISTIC

Cutting Planes

Tree Search

Constructive Methods

Improvement Methods

Metaheuristics

Simulated Annealing

Tabu Search

Genetic Algorithms

Complete Enumeration

Partial Enumeration

Dynamic Programming

MIX

Branch and Bound

Branch and Cut

etc.

FIGURE 3.6: Classification of MIP solvers

While Rounding (Section 3.2.3.1) might be the most naive approach, generally
not leading to success [4], the first algorithms occuring in order to attain solutions to
(M)IPs were Cutting-Plane Algorithms8, followed by the introduction of the concept
of Branch and Bound (Section 3.2.3.3) by A. H. Land and A. G. Doig [21]. Due to the
tremendous advantages of combining latter two approaches, most of the commercial
software packages have so-called Branch and Cut algorithms implemented (Section
3.2.3.4), and also certain methods of Preprocessing can be used in order to simplify
a given model for better solvability [16]. However only certain methods are suitable
for certain problems and for a given problem not every approach leads to satisfying
results [21].

8Danzig (1954), Fulkerson (1954), Johnson (1954), Gomory (1958, 1960, 1963) [21], [16]
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3.2.3.1 Rounding

A very intuitive and all the same naive idea of receiving a solution to a MIP is to
consider the corresponding LP by ignoring the constraint to some or all decision
variables to be integer, solve it by one of the many LP solution approaches and round
the result to the nearest integer [21].

FIGURE 3.7: Rounding – occurring problems [4]

Sounding promising and com-
fortable in implementation, this
approach unfortunately often pro-
vides infeasible or non-optimal so-
lutions (Figure 3.7) and thus does
not lead to success for discrete
problems in general [16]. There-
fore, when being used in practice,
the solution derived from round-
ing must be analyzed with care,
checking for a reasonable gap be-
tween continuous and rounded re-
sult as well as ensuring, that all
constraints remain satisfied [21].

3.2.3.2 Cutting-Plane Methods

One of the first concepts occurring
in algorithms developed for solv-
ing (M)IPs was the idea of Cutting
Planes [21]. Based on the idea of
LP relaxation (Section 3.4.7) and its
generation of dual bounds to cor-
responding (M)IP, it calculates an optimal solution of the LP relaxed problem (Figure
3.8), which – when not being integer and thus not being feasible for inital discrete
problem – provides the opportunity to find so-called Valid Inequalities or Cutting
Planes, which are added to initial program such that the previously found optimal
solution of the LP relaxation becomes infeasible, while the feasible set of the initial
(M)IP maintains unaffected (Figure 3.9) [16]. This Cutting of the feasible set is kept
up iteratively, until the relaxed problem generated by all added valid inequalities
provides an integer solution, which indeed is an optimal solution to inital discrete
problem automatically [21]. Thus, the algorithm successively approximates desired
integer solution, but can in fact take a long time for its final convergence, which is
the reason for its rather restrainted implementation in nowadays’ commercial soft-
ware [16].



3.2. Linear Mixed-Integer Program 37

1 5

1

5

Linear Constraints
Optimization Direction

c = (0, 1)T

x1

x2

x2 ≥ 0

MIP Feasible Set
LP Solution

x∗LP = (2.5, 4.8)T

FIGURE 3.8: Cutting Plane Method – so-
lution of LP relaxation. Calculated non-
integer value not feasible for initial, dis-
crete problem, additional valid inequali-

ties required.
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FIGURE 3.9: Cutting Plane – valid in-
equation divides LP relaxed solution
from feasible set and generates new LP
relaxed solution. (M)IP’s feasible set re-

mains unaffected.

There are many different choices of cuts leading to different performances and a
lot of methods have been developed and improved in order to achieve satisfactory
results. A more detailed treatment of the idea of cutting planes is given in [24] and
[38].

3.2.3.3 Branch and Bound

Potentially very expensive – since in many cases providing near optimal solutions
quickly but taking larger effort to verify optimality – but nonetheless commercially
most commonly used algorithms are of Branch and Bound (B&B) type [21]. B&B
methods are Divide and Conquer Algorithms, meaning that they find a solution by
dividing initial problem recursively into smaller, hopefully easier handlable sub-
problems, solving latters and generating a final solution by putting together the
information gained from these partial solutions [38]. Hereby – in order to avoid
Complete Enumeration (Figure 3.6), which has an exponential rise in expense and
therefore is suitable for minimally-sized problems only – rejecting criteria are postu-
lated by finding upper and lower bounds to an optimal solution, which distinguish
considerable sub-problems from those which can be skipped in further recursion,
making it a more efficient, a so-called Implicit- or Partial Enumeration Method [16].

As the name indicates, the basic idea of this method consists of two steps:

i) Branching: The initial problem is divided into disjunctive sub-problems, such
that the union of the subsets’ solution sets is equal to that one of the inital
problem [8].

In order to be able to sketch the idea of branching in mathematical terms, let
S be the feasible set of problem 3.5 and g := (c, h) be the concatenation of the
cost vectors of its continuous and discrete part. Furthermore, let {Si ⊆ S : i =
1, . . . , k,∪ki=1Si = S, Si ∩ Sj = ∅ ∀i 6= j} be a Partition of S, and

max
x∈Si

{cTx} (3.7)
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be the i-th sub-problem of initial problem

max
x∈S
{cTx} (3.8)

The idea of branching makes use of the fact, that an optimal solution of ini-
tial problem 3.8 is distinguishable from the optimal solutions of the generated
smaller sub-problems 3.7 [24]:

x∗ := max
x∈S
{cTx} = max

i=1,...,k

(
max
x∈Si

{cTx}
)

(3.9)

Figure 3.10 [24] shows the tree arising from the idea of branching initial prob-
lem into smaller sub-problems by dividing the feasible regions into subsets
and continuing calculations on these smaller domains.

S1

S11 S12

S111 S112 S121 S122 S123

pruning
pruning

FIGURE 3.10: Branch and Bound tree

Without any further considerations, branching recursively deeper from root to
base would lead to total enumeration, engendering enormous costs of calcula-
tion. This leads to the method’s secondly performed step:

ii) Bounding: For every sub-problem, upper and lower bounds to the solution
are determined, which lead to the capability of deciding whether or not a sub-
problem might contain an optimal solution and requires further examination
or can be neglected in following processing steps. The detection and further
neglection of a tree’s irrelevant node Si is called pruning (Figure 3.10) and can
be performed in either one of following three cases [24]:

• Infeasibility: Si = ∅
• Optimality: An optimal solution to 3.7 is known
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• Value Dominance: x∗i := max
x∈Si

{cTx} ≤ x∗

In practice, LP relaxation (Section 3.4.7) is used most commonly in order to cal-
culate dual bounds [33], whereas primal bounds can simply be generated by any
already known feasible solution [8]. Furthermore, Binary Branching is a common
way to implement the branching procedure within a B&B method. Hereby, the cal-
culated optimal solution x∗relaxed of the LP relaxation of parental problem Sj is calcu-
lated (Figure 3.11) and – if x∗relaxed /∈ Zn

+ – used to postulate additional constraints in
order to partition Sj into two subsets Sj1 and Sj2 (Figure 3.12) such that [4]:

Sj1 := Sj ∩ {x ∈ Zn
+ : x ≤ bxjc}

Sj2 := Sj ∩ {x ∈ Zn
+ : x ≤ dxje}

Indeed, all solutions of parental problem are contained in either one of thus
newly generated sub-problems.

1 5

1

5

Linear Constraints
Optimization Direction

c = (0, 1)T

x1

x2

x2 ≥ 0

MIP Feasible Set
LP Solution

x∗LP = (2.5, 4.8)T

FIGURE 3.11: Feasible region of LP relaxation
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x2
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x∗LP = (2.5, 4.8)T
Branch and Bound

x1 ≤ 2 x1 ≥ 3

FIGURE 3.12: Feasible regions of sub-
problems

These steps are proceeded such that optimal solutions of remained sub-problems
can continuously be compared with each other and result in an optimal solution to
initial problem based on property 3.9 of the sub-problems.

3.2.3.4 Branch and Cut

Branch and Cut Methods (B&C) combine the two aspects of Cutting Planes (Sec-
tion 3.2.3.2) and B&B methods (Section 3.2.3.3), which by themselves often cause
troubles and produce numerical stability issues [33]. B&C methods make use of the
B&B idea’s advantage to divide the big initial problem into smaller sub-problems,
additionally diminishing the considered feasible set by adding constraints, retain-
ing all required demands to the discrete problem’s feasible set in order to find an
optimal solution of latter. This exploitation of these two techniques’ virtue makes
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B&C a very strong tool, making it a method being implemented most commonly in
commercial solvers [16].

3.3 Combinatorial Optimization Problem

With index set N = {1, . . . , n} and weights wj ∈ R for every index j ∈ N , another
type of optimization problem, the Combinatorial Optimization Problem (COP) can
be formulated as follows:

max
S∈F




∑

j∈S
wj





where F ⊂ P(N) is the set of feasible subsets of the index set N .

Remark: Of course, all introduced cases of optimization problems can be com-
bined, just as the application requires, in order to be able to model given task in
an appropriate way. This leads to the general formulation of a linear optimization
problem [21]:

max
xreal ∈ Rp

+,

xint ∈ Zn−p−q
+ ,

xbin ∈ {0, 1}q,
S ∈ F

{cTxreal + hTxint + lTxbin +
∑

j∈S
wj : Axreal +Gxint +Hxbin ≤ b}

3.4 Reformulation Methods

There is a variety of algorithmic solvers available, which, when given task is formu-
lated in an adequate way, are able to solve given optimization problem efficiently.
In practice however, the first trial of modeling a given task often leads to an inap-
propriate formulation with regards to the expression of constraints or the objective
function, making an easy solvability of given problem impossible. Problems can also
occur within the modeling process itself, when for instance constraints are desired
to exclude each other or in case non-linear expressions appear.

Nevertheless there are tricks at hand in many cases, which allow a remodeling
of constraints and the objective function towards an appropriate formulation. In the
following, a few tricks, relevant for this thesis’ approach specifically, are introduced.

3.4.1 Minimization vs. Maximization

Since an optimization problem modeled as a maximization problem of the objective
function can be transformed to a minimization problem by exchanging the objective
function:

max
x∈S

g(x) = min
x∈S
−g(x)
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equvalent approaches for the same task can be made by either formulating an ob-
jective function to be maximized or its negative version to be minimized, which is
of great importance when for instance being in need of reformulating a given opti-
mization problem towards Standard Form 3.3 [8].

3.4.2 Equalities and Inequalities

The feasible set within a linear program is modeled by equality and inequality con-
straints [37]. In order to switch amongst those possible constraint formulations, there
are several obvious, but still noteworthy methods at hand:

3.4.2.1 Transforming Inequalities

By multiplying both sides of a ≤ constraint by −1, it is transformed into a ≥ con-
straint, and vice versa:

n∑

j=1

aijxj ≤ bi
·(−1)

−−−−−−−−−→
n∑

j=1

ãijxj ≥ b̃i

n∑

j=1

aijxj ≥ bi
·(−1)

−−−−−−−−−→
n∑

j=1

ãijxj ≤ b̃i

for i = 1, . . . ,m, where aij is the i-th component of the j-th column of Constraint
Matrix A, bi is the i-th component of the right-hand-side vector b in linear program
3.2, aij = −ãij and bi = b̃i [8].

3.4.2.2 Eliminating or Receiving Equalities

If given linear program modeled by equalities is required to be formulated by in-
equality constraints, a simple exchange of all equality constraints with two inequal-
ities leads to success:

n∑

j=1

aijxj = bi ⇔

n∑
j=1

aijxj ≤ bi
n∑

j=1
aijxj ≥ bi

On the other hand, if a transformation from an inequality to an equality is re-
quired, a Slack Variable s ∈ R with an additional constraint of non-negativity pro-
vides desired result:

n∑

j=1

aijxj ≤ bi ⇔
n∑

j=1
aijxj + s = bi

s ≥ 0

n∑

j=1

aijxj ≥ bi ⇔
n∑

j=1
aijxj − s = bi

s ≥ 0
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3.4.3 Elimination of Free Variables

The non-negativity constraints to a decision variable, primarily formulated without
any restrictions to its sign, can be generated by substitution of the former variable xj
by decision variables x+j and x−j and additional constraints of non-negativity [12]:

xj ∈ Rn ⇔ x+j − x−j
x+j , x

−
j ∈ Rn

+

3.4.4 Formulating OR-Statements

In many applications – just as in the task of this thesis – a possibility of connecting
two constraints by an OR relation, such that at least one, but not necessarily both of
them, have to be considered within the process of optimization, is required to being
modeled. This can be established by introducing two binary variables z and z̃ in
connection with a sufficiently large number M ∈ R+:

n∑
j=1

aijxj ≤ bi
or

n∑
j=1

ãijxj ≤ b̃i
⇔

n∑
j=1

aijxj −M · z ≤ bi
n∑

j=1
aijxj −M · z̃ ≤ bi
z + z̃ ≤ 1
z, z̃ ∈ {0, 1}

For z = 1 (respectively z̃ = 1), the first (respectively the second) constraint is au-
tomatically fulfilled and thus inactive. In this way, it is possible to model a neglection
of either one of the constraints. The constraint to the sum of z and z̃ however makes
sure that not more than one of them is denied, thus generating desiredOR-behavior.

If an exclusive OR relation between two constraints is required, such that one
and only one of them is active, while the other one is desired to be neglected in the
process of optimization, the introduction of a single variable z is sufficient for an
appropriate formulation:

n∑
j=1

aijxj ≤ bi
or

n∑
j=1

ãijxj ≤ b̃i
⇔

n∑
j=1

aijxj −M · z ≤ bi
n∑

j=1
aijxj −M · (1− z) ≤ bi

z ∈ {0, 1}

where the first constraint is active if z = 0, while it is ignored and constraint two
is active in case of z = 1 [21].

3.4.5 Eliminating Non-Linearity

Since in linear programming the objective function as well as all constraints are re-
quired to be of a linear form, every occurring non-linearity poses a major problem.
In many cases however there are tricks at hand, which, by introducing new decision
variables and reformulating particular parts of the objective function respectively
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the constraints, tide over these troubles, leading to appropriate formulations of lin-
ear programs.

3.4.5.1 Interpolation

Any continuous function can be approximated by a piecewise linear function. There-
fore, a non-linear objective function g : S −→ R can easily be replaced by its
linearily interpolated version g̃ : S −→ R, specified by chosen Partition Points
(xj , g(xj)), j = 1, . . . , r:

g(x) ≈ g̃(x) =
r∑

j=1

λjg(xj),
r∑

j=1

λj = 1

λj ∈ R+ ∀j = 1, . . . , r

By claiming x = λixi + λi+1xi+1 and λi + λi+1 = 1 for xi ≤ x ≤ xi+1, i =
1, . . . , r − 1, uniqueness of the λj ’s to a certain degree can be generated. By intro-
ducing binary decision variables zj , j = 1, . . . , r − 1, a way to control the ”active”
segment of the interpolating, piecewise linear function as replacement of former,
non-linear objective function can be modeled by adding following constraints to the
program:

λ1 ≤ z1
λj ≤ zj−1 + zj ∀j = 1, . . . , r − 1

λr ≤ zr−1
r−1∑

j=1

zj = 1

xj ∈ {0, 1} ∀j = 1, . . . , r − 1

where for one and only one i ∈ {1, . . . , r − 1} xi = 1, thus, λj = 0 ∀j 6= i ∧ j 6=
i+ 1, thus only one segment is chosen to be ”active” [21], [24], [37].

