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Abstract

The Vehicle Routing Problem with Compartments (VRPC) deals with solving a generalized
vehicle routing problem with a homogeneous fleet of vehicles having multiple compartments
as well as additional constraints on the commodities loaded in each compartment: i.e. in-
compatibilities between different products in one compartment and between products and
compartments. Two slightly different problem formulations, which where inspired by the
petrol and food delivery industries, are considered in this work. The vehicles delivering dif-
ferent petrol types, are typically divided into several compartments with a fixed size where
different petrol types are not allowed to be loaded into the same compartment as they would
agitate. The vehicles in the food distribution industry consist of different compartments with
flexible core walls where the products must be loaded into a certain, pre-defined compart-
ment. Routing problems are typically hard to solve as the corresponding decision problems
often are members of the so called NP-hard problems.

This work presents two heuristic algorithms to solve the VRPC, which are a randomized
Clarke and Wright Savings construction algorithm and an improvement algorithm based on
swarm intelligence. Further an exact branch and price approach using column generation
is presented, which divides the problem into several independent subproblems that can be
solved individually. The cascaded binpacking like problem is solved using a heuristic algo-
rithm and a constraint programming model. The performance of the algorithms is evaluated
on three different sets of test instances. The exact approach for the VRPC, like other exact
approaches for similar routing problems, is able to solve instances to optimality with a very
limited size. In contrast the heuristic approaches where able to solve any instance within a
reasonably small gap compared to other algorithms.
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Kurzfassung

Das Vehicle Routing Problem with Compartments (VRPC) beschreibt ein generalisiertes
Routingproblem mit einer homogenen Flotte an Fahrzeugen mit mehreren Abteilungen, die
Bestellungen von Kunden kostenminimal ausliefern sollen. Weiteres gibt es unterschiedliche
Produkttypen, die entweder nur in gewisse Abteilungen oder nicht mit anderen Produkttypen
ins gleiche Abteil geladen werden dürfen. Diese Arbeit behandelt zwei leicht unterschied-
liche Problemdefinitionen die auf Anforderungen aus der Öl- und Nahrungsmittelindustrie
eingehen. Die Fahrzeuge, die zum Transport unterschiedlicher Kraftstoffe von einer Raffi-
nerie zu den einzelnen Tankstellen eingesetzt werden, haben typischerweise mehrere Ab-
teilungen mit einer fixen Größe. Die verschiedenen Kraftstoffe dürfen in beliebige Abteile
geladen, aber nicht miteinander vermischt werden. Fahrzeuge, die für den Transport von
Nahrungsmitteln eingesetzt werden, haben oft mehrere Abteilungen, die durch eine verstell-
bare Trennwand, variabel in ihrer Größe sind. Eine optimale Lösung für Routingprobleme ist
meist nur mit großem Aufwand zu finden, da das zugehörige Entschiedungsproblem zu den
sogenannten NP-schweren Problemen gehört.

In dieser Arbeit werden zwei heuristische Algorithmen vorgestellt: ein randomisierter Clar-
ke and Wright Savings Algorithmus und eine auf Schwarmintelligenz beruhende Verbes-
serungsheuristik. Des Weiteren wird ein exakter Branch and Price Ansatz präsentiert, der
mittels Spaltengenerierung das Problem in unabhängige Teilprobleme aufteilt und löst. Das
verschachtelte Packproblem wird einerseits heuristisch mit Konstruktionsalgorithmen und
andererseits mit einem Constraint Programming Modell gelöst. Die Effektivität der Model-
le und Algorithmen wurden auf drei verschiedenen Testdatensätzen evaluiert. Das exakte
Verfahren kann, wie auch bei verwandten generalisierten Routingproblemen, nur auf relativ
kleinen Probleminstanzen angewendet werden, während die heuristischen Ansätze in der
Lage sind alle gegebenen Probleminstanzen relativ gut zu lösen.
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CHAPTER 1
Introduction

1.1 Motivation

In nowadays industry efficient transportation and distribution of goods is essential to the suc-
cess of many companies. In an environment with increasing energy costs, efficient planning
of the delivery paths allows to save resources and money. One of the most fundamental and
well studied problems in this environment is the traveling salesman problem (TSP). The aim
of the TSP is to find the cheapest path through all cities, the salesman wants to visit. Each
city has to be visited exactly once, the tour has to start and stop at the same location. The
total tour length or costs have to be minimal. From the theoretical point of view the TSP is
a combinatorial optimization problem that is very important for a huge area of applications,
including logistics, production paths, semiconductor industry and many more.

The Vehicle Routing Problem (VRP) is a generalization of the TSP with more than one sales-
man and exactly one depot, where each vehicle has to start and end its tour. In the context
of the VRP we talk about customers that are visited by the vehicles instead of cities and the
salesman. In the classical VRP, each customer has to be visited exactly once. Today a lot
of generalizations of the VRP are subject of intense studies: VRP with Pickup and Delivery,
Periodic VRP, Capacitated VRP, VRP with Time Windows, VRP with non uniform vehicles
and even more generalizations towards industries needs and applications. In contrast, the
Vehicle Routing Problem with Compartments (VRPC) is an optimization problem that has
not received much attention yet. The aim of this thesis is to analyze the performance of
two solution methods, namely a Particle Swarm Optimization (PSO) algorithm and an exact
solution approach based on Column Generation (CG) and Branch & Bound (B&B). These
algorithms have not been subject of research on this particular problem yet.

The Vehicle Routing Problem with Compartments has a practical relevance in the petrol and
food delivery as well as in waste collection industries. Oil companies need to deliver different
types of oil from the refinery to the gas stations, using a single vehicle. The fueling vehi-
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1. INTRODUCTION

Figure 1.1: A vehicle with fixed compartments for petrol delivery

cles, as the one in Figure 1.1, typically have several compartments which can be filled with
different fuel types. It does not matter in which compartment the different types are loaded
but it is clearly not allowed to load them in the same compartment as they would agitate.
Modern vehicles which deliver food have several compartments with different climatic con-
ditions. This renders a slightly different problem definition, as it is allowed to load different
products into the same compartment (see Figure 1.2). Waste collection and recycling are
major branches of industry that gain an increasing importance in the logistics supply chain.

Figure 1.2: A vehicle with flexible compartments for food delivery

This special generalization of the VRP has not received a lot of attention from the scientific
part. A short overview of some scientific publications concerning this problem is given in
Section 1.3.

1.2 Problem Description and Analysis

The classical VRP deals with solving a multiple TSP, where each city (i.e. customer) is visited
by exactly one salesman (i.e. vehicle). All vehicles start from a depot, delivering the goods
to the customers and eventually return to the depot. The goal is to minimize the total routing
costs, which can either be the total distance or the total time the vehicles drive. There are
even more complex cost functions, which take several inputs into account. This problem
was first proposed by Dantzig and Ramser in 1959 [12].

The VRPC considers, like the VRP, a set of customers and one central depot from where a
certain amount of vehicles deliver the demanded goods to the customers. In addition, con-
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1.2. Problem Description and Analysis

straints on the vehicles with loading capacities and incompatibilities between compartments
and different product types, are added. Each vehicle has a certain amount of compart-
ments with a maximum loading capacity and a total vehicle capacity that might not be ex-
ceeded. The incompatibility constraints define, depending on the problem instance, whether
two product types are allowed to be loaded into the same compartment or demands can be
loaded into a predefined compartment only. In contrast to the classical VRP, it is allowed to
serve a customer by several vehicles.

This thesis deals with two distinct types of properties on the compartments: vehicles with
flexible and fixed compartments. The conditions on the problem instances with fixed size
compartments are inspired by the petrol industry: each product can be loaded into any
compartment, but distinct product types are not allowed to be loaded in the same compart-
ment. For these instances two problems, namely a generalized VRP and a Bin Packing like
Problem (BPP) with a limited number of bins, have to be solved simultaneously. It is not
possible to solve the problems separately, since the solutions to both highly depend on each
other: i.e. for a good routing of the vehicles the demands might not fit into and vice versa.