3.4.5.2 Substitution

If the trial of formulating a given task as optimization problem leads to a non-
linearity in a constraint being induced by a bounded decision variable, either con-
tinuous or integer, being multiplied by an arbitrary number of binary decision vari-
ables, substitution of the constraint by a list of other appropriate constraints indeed
provides the opportunity of reformulating the inadequate non-linear constraint in
a linear way. So for the product of decision variable x, either being continuous or
integer, bounded by some number u ∈ R: x ≤ u, with binary decision variables
zj , j = 1, . . . , k, following equivalence holds:
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(
k∏

j=1
zj

)
· x

zj ∈ {0, 1}, j = 1, . . . k
x ∈ R+ ∨ x ∈ Z+

⇔

w
w ≤ zj · u, j = 1, . . . , k

w ≥ 0
w ≤ x

w ≥ u ·
(

k∑
j=1

zj − k
)

+ x

w ∈ R
zj ∈ {0, 1}, j = 1, . . . k

The first constraint derives from the fact, that, since the product of x, which is
bounded by u, multiplied by either 0 or 1 – thus the substitution variable w – can not
be larger than the bound u of x.
On the other hand, if all zj in the former formulation are equal to 1, it must be

guaranteed that

(
k∏

j=1
zj

)
· x = x = w, which is done by two inequalities: Since w

can not take on values larger than x itself per definition, this direction of inequality is
easily comprehensible. For the other inequality making up the fourth constraint, the
sum of all binary variables zj guarantees, that, in prevailling case of all zj = 1, the
difference with k results in the whole term in parentheses being 0, thus, constraint
4 restricts w to be greater or equal to x, which, together with constraint 3 leads to
w = x, which was the aim to achieve [33].

3.4.6 Duality

Given linear program of Equation 3.2, which in the context of Duality is called the
Primal Problem, its related Dual Problem is defined as:

min
u∈Rm

+

{uT b : uTA ≥ c} (3.10)

where u is a non-negative, m-dimensional column vector of decision variables,
resulting from the transformation towards the dual formulation. Since the dual
problem of the dual problem is the primal problem again, the roles of related prob-
lems can be swapped unconcernedly.

The importance of Duality in linear programming becomes clear when stating
the resulting fact of Weak Duality, which postulates, that a feasible solution û of
dual problem 3.10 provides an upper bound, whereas a feasible solution x̂ of 3.2
provides a lower bound for desired, optimal solution x∗ of problem 3.2:

cT x̂ ≤ max
x∈Rn

+

{cTx : Ax ≤ b} = x∗ ≤ min
u∈Rm

+

{uT b : uTA ≥ c} ≤ (û)T c

respectively the even more important result of Strong Duality, stating that if
either one of the optimal solutions x∗ of 3.2 or u∗ 3.10 is finite, both 3.2 and 3.10 are
finite and equal9

9This does not hold for MIPs in general, however [16].
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x∗ = max
x∈Rn

+

{cTx : Ax ≤ b} = min
u∈Rm

+

{uT b : uTA ≥ c} = u∗ <∞

These principles of Duality occur in many different aspects of linear program-
ming, for instance in the field of Sensitivity Analysis, where influences of changes
of input data on the final outcome are observed [16], or in a version of implemen-
tation of the Simplex Algorithm, where its dual version is consulted in case a basic
solution of the dual problem, but none of the primal one is known [24], making it a
very important topic in theory and application of linear programming.

3.4.7 Relaxation

The idea of Relaxation is to enlarge the set of feasible solutions of a given optimiza-
tion problem respectively replacing given objective function with a function taking
on equal or larger values everywhere. Therefore, with sets S ∈ Rn and T ∈ Rn, and
functions g : S −→ R and r : T −→ R, the problem max

x∈T
{r(x)} is a relaxation of

max
x∈S
{g(x)} if

i) S ⊆ T

ii) r(x) ≥ g(x) ∀x ∈ S

An important special case of relaxation is the Linear Program Relaxation of an
integer program. For program 3.6, it is defined as

max
x∈Rn

+

{cTx : Ax ≤ b}

Relaxation is a strong tool when being interested in obtaining dual bounds, for
instance as way of defining a termination criterion in an algorithm or to use it in
solution approaches such as the Branch And Bound Method (Section 3.2.3.3) [38].
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Part II

Solution Approach
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Chapter 4

System Modeling

In order to get to the point of being able to formulate an algorithm solving the prob-
lem of prosthesis adjustment described in Section 2, it is necessary to define several
terms, give objects and circumstances of reality a mathematical name and in this way
build tools and ways to connect it with a language, the algorithm can be formulated
in.

Therefore, in the following, a way of mathematically interpreting myosignals,
which are measured by the prosthesis’ surface electrodes (Section 4.1), the amplify
factor, which serves as one of the most important parameters within prosthesis ad-
justment (Section 4.2), as well as all other settable parameters are defined and math-
ematically described (Table 4.3). In addition, internally defined hard-coded con-
stants are listed (Table 4.2), which also make up an essential part of control pat-
tern defining. Furthermore, all functionality components such as different grips,
possible movements and the ways of getting access to them by certain myo-signal
patterns and a number of available Switches is listed and described in terms of
mathematical sets and functions (Section 4.4.1). In the end, all previously described
tools and components can then be used in order to describe programs which consist
of options of access to the functionality components and related settable parameter
values, finally leading to the ability of formulating an algorithm which calculates
actual optimal programs for desired prosthesis adjustment (Section 4.4.3).

4.1 Raw Myo-Signals

Let T ⊆ R+
0 be the set of possible time-values as subset of all non-negative real

numbers, smin, smax ∈ R+
0 be the minimum and maximum value of a myo-signal an

electrode can measure, VSraw := [smin, smax] and Sraw := {s : T −→ VSraw , t 7→ s(t)} the
set of all raw myo-signals, interpreted as functions mapping values of time to values
within the measurement range of the surface electrodes. Further, let SC1raw ⊂ Sraw

be the subset of all raw myo-signals measured by electrode 1 (=̂ channel 1) and
SC2raw ⊂ Sraw be the subset of all raw myo-signals measured by electrode 2 (=̂ channel
2). Then the output of a two-electrode-construction of a myoelectric prosthesis can
be interpreted as a vectorial-valued function

~sraw =

(
srawC1

srawC2

)
: T −→ V2Sraw

, t 7→
(
srawC1

(t)

srawC2
(t)

)
, srawCi

∈ SCiraw , i = 1, 2

Figure (4.1) shows the graph of a vectorial-valued myo-signal.
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Remark: Depending on the context, by using the term myo-signal, either both com-
ponents of the vectorial-valued function or just one single component of the vectorial-
valued function is meant.

By setting up a system of constraints to the shape of myo-signals with the help of
already mentioned settable parameters (Table 4.3), together with internally defined
hard-coded constants (Table 4.2), and thus making them being recognized as control
patterns by the prosthesis’ internal control unit, they are used to get access on the
prosthesis’ functionality components, e.g. open or close the prosthetic hand, pronate
or supinate a rotation joint, extend or flex adapted elbow joint or switch between
modes (Table 4.1).

4.2 Amplifier

The Amplifier can be interpreted as a vectorial-valued function~FAwhich suppresses
or heightens a signalvector’s image (i.e. the output of the vectorial-valued function
~sraw) by the amplify factor (fA1 , fA2) =: ~fA ∈ V2A ⊂ R+ × R+

~FA =

(
FA1

FA2

)
: S2raw −→ ~FA

(
S2raw

)
=: S2, ~sraw =

(
sraw1

sraw2

)
7→
(

FA1(sraw1)
FA2(sraw2)

)

where
FAi(srawi)(t) = srawi(t) · fAi , t ∈ T , i = 1, 2 (4.1)

After being measured by the surface electrodes, every raw myo-signal ~sraw ∈ Sraw

is immediately transformed to the amplified myo-signal ~FA (~sraw) ∈ S2 before any
other signal processing within the prosthesis’ internal control unit happens. By de-
fault, ~fA = (1, 1)T and therefore ~FA = idS2raw

in case the amplify factors are not
changed from default settings.

Since multiplication is linear, the co-domain of signals in S indeed is [smin·fAi , smax·
fAi ] =: VSi for i = 1, 2. For better readability, these channel-wise definition of co-
domains is summarized by

VS := [smin · min
i=1,2

(fAi) , smax ·max
i=1,2

(fAi)]

and SCi ⊂ S , i = 1, 2 is set as the already amplified myo-signals of channel i as sub-
set of S.

As already mentioned fA is part of the set X of settable parameters (Table 4.3),
so its value can be set individually, depending on the prosthesis’ user’s strength of
muscles and resulting heights of myo-signals.

Remark: In real-life application, the set of amplify factors available within Otto-
bock’s Data Station (Section 2.1) to be selected by the orthopedic technician for pros-
thesis adjustment is the discrete, finite set VA = {0.25, 0.5, 0.75, 1, . . . , 3.5, 3.75, 4}.
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4.3 Myo-Graph

cON

cOFF

cHIGH

t

s(t)

Channel 1
Channel 2

FIGURE 4.1: Myo-Graph

Within the company’s graphical user
interface for prosthesis setting, the
Ottobock Data Station (Figure 2.2),
myo-signals are plotted in the Myo-
Graph (Figure 4.1). In the Myo-
Graph, signals s ∈ SC1 are drawn
in blue, s ∈ SC2 in red. For the
sake of clarity, this habit is carried out
through all figures in this thesis.

4.4 Functionality

Within the six-month work of set-
ting up the software for automated
prosthesis adjustment, the concept
has been conceived for Ottobock’s
Michelangelo Hand (Figure 2.1) in
combination with Ottobock’s rota-

tional joint, which currently forms a usual treatment for transradial amputees. The
developed concepts can easily be adapted to more advanced treatments for example
involving elbow joints, or can be used in cases of simpler device compilations where
for instance a rotational joint is not adapted. In the following however, all defini-
tions, descriptions and listings refer to this project’s compilation of a Michelangelo
hand connected to a rotational joint.

This certain prosthesis setup comes along with the capability of performing a va-
riety of movements: Hand opening and closing in two different ways of grasping,
i.e. opposition grasp and opposition grasp and pronation and supination due to
the added rotational joint (Section 4.4.1.1). These movements can even be varied in
their velocity by making use of the intensity of myo-signals.

In Section 4.4.1, all functionality components are defined and described in terms
of mathematical sets and functions, before Section 4.4.2 explains the way of getting
access to the different components by introducing all myo-signal patterns used in
myo-prosthesis control.

4.4.1 Functionality Components

The essential functionality component of a myoelectric prosthesis is hand move-
ment. It gives the user a lot of opportunities to compensate lost extremity by not
only supporting residual limb statically, but also being able to take and hold things
with the artificial hand, even being capable of varying speed of opening, closing or
rotation. On the other side, a very beneficial functionality component in case of a
treatment with Michelangelo hand, hand opening and closing can even be performed
in two different ways of grasping, making it possible to grab and hold things more
precisely, depending on their shape and constitution.
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In the following, these three aspects of functionality – the prosthesis’ modes,
the Movements which can be performed in latters, and the movements’ variable
Velocity – are discussed.

4.4.1.1 Modes – Grasping and Rotation

A hand’s mode is a functionality state, in which the hand performs it’s movements
(Section 4.4.1.2). In this project’s device compilation 3 modes are available:

Symbol Name of mode
MLat opposition grasp (Figure 4.2)
MOpp opposition grasp (Figure 4.3)
MRot rotation mode (Figure 4.4)

TABLE 4.1: Hand modes

Lateral Grasp: In lateral grasp mode, the artificial hand is in a position, where the
thumb is held sideways to the remaining fingers. With this finger position, the hand
can be opened and closed within this mode’s mechanically possible moving range.

Opposition Grasp: The opposition grasp mode is another hand position, where
the thumb is opposed to its remaining fingers. With this finger position, the hand
can be opened and closed within this mode’s mechanically possible moving range.

Rotation Mode: When switched to rotation mode, the prosthesis freezes in its pre-
vious grasp mode and position and is able to pronate and supinate withing its me-
chanically possible moving range.

The prosthesis can only be in one mode at a time, if the user wants to switch to
another mode, certain myo-signal patterns, the so-called switch methods have to be
generated (Section 4.4.2.1). Let for later formulationM := {MLat,MOpp,MRot} be the
set of all prosthesis’ available modes.

FIGURE 4.2: Lateral
grasp mode – closed

FIGURE 4.3: Opposition
grasp mode – closed

FIGURE 4.4: Lateral
grasp – rotation mode
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4.4.1.2 Movements

Being in a currrent prosthesis’ mode, the device is capable of performing several
movements depending on which mode is currently active. In grasp modes, the
Michelangelo hand can be opened and closed, in rotation mode, it can be pronated
and supinated. Of course, the range of movement is mechanically limited, so once
the artificial hand is opened respectively closed fully or rotation has been accom-
plished to the joint’s maximal displacement, movement stops, even in case of validly
provided myo-signal patterns. The way of getting access to movement is explained
in Section 4.4.2.2.

4.4.1.3 Velocity

All movements can also be varied in speed, regulated by the intensity of the user’s
myo-signals. Therefore, consistent training for good muscle control is needed, in
order to be able to exploit the prosthesis functionality to the fullest. Section 4.4.2.3
defines the term Velocity as mathematical function and explains the way of control-
ling it with the user’s myo-signals.



54 Chapter 4. System Modeling

4.4.2 Access to Functionality Components

As explained in Section 1.1, muscle contractions and relaxations lead to a voltage
change of nerve fiber’s membrane, which can be measured by surface electrodes
and used as way of communication between user and prosthesis. Contraction of a
muscle leads to a rise of the myo-signal, whereas relaxed muscles usually generate
steady myo-signals around a close-to-zero equilibrium (Figure 1.15, Figure 1.16).
Hence, the idea of myoelectric prostheses is to make use of the user’s ability to con-
sciously contract and relax several muscle regions, i.e. generate specific shapes of
myo-signals and thus tell the prosthesis’ internal control unit which actions to per-
form. By a number of Hard-Coded Constants1 (Table 4.2) and individually Settable
Parameters (Table 4.3), constraints to the shape of myo-signals can be formulated
such that the internal control unit can react, whenever these constraints are held by
the myo-signals provided by the user.

Symbol Explanation
cON ∈ VS ON-threshold of myo-signal recognition
cHIGH ∈ VS maximal upper proportional bound
cOFF ∈ VS OFF-threshold of myo-signal recognition
cT ∈ R+ length of control unit’s internal counter
cLHOV ∈ [0, 1] value of control unit’s internal long Hand-open threshold

TABLE 4.2: Hard-coded constant values

Symbol Explanation
xIi ∈ [cON, cHIGH] Impulse/4-channel border for channel i, i = 1, 2

xCi ∈ [cON, cHIGH] Cocontraction border for channel i, i = 1, 2

xSL ∈ VSL Maximal signal length for both channels
xLHOL ∈ VLHOL Minimal Long Hand Open Length for channel 2

~fA =

(
fA1

fA2

)
∈ V2A amplify factor for each channel

~fW =

(
fW1

fW2

)
∈ [0, 1]2 Workspace factor for each channel

TABLE 4.3: Settable parameters

Moreover, let X := {xI1 , xI2 , xC1 , xC2 , xSL, xLHOL, ~fA, ~fW} be the set of all settable

parameters and define following values for s ∈ S and ~s =

(
s1
s2

)
∈ S2 for better

readability within further formulation:

ts0 := min{t ∈ T : s(t) ≥ cON} (4.2)
ts∞ := min{t ∈ T , t ≥ ts0 : s(t) < cOFF} (4.3)
tsync
~s0

:= min
i=1,2
{t ∈ T : si(t) ≥ cON} (4.4)

tsync
~s∞

:= max
i=1,2

{
min{t ∈ T , t ≥ tsync

~s0
: si(t) < cOFF}

}
(4.5)

tH∞ := min{t ∈ T : h(t) = H∞ ∧ s2(t) ≥ (cON + (cHIGH − cON) · fW · cLHOV)} (4.6)
1Fixed internal values which are not changeable.



4.4. Functionality 55

Remark: For a myo-signal s ∈ S provided by the user, (4.2) defines the moment
in time, in which it exceeds the threshold value cON for the very first time within the
period of observation.
For a myo-signal, which has already exceeded the threshold value cON at some point
and currently takes on values above cON, (4.3) defines the point time, the myo-signal
s falls below the threshold value cOFF again.
(4.4) and (4.5) are defined analogously for myo-signals ~s ∈ S2, determining the time
of the first exceeding of cON and the last falling below cOFF of either one of the com-
ponents of the vectorial-valued myo-signal ~s.
Definition (4.6) indicates the point in time, the prosthesis reaches the position of me-
chanical maximal openness and cannot perform any further movement of opening
even in case of validly provided myo-signal patterns.

For later calculation, in case a myo-signal s ∈ S or s ∈ S2 does not exceed the
threshold value cON at all, ts0 and tsync

~s0
are defined as −∞.

4.4.2.1 Access to Modes – Switches

The concept of Switches is the way of changing from one hand mode (Section 4.4.1.1)
to another by generating specific myo-signal patterns, the so-called switch methods.

A switch method can be interpreted as a set of myo-signals, holding a number
of constraints formulated with the help of hard-coded constants (Table 4.2) and pa-
rameters which can be set individually for every user (Table 4.3).

When SM is the set of all switch methods, a switch can be interpreted as a trans-
formation function sw : M × SM −→ M. that defines a way to reach a certain
hand mode M ∈ M from another one by a certain switch method SM ∈ SM. This
means, a myo-signal s ∈ S respectively s ∈ S2, which holds all constraints bound to
a certain switch method SM , is recognized as its member, i.e. s ∈ SM and, if latter
is contained by the prosthesis’ currently selected Program (Section 4.4.3) as part of a
Switch sw, the defined mode-changing event within the prosthesis’ internal control
unit is triggered.

Switch Methods: Table 4.4 shows all available switch methods for the Michelangelo
hand in order to change from one mode to another. In the following, every switch
method is defined in terms of mathematical sets and shown graphically in order to
provide a better idea of the constraints to the myo-signal shapes to the reader.

Symbol Explanation
S4Ci 4-Channel-Switch-Method of channel i, i = 1, 2

SCS Short Cocontraction-Switch-Method
SCL Long Cocontraction-Switch-Method
SIi Impulse-Switch-Method of channel i, i = 1, 2

SLHO Long Hand-Open switch method

TABLE 4.4: Switch methods
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4-Channel Switch Method

S4Ci := {s ∈ SCi : max
t∈[ts0 ,ts0+cT]

s(t) ≥ xIi}, i = 1, 2 (4.7)

In words: A myo-signal s measured by electrode i is recognized as 4-Channel
switch method of channel i, if s exceeds the (settable) threshold xIi within the (hard-
coded) amount of time cT after having firstly exceeded the (hard-coded) threshold
cON (Figure 4.5, Figure 4.6).

cON

cOFF

cHIGH

t

s(t)

4 Channel (Channel 1)

ts0 ts∞ts0 + cT

xI1

xSL

Hand Opening (Channel 1)

FIGURE 4.5: 4-Channel switch method
channel 1

cON

cOFF

cHIGH

t

s(t)

4 Channel (Channel 2)

ts0 ts∞ts0 + cT

xI2

xSL

Hand Opening (Channel 2)

FIGURE 4.6: 4-Channel switch method
channel 2
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Short/Long Cocontraction

SCS := {~s =

(
s1
s2

)
∈ S2 : max

t∈[tsync
si0

,t
sync
si0

+cT]
si(t) ≥ xCi ∧ |tsync

si0
− tsync

si∞
| ≤ xSL, i = 1, 2}

In words: Three conditions have to be fullfilled by the myo-signal ~s in order to be
recognized as Short Cocontraction switch method. Both components si of the myo-
signal ~s have to exceed the (settable) thresholds xCi within a certain (hard-coded)
amount of time cT after firstly exceeding cON. Additionally, the period of time be-
tween the first cON-passover and the last cOFF-undershoot of both components must
not be longer than the (settable) time xSL (Figure 4.7).

SCL := {~s =

(
s1
s2

)
∈ S2 : max

t∈[tsync
si0

,t
sync
si0

+cT]
si(t) ≥ xCi ∧ |tsync

si0
− tsync

si∞
| > xSL, i = 1, 2}

In words: The Long Cocontraction-Switch-Method is defined very similar to the
Short Cocontraction-Switch-Method. For being recognized as Long Cocontraction
switch method, the thresholds xCi must still be exceeded by both myo-signal com-
ponents si within the (hard-coded) amount of time cT after firstly exceeding cON and
both have to be kept above xCi for a longer period of time than xSL before falling
below cOFF again (Figure 4.8).

cON

cOFF

cHIGH

t

s(t)

Channel 1
Channel 2

tsync~s0
tsync~s∞tsync~s0

+ cT

xC2

xC1

xSL

FIGURE 4.7: Short Cocontraction switch
method
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cON

cOFF

cHIGH

t

s(t)

Channel 1
Channel 2

tsync~s0
tsync~s∞tsync~s0

+ cT

xC2

xC1

xSL

FIGURE 4.8: Long Cocontraction switch
method
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Impulse

SIi := {s ∈ SCi : max
t∈[ts0 ,ts0+cT]

s(t) ≥ xIi ∧ |ts0 − ts∞ | ≤ xSL}, i = 1, 2 (4.8)

In words: The constraints of Impulse switch method follow the same principle
as the constraints of Cocontraction switch method, but with the observation of a
myo-signal’s single component only. This means, the myo-signal’s component s
measured by electrode i is recognized as Impulse switch method of channel i, if it
exceeds the (settable) threshold xIi within the (hard-coded) amount of time cT after
firstly exceeding cON, and if it falls below cOFF again within the (settable) amount of
time xSL (Figure 4.9, Figure 4.10).

cON

cOFF

cHIGH

t

s(t)

Impulse Channel 1

ts0 ts∞ts0 + cT

xI1

xSL

FIGURE 4.9: Impulse switch method
channel 1

cON

cOFF

cHIGH

t

s(t)

Impulse Channel 2

ts0 ts∞ts0 + cT

xI1

xSL

FIGURE 4.10: Impulse switch method
channel 2
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Long Hand-Open Switch Method

SLHO := {s ∈ SC2 : min
t∈[tH∞ ,tH∞+xLHOL]

s(t) ≥ cON + (cHIGH − cON) · fW2 · cLHOV} (4.9)

In words: The Long Hand-Open switch method can only be recognized when
given constraints are held by the myo-signal’s component measured by electrode 2.
This fact is based on the idea that the myo-signal component of channel 2 is used to
perform hand opening within movement generation (Section 4.4.2.2). Thus, at some
point of an appropriately provided myo-signal measured by electrode 2, the pros-
thesis is at its position of mechanical maximal openness H∞. At this point, the Long
Hand-Open switch method can then be triggered by keeping the myo-signal’s values
of the 2. component above the (hard-coded) ratio cLHOV of the (settable) Workspace
(Section 4.4.2.3) W2 = [cON, cON + (cHIGH − cON) · fW2 ] of channel 2 within the (set-
table) period of time xLHOL after firstly reaching the position of mechanical maximal
openness H∞ (Figure 4.11).

cON

cOFF

cHIGH

t

s(t)

Long Hand Open (Channel 2)

tH∞ + xLOHL

xLHOL

cON + (cHIGH − cON) · fW · cLHOV

tH∞

FIGURE 4.11: Long Hand-Open switch method

Switch Matrix: Within Ottobock’s Data Station (Figure 2.2), a Switch can defined by
the orthopedic technician with the help of the so-called Switch Matrix (Figure 4.12).
Due to the practical graphical user interface, the way of changing from one mode
to another can be set easily via button-clicks to a well-defined function, preventing
from complications and errors.
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FIGURE 4.12: Switch Matrix in Ottobock’s Data Station
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4.4.2.2 Access to Movement – MultiGrip

A Control Setting defines the requirements to a myo-signal in order to be recognized
as intended prosthesis movement within a certain mode. Thus, it can be interpreted
as a function cs receiving a vectorial-valued myo-signal ~s, mapping it to either a
non-zero value of movement-velocity vOUT in case a valid myo-signal is provided,
or 0:

cs : S2 −→ VV : ~s 7→





vOUT if ~s holds all constraints of selected Control Setting &
if prosthesis is in mechanically movable condition

0 else

where VV := [−vmax, vmax] is the possible range of movement-velocity and vOUT is
the actual velocity of the generated movement (Section 4.4.2.3).

For the sake of convenience and because this way of movement transmission is
the most common in use, the Control Setting named MultiGrip is being explained
and considered only.

MultiGrip: For a myo-signal ~s =

(
s1
s2

)
, the Control Setting MultiGrip defines com-

ponent s1 measured by electrode 1 as the component causing hand closure in case
the prosthesis is currently in either one of the grasp modes, or pronation in case
of being in rotational mode. For following mathematical formulation, these move-
ments are construed as negative velocity, i.e. the Control Setting function cs assigns
velocity values, labeled with a negative sign. Myo-signal component s2 measured by
electrode 2 is capable of initializing hand opening or supnation, i.e. positive velocity.

In order to generate movement within current mode, provided myo-signal must
not be contained in one of the sets of Switch modes which are part of currently
selected Switch, since obviously in this case a switching event would be triggered.
Furthermore, one of the myo-signal components must exceed the threshold value
cON:

(∃t0 ∈ T : s1(t0) ≥ cON) ∨ (∃t0 ∈ T : s2(t0) ≥ cON)

If both myo-signal components s1 and s2 reach values ≥ cON, a simple First-
Come-First-Serve-Method pr1st : S2 −→ S :

pr1st(~s) :=

{
s1 min{t ∈ T : s1(t) ≥ cON} ≤ min{t ∈ T : s2(t) ≥ cON}
s2 min{t ∈ T : s1(t) ≥ cON} > min{t ∈ T : s2(t) ≥ cON}

determines the first component of the myo-signal to assign a value ≥ cON and
initializes its corresponding movement.

4.4.2.3 Access to Velocity Control

Movements within available modes can be performed in various speed. In the
Control Setting MultiGrip (Section 4.4.2.2), the velocity of movement can be con-
trolled by the strength of myo-signal the user generates, i.e. the prosthesis can be
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closed/pronated faster respectively slower by increasing respectively reducing the
strength of muscle contraction measured by electrode 1, analogously for opening/-
supination for myo-signals measured by electrode 2.

When one of the myo-signal components has exceeded the threshold value cON

and its values are located within the so-called Proportional Workspace, the speed
changes linearly with myo-signal strength, beginning from velocity value (±) 0 up
to a maximal velocity value ±vmax. The Proportional Workspace is defined via the
hard-coded threshold values cON and cHIGH together with a settable factor fWi ∈ (0, 1]
and can be seen as ratio of the full interval [cON, cHIGH] in which linear velocity change
proportional to myo-signal strength is desired to be performed. In this way, a range
of proportionality suitable for the user’s myo-signals can be set individually, such
that prosthesis velocity can be controlled in a subtle, precise way more easily even if
provided myo-signals might not be very strong or capable of very fine variations.

So for myo-signals measured by electrode i, i = 1, 2, the Proportional Workspace,
within which a linear rise of velocity values proportional to the rise of myo-signal
strength is performed, is defined by

Wi = [cON, cON + (cHIGH − cON) · fWi ]

Remark: In the following, for reasons of readability, fW and W will be written
without myo-signal component indicating index and be interpreted dependent on
the context.

By default, fW = 1, so the default range of proportionality is the whole range
from cON to cHIGH, well seen in Figure 4.1.

The velocity v : VS −→ VV theoretically being indicated by provided myo-signal
s for every t ∈ T , but not yet considering the prosthesis’ mechanical position, i.e.
its current mechanical capability of actually performing movement can be seen in
Figure 4.13 respectively Equation 4.10.

v(s(·)) =





−vmax s ∈ SC1 ∧ s(·) ≥ max {x : x ∈ W}
− vmax(s(·)−cON)

fW ·(cHIGH−cON) s ∈ SC1 ∧ s(·) ∈ W
0 s(·) ≤ cON

vmax(s(·)−cON)
fW ·(cHIGH−cON) s ∈ SC2 ∧ s(·) ∈ W
vmax s ∈ SC2 ∧ s(·) ≥ max {x : x ∈ W}

(4.10)

The actual movement velocity of the prosthesis also depends on the prosthesis’
mechanical position. Therefore, it is necessary to define the range of mechanical
prosthesis movement H = [H0, H∞] within a mode, where H0 is the prosthesis’
mechanical position of maximal closeness respectively pronation, and H∞ its me-
chanical position of maximal openness respectively supination.
In this way the actual movement velocity can be formulated as function vOUT :
VV ×H −→ VV:

(v(s(·)), h) 7→
{
v(s(·)) if h ∈ (H0, H∞) ∨ (h = H0 ∧ v > 0) ∨ (h = H∞ ∧ v < 0)

0 else
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s(t)

v(s)(t)

cON

cHIGH

vmax

−vmax

vmin

cHIGH · fW1

cHIGH · fW2

FIGURE 4.13: Velocity function

4.4.3 Programs

Now that the prosthesis compilation of this project, i.e. the Michelangelo hand with
adapted rotational joint, and all its functionality components and features are de-
scribed in terms of mathematical sets and functions, there are all tools collected in
order to mathematically define what a prosthesis adjustment actually is.

A specific prosthesis adjustment is called Program and can be interpreted as a
tuple p in the set of all Programs P containing a specified Control Setting cs2, a
specified Switch SW ∈ SW and a vector ~x containing specified values for each
settable parameter related to Program p (Table 4.3)

p = (cs, SW, ~x)

Figure 4.14 demonstrates a possible arrangement of a Program. an Impulse with
signals of channel 1 provides access from opposition grasp to opposition grasp and
vice versa. Being in any of the two Grasp modes, a Switch to rotation mode is
triggered by 4-Channel switch method. Movement Transmission is generated by
the Control Setting MultiGrip, so in grasp modes the hand can by closed by chan-
nel 1 and opened by channel 2, in rotation mode it can be pronated by channel
1 and supinated by channel 2. Velocity behaves linearly within the Proportional
Workspace 4.4.2.3.

2As mentioned in Section 4.4.2.2, in this project cs is chosen – as it is in the majority of prosthesis
adjustment cases – as Control Setting MultiGrip.
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Impulse Channel 1

4-Channel Switch Method 4-Channel Switch Method

MultiGrip

Lateral Grasp Opposition Grasp

Rotation Mode

FIGURE 4.14: Possible program definition – Cocontraction to switch
between grasps, 4-Channel switch method to switch to rotation mode.

The aim of this thesis is now to design an algorithm, which determines all possi-
ble and sensible existing Programs for an arbitrary user by using the information of
his or her capability of generating myo-signals. With the help of this algorithm, a list
of reasonable ways of prosthesis adjustment can be provided to the orthopedic tech-
nician and can either serve as final setup or as foundation for vernier adjustment.
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Chapter 5

Optimization Problem –
Formulation

Chapter 4 provides all terms and tools in order to be able to continue thinking of a
way of designing an algorithm, solving the problem of prosthesis adjustment and
thus providing a remarkable progress in myo-prosthesis usage.

At the beginning of this Chapter (Section 5.1), explanations of the basic idea will
lead to the understanding, why given issue can be interpreted as a task of optimiza-
tion and how to receive relevant data and calculate required values in order to be
able to formulate an Optimization Problem, i.e. a suitable Objective Function and
a proper List of Constraints (Section 5.2) which describes given problem in a math-
ematically solvable way.
Before formulating the actual components of this thesis’ optimization problem in
Section 5.3.1, a brief overview of the main concept of optimization problem formu-
lation is given in Section 3 [38] [24].