The problem instances, inspired by the food delivery and waste collection industries, have
flexible compartments where the size of each compartment has a continuous domain. This
eliminates the need of solving the Bin Packing Problem, since it is enough to check whether
the sum of the demands, in all compartments, does not exceed the vehicle capacity.

Linear Program Formulation

The problem formulation as a Mixed Integer Program (MIP) was proposed by Derigs et al.
[14]. For sake of completeness it is depicted also here:

max.
∑
v∈V

∑
i∈L

∑
j∈L

costij ∗ bijv (1.1)

s.t.
∑
j∈Lc

b0jv ≤ 1 ∀v ∈ V (1.2)

∑
i∈L

bikv =
∑
j∈L

bkjv ∀v ∈ V,∀k ∈ L (1.3)

uiv − ujv + |L| ∗ bijv ≤ |Lc| ∀v ∈ V,∀i ∈ L,∀j ∈ Lc (1.4)

ul0v = 1 ∀v ∈ V (1.5)∑
o∈O

quantity(o) ∗ xovc ≤ compCapa(c) ∀v ∈ V,∀c ∈ C (1.6)∑
o∈O

∑
c∈C

quantity(o) ∗ xovc ≤ vehCapa ∀v ∈ V (1.7)∑
v∈V

∑
c∈C

xovc = 1 ∀o ∈ O (1.8)

3



1. INTRODUCTION

∑
o∈ordCust(j)

∑
c∈C

xovc ≤ |O| ∗
∑
i∈L

bijv ∀v ∈ V,∀j ∈ Lc (1.9)

∑
o∈ordProd(p)

xovc ≤ |O| ∗ ypvc ∀p ∈ P,∀v ∈ V,∀c ∈ C (1.10)

ypvc = 0 ∀ (p, c) ∈ IncProdComp,∀v ∈ V (1.11)

ypvc + yqvc ≤ 1 ∀ (p, q) ∈ IncProd,∀v ∈ V,∀c ∈ C (1.12)

bijv ∈ {0, 1} ∀i, j ∈ L,∀v ∈ V (1.13)

uiv ∈ {1, . . . |L|} ∀i ∈ L,∀v ∈ V (1.14)

xovc ∈ {0, 1} ∀o ∈ O,∀v ∈ V,∀c ∈ C (1.15)

ypvc ∈ {0, 1} ∀p ∈ P,∀v ∈ V,∀c ∈ C (1.16)

The objective function (1.1) minimizes the total travel costs by multiplying the binary variable
bijv, that is 1 if and only if vehicle v drives from location i to j, by costij , the travel costs from
location i to j.

Constraints (1.2) and (1.3) ensure that at each vehicle v starts at most once from the depot,
that is location 0, and ends its tour at the depot. Since the sum of all ingoing and outgoing
binary variables at each node and for each vehicle v must be equal, the vehicle is forced to
end its tour at the depot. The sub-cycle elimination constraints (1.4) and (1.5) enforce that
the position variable uiv < ujv if vehicle v drives from location i to j. The depot must be in
the first position of the tour. Without these constraints, the result could contain more than
one distinct cycle: the tour starting and ending at the depot and other cycles that do not
have any customer in common.

Constraints (1.6), (1.7) and (1.8) ensure that neither the compartment nor the vehicle is over-
loaded and each order is packed in exactly one vehicle and in one compartment. Constraints
(1.9) link the tour with the packing variables by enforcing the vehicle v to visit customer j
if any demand of customer j is loaded into any compartment of v. Constraints (1.10) link
the loading variables xovc (demand o is loaded in vehicle v and compartment c) with the
compartment variables ypvc (product p is assigned to compartment c in vehicle v). They
are needed to model the incompatibilities between the demands, other demands and com-
partments. These incompatibility constraints are modeled with (1.11) and (1.12) and the
relations IncProdComp and IncProd.

The last constraints (1.13) - (1.16) define the domain of the variables: all variables in the
MIP formulation are binary, except the sub-cycle elimination variables uiv that are integers.

Problem Complexity

Complexity theory is a large field of computer science, that is receiving a lot of attention.
There exist some unanswered questions with a huge (potential) impact on any other disci-
pline in computer science. One of the most prominent unresolved question in this field is
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1.2. Problem Description and Analysis

called P versus NP : Given a problem, where any solution can be verified efficiently (with
a polynomial worst case running time and memory consumption), is there also an efficient
method to actually find such a solution? The reader is refereed to [25] and [41] for a very
detailed insight in the field of complexity theory in computer science.

The P versus NP question is highly important for the area of Operations Research and
Combinatorial Optimization Problems (COP) that often arise from this field. A COP deals
with finding the best solution among all feasible solutions for an optimization problem. De-
pending on the objective function the COP is a maximization or minimization problem. For
any COP a nonempty subset of all variables has a discrete domain.

Definition 1. Formally a Combinatorial Optimization Problem P is defined as P = (S, f)

• A set of variables with their respective domains x1 ∈ D1, x2 ∈ D2, . . . xn ∈ Dn

• Constraints among the variables (e.g. x1 6= x2 or
∑

i=0...n
xi ≤ C ∈ D1∩D2∩ · · · ∩Dn)

• The fitness or objective function f : D1 × D2 × . . . Dn → R that evaluates each
element in S

• A set S of all feasible solutions: S = {(x1 = v1, x2 = v2 . . . xn = vn) | ∀i ∈ {0, . . . n},
vi ∈ Di, s satisfies all constraints }

The goal is to find an element sopt ∈ S : @s′ ∈ Sf(s′) > f(sopt) for a maximization problem
and f(s′) < f(sopt) for a minimization problem.

For each COP there exists a corresponding decision problem D that asks if there exists a
solution with an improved objective function value for a given solution. For each COP P the
corresponding decision problem D determines the complexity of the problem:

Definition 2. The decision problem D for a Combinatorial Optimization Problem P asks if,
for a given solution s ∈ S, there exists a solution s′ ∈ S, such that f(s′) is better than
f(s): for a minimization problem this means f(s′) < f(s) and for a maximization problem
f(s′) > f(s).

Some optimization problems that can be solved in polynomial time, such as shortest paths
or minimum spanning trees in a graph, may become a NP-hard problem by adding a single
constraint. For example the minimum spanning tree (MST), for any given graph, can be
computed in O(|V |2) using Kruskals algorithm. But when the total number of vertexes in
the resulting tree is constrained, the time complexity of the problem increases exponentially
in the size of the input. The resulting k-minimum spanning tree problem [49] is an NP-hard
problem.

For most COPs a heuristic algorithm is able to calculate a feasible solution efficiently, but
many COPs are hard to solve to optimality, since the size of the set S may grow exponentially

5



1. INTRODUCTION

in the size of the input and there is no efficient algorithm known, that is able to explore the
whole search space efficiently. Deciding if a solution s′ ∈ S with f(s′) < f(s) exists may be
NP-complete, depending on the problem:

Definition 3. A COP is a NP-optimization problem (NPO) if the corresponding decision
problem is a NP-complete problem.

The membership of any problem Px to the class of the NP-complete problems can be
shown by reducing a known NP-complete problem Pn ∈ NP-complete to Px in polynomial
time. Further it must be shown that verifying whether a solution candidate for Px is correct
can be done in polynomial time. In a formal correct and complete proof this reduction is done
in the context of a Touring machine [25, 41]. As the VRP is known to be a NP-complete
problem and the VRPC is a generalized variant of it, it can be deduced that the VRPC is
NP-complete too.

Due to these definitions the VRPC is a NPO with S, the set of all feasible routes and packing
schemes, and f(s), the accumulated routing costs of any vehicle in s.

Solving the instances with fixed size compartments, inspired by the petrol industry, implies
solving a Bin Packing like Problem. Although the BPP is known to be NP-hard, the packing
problem of the VRPC is easier to solve in practice, as it asks for a feasible packing and
not for the minimal number of bins. None the less the decision problem "Does there exist
a solution with a less number of bins?" is NP-complete and causes the packing problem
hard to solve in case the approximation algorithm did not find a feasible packing scheme.

From a practical point of view, the packing problem is easier to solve than the routing prob-
lem, since there are efficient approximation algorithms known, which provide a guarantee
on the number of bins. First-fit-decreasing is able to solve the BPP in O(n ∗ log(n)) with a
guaranteed performance of 3/2 of the optimal solution. Approximation algorithms with a per-
formance guarantee x/y provide solutions, where the difference of the worst solution the al-
gorithm calculates (Alg(I)) to the optimal solution (Opt(I)) is at most Opt(I) =x/y∗Alg(I).
Such approximation algorithms are very interesting as they provide guarantees on the bounds
of their solutions, which is a very useful property. The interested reader is refereed to [59, 38]
for a detailed insight in the field of approximation algorithms and their classification.

1.3 State of the Art and Previous Work

The VRPC has not yet received a lot of attention from the scientific point of view. Although
the problem as discussed here was defined only a few years ago some work on very similar
problem variants has started already in the 80’s [7]. In many publications similar loading
constraints were studied. Muyldermans and Pang [39] and Derigs et al. [14] give a short
introduction on the effort that has been made.

The problem formulation adopted in this work was defined by Derigs et al. [14] in 2010. They
proposed several construction heuristics, a local search and large neighborhood search
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1.3. State of the Art and Previous Work

algorithms to improve the solutions. They added all to a suite of algorithms where each
heuristic has several modification and improvement operators. Further they created a large
set of test instances with 10, 25, 50, 100 and 200 customers each ordering more than 5
demands.

El Fallahi et al. [21] studied a problem formulation for the food delivery industry using one
compartment for each product and evaluated the performance of a memetic algorithm and
a tabu search heuristic. The advantage of using multiple compartments over a single com-
partments was analyzed by Muyldermans and Pang [39]. They compared the resulting costs
by using co-collection, vehicles with several compartments, and a separate distribution by
more vehicles. They applied a guided local search and a local search heuristic.

Pirkwieser, Raidl and Gottlieb analyzed Variable Neighborhood Search (VNS) approaches
with a large number of neighborhoods for the VRPC [47] and periodic routing problems
[46]. They were able to improve most of the best known solutions for the Derigs et al. and
obtained competitive results on the modified Eilon and Christofides instances. Pirkwieser
analyzed in the context of his PhD thesis [44] several generalized variants of the VRP using
different combinations of heuristic and exact algorithms.

The following list gives a short summary of the algorithms that were analyzed by others:

• Memetic Algorithm: El Fallahi et al. presented a memetic algorithm, that is the result
of combining a genetic algorithm and a local search procedure. Genetic algorithms
are inspired by the theory of evolution: when a new individual is created it inherits
properties from both parents and is slightly mutated. Over the iteration only the fittest
survive, i.e. the individuals with the best objective value.

• Tabu Search: The second metaheuristic studied by El Fallahi et al. is Tabu Search,
that is basically a local search procedure that is enhanced with memory structures.
Such a memory information can be: already performed modifications to the solution
are forbidden for a certain number of iterations.

• Adaptive Variable Neighborhood Search: AVNS algorithms are based on a local
search algorithm that switches between the neighborhoods it searches in, depending
on adaptive information, such as the improvements found in each neighborhood. If
the algorithm does not find any improvement using a search scheme it switches to the
next.

• Large Neighborhood Search: Derigs et al. created a large set of neighborhoods,
construction and local search algorithms. The majority of the instances used to evalu-
ate the performance of the algorithms, presented later in this work, were proposed by
them.

7



1. INTRODUCTION

1.4 Aim of this Work

As mentioned before, solving COPs implies the search for the best solution among a possi-
bly huge set of feasible solutions. In general there does not exist a heuristic that performs
better on all kind of problems than some other heuristic including random search. This re-
sults from the famous no free lunch theorem [63]. As a consequence researchers try to
acquire and include as much knowledge as possible into sophisticated solvers for the dif-
ferent problem classes. They try to evaluate the performance of different metaheuristic and
exact algorithms.

Definition 4. Metaheuristic algorithms make no assumptions on the problem and (in theory)
can be applied on any optimization problem. They define an abstract order of instructions
which lead to improved or feasible solutions. In almost any case these instructions must be
implemented using problem specific knowledge.

The FFD heuristic described earlier is a heuristic algorithm as it makes assumptions on the
problem: there must be items which can be ordered, whereas the local search procedure is a
metaheuristic algorithm and leaves the problem specific implementation to the neighborhood
it searches. Section 2.3 provides a detailed description of the local search metaheuristic.

The aim of work is to implement solution methods that have not been subject of publications
on the VRPC yet: a Particle Swarm Optimization (PSO) algorithm and an exact solution
approach based on Branch & Bound (B&B) and Column Generation (CG). PSOs are not
widely used for COPs, since the PSO metaheuristic needs a continuous domain, hence
some tricks have to be applied in order to solve a COP with its (partially) discrete domain.
But they use three types of information to improve the current solution: the current solution
itself, a knowledge and a social component. The combination of these three components
might result in improved solutions. Combining a genetic algorithm and a local search proce-
dure is called a memetic algorithm and often results in a good heuristic solver. This idea is
applied on the PSO to improve its performance.

The exact solutions are calculated using a Branch & Price (B&P) approach [17], based on a
set covering formulation, where each variable represents one feasible tour and every order
must be covered by at least one tour. The pricing subproblem searches for variables that
might improve the solution or proves that no such improvement is possible under the current
conditions. Such an approach for the Periodic Vehicle Routing Problem with Time Windows
is described in Pirkwieser et al. [45].

The solution approaches are evaluated in the last chapter using available benchmark in-
stances e.g. those of Derigs et al. [14] and modified Eilon and Christofides instances.
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1.5 Methodological Approach

For most NP-hard problems in real world applications, fast heuristics are used, since they
usually find good solutions in reasonable time. Especially if the size of the input increases,
the total running time increases at most polynomial. It does not matter if the solution is
slightly worse than the optimal solution. In addition, most algorithms do not consider noise
or side conditions, such as a traffic jam, legal issues or the human factor. In a bad case
these side conditions may undo the good results obtained by a sophisticated algorithm that
is able to calculate the optimal solution.

For sake of comprehension a very short introduction to the implemented algorithms will be
given here. For detailed insight into the algorithms the reader is refereed to the next chapters
or the respective publications. Further a short overview of the algorithms, discussed in the
literature, that deal with the VRPC is given.

The algorithms discussed in this thesis:

• Savings algorithm: The Clarke and Wright [10] savings algorithm starts from individ-
ual tours to each customer. Then it iteratively evaluates each pair of tours according
their savings (i.e. the reduced costs by merging these tours) and merges the tours
with the largest savings.

• Greedy Randomized Adaptive Search Procedure (GRASP): The idea behind a
GRASP is to take a greedy algorithm and add a random component. The solution
is generated like the greedy algorithm does but instead of taking the best component
to extend the solution, the GRASP selects a random component from a set of good
candidates. In this work the GRASP build on the savings algorithm, where the set of
good candidates consists of pairs of tours.

• Discrete Particle Swarm Optimization (PSO): Particles fly through the solution space
and try to reach the best position in the swarm, using local and global information.
PSO algorithms are mostly used in the field of continuous optimization. In order to
apply it to a combinatorial optimization problem with its discrete domain, the PSO has
to be modified slightly: the position of the particles is calculated by drawing a random
number.

• Local Search (LS): The algorithm iteratively searches in the so called neighborhood
of a solution for an improvement. It accepts either the first, best or a random improved
solution. The algorithm converges to a local optimum.

• Branch & Price solves the problem to optimality by starting from an reduced model
of linear inequations and pricing out new variables that potentially improve the current
solution (Column Generation). The main and sub problem are solved until no new
variables can be generated and the solution is integral else a new branch is created.

9
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1.6 Structure of this Work

The first chapter gave an introduction to the problem and the problem definition, an overview
on its complexity and some general introduction of the used algorithms and methods. Fur-
ther some general considerations about combinatorial optimization problems in practice are
given.