5.1 Basic Idea

The settable parameters (Table 4.3) are the crucial factor having influence on what is
recognized as valid myo-signal pattern for prosthesis control. By asking the user to
generate all relevant myo-signal patterns, analyzing their shape and calculating val-
ues for all related settable parameters directly from these provided sample-patterns,
all settable parameters can be calculated easily.
The obstacle to overcome is on the one hand, that each settable parameter has a
bounded range of values it is allowed to be set to, so values calculated directly from
the user’s myo-signal sample patterns are not guaranteed to be accepted by the in-
ternal control unit.
On the other hand, certain settable parameters influence each other and therefore
potentially lead to recognition errors in myo-signal pattern recognition within the
internal control unit.

First mentioned problem leads to the idea of giving the amplify factor ~fA a dis-
tinctive role within the set of settable parameters. By finding an amplify factor,
which manipulates the user’s sample myo-signal patterns in a way, such that ev-
ery amplified myo-signal provides valid values for all related settable parameters,
the values can directly be taken from the parameter-calculating functions and writ-
ten to the internal control unit.
The problem of mutual influence of settable parameters together with latter hurdle
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lead to the idea of formulating a set of constraints, which define allowed mutual re-
lations between the settable parameters and further required properties, preventing
them from colliding or operating in a destructive way and which need to be held by
all calculated values for settable parameters contained in a Program. In this way, an
optimization problem, in particular a combination of a Linear (Mixed-Integer) Pro-
gram (Section 3.2) and a Combinatorial Optimization Problem (Section 3.3), can be
formulated, which, when expressed properly, can be solved by a variety of already
existing general purpose solvers.

Section 5.2 shows how to calculate values for each settable parameter, start-
ing by initially collecting relevant user data (Section 5.2.1), subsequently introduc-
ing all functions which calculate values for settable parameters from such sample
myo-signal patterns (Section 5.2.2). Excluded from this introduction of parameter-
calculating functions is the amplify factor ~fA, which is, due to its distinctive role,
being dealt with in Section 5.2.3 separately.

After all parameter-calculating functions are defined, they are used in Section
5.3.1 to set up the already mentioned list of constraints, controlling the behavior of
values of the settable parameters. A suitable target function, maximized subject to
latter list of constraints, finally leads to a suitable amplify factor and thus to values
for required settable parameters, also providing information about suitability of a
Program for the certain user, which was defined as the aim of this thesis.

5.2 Determination of Settable Parameters

Since a list of Programs is individually determined for each user and the choice of
switch methods and parameter values exclusively depend on his or her individual
myo-signals, it is essential to collect enough information about the user’s capability
of generating myo-signal patterns required for prosthesis control. These collected
information can then be used as input for certain parameter-calculating functions,
providing values for each settable parameter.

5.2.1 Data Collection

Within the process of data recording, the user is asked to generate all myo-signal
patterns and other movements involved in myo-prosthesis usage and control. Sur-
face electrodes measure the user’s sample myo-signals and gathered information is
stored for further processing. Table 5.1 lists all relevant myo-signal patterns and
movements the user is asked to generate, names their functionality and aims and
gives ideas about their properties.
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Pattern Name Abbr. Function Used for Generated by Remarks

No-
Movement-
signal

NMi

Calculation
of amplify
factor

Slight move-
ments of the
arm as when
walking or
gesticulating
(Figure 1.15)

Unconsciously
generated when
user makes
slight move-
ments. Both
components of
measured myo-
signal Must not
exceed speci-
fied tolerance
threshold in
order not to lead
to unintended
prosthesis activ-
ity.

-

Strong signal Si

Movement
Transmis-
sion

-

Contracting
observed mus-
cles with high
strength con-
tinuously for a
certain amount
of time (Figure
1.16)

Should reach
upper bound
of Proportional
Workspace
easily in or-
der to achieve
good control of
variety of speed.

Strong-Side
signal

SSi -
Calculation of
amplify factor

Unconsciously
generated
myo-signal
of a muscle
when providing
Strong signal
with its antago-
nist

-

Fast-Hand-
Movement
signal

FMi

Movement
Transmis-
sion

Calculation
of 4-Channel
border

Fast increasing,
strong contrac-
tion of observed
muscle

Important to
consider for 4-
Channel border
calculation, if
latter is con-
tained in a Pro-
gram, since rise
of 4-Channel
switch method
and fast hand
movements
have similar
myo-signal
patterns and
therefore po-
tentially lead to
misrecognition.
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Fast-Hand-
Movement-
Side signal

FMSi -
Calculation of
amplify factor

Unconsciously
generated
myo-signal
of a muscle
when providing
Fast-Hand-
Movement
signal with its
antagonist

Must not exceed
threshold of
recognition cON

earlier than ac-
tually intended
component of
myo-signal in
order to make
intended move-
ment possible

Short Co-
contraction
signal

CS
switch
method

Calculation
of Cocontrac-
tion border
(and Impulse
border)

Impulsive,
strong contrac-
tion, fast release
of both ob-
served muscles
synchronously
(4.7)

Often associ-
ated with a
quick clench
and release
of the (phan-
tom) fist or a
quick spread
and relax of
the (phantom)
fingers.

Long Cocon-
traction

CL
switch
method

Calculation
of Cocontrac-
tion border

Impulsive,
strong contrac-
tion of both ob-
served muscles
synchronously,
holding as long
as possible
(Figure 4.8)

-

Impulse
signal

Ii
switch
method

Calculation of
Impulse bor-
der

Impulsive,
strong contrac-
tion, fast release
of one observed
muscle sepa-
rately (Figure
4.9, Figure 4.10)

Often associated
with impulsive,
strong extension
respectively
flexion and fast
release of the
(phantom) wrist
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Impulse-Side
signal

ISi -

Calculation
of Impulse
border (and
Cocontrac-
tion border)

Unconsciously
generated
myo-signal
of a muscle
when provid-
ing Impulse
signal with its
antagonist

Can cause prob-
lems, when
generated
myo-signal
pattern of pro-
vided Impulse
signal holds
constraints
of Cocontrac-
tion switch
method (Figure
4.7). Therefore
also consid-
ered within
calculation of
Cocontraction
border.

4-Channel
signal

4Ci
switch
method

Calculation
of 4-Channel
border

Impulsive,
strong con-
traction of one
observed mus-
cle separately,
holding as long
as possible

Often associated
with strong ex-
tension respec-
tively flexion
and holding
of (phantom)
wrist.

4-Channel-
Side signal

4CSi - -

Unconsciously
generated
myo-signal
of a muscle
when provid-
ing 4-Channel
signal with its
antagonist

-

TABLE 5.1: Required user data for parameter calculations

Remark: In practice, it is obviously sensible to not only use one single myo-signal
sample per pattern, but gather a wide range of information by recording many tries
of the user performing each movement. This information can then be compressed
and a significant representative for each type of myo-signal pattern can be deter-
mined.
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5.2.2 Parameter Calculation

The set of settable parameters 4.3 consists of certain threshold values, the so-called
Switch-Method borders, defining bounds of value ranges or lengths of myo-signal
pattern’s duration and of multiplying factors influencing value ranges or myo-signals.
By analyzing the sample myo-signal patterns the user is asked to generate, values
for settable parameters can be discerned such that provided sample patterns would
be recognized appropriately, if these calculated values were adjusted within the Pro-
gram. In the following, functions, calculating values by using the user’s information
of sample myo-signal patterns, are introduced for each settable parameter.

5.2.2.1 Impulse-/4-Channel Border xIi

As its name indicates, the Impulse-/4-Channel border is a threshold used in both
Impulse and 4-Channel switch method definition (Equation 4.7, Equation 4.8). It
stipulates the value, a myo-signal has to exceed within a hard-coded amount of time
cT after previously exceeding the hard-coded threshold value of recognition, cON. In
this way, this settable parameter forms the only constraint influencing the 4-Channel
switch method, while it makes up one of the two constraints defining an Impulse.

In Programs, where both Impulse and 4-Channel switch method are part of the
Switch, it is necessary to consider both sample myo-signal patterns for parameter
calculation. If however only one of the switch methods is contained in the current
Program, considering information of the non-involved sample pattern would lead
to unnecessary additional restrictions to the value and should consequently be ig-
nored. Therefore, three different Impulse-/4-Channel border calculating functions
are introduced in the following, in later constraint formulation, the appropriate one
for each constraint must be chosen.

By determining the value of the user’s sample myo-signal pattern of a 4-Channel
switch method respectively an Impulse at the point in time, in which the period of
time cT has passed after the myo-signal firstly has exceeded cON, a value for Impulse-
/4-Channel border can be calculated, such that the user’s provided sample myo-
signal pattern would indeed be recognized properly when using this calculated
value as Impulse-/4-Channel border.

Remark: An Impulse-/4-Channel border is calculated separately for each elec-
trode, thus there are two settable parameters xI1 and xI2 providing two different
switch methods as access to functionality within prosthesis control.

Case 1 – Considering Impulse:

XI : SIi → R+
0

sI 7→





max
t∈[tsI0

,tsI0
+cT]

sI(t) · TOL%
I if tsI0

6= −∞

0 else

where TOL%
I ∈ (0, 1] is a factor, which eases, when set to a value ≤ 1, the strict

choice of the maximum value of the myo-signal within the function formulation. In
this way, Impulse stays a reliably recognized switch method, even when a user is
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getting tired during prosthesis use and myo-signal strength decreases.
It can be determined by experience and set to a value, which turns out to be com-
fortable for a majority of users.

cON

cOFF

cHIGH

t

s(t)

Impulse Channel 1

ts0 ts∞ts0 + cT

xI1

xSL

max
t∈[tsI0 ,tsI0+cT ]

sI(t)

FIGURE 5.1: Calculation of Impulse-/4-Channel
border for channel 1 (neglection of 4-Channel

switch method)

cON

cOFF

cHIGH

t

s(t)

Impulse Channel 2

ts0 ts∞ts0 + cT

xI1

xSL

max
t∈[tsI0 ,tsI0+cT ]

sI(t)

FIGURE 5.2: Calculation of Impulse-/4-Channel
border for channel 2 (neglection of 4-Channel

switch method)
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Case 2 – Considering 4-Channel: In case 4-Channel switch method is part of the
Program, it has turned out to be sensible to also consider the myo-signal of intended
fast movement. This is due to the fact that myo-signals of intended fast movement
and myo-signals of an intended 4-channel switch method have very similar shape
and therefore potentially lead to misinterpretation by the internal control unit, if
the user is not able to generate sufficiently big differences in myo-signal rise for
the two different patterns. Therefore, also the value of the myo-signal of fast hand
movement at this latter explained certain point in time is evaluated and leads to
following Impulse-/4-Channel border calculating function:

~XI : S4Ci × SFMi → R+
0

(s4C, sFM) 7→





max
t∈[ts4C0

,ts4C0
+cT]

s4C(t)+ max
t∈[tsFM0

,tsFM0
+cT]

sFM(t)

2 , if max
−′′−

s4C(t) > max
−′′−

sFM(t)

0, else

cON

cOFF

cHIGH

t

s(t)

ts4C0
= tsFM0

ts4C0
+ cT = tsFM0

+ cT

xIi
max

t∈[tsFM0
,tsFM0

+cT ]
sFM(t)

max
t∈[ts4C0

,ts4C0
+cT ]

s4C(t)

sFM
s4C

FIGURE 5.3: Calculation of Impulse-/4-Channel border (neglection
of Impulse information)

Remark: In this function’s definition, the distinction of cases plays a remark-
able role in the quality of the main algorithm. This can be understood by consider-
ing the situation, where the user is not able to generate a 4-Channel pattern which
rises faster than his or her usual fast hand movement myo-signal, i.e.:

max
t∈[ts4C0

,ts4C0
+cT]

s4C(t) < max
t∈[tsFM0

,tsFM0
+cT]

sFM(t).

In this case, a user would have troubles using a Program containing the 4-Channel
switch method, because a Switch would wrongly be triggered whenever the user
actually tries to generate a fast hand movement. Exactly this case is caught by previ-
ously defined function and labeled by the value 0. In this way, the algorithm is not
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only able to calculate an Impulse-/4-Channel border from appropriate myo-signals,
but can also tell whether or not the myo-signals are appropriate.

Case 3 – Considering Impulse and 4-Channel: In case both Impulse and 4-Channel
switch method are part of a Program, the Impulse-/4-Channel border is calculated
by both parameter-calculating functions XI and ~XI. A good final choice for Impulse-
/4-Channel border has turned out to simply be the minimum of both calculated val-
ues, since for this particular choice it is made sure that even the weaker myo-signal
is capable of being recognized.

5.2.2.2 Cocontraction Border xCi

The Cocontraction borders are threshold values – one for each myo-signal compo-
nent – stipulating the value, each myo-signal component has to exceed within the
hard-coded amount of time cT after previously exceeding the hard-coded value of
recognition, cON, so they play the exact analogous role as Impulse-/4-Channel bor-
der does in the case of Impulse respectively 4-Channel switch method.

The parameter-calculating function ~XC excepting a myo-signal ~sCS = (sCS1 , sCS2)
and returning its resulting Cocontraction borders as a vector xC = (xC1 , xC2) is de-
fined by

~XC : SCS → R+ × R+

~sCS 7→





( max
t∈[tsync

~sCS0
,t

sync
~sCS0

+cT]
sCSi(t))i=1,2 · TOL%

C , if tsync
~sCS0
6= −∞

0 else

cON

cOFF

cHIGH

t

s(t)

tsync~sCS0
tsync~s∞tsync~sCS0

+ cT

xC2

xC1

s1CS
s2CS

max
t∈[tsync~sCS0

,tsync~sCS0
+cT ]

sCS2
(t)

max
t∈[tsync~sCS0

,tsync~sCS0
+cT ]

sCS1
(t)

FIGURE 5.4: Cocontraction border calculation
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where TOL%
C is a tolerance factor leading to same results as TOL%

I in Section
5.2.2.1.

5.2.2.3 Signal Length xSL

The signal length, as well as the Impulse-/4Channel border, is another settable pa-
rameter which is contained in definitions of two different switch methods: Impulse
and Short Cocontraction. It is the threshold value, which stipulates the maximal tol-
erated amount of time, an Impulse signal respectively a Short Cocontraction signal
is excepted to assign values≥ cOFF after previously exceeding the hard-coded thresh-
old value of recognition, cON.

Impulse is generated by one single component of the myo-signal, while Cocon-
traction’s myo-signal pattern consists of both components synchronously. There-
fore, analogous to the situation of calculating Impulse-/4-Channel border (Section
5.2.2.1), three different functions are defined, depending on if either Impulse, Co-
contraction, or both of these two switch methods are contained in the Program.

By measuring the amount of time, a user’s sample Impulse respectively Cocon-
traction needs to deceed the hard-coded threshold value cOFF after previously exceed-
ing cON, a value for signal length can be calculated, such that the user’s provided
sample myo-signal pattern would indeed be recognized properly when using this
calculated value as signal length.

Case 1 – Considering Impulse:

XSL :SIi → R+

sI 7→
{∣∣∣tsI0

− tsI∞

∣∣∣ , if tsI0
6= −∞

0 else

cON

cOFF

cHIGH

t

s(t)

tsI0 tsI∞tsI0 + cT
∣∣∣tsI0 − tsI∞

∣∣∣

sI

FIGURE 5.5: Calculation of signal length (considering single compo-
nent only)
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Case 2 – Considering Cocontraction:

~XSL :SCS → R+

SCS 7→
{∣∣∣tsync

sCS0
− tsync

sCS∞

∣∣∣ , if tsync
sCS0
6= −∞

cON

cOFF

cHIGH

t

s(t)

tsyncsCS0
tsyncsCS∞

tsyncsCS0
+ cT

xC2

xC1

∣∣∣∣tsyncsCS0
− tsyncsCS∞

∣∣∣∣

si1CS
s2CS

FIGURE 5.6: Calculation of signal length (considering both compo-
nents)

Case 3 – Considering Impulse and Cocontraction: If both Impulse and Cocon-
traction are contained in a Program, values with both functions, XSL and ~XSL, are
calculated and the signal length is set to the maximum value of these two function
outputs in order to make sure, that indeed both switch methods can be recognized
by the internal control unit.