In Chapter 2 the reader gets a detailed description of the implemented algorithms and con-
cepts from a theoretical point of view. Chapter 3 gives a detailed insight into the imple-
mented algorithms for the VRPC. Chapter 4 gives some considerations about the concrete
implementation, the libraries that were used and analyzes the performance of the algorithms
with a comparison to results from the literature. Chapter 5 gives a critical reflection about
the methods and their performance and considerations about potential future work on this
implementation and Chapter 6 a short summary.

10



CHAPTER 2
Solving Combinatorial Optimization

Problems

As mentioned in the introduction, heuristic algorithms are essential in solving combinatorial
optimization problems and widely used in practice. Among the metaheuristic algorithms two
main classes can be distinguished: construction and improvement heuristics. Algorithms
from the former class start from an empty solution and successively add solution compo-
nents until the solution is complete, but might not be feasible. Algorithms from the latter
class start from a given solution and improve it by applying their respective methods and fin-
ish when a termination criteria (limits on time, iterations, improvement in the fitness values,
feasible solution . . . ) is fulfilled. The Handbook of Combinatorial Optimization [19] gives a
very detailed insight into different algorithms and problems in this field.

From a theoretical point of view it is interesting to be able to calculate the optimal solution,
although a large part of the scientific community assumes that for all NPOs there exists no
algorithm which has a guaranteed polynomial worst case execution time complexity. This
assumption can be refuted if it can be shown that P = NP , which can be done by finding
an algorithm that solves aNP-optimization problem to optimality with a polynomial time and
memory complexity.

Linear Programming (LP) or mathematical programming is a large field of operations re-
search and tries to optimize an objective function under a set of constraints. The objective
function and all constraints are linear inequations and equations. Most optimization prob-
lems which arise from nowadays industries needs can be written as a linear program. A
short introduction to the field of linear programming and the corresponding solving methods
is given in Section 2.5. The following sections provide a detailed insight into the implemented
metaheuristic algorithms.

11



2. SOLVING COMBINATORIAL OPTIMIZATION PROBLEMS

2.1 Greedy Randomized Adaptive Search Procedure

Greedy randomized adaptive search procedures (GRASP) are members of the construction
algorithms and mostly used to obtain solutions as a basis for other improvement schemes.
The big advantage of these algorithms is their fast termination and the random component
for diverging solutions. Further the random component is interesting for many improvement
heuristics such as swarm intelligence, presented in Section 2.4, and evolutionary algorithms
that highly depend on a diversified population to operate on.

A GRASP algorithm starts with an empty solution and iteratively adds solution components
in a greedy manner to the partial solution. In every iteration the algorithm evaluates all so-
lution candidates that are possible extensions to the partial solution obtained so far. The
evaluated candidates are added to the Candidate List (CL) and a small subset of promising
solution components is selected into the Restricted Candidate List (RCL). Most implemen-
tations perform a selection of a certain percentage of the best candidates as criteria. In the
next step the algorithm selects a random element from the RCL and extends the current
partial solution by adding this candidate. This loop is executed until the list of candidates is
empty and the solution is complete or an error occurred.

This optimization scheme was introduced by Feo and Resende [24] in 1989. They built upon
the book on semi greedy algorithms by Hart and Shogan [29]. Algorithm 2.1 shows the basic
version of the GRASP metaheuristic.

Algorithm 2.1: Greedy Randomized Adaptive Search Procedure
input : A problem instance
output: A randomized greedy solution

1 sol← ∅;
2 while sol not complete do
3 cl← getCandidateList(sol);
4 rcl← getRestrictedCandidateList(cl);
5 candidate← selectCandidate(rcl);
6 extendSolution(sol, candidate);
7 end
8 return sol;

The size of the RCL determines the grade of the random behavior: if only the best element
is added to the RCL, the resulting algorithm is a deterministic greedy algorithm that always
selects the best element. In the context of the VRPC the GRASP would behave like a Best
Fit approximation algorithm. In the contrary case, where CL = RCL, the resulting algorithm
conforms to a random search algorithm.
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2.2 Clarke and Wright Savings Heuristic

Clarke and Wright presented their Savings Heuristic [10] in 1964. Based on the conse-
quence of the triangular inequality, which states that the longest edge in a triangle is less or
equal to the sum of the two shorter edges, a solution for the VRP or a TSP is generated.
The algorithm starts with a solution where each customer is visited by exactly one vehicle
and successively merges the tours with the largest saving.

Figure 2.1: The idea behind the Clarke and Wright Savings [10] heuristic: the saving
in this case is Sij = 3 + 5− 6 = 2

A tour can be created by appending the second tour at the end of the first tour. If the
triangular inequality holds, the costs of the new tour is at most the the accumulated costs of
the two separate tours. Figure 2.1 shows the case where the total costs are reduced by 2.

Algorithm 2.2: The Clarke and Wright Savings algorithm

1 foreach i ∈ C \ {d} do
2 touri ← (d, i, d);
3 foreach j ∈ C \ {d} do
4 S← S ∪ sij = cid + cdj − cij;
5 end
6 end
7 sort(S);
8 while ∃ sij ∈ S→ i ∈ tour1 ∧ j ∈ tour2 ∧ tour1 6= tour2 do
9 tour1 ← tour1 + tour2;

10 tour2 ← ∅;
11 end

The Savings Algorithm 2.2 presupposes the triangular inequality to be fulfilled. In the begin-
ning the algorithm calculates the savings value for each pair of customers w.l.o.g. i and j:
Si,j = ci,d+cd,j−ci,j , where Si,j is the saving, ci,j are the traveling costs between customer
i and j and d is the depot. In the following loop the algorithm appends the two tours with the
largest savings value to one tour. This step is repeated until no two tours can be merged due
to side constraints. If there are no constraints that limit the tours, the algorithm calculates a
solution with one single vehicle. Therefore the Clarke and Wright Savings algorithm is able
to solve TSP instances too.
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2. SOLVING COMBINATORIAL OPTIMIZATION PROBLEMS

2.3 Local Search

Local Search (LS) procedures are widely applied on COPs and Constraint Satisfaction Prob-
lems (CSP), since they are easy to implement and mostly perform good in matters of exe-
cution time and in many cases the solution quality is adequate.

As the name hints, local search algorithms improve the solutions by applying only local
changes: i.e. make small changes in the existing solution. In each iteration, the LS algorithm
selects the next solution xnext from the set of candidate solutions, defined by the so called
neighborhood N(x), and sets it as the new solution if its objective value is improved.

The neighborhood depends on the problem and the model of a solution. For example such
a neighborhood could be switching the position of two cities, or even a subset of cities, in the
tour of the traveling salesman. The size of the neighborhood defines the complexity of the
selection step. Switching two cities results in a neighborhood of size

(
n
2

)
= n∗(n−1)

2 . This
case is depicted in Figure 2.2. Exploring the whole neighborhood in this example can be
done in O(n2).

Figure 2.2: Neighborhood for TSP: switch the position of 2 cities

There exist different schemes on how to accept the next solution in the neighborhood: next,
random and best improvement. As the names hint, next improvement selects the first, best
improvement the best and random improvement a random element from the neighborhood
improving upon the current solution. The difference between next and random improvement
is the order in which the neighborhood is explored: next improvement explores the neighbor-
hood in a deterministic and random improvement in a random manner. Best improvement
means evaluating the complete neighborhood and selecting the solution that optimizes the
fitness function the most. Whereas the other selection schemes are able to terminate early
and potentially need much less time, this scheme always explores the complete neighbor-
hood and has to be used with care, if the size of the neighborhood grows. From a theoretical
point of view they all have the same complexity, which is defined by the size of the neighbor-
hood.
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Figure 2.3: A possible series of solutions obtained by the LS algorithm

Algorithm 2.3: Local Search for a minimization problem

1 sol← feasible solution ;
2 repeat
3 sol’ ∈ Neighborhood (sol);
4 if f(sol’) ≤ f(sol) then
5 sol← sol’;
6 end
7 until termination criteria holds;
8 return sol;

The basic Local Search procedure is shown in Algorithm 2.3. They are often used in com-
bination with other optimization schemes to improve the overall performance, since they
converge quickly towards a local optimum. The local optimum may be the global optimum,
but in general it is hard to evaluate the quality of the solution obtained by the local search
scheme compared to the global, potentially unknown solution.

Definition 5. A local optimum is the best solution within a set of solutions S′ ⊂ S. The
set S′ is defined by a solution and its neighboring solution according to a neighborhood
structure. Usually the set S′ is a rather small subset of the set of all solutions S.

Definition 6. A global optimum is the best solution within the set of all solutions S.

Figure 2.3 shows a possible execution of the local search heuristic. The red dots mark
solutions and the arcs the order in which they are generated. The blue dot is the local
optimum where the local search procedure terminates. It is obvious that the LS algorithm
does not find the global optimum as it converged to a local optimum.
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2.4 Particle Swarm Optimization

The particle swarm optimization (PSO) scheme was inspired by the movement of individ-
uals in fish schools and bird flocks that try to reach the best position in the swarm. This
optimization scheme was proposed and studied first by Kennedy and Eberhart [34, 20] with
the intention to simulate social behavior. PSO algorithms are very robust and can be applied
to a large set of optimization problems. Even if the data is noisy, incomplete or changes over
time a PSO is able to deal with this inconsistencies.

The PSO metaheuristic starts with a set of P random solutions, called the swarm of particles.
Each particle knows its position in the solution space, its velocity and its personal best
position lBest during the process of the algorithm. Further all particles know the global best
position gBest, which is the position of the best particle in history. In each iteration of the
algorithm, the velocity of the particles is manipulated in a stochastic manner and the position
is updated using the current position and velocity information. The resulting trajectories of
the particles depend on the local knowledge of each particle and the global knowledge of
the swarm.

The termination criteria of the algorithm can depend on several criteria: the maximum num-
ber of iterations, the time limit is reached or the swarm has converged to an optimum, or
it oscillates. The PSO, like all other metaheuristic algorithms, converges towards a local
optimum that potentially is the optimal value of the objective function. Algorithm 2.4 shows
the basic version of the optimization scheme as proposed by Kennedy and Eberhart.

Algorithm 2.4: The PSO metaheuristic
input : A problem instance
output: The particle at the best position

1 Initialize swarm;
2 while Termination criteria not met do
3 for i← 1 to P do
4 xi ← xi + vi;
5 if fitness(xi) < fitness(lBesti) then
6 lBesti ← xi ;
7 end
8 if fitness(xi) < fitness(gBest) then
9 gBest← xi ;

10 end
11 end
12 for i← 1 to P do
13 vi ← vi + β ∗ rand() ∗ (xi − lBesti) + γ ∗ rand() ∗ (xi − gBest) ;
14 end
15 end
16 return gBest;
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The D-dimensional vectors xi = (x1i , x
2
i , . . . x

D
i ) and vi = (v1i , v

2
i , . . . v

D
i ) represent

the position and the velocity of the i-th particle. The position has to be within the search
space, which is defined by the variables domains, and is therefore bounded by ∀i ∈ P, d ∈
D xdi ∈ [LBd, UBd] for each particle i and in each dimension d. UBd represents the upper
bound in the d-th dimension and LBd the respective lower bound in the continuous domain
of the position. The velocity might also be bound in order to avoid particles either missing a
promising part of the search space or taking too many iterations to converge towards a local
optimum.

The local best position vector lBest of each particle represents the cognitive component of
each particle. The current global best position gBest adds a social component to the current
knowledge of the swarm. In contrast to other optimization algorithms, the PSO is influenced
by a larger set of different inputs. A genetic algorithm, for instance, usually uses only local
knowledge obtained from the genotypes in the crossover and mutation operations.

The velocity of each particle is initialized at random. The position is either obtained from
a previously generated solution or is initialized at random, too. In each iteration of the
algorithm the position and the velocity are updated using (2.1) and (2.2), respectively:

vdi (t)← vdi (t− 1) + β ∗ r1 ∗ (lBestd − xdi (t− 1)) + γ ∗ r2 ∗ (gBestd − xdi (t− 1)) (2.1)

xdi (t)← xdi (t− 1) + vdi (t) (2.2)

The coefficients β and γ weight the cognitive (local information lBest) and social (global
information gBest) influence on the velocity of each particle. The random components
r1 and r2 are introduced to vary the strength of the influence of the cognitive and social
components and are generated for each dimension and particle. t represents the current
and t − 1 the previous iteration of the PSO. After each position update the velocity and
position have to be checked for feasibility, since it is possible that the particles fly out of the
search space or the solutions are invalid.

When the position of all particles in the swarm is updated and bound, the algorithm evaluates
the fitness function of each particle and sets the new local and global best positions lBest
and gBest. In case of a minimization problem the function to determine the local (2.3) and
global (2.4) best particles are the following:

lBesti(t)←
{

xi(t) f(xi(t)) < f(lBesti(t− 1))
lBesti(t− 1) f(xi(t)) ≥ f(lBesti(t− 1))

(2.3)

gBest(t)← min(lBest1(t), lBest2(t), . . . lBestd(t)) (2.4)
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In the original and most common formulation, all particles in the swarm know the same
global best position. Newer variants of the PSO define a neighborhood where the global best
position is shared among the particles. This results in multiple swarms that may converge
to different optimal positions in the solution space.

The PSO and some other heuristic algorithms have a drawback: a potentially early conver-
gence towards a local optimum, where the algorithm is unable to find any improvement in
the future. Several extensions to the original PSO were proposed in order to avoid an early
convergence. In this work a predator particle was used to simulate hunting the particles that
escape if the predator comes too close. This predator particle is able to scare the particles
that are stuck in a local optimum out of that part of the solution space. The interested reader
is referred to [9] for a more detailed overview.

Discrete PSO algorithms

As mentioned before PSO algorithms operate on a continuous solution space and are not
commonly used to solve COPs. Because of the continuous domain of the position and
velocity vectors, a mapping from the discrete to the continuous solution space and vice
versa has to be defined in order to be able to solve COPs with their discrete domain. Such
a mapping can be a simple rounding of the calculated position values in each iteration or
more sophisticated functions like recombination operators inspired by genetic algorithms.

The advantage of a PSO over other population based optimization algorithms, like genetic
and ant colony optimization algorithms, is the usage of several sources of information: the
social component and the knowledge component. Genetic algorithms typically have only a
social component and on the other hand ant colony optimization algorithms only the knowl-
edge component, which is the pheromone trail. Further the PSO has not been subject of
any research in context of the VRPC.

Kennedy and Eberhart [35] proposed a discrete version of the PSO too: the algorithm uses
the same velocity update function (2.1) and the new position update function (2.5) with (2.6)
being the sigmoid function.

xdi (t)← f(sdi (t)− r) (2.5)

sdi (t)←
1

1 + e−v
d
i (t)

(2.6)

The final position of the particle is obtained by applying f , the so called unit step function, on
the result of a random number r subtracted from the sigmoid function. The random number r
is generated using an uniform distribution. The selection of f directly influences the average
velocity needed to set the binary component of the particle. The unit step function f could
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be a simple rounding or any other function that transforms a value from the interval [0 . . . 1]
into a binary value.

A particle for the VRPC problem for the binary PSO could be the 4 dimensional matrix M ,
with the number of vehicles in the first, the customer in the second, the demand in the third
and the compartment in the forth dimension. If w.l.o.g. the element evi,cj ,dk,compl = 1 then
the i-th vehicle has loaded demand dk into the compartment l and delivers it to customer j.