5.2.2.4 Long Hand Open Length xLHOL

As explained in Section 4.4.2.1 and shown in Figure 4.11, the Long Hand Open
Length is a threshold value, stipulating the amount of time the myo-signal’s second
component has to keep assigning values within a certain ratio of the Proportional
Workspace after having reached the prosthesis’ mechanical position of maximum
displacement H∞. So in order to find an appropriate value to set this parameter to,
the user’s Long Hand-Open signal needs to be analyzed, observing how long he is
capable of keeping up the myo-signal to required level. In case the user is limited
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at fulfilling this task, the Length has to be set to a sufficiently small value, analo-
gously to settable parameters such as Impulse-/4-Channel border or Cocontraction
border. If the user does not have any troubles keeping up his or her myo-signal to
required level for a long amount of time, the Length has to be set to a reasonably
small value, such that the user does not have to wait uncomfortably long until the
Switch is triggered.

5.2.2.5 Workspace Factor ~fW

The Workspace factor defines the upper bound of the range of myo-signal values, in
which movement velocity is transmitted to the prosthesis proportional to provided
myo-signal assigning values within this range (Figure 4.13). It is sensible to set upper
bound of latter to a value, the user can reach easily by his or her Strong signal, since
in this case he is very likely to be able to have full access on speed control.
By analyzing the user’s Strong signal, he was asked to generate during the process of
data recording, the strength of myo-signal can be judged by calculating a meaningful
statistic value from given myo-signal values and derive a value for the Workspace
factor from this value’s provided information 1.

Remark: The Proportional Workspace is separately adjustable for the two myo-
signal components, so the Workspace factor consists of two parameters, settable in-
dividually for each electrode channel.

cON

cOFF

cHIGH

t

s(t)

fW2

sS

Considered values for statistic calculation

cON + (cHIGH − cON) ·

FIGURE 5.7: Result for calculated Workspace factor – sufficiently strong myo-
signal, upper bound of Proportional Workspace can be set to cHIGH.

1The solution approach of this thesis considers the 95-Percentile as statistic value for parameter cal-
culation, i.e. the 95-Percentile of the user’s Strong signal values is determined and set as upper bound
of the Proportional Workspace. From these new bounds and the default range for the Proportional
Workspace, [cON, cHIGH], the Workspace factor can be calculated easily.
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cON

cOFF

cHIGH

t

s(t)

fW2

sS

Considered values for statistic calculation

cON + (cHIGH − cON) ·

FIGURE 5.8: Result for calculated Workspace factor – sufficiently strong myo-
signal, upper bound can be calculated from statistic value within range.

cON

cOFF

cHIGH

t

s(t)

fW1

sS

Considered values for statistic calculation

cON + (cHIGH − cON ) ·

FIGURE 5.9: Result for calculated Workspace factor – insufficient muscle strength,
no valid Workspace factor without adequate amplification.

5.2.3 Amplify-Factor ~fA

In Section 5.2.2, functions were introduced, which calculate values for settable pa-
rameters (Table 4.3) from sample myo-signal patterns the user was asked to generate
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in advance. So for these specifically calculated values – since the value is indeed cal-
culated from the pattern itself – the user’s contextless myo-signal pattern would ob-
viously be recognized correctly. In practice however, provided sample myo-signals
do not automatically lead to function outputs within the valid ranges for the inter-
nal control unit, or potentially interact with each other in an undesired way, leading
to erratic behavior in myo-prosthesis control. However, the one settable parame-
ter, which is capable of influencing the myo-signal itself, is the amplify factor. It is
able to intensify or weaken a myo-signal component-wise by fixed, but individually
settable values and thus can manipulate the user’s myo-signal patterns in a way,
such that their amplified versions might indeed lead to valid values when used as
parameter-calculating function inputs.
Therefore it is sensible to give the amplify factor a distinctive role within the calcula-
tion of settable parameters by setting the sights on finding an amplify factor, which
manipulates provided myo-signals in a way, such that a maximum of prosthesis’
functionality components with a maximum of comfort is accessible.

5.2.3.1 Basic Idea

This leads to the idea of compiling a list of constraints, defining desired behavior
of the user’s sample myo-signal patterns and related values for settable parameters
towards their valid ranges and towards each other and involving the amplify fac-
tor (Section 4.2) in a target function, requesting it to manipulate the user’s sample
myo-signal patterns in a way, such that the list of constraints is held, thus making
given problem an optimization problem. In the following, before mathematically
precise formulations are given in Section 5.3 the basic idea of this thesis’ approach is
sketched.

Programs: In myoelectric prosthesis adjustment, there is only a small number of
reasonable possibilities to define Switches and Control Settings, i.e. Programs.
Therefore it is sensible to break up given problem of prosthesis adjustment, consid-
ering only one Program at a time. For each separate Program, the algorithm should
then determine whether or not an appropriate amplify factor exists, such that this
certain Program is executable for the user’s amplified myo-signals. In this way, not
only the complexity of the problem shrinks many times over, but also unnecessary
considerations of parameter values, which are redundant for a specific Program and
potentially lead to a mistaken disqualification of latter, are avoided.

Constraints: Since a user’s myo-signal can be interpreted as an element of a set of
functions providing real numbers as output for every t ∈ T ⊂ R (Section 4.1), since
all outputs of the parameter-calculating functions are values for settable parameters,
which themselves are elements of R too (Section 5.2.2), and since given valid ranges
for these values are nothing but subsets of real numbers or ordinary intervals (Table
4.3), all these elements can be interrelated and their desired behavior and interaction
can be formulated as mathematical constraints.

Combined with the idea of breaking up the problem in separate Programs, a
compilation of Hard Constraints for each separate Program can be established, which
obligatory need to be fulfilled by the user’s amplified myo-signal patterns in order
to guarantee, that the Program is executable. Additionally, further restrictions to
the user’s myo-signal patterns can be postulated, which are admittedly unnecessary
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concerning executability, but would indeed enhance the comfort of prosthesis con-
trol. These Soft Constraints, when involved properly in the formulation, potentially
lead to even better results while at the same time they do not disturb the actual pro-
cess of problem solution.

Let therefore p := (cs, SW, ~x) ∈ P be a Program, SQ the set of myo-signals of
signal pattern Q and sUQ ∈ S ∪ S2 the representant of user U ’s provided sample
pattern2 of signal pattern Q. Furthermore, let {SSWk

: k = 1, . . . , |SW |} ⊆ SW be
the set of all switch methods contained in SW , thus sUSWk

a representant of user U ’s
recorded sample pattern of switch method SWk for each k = 1, . . . , |SW |.
Then, the list of Hard Constraints for Program p can be sketched in the following
way:

~FA(sUSWk
) ∈ SSWk

, k = 1, . . . , |SW | (5.1)
~FA(sUSWk

) /∈ SSWl
, k 6= l (5.2)

FAi(s
U
Si

) ∈ [TOL], i = 1, 2 (5.3)

FAi(s
U
NMi

) ≤ TOLNMi , i = 1, 2 (5.4)

where [TOL] is an interval, defining the tolerated range of the user’s Strong sig-
nal, which has to be set reasonably in advance in order to make sure that on the one
hand, the user’s myo-signal is strong enough to have access to prosthesis control per
se, and on the other hand does not have too strong myo-signals, to also have good
access on velocity control, and where TOLNMi ∈ R+ is a threshold value, which has
to be set reasonably in advance, such that too noisy or strong No Movement Signals
of the user are recognized and an erratic trigger of any functionality of the prosthesis
can be avoided.

In words: Amplified sample myo-signal patterns must have several properties,
e.g. Equation 5.1 demands from the user’s amplified sample myo-signal pattern of
switch method SWk to hold all constraints in order to indeed be element of switch
method SWk, while Equation 5.2 postulates, that an amplified sample myo-signal
pattern of one switch method must not hold all constraints defining another switch
method, i.e. must be element of one and only one switch method.

Objective Function: In upper constraint formulation, the amplify factor is still an
unknown, settable parameter. All sample patterns sUQ, as well as [TOL] and cON are
given quantities and the sets of signals SQ are defined by settable parameters, whose
values themselves again depend on the myo-signal patterns, i.e. given sUQ. Also, due
to Equation 5.3 and 5.4, valid values of amplified myo-signals are bound to a finite
interval.
Therefore, and because the height of the amplify factor – within the valid range –
correlates with optimality of prosthesis control in a linear way, the target function of
desired optimization program with respect to given constraints can be sketched as
the amplify factor:

Maximize ~FA with respect to (5.1)− (5.4)

2Note, that a sample pattern sUQ of switch method Q does not automatically mean sUQ ∈ SQ, since
sUQ is only a provided try – not necessarily a valid one – of the user to generate switch method Q.
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Hard Constraints

Soft Constraints

Neglectable Constraints

Program p

Amplify Factor

FIGURE 5.10: Inappropriate amplify factor –
not all obligatory hard constraints are held,

no guarantee for program executability

Hard Constraints

Soft Constraints

Neglectable Constraints

Program p

Amplify Factor

FIGURE 5.11: Inappropriate amplify factor –
not all obligatory hard constraints are held,

no guarantee for program executability

Hard Constraints

Soft Constraints

Neglectable Constraints

Program p

Amplify Factor

FIGURE 5.12: Appropriate amplify factor – all
hard constraints plus a number of enhancing

soft constraints are held
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Figure 5.10 - 5.12 show the idea of finding an appropriate amplify factor with
respect to obligatory Hard Constraints and unessential, but enhancing Soft Con-
straints. The grey-labeled redundant constraints can be ignored and should just em-
phasize, that not every Program contains every settable parameter in its formulation,
thus, in the following approach, when a complete list of constraints, considering the
whole system, is set up, subsets of Hard Constraints and Soft Constraints have to
be selected for each Program, which then form this Program’s specific optimization
problem. Amplify factors of Figure 5.10 and 5.11 are not set to valid values, since not
all of red-labeled Hard Constraints are fulfilled, which obligatory have to be held to
guarantee executability to the user. In Figure 5.12, a value for the amplify factor has
been found, such that all Hard Constraints, and even some of the non-obligatory
Soft Constraints are held. So the user’s myo-signals can be amplified by determined
amplify factor in order to calculate valid values for all settable parameters which are
relevant for this Program.

5.3 Prosthesis Adjustment Problem – Formulation

An anatomical idea of the upper extremity and treatments in cases of amputation
has been given in Section 1, Sections 2 and 4 have introduced and modeled myo-
electric prostheses, their functionality and controllability components. Furthermore,
the mathematical foundation of optimization problems and their strategies of being
formulated and solved have been given in Section 3. With this given basis of knowl-
edge, the approach of bringing given problem to a form, which is feasible of being
solved by available algorithmic software tools, can finally be started.
In the following, for reasons of clarity and comprehensibility, instead of listing a
summary of all constraints, which arise within the range of possible programs for
hand prosthesis control, one exemplary program is picked, for which the optimiza-
tion program will be derived in detail. Constraints for Programs, which contain
other components of control methods, can analogously be modeled.

5.3.1 Constraints and Objective Function

Considered will be the Program shown in Figure 4.14, which on the one hand uses
the Control Setting Multigrip in order to perform general movements within the
modes, and on the other hand contains two different switch methods – Impulse of
channel 1, and 4-Channel switch method for both channel 1 and channel 2 – in order
to switch between lateral grasp, opposition grasp and rotation mode.

TOLNM ∈ [0, cON] ∪W Maximum tolerated value of No Movement Signal NMi

TOLmax
S ∈ [cON,∞) Weak maximum tolerated value of Strong Signal Si

TOLmax∗
S ∈ [cON,∞) Strict maximum tolerated value of Strong Signal Si

TOLmin
S ∈ [cON,∞) Minimum tolerated value of Strong Signal Si

TOLmax
I ∈ [cON,∞) Maximum tolerated value of Impulse/4-Channel border xIi

TOLmin
I ∈ [cON,∞) Minimum tolerated value of Impulse/4-Channel border xIi

TOLmax
SL Maximum tolerated value of signal length xSL

TABLE 5.2: Tolerance thresholds

This means, all constraints required to be held by the settable parameters of the
just mentioned control patterns must be postulated as inequalities and thus generate
an optimization program of the form 3.2, such that
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FAi(Si) ∈ [TOLmin
S ,TOLmax

S ] (5.5)
t0(FAi(Si)) ≤ t0(FAj (SSi)) (5.6)

FAi(NMi) ∈ [0,TOLNM] (5.7)
FAi(Ii) ∈ SIi (5.8)
FAi(Ii) /∈ SSW, SW 6= Ii (5.9)
FAi(4Ci) ∈ S4Ci (5.10)
FAi(4Ci) /∈ SSW, SW 6= 4Ci (5.11)

for i, j = 1, 2, i 6= j, with notations for switch methods of Table 5.1 respectively
sets of switch methods of Table 4.4, for the Amplifier of Section 4.2, for tolerance
thresholds of Table 5.2, and the ≤ operator as well as the amplifying function to
be interpreted point-wise. MultiGrip requires the user’s No-Movement myo-signal
NMi of channel i, amplified by amplify factor Fi, to stay below a sensible threshold
TOLNMi (Equation 5.7), such that no unintended movement is generated. Further-
more, it demands the amplified Strong Signal Si to be capable of resting in a sensible
range, such that it is guaranteed to be powerful enough to exploit a maximum of
velocity control, but at the same time not exceeding Proportional Workspace (Sec-
tion 4.4.2.3) too easily in order to keep velocity well controllable (Equation 5.5). At
the same time it has to be ensured that, when movement by a certain channel i is
intended to be generated, Strong Signal Si of channel i passes the threshold of recog-
nition cON earlier than Strong Side Signal SSi (Equation 5.6), since otherwise erratic
hand opening instead of hand closing, pronation instead of supination, or vice versa,
would be performed.
The two switch methods – Impulse and 4-Channel switch method – on the other
side both require the user’s amplified myo-signals to exceed the settable Impulse
border xIi (Table 4.3) within the amount of time defined by counter cT (Table 4.2).
Additionally, a last constraint occurs from Impulse switch method, demanding from
the user’s amplified Impulse myo-signal to undershoot the theshold cOFF within the
settable signal length xSL. These restrictions ensure that the current switch method
is indeed being recognized (Equation 5.8) and leads to prosthesis action. Since the
considered Program does not contain any other switch method, potentially colliding
with Impulse and 4-Channel switch method, and these two switch methods them-
selves do not influence each other erratically, Equation 5.9 and 5.11 do not require
further consideration in upcoming constraint formulation.

These considerations lead to a set of constraints C for the currently considered
Program, consisting of constant values (Table 4.2), of the previously defined toler-
ance threshold values (Table 5.2), parameter calculating functions (Section 5.2.2) and
the settable parameters (Table 4.3), with the amplify factor having the distinctive
role of being the one main parameter to be capable of influencing the whole system
(Section 5.2.3).