Another discrete PSO algorithm is presented in [60]. It operates on domains with more than
two distinct values. Similar to the binary PSO above the velocity update function remains the
same as in the continuous domain (2.1). The discrete variable values are from the domain
∈ {0, 1, . . .M − 1} and the position update function (2.7) is the following, where (2.8) is the
sigmoid function:

xdi (t)← round(sdi (t) + (M − 1) ∗ σ ∗ randn(1)) (2.7)

sdi (t)←
M

1 + e−v
d
i (t)

(2.8)

The discrete PSO analyzed in this work is the following: the velocity is based on the original
PSO formulation with the additional influence of the predator. The velocity vector v ∈ Rd
defines the velocity in each dimension and contains the tuple (σ, µ). The position vector
x ∈ Nd is obtained by generating a normally distributed random number and applying a
simple rounding function. The velocity and position update is done according to (2.9) and
(2.10), respectively.

vdi (t)← vdi (t− 1) + β ∗ (xdi (t− 1)− xlocal best) (2.9)

+ γ ∗ (xdi (t− 1)− xglobal best)− γ ∗∆

xdi (t)← round(randn(vdi (t)µ, v
d
i (t)σ)) (2.10)

The position x ∈ Nd represents a solution and is obtained by choosing a random number
using the coefficients from the velocity information. The function ∆ returns the distance to
the predator.
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2.5 Linear Programming

Solving NP-hard optimization problems to optimality can be very time and memory con-
suming, especially as the size of the problem instances grows. Under the assumption that
P 6= NP there exists no algorithm that has a guaranteed polynomial time complexity for
any problem in NP .

Proven optimal solutions are desirable for all optimization problems, since they provide a
minimal lower bound for all other methods and facilitate evaluating the performance of ap-
proximate solutions. The classification of problems into complexity classes provides only a
worst case analysis of the running time of any algorithm and does not say anything about the
average case. Even though solving such problems to optimality is assumed to be very time
consuming, practice has shown that there exist several problems where an exact algorithm
performs efficiently on a large set of instances.

For example, the TSP has been solved on large instances with more than 10000 cities.
In many cases a sophisticated exact algorithm was able to locate the optimal solution to
be within a gap that is less than 1 percent from the calculated solution. The three largest
instances upon the completion of this work were all solved using CONCORDE [2], the most
efficient implementation available.

3. In 2001 the optimal tour through all 15112 communities of Germany was calculated.
The resulting total tour has 66000 kilometers length.

2. The optimal tour through all 24978 communities in Sweden with a tour length of ap-
proximately 72500 kilometers, solved in 2004.

1. The largest instance of the traveling salesman problem that was solved until now (Sep.
2012) consists of a tour through 85900 locations in a VLSI application that arose in
the Bell Laboratories in the late 1980s.

In practice there exist several methods to solve NP-hard problems to optimality. The most
prominent member is linear programming (LP), which was studied first by Leonid Kan-
torovich and George Dantzig, combined with branch & bound. As a member of the military
engineering-technical university, Kantorovich was responsible for the socalled road of life to
the besieged city of Leningrad. He calculated the optimal distance between cars on ice,
depending on the thickness of the ice and the air temperature such that the ice does not
crack and the goods that are delivered to Leningrad are maximized. This is known as the
first LP model. Independent of Kantorovich, Dantzig formalized linear programming a few
years later and published the simplex method in 1947. In the same year John von Neu-
mann developed the theory of duality: for each minimization problem there exists a dual
maximization problem.

All LP’s are formulated using linear relationships between the variables and can be written
in the following basic form:
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max. cTx (2.11)

s.t. Ax ≤ b (2.12)

x ∈ Rn (2.13)

The socalled objective function (2.11) defines the formula to be minimized or maximized.
The linear constraints (2.12) define the relation between the variables and (2.13) the domain
of the variables. The domain of the variables classifies the linear program:

Linear Program(LP): x ∈ Rn

Integer Linear Program(ILP): x ∈ Zn

Binary Integer Liner Program(BIP): x ∈ {0, 1}n

Mixed Integer Liner Program(MIP): some x1 ⊂ x ∈ Rn, some other x2 ⊂ x ∈ Zn
and a third subset x3 ⊂ x ∈ {0, 1}n

Duality and Relaxation

According to the results of von Neumann, each problem can be converted into a correspond-
ing dual problem. The dual problem of a minimization problem is a maximization problem
and vice versa. Converting the primal LP (2.11) - (2.13) into its dual formulation, is the
following minimization problem:

min. bTy (2.14)

s.t. ATy ≤ c (2.15)

y ∈ Rn (2.16)

The dual objective function (2.14), the dual constraints (2.15) and the domain of the dual
variables (2.16) are the basic dual form. When the dual problem is converted into its dual
problem, the resulting problem is equivalent to the primal problem.

Figure 2.4: The bounds of the ILP
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Linear Programs can be solved very efficient by using the Simplex algorithm or the interior
point method. The other models are in general NP-hard problems and are solved using
advanced methods that use the simplex algorithm in order to solve a relaxed version of the
problem. By relaxing the integer condition on the variables, the domain becomes continu-
ous: e.g. a constraint x ∈ N becomes x ∈ R. However the resulting solution might not be
integral, i.e. there exists at least one variable having a fractional value.

An important and very useful information that can be obtained from these solutions are the
bounds: for a minimization problem the solution of the relaxed problem is a lower bound for
the original problem. The solution of the original problem can be at most as good as the
solution of the relaxed problem. Already computed feasible solutions for the original prob-
lem and the solution of the dual problem provide an upper bound for the original problem.
The optimal integer solution is somewhere between the lower and upper bounds that are
obtained from solving the relaxed primal and dual problem. See Figure 2.4.

Branch and Bound

Branch and Bound (B&B) is inspired from the divide and conquer principle that is widely
known for search problems: divide the problem into two or more sub-problems (branches)
and solve them independently. Applying this rule to the generated subproblems, too, forms
the B&B search tree. Such a subproblem can be generated by adding constraints to the
branches of the search tree. A simple constraint for binary problems is shown in Figure
2.5: by fixing w.l.o.g. variable xi = 0 in the first subtree and xi = 1 in the second subtree.
The problem in both subtrees is simpler than the whole problem, since the binary variable x
becomes a constant in both subtrees.

Figure 2.5: Binding the variable x to binary values

If a feasible and improved solution is found, it becomes a global upper bound. If it can be
shown that all solutions in a branch are worse than this upper bound, the branch can be
pruned from the search tree. B&B basically is a systematic enumeration of all candidate
solutions, where a hopefully huge subset of candidate solutions can be discarded.

When solving ILPs, B&B is used to obtain an integer solution from the relaxed solution
by creating branches with additional constraints on the fractional variables. For instance
and w.l.o.g. if variable xi in a relaxed ILP has the value 17.326, two subproblems with the
constraints xi ≤ 17 and xi ≥ 18 are created and solved. After solving, each node is checked
and possibly pruned.
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The optimal solution is found if the primal solution value is equal to the dual solution value
and is integral.

A branch in a minimization formulation can be pruned if:

• The Solution is infeasible

• The lower bound is larger than the global upper bound

• Optimal solution is found

The performance of a B&B algorithm highly depends on the branching and variable selection
rules. In many cases an empirical analysis shows significant differences in the size of the
tree and the total running time for different settings.

Column Generation

The basic idea behind Column Generation (CG) is to focus on an interesting subset of
the search space and avoid to explore a larger subset, which is never part of the solution.
In addition, a subproblem is used to identify new variables that might improve the current
solution. The result is a narrow problem formulation that can be solved in shorter time. When
using a CG approach, the original problem is reformulated and split into two problems, the
socalled Master Problem (MP) and the Pricing Problem (PP). The unrestricted MP contains
all possible variables and equals a complete enumeration, which is very inefficient. Further
it would supersede the need to solve the pricing problem. Since this is not practical only a
small subset of variables, the Restricted Master Problem (RMP), is initially generated and
the PP is used to identify new variables. The Dantzig-Wolfe decomposition provides the
formal basics for the column generation approach [19].