5.3.1.1 Continuous Approach

By formulating given task with the help of previous reflections, we can state the
following optimization problem:
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max
fAi

2∑

i=1

fAi (O1)

subject to:

FAi(Si) ≥ TOLmin
S (C1)

FAi(Si) ≤ TOLmax
S (C2)

t0(FAi(Si)) ≤ t0(FAj (SSi)) (C3)

FAi(NMi) ≤ TOLNM (C4)
XI (FAi(Ii)) ≥ TOLmin

I (C5)
XI (FAi(Ii)) ≤ TOLmax

I (C6)
XSL (FAi(Ii)) ≤ TOLmax

SL (C7)
~XI (FAi(Ii),FAi(FMi)) ≥ TOLmin

I (C8)
~XI (FAi(Ii),FAi(FMi)) ≤ TOLmax

I (C9)
fAi ∈ VA (D1)

for i, j = 1, 2, i 6= j. Note that the decision variables to be found are amplify
factors fAi , (Section 3.1) of this optimization problem are contained in amplifying
function FAi (Section 4.2). This fact by itself would not cause troubles, since the
Amplifier as a multiplicative function does not lead to any non-linearity of the con-
straints. The problem arises, when non-linear parameter calculating functions are
necessary to be added as constraints.

Problem of Non-Commutativity: Taking a closer look at postulated inequalities
C1-C9, it is getting clear that problems occur from the fact, that in general

X(FAi(S)) 6= FAi(X(S)),

i.e., amplifying function FAi does not commute with a parameter calculating
function X for a user’s myo-signal S in general. This means, postulated inequali-
ties are not capable of being formulated towards the linear form 3.2 with constraint
matrix A of constant values and a decision vector containing decision variables fAi

of this optimization problem.
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5.3.1.2 Naive Enumerative Approach

Data Recording

consider program
p[j] ∈ P

j == |P|?

apply fl to recorded
sample myo-signals

calculate relevant val-
ues xX(fl(S)) of ampli-
fied myo-signals

l == 1 ?l −−

mark program p[j] as in-
feasible

j + +

mark program p[j] as
feasible.
store latest fl as op-
timal amplify factor
value.

generate list of feasi-
ble programs

l = |VA|

j = 1

xX(fl(S)) ∈ [TOLxX(fl(S))
] ?

T F

T
F

T

F

FIGURE 5.13: Naive enumerative approach – flowchart

In our real-life application, amplify factor fAi can only be set to a discrete, finite
number of different values (Remark Section 4.2). Therefore, one unsophisticated,
but however well-working and easily implementable way of overcoming the issue
of non-linearity is the brute force approach of solving the maximization problem by
enumeratively going through every available value for amplify factor fAi , starting
from the maximum value, gradually going down to the minimum value. By apply-
ing it to the user’s myo-signals, determining required values with parameter calcu-
lating functions and checking for validity of occurring results, the algorithm finds
a feasible solution by stopping at the first amplify factor to make all constraints be
held, or recognizes infeasibility (Figure 5.13)3. In practice however, this naive enu-
meration is only reasonable in case of a small domain for amplify factors fAi .

5.3.1.3 Linearized Approach

In the mathematical field of optimization, a lot of methods have been discovered
and developed (Section 3) in order to solve problems of higher complexity and size
and have been implemented in a variety of programming languanges and computer
applications. Therefore it is desirable to overcome former mentioned difficulty of
non-commutativity (Section 5.3.1.1) and model given problem towards a formula-
tion, e.g. to a LP or a MIP formulation, which can efficiently be handed by existing
program solvers.

Thus, pursuing considerations towards this aim, the fact of the amplify factors
taking on values of a discrete, finite set only, leads to the introduction of boolean

3This algorithm is also part of current prototype software for automated prosthesis adjustment.
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aid variables f li ∈ {0, 1}, i = 1, 2, l = 1, . . . , |VA|, related to the available values for
amplify factor fAi by running index l.
By pre-calculating every relevant information from the user’s amplified myo-signals
for each available amplify factor value in VA, all required values for setting up linear
inequalities and a linear objective function can be stored, thus providing all compo-
nents in order to set up a linear mixed-integer program of the form 3.5. With storage
xX(fl(S)) for the value of the settable parameter x, calculated by parameter calculat-
ing function X, from the user’s myo-signal S, amplified by the l-th value fl in the
list of available amplify factor values VA, and a sufficiently large Big M: M ∈ R+,
constraints and objective function can be formulated as follows.

max
f l
i

2∑

i=1

|VA|∑

l=1

(
f li ·l
)

(O2)

subject to:

|VA|∑

l=1

f li ·l · 0.25 · Si ≥ TOLmin
S (C1)

|VA|∑

l=1

f li ·l · 0.25 · Si ≤ TOLmax
S (C2)

f li · x~t0(fl(Si)) ≤ f lj · x~t0(fl(SSi)) + M · (1− f lj) (C3)
|VA|∑

l=1

f li ·l · 0.25 ·NMi ≤ TOLNM (C4)

|VA|∑

l=1

f li · xXI(fl(Ii)) ≥ TOLmin
I (C5)

|VA|∑

l=1

f li · xXI(fl(Ii)) ≤ TOLmax
I (C6)

|VA|∑

l=1

f li · xXSL(fl(Ii)) ≤ TOLmax
SL (C7)

|VA|∑

l=1

f li · x~XI(fl(Ii),(fl(FMi)) ≥ TOLmin
I (C8)

|VA|∑

l=1

f li · x~XI(fl(Ii),(fl(FMi)) ≤ TOLmax
I (C9)

|VA|∑

l=1

f li ≥ 1 (C10)

|VA|∑

l=1

f li ≤ 1 (C11)
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f li ∈ {0, 1} (D1)

for i, j = 1, 2, i 6= j, l = 1, . . . , |VA|. This set of constraints consists of data, gener-
ated by all possibly selectable amplify factor values. ”Activation” respectively ”inac-
tivation” of the part of a constraint, which is set up by calculations with myo-signals
amplified by amplify factor value fl, is controlled by the corresponding boolean aid
variable f li . With this formulation, the optimization yields the maximum amplify
factor value that satisfies all given constraints, by setting the value of the boolean
variable, which corresponds to determined optimal amplify factor value, to 1. Con-
straints C10-C11 ensure that boolean variables corresponding to all other available
amplify factor values remain 0, such that only one amplify factor value per channel
contributes to resulting maximization of objective function at the end of optimiza-
tion process, i.e. only one value per channel is being determined as optimal amplify
factor for prosthesis adjustment.

5.3.1.4 Linearized Approach with Soft Constraints

As mentioned in Section 5.2.3.1, a Program’s optimization program does not neces-
sarily consist of obligatorily satisfied hard constraints only, but can also be enhanced
by potentially fulfilled soft constraints. For currently considered Program for exam-
ple, constraint C2 makes use of tolerance threshold TOLmax

S to tie the maximum tol-
erated value of the user’s Strong Signal S to a certain domain, in which the prosthesis
is controllable. This upper bound of the range defined by TOLmax

S indeed leads to a
sufficiently working amplify factor in case of feasibility of the optimization problem,
but might be set very generously however. So the choice of a tighter bound would
enhance controllability, in case the user’s myo-signals are capable of satisfying even
these tougher restrictions. Therefore, tolerance threshold TOLmax∗

S (Table 5.2) can be
used to formulate a soft constraint, tying the user’s strong signal to a tighter range,
thus potentially leading to another amplify factor value, which might yield even bet-
ter control to a user, who is capable of more precise variation of myo-signal strength.

So the aim is to find a way to distinguish between hard- and soft constraints
within the formulation of inequalities and related objective function, such that given
problem again receives the form of a linear mixed-integer program 3.5. This aim
makes it necessary to postulate a fixed, linear order within the set of constraints C:
C1 4 C2 4 . . . 4 C|C|, in order to be capable of tying them to boolean aid variables
c1i , c

2
i , . . . , c

|C|
i ∈ {0, 1} and appropriately chosen priority values c1i , c

2
i , . . . , c

|C|
i ∈ R

(Section 5.3.2), ranking the importance of all soft constraints within the subset of
soft constraints Csoft ⊂ C. Together with the subset of hard constraints Chard ∈ C,
the set of indices idx(Chard) and idx(Csoft) of hard constraints respectively soft con-
straints within predefined linear order, and a sufficiently large M̃ ∈ R+, the system
of constraints and corresponding objective function turn to the form:

max
cni

|C|∑

n=1

(cni c
n
i ) (O3)

subject to:
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M̃ · (1− c1i ) +

|VA|∑

l=1

f li ·l · 0.25 · Si ≥ TOLmin
S (C1)

−M̃ · (1− c2i ) +

|VA|∑

l=1

f li ·l · 0.25 · Si ≤ TOLmax
S (C2)

−M̃ · (1− c3i ) + f li · x~t0(fl(Si)) ≤ f lj · x~t0(fl(SSi)) + M · (1− f lj) (C3)

−M̃ · (1− c4i ) +

|VA|∑

l=1

f li ·l · 0.25 ·NMi ≤ TOLNM (C4)

M̃ · (1− c5i ) +

|VA|∑

l=1

f li · xXI(fl(Ii)) ≥ TOLmin
I (C5)

−M̃ · (1− c6i ) +

|VA|∑

l=1

f li · xXI(fl(Ii)) ≤ TOLmax
I (C6)

−M̃ · (1− c7i ) +

|VA|∑

l=1

f li · xXSL(fl(Ii)) ≤ TOLmax
SL (C7)

M̃ · (1− c8i ) +

|VA|∑

l=1

f li · x~XI(fl(Ii),(fl(FMi)) ≥ TOLmin
I (C8)

−M̃ · (1− c9i ) +

|VA|∑

l=1

f li · x~XI(fl(Ii),(fl(FMi)) ≤ TOLmax
I (C9)

M̃ · (1− c10i ) +

|VA|∑

l=1

f li ≥ 1 (C10)

−M̃ · (1− c11i ) +

|VA|∑

l=1

f li ≤ 1 (C11)

−M̃ · (1− c12i ) +

|VA|∑

l=1

f li ·l · 0.25 · Si ≤ TOLmax∗
S (C12)

∑

cni ∈Chard

cni ≥ |Chard| (C13)

∑

cni ∈Chard

cni ≤ |Chard| (C14)

f li ∈ {0, 1} (D1)
cni ∈ {0, 1} (D2)

for i, j = 1, 2, i 6= j, l = 1, . . . , |VA|. Constraints C13-C14 ensure, that all hard
constraints remain obligatory conditions, since it forces all boolean aid variables,
which are related to hard constraints, to take on value 1. The sum occurring in ob-
jective function now, which consists of newly introduced boolean aid variables and
connected priority values, each related to a specific constraint in the ordered list of
constraints C, leads to acquiescence of a soft constraint, whenever it does not cause
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any neglection of another obligatory constraint, or a soft constraint with higher pri-
ority. Latter is achieved by making the right choice of priority value for each con-
straint, such that, within the objective function’s additional summation, one soft
constraint of higher importance is given preference to an arbitrary number of soft
constraints with lower priority (Section 5.3.2).
So the basic idea of finding an optimal prosthesis adjustment by maximizing the am-
plify factor values subject to given, obligatory constraints has changed to the idea of
maximizing the total number of satisfied constraints, with all hard constraints still
remaining obligatory, thus potentially providing even more functionality and com-
fort to the user, even with lower amplify factor values, since obligatory constraints
still force amplify factor values to be chosen in appropriate ranges.

5.3.1.5 Generalized, Linearized Approach with Soft Constraints

The so far formulated optimization problem only considered data from one sample
myo-signal per movement. In practice however, it is reasonable to think of a way
in order to guarantee that no outliers, occurring during data recording, distort the
optimization process or lead to a mistaken infeasibility of the optimization program.

One way of treating this issue is to collect a broader number of sample myo-
signals of each required signal pattern and use statistical methods in order to gen-
erate solid representatives for each movement. These representatives, containing a
much wider range of information about the user’s average myo-signals, serve for
further calculation of required data and lead to more stable results in the formally
introduced formulation of given problem4.

Another approach is again to collect a broader number of sample myo-signals
of each movement, summarizing gathered information in several data sets, which
themselves consist of one sample myo-signal per required movement only. By for-
mulating the optimization problem towards the idea of finding amplify factor val-
ues, such that a maximum number of data sets provide feasibility of corresponding
optimization program, a mixed-integer program can be formulated, which again
does not only consider information of one single sample myo-signal only, but a much
wider range of information, leading to way more significant optimization results in
practice.

With the set U of all data sets Ui ∈ U , i = 1, . . . , |U|, again following a linear
order U1 4 U2 4 . . . 4 U|U|, corresponding boolean aid variables ui ∈ {0, 1}, i =

1, . . . , |U|, a sufficiently large M̂ ∈ R and the newly introduced superscript index q
for sample myo-signals Sq and newly occurring within the notation of the storage
xq

X(fl(S)) (Section 5.3.1.3), emphasizing its calculation from myo-signals of the q-th
data set, constraints and objective function turn to:

max
f l
i ,c

n
i ,uq

|U|∑

q=1


uq +

|C|∑

n=1

(cni c
n
i )


 (O4)

4This approach is also part of current prototype software for automated prosthesis adjustment.
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subject to:

M̂ · (1− uq) + M̃ · (1− c1i ) +

|VA|∑

l=1

f li ·l · 0.25 · Sq
i ≥ TOLmin

S (C1)

−M̂ · (1− uq)−M̃ · (1− c2i ) +

|VA|∑

l=1

f li ·l · 0.25 · Sq
i ≤ TOLmax

S (C2)

−M̂ · (1− uq)−M̃ · (1− c3i ) + f li · xq~t0(fl(Si))
≤ f lj · xq~t0(fl(SSi))

+ M · (1− f lj) (C3)

−M̂ · (1− uq)−M̃ · (1− c4i ) +

|VA|∑

l=1

f li ·l · 0.25 ·NMq
i ≤ TOLNM (C4)

M̂ · (1− uq) + M̃ · (1− c5i ) +

|VA|∑

l=1

f li · xqXI(fl(Ii))
≥ TOLmin

I (C5)

−M̂ · (1− uq)−M̃ · (1− c6i ) +

|VA|∑

l=1

f li · xqXI(fl(Ii))
≤ TOLmax

I (C6)

−M̂ · (1− uq)−M̃ · (1− c7i ) +

|VA|∑

l=1

f li · xqXSL(fl(Ii))
≤ TOLmax

SL (C7)

M̂ · (1− uq) + M̃ · (1− c8i ) +

|VA|∑

l=1

f li · xq~XI(fl(Ii),(fl(FMi))
≥ TOLmin

I (C8)

−M̂ · (1− uq)−M̃ · (1− c9i ) +

|VA|∑

l=1

f li · xq~XI(fl(Ii),(fl(FMi))
≤ TOLmax

I (C9)

M̂ · (1− uq) + M̃ · (1− c10i ) +

|VA|∑

l=1

f li ≥ 1 (C10)

−M̂ · (1− uq)− M̃ · (1− c11i ) +

|VA|∑

l=1

f li ≤ 1 (C11)

−M̂ · (1− uq)−M̃ · (1− c12i ) +

|VA|∑

l=1

f li ·l · 0.25 · Sq
i ≤ TOLmax∗

S (C12)

M̂ · (1− uq) +
∑

cni ∈Chard

cni ≥ |Chard| (C13)

−M̂ · (1− uq) +
∑

cni ∈Chard

cni ≤ |Chard| (C14)

f li ∈ {0, 1} (D1)
cni ∈ {0, 1} (D2)
uq ∈ {0, 1} (D3)

for i, j = 1, 2, i 6= j, l = 1, . . . , |VA| and q = 1, . . . |U|. Whenever no amplify
factor values within the optimization program, generated by data set q, can be found,
such that all obligatory hard constraints are satisfied, boolean variable uq receives
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value 0, thus indicating, that data set q’s optimization program is infeasible. In case
of feasibility, the second sum of the objective function over the boolean variables
multiplied by related priority values, corresponding to the soft constraints, ensures
the inclusion of any further non-obligatory constraint to the optimization process,
which does not disturb the obligatory part of the problem.