The PP highly depends on the formulation of the RMP and the original problem itself. The
goal of splitting the original problem is to obtain one or even more problems with a special
structure, where sophisticated algorithms are able to solve them efficiently. Even though it
is clear that solving the master and pricing problems implies solving at least one problem in
NP , there might exist algorithms that are able to solve some of the problems relatively good
in practice. E.g. the Knapsack Problem, a weakly NP problem, is easily tractable using a
dynamic programming approach.

As the variables are generated every time after the LP solving process finishes, this ap-
proach is also called delayed column generation. The solving process in any column gen-
eration approach works as follows: an LP solver, such as the simplex algorithm, solves the
RMP with the current available variables and generates the dual variable values for each
constraint. When the solver terminates the dual variable values are used in the pricing prob-
lem to identify new variables with negative costs. When the PP finds such variables they are
added to the RMP and the solving process starts again with the extended master problem
formulation. For a MIP formulation the CG process needs to be embedded into a B&B solver
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whose decisions also influence the PP. If the pricer does not find any variables the search in
the current node in the B&B tree, the column generation process is finished for this particular
node and the B&B solver continues.

2.6 Constraint Programming

Constraint Programming (CP) [51] is a programming paradigm that is under growing devel-
opment since the mid 80’s and is an enhancement of logic programming. A CP model is
given in form of relations, called the constraints, over binary, integer or set variables. These
constraints can have different shapes: linear constraints, n-ary relations, arithmetic con-
straints and more complex constraints like bin packing, sorting, scheduling constraints, just
to name some of them.

The solver tries to assign values to the variables such that all constraints are satisfied. Ba-
sically, solving a CP model implies the methods propagation and search using methods like
B&B and Depth First Search (DFS). Propagation means removing all values from the domain
of a variable that always result in a violated constraint when the variable would be assigned
this specific value. The value is removed only if the other variables can assume any value
from their domain and there always exists a violated constraint in the model. Each prop-
agation operation is performed by a constraint specific propagator that uses sophisticated
methods for the special problem.

For instance the propagator for binary relations like x1 < x2 deletes all values from the
domain of x1 that are larger or equal than the maximum of x2 and all values from x2 that
are smaller than the minimum of x1. A second example is shown in Figure 2.6, showing a
combined application of the search and propagation methods on the popular puzzle Sudoku.

The search procedure has to be used if no propagator is able to restrict any domain further
and at least one variable has a domain with more than one values. Searching in CP solvers
is realized through search trees that restrict the domain of a variable for the left subtree
and the exact opposite decision is made for the right subtree. DFS is mainly used for pure
assignment problems whereas B&B is normally used for optimization problems.

Constraint programming is used in this work to solve the packing problem, as CP solvers
are designed to find assignments efficiently, such as the packing problem for the instances
with fixed compartments.

Sudoku, a very popular logic puzzle, is meant to be solved by propagation only even though
applying a decision similar to B&B helps to solve the puzzle: if there are two distinct values
possible at a node the first one is tried out, if during the further solving process a field having
an empty domain is encountered the decision was wrong and the other value is correct.
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Figure 2.6: Search and Propagation in a part of the Sudoku puzzle. The values in
the fields are the respective domains with one or two values. First the search assigns
3 in the left subtree and 4 in the right subtree and then each part of the puzzle can
be solved using propagation only.
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CHAPTER 3
Algorithms for the Vehicle Routing

Problem with Compartments

The two major classes of algorithms implemented and analyzed in this work are heuristic
approaches and exact algorithms. The first part of this chapter focuses on the two heuristic
approaches, first the GRASP which is used as construction algorithm to obtain the first
solutions and second the PSO and LS algorithms that improve these solutions further. The
LS scheme optimizes the particles of the PSO after each position update operation to yield
a quicker termination and better solution quality.

The second part of this chapter describes the models and algorithms that are used to obtain
proven optimal solutions. The column generation algorithm depends on initial variables that
are generated by the heuristic algorithms and used to create the RMP. During the solving
process, the pricer iteratively generates new variables that are subsequently added to the
master problem, which is then resolved.

3.1 Heuristic Approaches

This section provides a detailed description of the two heuristic solution approaches. The
first is the GRASP which serves as a provider of an initial solution for other algorithms. The
second part describes the heuristic algorithm based on swarm intelligence.

Modeling a Solution

In order to get an efficient program, the organization of the data in the main memory is very
important. The goal is to achieve a small memory footprint and a fast way to access the
data stored in it. As every algorithm needs special information, the representation of the so-
lutions is slightly different for each algorithm. The basic solution of the heuristic algorithms
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is modeled as a two dimensional matrix to represent the tour T and a second one to model
the packing P . Figure 3.1 shows both matrices with two vehicles that deliver some goods to
customers. The first dimension in both matrices represents the vehicles. The second dimen-
sion in the tour matrix T represents the customers and holds the index of the next customer
in the tour. The second dimension of the packing matrix P represents the compartments of
each vehicle and holds a list of orders, which are loaded into the corresponding vehicle and
compartment.

Figure 3.1: A partial solution with vehicle 3 and 8 delivering some orders

As the vehicles are uniform by definition, such a solution approach is possible without any
further restrictions on the elements in P . In case the vehicles are not uniform, all compart-
ments that do not exist in the corresponding vehicles have to be constrained to be empty.

In the description of the algorithms set operators are used to modify the packing and tour
matrices T and P . This simplifies the pseudo code by abstracting from the data structures
and relieves the comprehension. E.g. adding a tour to the tour matrix T is denoted as
T ← T ∪ (ld, l1, . . . , ld).

A GRASP Algorithm for the VRPC

Based on the idea of the GRASP metaheuristic the Clarke and Wright Savings algorithm
[10] is modified in order to construct initial solutions with a modifiable grade of diversity.
The candidate list holds all possible pairs of tours that can be merged. Further the savings
values along the arcs, which connect two different tours, directly provide the metric to order
the candidate list.

The GRASP algorithm uses the savings matrix S in order to determine which two tours are
connected to a single tour. Each saving w.l.o.g. sij in the savings matrix S holds the amount
of routing costs that can be saved when merging two tours. The first part of the tour starts
from the depot and ends at node i and the second begins at node j and ends at the depot.
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As the savings do not change over the execution of the algorithm, they are calculated once
in the initialization step.

Algorithm 3.1: Initializing the Savings GRASP

1 T← ∅;
2 P← ∅;
3 foreach li 6= lj ∈ L \ {d} do
4 Sij = distance(li, ld) + distance(ld, lj)− distance(li, lj);
5 end
6 foreach i ∈ O do
7 T← T ∪ (ld, lcustomer(i), ld);
8 P← P ∪ pack(i);
9 end

10 return T,P,S;

In the first loop Algorithm 3.1 calculates the savings matrix S. In the second loop the tour
and packing matrices are initialized by generating a tour for each individual order.

The GRASP metaheuristic needs a list of candidates in order to select a random element
from a set of good extensions to the current partial solution. The Savings algorithm is
modified in order to fit the needs of the GRASP metaheuristic. Instead of selecting the best
saving to merge two tours, the algorithm generates a list of all possible combinations from
the current tours.

Algorithm 3.2: Generating the candidate list.
input: The tour, packing and savings matrices T, P and S

1 cl← ∅;
2 foreach i 6= j ∈ [1 . . . |T|] do
3 if pack(Pi,Pj) 6= ∅ then
4 s← max(STi.b,Tj.b

,STi.b,Tj.e ,STi.e,Tj.b
,STi.e,Tj.e);

5 cl← cl ∪ (i, j, s);
6 end
7 end
8 return cl;

During the main loop of the Savings GRASP Algorithm 3.3 each pair of tours is evaluated
due to their savings and checked if the orders in both vehicles fit into a single vehicle.
Algorithm 3.2 shows how the CL is constructed. Each pair of tours is checked if the packing
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schemes can be merged and the best saving among the four possible connections of both
tours is determined. Note: Ti.b denotes the index of the first customer in the i-th tour and
STi.b,Tj.e denotes the saving by appending the end of tour j at the beginning of tour i.