5.3.1.6 Generalized Interpolation Approach with Soft Constraints

So far, all discussed approaches were based on the simplification of using the fi-
nite set of amplify factor values VA, which is sufficient in practice, since only these
specific values are manually settable by an orthopedic technician within Ottobock’s
Data Station (Figure 2.2). Theoretically however, the prosthesis’ internal control unit
would be capable of handling a much wider range of amplify factor values. This
arises the question of a way to formulate given problem as optimization program,
allowing the amplify factor values, as being part of the set of decision variables,
namely the decision variables of actual interest, to take on continuous values. This
however can just be achieved by compromises due to initially mention problem of
non-commutativity of parameter calculating functions (Section 5.3.1.1).

One way to simulate continuity up to a certain degree is, to make use of linear in-
terpolation of all functions, calculating required data, in composition with Amplifier
function ~FA and use resulting, continuous, piece-wise linear data in order to replace
formerly discrete parts of the optimization program.

f3f1 f2 f|VA|

xX(f2(S))

... ... ...... flf4

xX(f1(S))

xX(f3(S))

xX(f4(S))

xX(fl(S))

xX(f|VA|(S))

...

...

...

...

r3i = 1

F 3
i ∈ [f3, f4]

Active Segment

Amplify Factor

Function Value

f0

FIGURE 5.14: Linear interpolation of data calcuating function X
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As shown in Figure 5.14, a possible choice for the interpolation’s decomposition
points are these being in the set of available amplify factor values VA. For all values
fl ∈ VA, sample myo-signal S of a certain movement can be amplified, desired values
of function X can be determined and stored in xX(fl(S)), in order to linearly interpolate
them by the function:

X̄(F ) =
fl+1 − F
fl+1 − fl

xX(fl(S)) +
F − fl
fl+1 − fl

xX(fl+1(S)) (5.12)

for F ∈ [fl, fl+1], l = 1, . . . , |VA| − 1. By replacing all discrete values xX(fl(S))

by linear segments 5.12 within the set of constraints and introducing boolean aid
variables rli ∈ {0, 1} corresponding to the segment between amplify factor value
fl and fl+1 of channel i, formally aiding boolean decision variables f li , indicating
the certain amplify factor value being chosen by the optimization process by either
taking on value 0 or 1, can now be substituted by continuous decision variables
F l
i ∈ [fl, fl+1], l = 1, . . . , |VA| − 1, i = 1, 2.

Considering left-hand-side of constraint C6, substitution of all just mentioned
components would lead to:

...+

|VA|−1∑

l=1

X̄I(F
l
i ) · rli =

...+

|VA|−1∑

l=1

(
fl+1 − F l

i

fl+1 − fl
xq

XI(fl(Ii))
+

F l
i − fl

fl+1 − fl
xq

XI(fl+1(Ii))

)
· rli =

...+

|VA|−1∑

l=1

(
fl+1 · xqXI(fl(Ii))

− fl · xqXI(fl+1(Ii))

fl+1 − fl

)
rli +

|VA|−1∑

l=1

(
xq

XI(fl+1(Ii))
− xq

XI(fl(Ii))

fl+1 − fl

)
·
non−linearity︷ ︸︸ ︷
rli · F l

i

with additional constraints

|VA|∑

l=1

rli = 1

in order to guarantee, that only one segment of the amplify factor values is active,
i.e. one value for amplify factor contributes to given sum. Occurring non-linearity in
the second sum can be reformulated towards a linear term by substitution F̃ l

i = rli ·F l
i

and additional constraints as explained in Section 3.4.5.2.

This linearization can analogously be proceeded for every constraint of former
optimization program, the set of constraints and related objective function turn to
the form:

max
uq ,cni

|U|∑

q=1


uq +

|C|∑

n=1

(cni c
n
i )


 (O5)
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subject to:

M̂ · (1− uq) + M̃ · (1− c1i ) +

|VA|∑

l=1

F̃ l
i · Sq

i ≥ TOLmin
S (C1)

−M̂ · (1− uq)− M̃ · (1− c2i ) +

|VA|∑

l=1

F̃ l
i · Sq

i ≤ TOLmax
S (C2)

−M · (1− rlj)−M̂ · (1− uq)−M̃ · (1− c3i )+
|VA|−1∑

l=1

(
fl+1 · xqt0(fl(Si))

− fl · xqt0(fl+1(Si))

fl+1 − fl

)
rli +

|VA|−1∑

l=1

(
xq

t0(fl+1(Si))
− xq

t0(fl(Si))

fl+1 − fl

)
· F̃ l

i ≤

|VA|−1∑

l=1

(
fl+1 · xqt0(fl(SSi))

− fl · xqt0(fl+1(SSi))

fl+1 − fl

)
rli +

|VA|−1∑

l=1

(
xq

t0(fl+1(SSi))
− xq

t0(fl(SSi))

fl+1 − fl

)
· F̃ l

i

(C3)

−M̂ · (1− uq)−M̃ · (1− c4i ) +

|VA|∑

l=1

F̃ l
i ·NMq

i ≤ TOLNM (C4)

M̂ · (1− uq) + M̃ · (1− c5i )+
|VA|−1∑

l=1

(
fl+1 · xqXI(fl(Ii))

− fl · xqXI(fl+1(Ii))

fl+1 − fl

)
rli +

|VA|−1∑

l=1

(
xq

XI(fl+1(Ii))
− xq

XI(fl(Ii))

fl+1 − fl

)
· F̃ l

i ≥ TOLmin
I

(C5)

−M̂ · (1− uq)− M̃ · (1− c6i )+
|VA|−1∑

l=1

(
fl+1 · xqXI(fl(Ii))

− fl · xqXI(fl+1(Ii))

fl+1 − fl

)
rli +

|VA|−1∑

l=1

(
xq

XI(fl+1(Ii))
− xq

XI(fl(Ii))

fl+1 − fl

)
· F̃ l

i ≤ TOLmax
I

(C6)

−M̂ · (1− uq)−M̃ · (1− c7i )+
|VA|−1∑

l=1

(
fl+1 · xqXSL(fl(Ii))

− fl · xqXSL(fl+1(Ii))

fl+1 − fl

)
rli +

|VA|−1∑

l=1

(
xq

XSL(fl+1(Ii))
− xq

XSL(fl(Ii))

fl+1 − fl

)
· F̃ l

i ≤ TOLmax
SL

(C7)

M̂ · (1− uq) + M̃ · (1− c8i )+
|VA|−1∑

l=1

(
fl+1 · xq~XI(fl(Ii),(fl(FMi))

− fl · xq~XI(fl+1(Ii),(fl+1(FMi))

fl+1 − fl

)
rli+

|VA|−1∑

l=1

(
xq~XI(fl+1(Ii),(fl+1(FMi))

− xq~XI(fl(Ii),(fl(FMi))

fl+1 − fl

)
· F̃ l

i ≥ TOLmin
I (C8)

−M̂ · (1− uq)−M̃ · (1− c9i )+
|VA|−1∑

l=1

(
fl+1 · xq~XI(fl(Ii),(fl(FMi))

− fl · xq~XI(fl+1(Ii),(fl+1(FMi))

fl+1 − fl

)
rli+

|VA|−1∑

l=1

(
xq~XI(fl+1(Ii),(fl+1(FMi))

− xq~XI(fl(Ii),(fl(FMi))

fl+1 − fl

)
· F̃ l

i ≤ TOLmax
I (C9)
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−M̂ · (1− uq)−M̃ · (1− c12i ) +

|VA|∑

l=1

F̃ l
i · Sq

i ≤ TOLmax∗
S (C12)

M̂ · (1− uq) +
∑

cni ∈Chard

cni ≥ |Chard| (C13)

−M̂ · (1− uq) +
∑

cni ∈Chard

cni ≤ |Chard| (C14)

M̂ · (1− uq) + M̃ · (1− c15i,l) + F̃ l
i ≥ 0 (C15)

−M̂ · (1− uq)− M̃ · (1− c16i,l) + F̃ l
i ≤ fl+1 · rli (C16)

−M̂ · (1− uq)− M̃ · (1− c17i,l) + F̃ l
i ≤ F l

i (C17)

M̂ · (1− uq) + M̃ · (1− c18i,l) + F̃ l
i ≥ fl+1 · (rli − 1) + F l

i (C18)

M̂ · (1− uq) + M̃ · (1− c19i,l) +

|VA|−1∑

l=1

rli ≥ 1 (C19)

−M̂ · (1− uq)− M̃ · (1− c20i,l) +

|VA|−1∑

l=1

rli ≤ 1 (C20)

cni ∈ {0, 1} (D2)
uq ∈ {0, 1} (D3)

rli ∈ {0, 1} (D4)

F̃ l
i ∈ R+ (D5)

F l
i ∈ [fl−1, fl] (D6)

for i, j = 1, 2, i 6= j, q = 1, . . . |U| and l = 1, . . . , |VA|. Constraint C11- C141 now
are a piece-wise linearized version of former, discrete inequalities. C15l-C18l were
added in order to accomplish substitution of the trouble causing product of two
of the decision variables. Constraints C191-C201 finally make sure, that only one
boolean variable rli is equal to 1 whereas all others remain 0, thus only one segment
of the amplify factor values is considered at a time during the process of optimiza-
tion.
Constraints D2n-D6l postulate the valid domain of all appearing decision variables.

Remark: Many of the constraints C11-C201 actually represent a bigger number of
constraints, as they are notated channel-wise or amplify-factor-wise by its related
index. Therefore, for considered Program, the total number of constraints within
linearized, mixed integer program is way higher than probably conjectured at first
sight, consisting of several hundreds of equations.

Since every constraint by itself is bound to a decision variable cni , occurring in the
optimization program together with decision variables F l

i for every amplify factor
value in combination with its related boolean variable rli for each segment of inter-
polation, the number of constraints already gives an idea about the large size of the
linear mixed integer program, given problem of prosthesis parameter adjustment
provokes. This again allows the conclusion, that a huge number of issues have to be
considered within the process of parameter determination, giving an idea about the
problematic nature of manual prosthesis adjustment. This in turn emphasizes again,
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that the aim of finding a way towards automatic systems for prosthesis adjustment
is absolutely reasonable.

5.3.2 Choice of Priority Values for Soft Constraints

There are two important aspects, which have to be regarded, when seeking for an
appropriate choice of priority values for soft constraints contained in the optimiza-
tion program of a prosthesis’ considered Program.

• On the one hand, one assumption within the idea of adding enhancing soft
constraints to the system is, that one satisfied soft constraint of higher priority
produces more benefits to the prosthesis’ handling than an arbitrarily high
number of less important soft constraints. One way to achieve this certain
ranking of soft constraints is to calculate possible values for priority values
recursively:

c1 = 1

cn = 1 +

n−1∑

k=1

ck

In this way, the constraint of n-th importance receives a higher weight than any
arbitrary sum – even the sum of all – weights of less important constraints, thus
making it the constraint to choose within the optimization process in case of
any occurring conflicts. As it is easily shown per induction, this recursion leads
to function P (Figure 5.15), which, when receiving integer value n, provides an
– in this manner – appropriate value for the soft constraint of n-th importance:

P : N −→ N
P(n) = 2n−1

Proof:

IA: c1 = 1 = 21−1 = P(1)

IV: cn = 1 +
n−1∑

k=1

ck = 2n−1 = P(n)

IS: cn+1 = 1 +

n∑

k=1

ck = 1 +

n−1∑

k=1

ck + cn
IV
= 2n−1 + 2n−1 = 2n = P(n+ 1) �
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FIGURE 5.15: Calculation of priority values – restriction 1

• On the other hand, the second aspect to consider arises from the sum over
the boolean aid variables uk added up with the sum of the priority values cni
of all respected soft constraints in objective function O5. Since cni ∈ {0, 1}

and therefore
|C|∑
n=1

cni c
n
i ≤

|C|∑
n=1

cni , the sum over the priority values must not

dominate over the data-set-related boolean variable uq, i.e. the value 1 for
every q = 1, . . . , |U|. Therefore it is necessary to restrict priority values cni

to the condition
|C|∑
n=1

cni < 1, since otherwise dominating sum of the priority

values might lead to a mistaken set to 0 of boolean aid variables uk in order to
achieve maximality of objective function.

The combination of these two significant aspects of priority value consideration
leads to a way of calculating appropriate values for priority values, which can then
be matched to the specific soft constraints as desired.
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Chapter 6

Experimental Evaluation

As mentioned in the previous problem-describing and -deriving sections, the aim
was to reformulate the former, naive approach of finding suitable settable parame-
ters by browsing through a given, discrete list of amplify factors, choosing for every
channel the first appearing value satisfying the hard and soft constraints respec-
tively, without being capable of finding a probably better solution by considering
both channels simultaneously (Figure 5.13). This former approach indeed lead to
good results in practice, as it, despite its simplicity, turned out to provide usable
solutions, which were judged as satisfying outcome by most of the test users (6.4).
However, due to the nature of Ottobock’s Guided APS-Software project being a six-
month prototype approach only, the executing algorithm has been implemented in
the form of a naive, enumerative approach, making it on the one hand very ineffi-
cient, and on the other hand inflexible for generalizing considerations. Therefore, in
order to equip given idea with the flexibility needed for good implementation and
eventual changes towards a more general, or enhanced system, it was necessary to
formulate given problem in mathematically correct terms, respecting the structure
required in order to be able to use commercial solvers.

To receive a small insight into the possible advantages of developing given ideas
to more generalized approaches, it was also interesting to check, whether a gen-
eralization such as suggested in Chapter 5.3 leads to even better results than the
simple discrete and enumerative implementation. In order to be able to compare
Guided APS-Software with an implementation using newly formulated constraints
and considerations in a sensible way, chosen generalization was confined to the idea
of extending the valid amplify factor values to a continuous range. Generalization
towards multiple data sets as described in Section 5.3.1.5 is not part of following
experiment for reasons of clarity, but can indeed be implemented easily by only ex-
panding constraints and objective function by upper described terms.

So given problem was formulated as a generally usable and easily extendable op-
timization program, additionally granting more flexibility by expanding the previ-
ously small set of permitted values to a continuous range, and these more advanced
considerations derived in Section 5.3.1.6 were implemented in order to detect equal-
ity or noteworthy differences in the outcome of the two different approaches. This
experiment gave indication of whether or not making the amplify factors be con-
tinuous decision variables and additionally changing over to a properly formulated
optimization problem being capable of being solved in commercial ways is worth
the effort. So the constraints to the user data, which have been formulated for the
naive approach of the Guided APS-Software, have been reformulated to the form of
a MIP as explained in Section 3.2, which additionally made a usage of commercially
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available MIP solvers possible.

6.1 Collected Data

The basis of all calculations is the collection of user data, which was conducted by
a graphical user interface (GUI) implemented in the Guided APS-Software (Section
2.2). In this thesis’ experimental scenario, a user was asked to perform all required
movements (Section 5.2.1) one after the other. Every movement was repeated five
times, in order to be able to calculate a sufficient average representative of each
movement. The EMG signal resulting from the user’s movement was measured
by electrodes, appropriately placed at the user’s arm, and stored for further pro-
cessing. In this way, 30 different data sets from amputated and non-amputated test-
users were collected and provided information in order to calculate their individual
parameters (Section 5.2.2, Table 6.1), which on the one hand were used by Guided
APS-Software in order to seek for a solution for every test user, calculated by the enu-
merative algorithm, on the other hand were used to postulate required constraints in
order to formulate the optimization program of the second, generalized approach.

6.2 Tools

As Section 2.2 showed, the Guided APS-Software provides a GUI, leading both the
orthopedic technician and the user through a process of data recording in order to
be able to use collected information for further parameter calculation for both ap-
proaches, so that, in case of feasibility, a satisfying adjustment can be adapted to the
user’s treatment. This software was implemented in C#, collected data was serial-
ized in order to provide an efficient way to store, transport and get access to the
information. Table 6.1 lists the coefficients appearing in the inequalities of the set-
up optimization program and gives explanation about their origin within the user’s
collected data.

Abbr. Representation Used Data Range of Indices

Si

Representative
value for user’s
observed Strong
signal

User’s Strong signal i = 1, 2

NMi

Representative
value for user’s
observed No-
Movement signal

User’s No-Movement
signal

i = 1, 2

x~XI(fl(Ii),(fl(FMi))
Calculated Im-
pulse border

User’s Impulse signal i = 1, 2, l = 1, . . . , 16

xXSL(fl(Ii))
Calculated signal
length

User’s Impulse signal i = 1, 2, l = 1, . . . , 16

TABLE 6.1: Representative values of collected user data
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The chosen tool for the search for a solution of given task by the second, gener-
alized approach formulated as optimization program is Gurobi version 7.0, a com-
mercial optimization solver, which supports a big variety of programming and mod-
eling languages [28]. In this thesis, the transportation of data, collected by the C#-
implemented Guided APS-Software, to Gurobi’s provided solvers, was chosen to
be MATLAB version R2013b, which offers a practical way to set up even expansive
systems of constraints by making use of its concept of matrix structure [20]. Gurobi
offers implemented MATLAB functions, which accept appropriately set-up systems
of constraints in matrix format and provide different optimization methods in order
to examine given problem.
By making use of these three tools, the experiment of executing values for settable
parameters within the process of prosthesis adjustment as a generalized, linearized
approach was finally realized.

6.3 Set-up

The tested prosthesis program was chosen to be the one using the Impulse switch
method of channel 1 in order to switch between the opposition and the lateral grasp,
and the 4-Channel switch method of channel 1 and channel 2 in order to rotate clock-
and counterclockwise, just as described in constraint deriving example in Section
5.3. Due to the lack of some constraints contained in the upper derived formulation
within the implementation of the Guided APS-Software prototype, also the system
postulated for the experimental, continuous approach was reduced in order to make
a reasonable comparison of the two outcomes possible.

Name Function Range #

F l
i Actual Amplify Factor [fl−1, fl] 32

F̃ l
i Aid Substitution Variable R 32

cki Hard-/Softconstraint Indicator {0, 1} 34

rli Aid Substitution Variable {0, 1} 32

TABLE 6.2: Decision variables of experimental approach

With decision variables listed in Table 6.2 and the coefficients

Kr
SLi

:=

(
fl+1 · xXSL(fl(Ii)) − fl · xXSL(fl+1(Ii))

fl+1 − fl

)

KF̃
SLi

:=

(
xXSL(fl+1(Ii)) − xXSL(fl(Ii))

fl+1 − fl

)

Kr
Ii :=

(
fl+1 · x~XI(fl(Ii),(fl(FMi)) − fl · x~XI(fl+1(Ii),(fl+1(FMi))

fl+1 − fl

)

KF̃
Ii :=

(
x~XI(fl+1(Ii),(fl+1(FMi)) − x~XI(fl(Ii),(fl(FMi))

fl+1 − fl

)

the involved constraints and corresponding objective function of the optimiza-
tion program turned to following form:
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max
cni

|C|∑

n=1

(cni c
n
i ) (O5)

subject to:

M̃ · (1− c1i ) +

|VA|∑

l=1

F̃ l
i · Si ≥ TOLmin

S #1 (C11)

− M̃ · (1− c2i ) +

|VA|∑

l=1

F̃ l
i · Si ≤ TOLmax

S #2 (C21)

− M̃ · (1− c3i ) +

|VA|∑

l=1

F̃ l
i ·NMi ≤ TOLNM #3 (C41)

− M̃ · (1− c4i ) +

|VA|−1∑

l=1

Kr
SLi

rli +

|VA|−1∑

l=1

KF̃
SLi
· F̃ l

i ≤ TOLmax
SL #4 (C71)

M̃ · (1− c5i ) +

|VA|−1∑

l=1

Kr
Iir

l
i +

|VA|−1∑

l=1

KF̃
Ii · F̃ l

i ≥ TOLmin
I #5 (C81)

− M̃ · (1− c6i ) +

|VA|∑

l=1

F̃ l
i · Si ≤ TOLmax∗

S #8 (C121)

∑

cni ∈Chard

cni ≥ |Chard| #9 (C131)

∑

cni ∈Chard

cni ≤ |Chard| #10 (C141)

M̃ · (1− c15i ) + F̃ l
i ≥ 0 #11 (C15l)

− M̃ · (1− c16i ) + F̃ l
i ≤ fl+1 · rli #12 (C16l)

− M̃ · (1− c17i ) + F̃ l
i ≤ F l

i #13 (C17l)

M̃ · (1− c18i ) + F̃ l
i ≥ fl+1 · (rli − 1) + F l

i #14 (C18l)

M̃ · (1− c19i ) +

|VA|−1∑

l=1

rli ≥ 1 #15 (C191)

− M̃ · (1− c20i ) +

|VA|−1∑

l=1

rli ≤ 1 #16 (C201)

cni ∈ {0, 1} (D2n)

rli ∈ {0, 1} (D4l)

F̃ l
i ∈ R+ (D5l)

F l
i ∈ [fl−1, fl] #17 (D6l)

with i = 1, 2, l = 1, . . . , 16 and n = 1, . . . , 17.
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6.3.1 Data Transportation

A simple straight-forward approach of data transportation has been implemented
into the C# prototyped Guided APS-Software, where all required values were writ-
ten to ordinary text files and stored appropriately, in order to give the part of the
experiment implemented in MATLAB easy access on required numbers.

Furthermore, Gurobi provides an interface between MATLAB and its own solvers,
making it comfortable to pass on properly formulated constraints, parameters and
the objective function to pre-implemented MATLAB-functions. These functions are
capable of communicating with Gurobi, make use of its internal solvers and return
a solution or information about infeasibility (Figure 6.1).

APS MATLAB Gurobi

result

txt
matlab functions

FIGURE 6.1: Data transportation and solution finding

6.3.2 Input Formulation

As already mentioned, version 7.0 of the Gurobi Optimizer provides a pre-implemen-

ted interface in order to pass on data in MATLAB format and solve the given op-
timization program within Gurobi [29] as well as a quick introduction into the usage
of latter [26] and additional auxiliary material concerning the usage of provided so-
lution methods [25], [27].

The MATLAB interface requests the implementaion of a matrix of the coefficients
of the lefthand-sides and a vector of the righthand-sides of the constraits of given op-
timization problem. Furthermore, the type of inequality, i.e. smaller or equal or bigger
or equal can be separately defined for every constraint within a string vector, as well
as the value type of the decision variables. The coefficients of the objective function,
also stored in vector format, finally complete the required input information and a
solution of the optimization program can be executed.

Thus, taking the cue from the appearance of the optimization program (3.2), for
this experiment’s chosen prosthesis program the MIP has the following form:
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#1
(C1)





#2
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



#3
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

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where aCkl,x
i represents the coefficient for decision variable x for channel iwithin

constraint Ckl, i = 1, 2, l = 1, . . . , 16. In this form and analogue representation for
the objective function in vector form, collected data can appropriately be passed on
to given solver and the given optimization problem can be treated.

6.4 Results

As already emphasized in Section 2.2, the approach, elaborated during the period
of research of six months within the framework of the Guided APS-Software, the al-
gorithm used in order to determine feasibility respectively appropriate parameters
for the final prosthesis adjustment is the one of naive enumeration, meaning that
the agent starts at the highest available value, browsing downwards, picking the
first one to provide desired circumstances. This inefficient way indeed leads to re-
sults, which are capable of satisfying previously defined goals. In order to determine
differences in the prosthesis usage with manual and algorithmic adjustment respec-
tively, users being experienced with the use of the Michelangelo prosthesis with man-
ual adjustment were questioned before and after a readjustment of the prosthesis
with the Guided APS-Software. The ease or difficulties of the different functionali-
ties were rated by the testers and they were asked, whether or not they experienced
the algorithmic adjustment as more suitable. As can be seen in Figure 6.2, 71.4% of
the test users judged the algorithmically determined adjustment as being suitable,
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14.2% didn’t experience much difference and and only another 14.2% preferred the
manual adjustment they were used to so far. Keeping in mind that these results
were achieved by only very first, basic considerations and brute force implemen-
tation within the prototyped Guided APS-Software, it yields confidence that these
basic ideas are of great potential within the finding of a reliable and satisfactory so-
lution of given problem.

FIGURE 6.2: Comparison APS vs. manual adjustment

Also the amount of time needed for prosthesis adjustment could be diminished
significantly. As users experienced manual adjustment as lasting between 30 min-
utes and three hours, the average time needed in order to go through the guided
process of data recording and set calculated parameters afterwards by the Guided
APS-Software was approximately 9 minutes.

Nevertheless, a MIP formulation with the additional freedom of letting amplify
factors be elements of a continuous interval instead of restricting them to a discrete
set of values, as well as the formulation towards an approach, which is capable of
putting information into the process of calculation of channel 1 and channel 2 si-
multaneously, and following trial of determination of a solution with the help of
available, commercial solvers turned out to be an approach of even greater advan-
tage.

Table 6.3 shows the outcome of the two different approaches. Amplify factors,
calculated with the Guided APS-Software using the naive, enumerating algorithm
are listed in column 2, as well as the amplify factors determined by the experimental
approach in column 3.
Furthermore, column 4 and 5 display whether or not the soft constraint, which is
part of the chosen program for this thesis’ experiment, could be included within the
process of solving the system by the two different algorithms.

The results indeed show, that in comparison to the former, naive algorithm im-
plemented in the Guided APS-Software, the amplify factors determined by the lin-
ear, experimental implementation either lead to the same – thus for given application
satisfying – achievements of functionality or were capable of additionally including
the one enhancing soft constraint, which is part of the chosen example program to
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the set of fulfilled constraints, thus deliver a better solution and therefore enhance
prosthesis functionality.

User APS Chan. 1/2 Exp Chan. 1/2 APS Soft Chan. 1/2 Exp Soft Chan. 1/2
1 0.5/0.5 0.5/0.25 X/× X/X
2 0.5/0.5 0.25/0.25 ×/× X/X
3 0.75/1 0.25/1 ×/X X/X
4 1.75/3.5 2.0/2.0 ×/× ×/X
5 0.5/2.0 0.5/3.0 X/× X/×
6 −/− 0.25/0.25 ×/× X/X
7 1.25/0.75 2.0/0.25 ×/× ×/X
8 −/− −/− ×/× ×/×
9 0.5/1.0 0.25/1.5 ×/× X/×
10 2.0/1.5 2.0/2.25 X/× X/×
11 0.5/0.75 0.5/0.5 X/× X/X
12 0.5/0.5 0.75/0.5 ×/X X/X
13 0.5/0.5 0.5/0.5 X/X X/X
14 −/− −/− ×/× ×/×
15 −/− −/− ×/× ×/×
16 0.75/0.5 1/0.5 ×/X X/X
17 0.75/0.5 1/0.5 ×/X X/X
18 0.25/0.5 0.25/0.5 X/X X/X
19 1.5/0.5 2.25/0.5 ×/X ×/X
20 −/− −/− ×/× ×/×
21 −/− −/− ×/× ×/×
22 0.75/1.25 0.5/1.5 ×/× X/X
23 0.75/0.25 0.75/0.5 ×/× ×/X
24 0.75/1.25 0.75/0.5 X/× X/X
25 0.75/0.75 0.75/0.5 X/× X/X
26 4.0/4.0 2.25/3.25 ×/× X/X
27 0.5/1.25 0.5/0.5 X/× X/X
28 −/− 0.5/0.5 ×/× X/X
29 0.25/0.25 0.5/0.5 ×/× X/X
30 0.5/0.25 0.5/0.5 ×/× ×/X

TABLE 6.3: Comparison outcome amplifier Guided APS-Software vs.
experimental implementation

Figure 6.3 and 6.4 give an interpretation of calculated numbers and thus impres-
sion about the difference in quality of the two algorithms’ outcomes. While within
the calculation executed by the Guided APS-Software it was only possible to add the
soft constraint to a little more than a quarter of all test scenarios, the experimental,
reformulated and slightly generalized version of the algorithm already lead to re-
sults including the soft constraint in 70% of all scenarios.

Furthermore, as visible in Figure 6.5, 70% of the scenarios themselves could be
enhanced by the algorithm which made use of commercial Gurobi solvers. The other
30% of the latter had the same outcome as original, naive approach. For none of
them, the Gurobi approach caused worse outcomes than the previous technique.
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FIGURE 6.3: APS – percentage of inclusions of soft constraint

FIGURE 6.4: Gurobi – percentage of inclusions of soft constraint

FIGURE 6.5: Comparison APS vs. Gurobi
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These results indeed rise the courage for conviction, that turning away from the
former, naive but already well-working approach towards a more considered way
of implementation is worth the effort, since the differences of the quality of outcome
turned out to be significant.



109

Part III

Conclusion
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Chapter 7

Conclusion

The process of prosthesis adjustment is a very sensitive and subtle topic. As the mat-
tering aspect is not only the one that influences the technical process of the device
being requested to work in its intended manners, but its way and ease of work-
ing indeed has a huge impact on the user and his life and well-being, it is of much
importance to take a careful look at this sector of treatment for amputees. As the
manual way of adjusting a Michelangelo prosthesis turned out to fail in many cases
due to a widespread lack of routine and practice of orthopedic technicians caused by
the small number of occurring myoelectric treatments, it was sensible to start think-
ing about alternative ways, which guarantee more reliably a satisfying result for the
user.

The outcome of this thesis shows, that the idea of an automated approach, mak-
ing use of collected user data and determining desired parameters via considera-
tions based on mathematical optimization, and an algorithmic implementation in-
deed leads to promising new perspectives for proper adjustments of myoelectric
prostheses. Even the naive first approach, implemented in the prototype software
(Section 2.2), lead to results, which were experienced as enhancements for a major-
ity of tested and subsequently interrogated users. Table 6.3 furthermore grants an
insight into the potential of the idea of a well-considered optimization program for-
mulation, since the reformulation towards a MIP and the consequent opportunity of
solving latter in reliable and efficient manners achieved an enhancement of solution
even despite the simplification of the system for the sake of comparability with the
state-of-the-art Guided APS-Software prototype.

These highly positive findings should arise motivation towards a continuation
of work and consideration within this field of orthopedic and myoelectric technol-
ogy and a desire to enhance currently available options. By making use of presented
ideas applied to given problem, a huge support within the matter of prosthesis ad-
justment can be provided to orthopedic technicians.
The approach of mathematical optimization, as it fits well to the structure of the
problem and gives it a practical and easily implementable opportunity of being
solved with commercial methods, grants a huge flexibility towards generalization.
By making use of ideas presented in section 5.3.1.5, it is easy to realize problem so-
lutions also when considering a larger amount of data sets per user, meaning that
more information can be used in order to lead to more precise parameter calcula-
tions.
Furthermore, due to the flexibility of given problem formulation, the presented so-
lution ideas could even be expanded to be capable of treating prosthesis adjustment
for myoelectric prostheses with more than two electrodes. Only an addition of re-
sulting constraints, bound to further electrode channels, have to be added to the
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system of constraints, which can be derived analogously to previous presentations.
By further development and enhancement of already well-working six months Guided
APS-Software project, and introduction to the commercial market, it might be possi-
ble to reduce the number of failures in prosthesis adjustment significantly.

As a proper prosthesis treatment after the loss of extremity is not only of technical
and practical nature, but has a tremendous impact on the physical and mental state
of affected human beings and thus their quality of life, the revealed potential of
preceding ideas should indeed be enough encouragement in order to arouse the
passion and will to continue putting effort into this topic and lead to a next level
of opportunities. In this way, not only a very interesting field of research would
receive deserved attention and progress, but also the life of many people having to
cope with one of the gravest losses in both the physical and the emotional sense
would experience great enhancement.
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