Algorithm 3.3: The Savings GRASP for the VRPC

1 T,P,S← init_savings();
2 cl← generate_cl(T,P,S);
3 while cl 6= ∅ do
4 sort(cl);
5 c← rand(get_rcl(cl, α ∗ |cl|));
6 if c3 = STc1.e,Tc2.e

then
7 Tc2 ← reverse(Tc2);
8 else if c3 = STc1.b,Tc2.b

then
9 Tc1 ← reverse(Tc1);

10 else if c3 = STc1.b,Tc2.e
then

11 Tc1 ← reverse(Tc1);
12 Tc2 ← reverse(Tc2);
13 end
14 Tc1 ← (Tc1 ,Tc2);
15 Pc1 ← pack(Pc1 ,Pc2);
16 T← T \ {Tc2};
17 P← P \ {Pc2};
18 cl← generate_cl(T,P,S);
19 end
20 if |T| > |V | then
21 T,P← repair(T,P);
22 end
23 return T,P;

The packing function is called for every pair of tours and every time the current solution
is improved by connecting two individual tours. It takes first the packing scheme Pc1 and
iteratively calls the online packing function, shown in Algorithm 3.4, for each order in the
second packing scheme Pc2 . In order to save computation time an additional data structure,
which is omitted in Algorithms 3.1, 3.2 and 3.3, holds the information which two tours can
be merged or whether the packing was not calculated yet.

After the algorithm selected the candidate to extend the solution it modifies both tours such
that the vehicle drives along the direction of the selected saving. This implies that one or
both tours may be reversed. Then the second tour is appended at the end of the first tour.
The packing is calculated using a first fit heuristic which is depicted in Algorithm 3.4.
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After no two tours can be merged, the Savings GRASP is finished. It may happen that the
number of generated tours is larger than the number of available vehicles and the solution
has to be modified. The repairing function takes the tours with the least number of cus-
tomers, that cannot be assigned to a vehicle, and iteratively tries to load the orders into
other tours regardless if the costs increase. The repairing function always selects the tour
that causes the least cost increment.

Algorithm 3.4: The online packing function
input: The demand d that has to be packed into any compartment of vehicle v

1 foreach comp ∈ compartments(v) do
2 if flexible compartments then
3 if compatible(d, comp) ∧ load(v) + d.amount ≤ capacity(v)∧
4 load(v, comp) + d.amount ≤ capacity(comp) then
5 L(v, cust)← L(v, cust) ∪ d;
6 return true;
7 end
8 else
9 foreach d2 ∈ L(v, comp) do

10 if compatible(d, d2)∧
11 load(v, comp) + d.amount ≤ capacity(comp) then
12 L(v, cust)← L(v, cust) ∪ d;
13 return true;
14 end
15 end
16 end
17 end
18 return false;

Algorithm 3.4 is a so-called online algorithm, since it does not change any existing partial
packing scheme but tries to add orders to it without changing the order in which the orders
should be packed.

Definition 7. An online algorithm processes the input immediately without being able to
get information about the future input and without changing an already processed output.
The online algorithm must process the data as it is passed and does not have the possibility
to wait for a later input.

This packing algorithm is used in all heuristic approaches to load the orders and in the
exact algorithm in the first stage when the packing scheme is calculated. This algorithm is
referenced several times in the following sections as the online packing algorithm.

31



3. ALGORITHMS FOR THE VEHICLE ROUTING PROBLEM WITH COMPARTMENTS

A discrete PSO for the VRPC

As mentioned in the introduction in Chapter 2.4, the PSO uses two types of information
to enhance the solutions: the social component, which is the particle at the global best
position, and the cognitive component, the best position each particle has been so far. In
the next chapters the discrete PSO will be denoted as PSO for simplicity and to facilitate the
understanding and is depicted int Algorithm 3.5.

Algorithm 3.5: The discrete PSO
input: The problem instance and the initial particles

1 solution← ∅;
2 gBest← ∅;
3 foreach particle do
4 particle← calc_initial();
5 end
6 while Termination criteria is not met do
7 foreach particle do
8 update_position(particle);
9 repair(particle);

10 if quarter of time or iteration limit exceeded then
11 optimize(particle);
12 end
13 if particle.fitness < gBest.fitness ∨ gBest = ∅ then
14 gBest← particle;
15 if gBest.fitness < solution.fitness ∨ solution = ∅ then
16 solution← gBest;
17 end
18 end
19 end
20 update_predator();
21 foreach particle do
22 update_velocity(particle);
23 end
24 end
25 return solution;

The algorithm first updates the position of each particle according to the current velocity.
Since a position update makes the solution unfeasible with a very high probability, the parti-
cles need to be repaired. The optimization function is called only in the last three quarters
of the total running time or iterations of the algorithm. If no time or iteration limit is defined
the algorithm calls the optimization function in every iteration after a default number of 50
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iterations is exceeded. This gives the particles the ability to better explore the search space
in the first quarter and forces them towards a local optimum in the last three quarters.

After updating, repairing and optimizing the particles, the algorithm checks if a new global
best particle and a best solution can be found in the swarm. The PSO keeps a copy of the
best solution that was found during execution of the algorithm. In the second part of the
algorithm the predator updates its position depending on the distance to the other particles
and their fitness function value. Since the position of the predator depends on the positions
of the particles and the velocities of the particles are influenced by the predator’s position,
the main loop of the original PSO has to be divided into two loops: the particles position
update loop and the velocity update loop.

When the termination criteria are met, the best solution is returned. The termination cri-
teria can be a simple time or iteration limit or even more complex such as the number of
successive iterations the algorithm found no improvement. In order to be able to compare
the results of the algorithm with different datasets, a simple time limit is used as termination
criteria. Since the PSO also provides initial solutions for the exact approach, it supports
termination after a given iteration limit, too.

In an early development stage the PSO also operated on the packing scheme, but the results
were disappointing. The influence of the tour on the loading scheme and vice versa is crucial
and prevented the algorithm from finding good solutions. A simple change in the tour has
a huge impact on the loading scheme, since the loading values obtained so far become
invalid. In the opposite case, when a demand is loaded into a different vehicle, the tour of
two vehicles changes.

Due to this strong dependency the PSO has to concentrate either on the tour or the packing.
The respective other component is calculated using a simple construction heuristic. When
the PSO focuses on the tour the packing is calculated using the online packing Algorithm 3.4.
In the opposite case, the PSO assigns the demands to vehicles and compartments and the
tour is calculated with a local search procedure using the tour optimization neighborhoods
presented later in this Section starting on page 40. An empirical analysis has shown early
that the first approach gives better results. As consequence the PSO operating on the
packing matrix P is considered rarely in the next sections in this work. Further most of the
algorithms are equal or very similar for both PSO variants. In the results Chapter 4 the
performance of both algorithms are compared.
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The Particles

Each particle is a refinement of the solution the GRASP returns, which is described in Sec-
tion 3.1. The position of a particle is the current solution with the packing matrix P and
the tour matrix T . These matrices are the same as the ones for the GRASP. They are pre-
sented in Section 3.1. In addition, the velocity is modeled as a two dimensional matrix V ,
where each element is a tuple (µ, σ), the coefficients of a normal distributed random number
generator. The initial swarm is generated by the GRASP algorithm.

Figure 3.2: The predator particle (red) hunts the current best particle (blue) which
escapes from the potentially local optimum. The velocity of the particles near the
predator highly depends on the distance between them.

In order to avoid an early convergence a predator particle is used. The predator itself is a
particle with a different velocity update and without repair and optimize functions. As the
predator only avoids an early convergence, the solution it represents need not be feasible at
all. The predator particle aims towards the position of the current best particle. Depending
on the distance between the particles and the predator every particle in the swarm reacts
differently. Figure 3.2 shows the predator, the red particle, which aims towards the current
global best particle, the blue one, and other particles that aim towards the current best
position if the distance to the predator is large enough, else the predator scares them away.

Evaluating the Performance of the Particles

The objective function returns the total routing costs, which are the total accumulated costs
along the route each vehicle drives. Since the solutions represented by the particles con-
tain invalid parts with a very high probability, the particles have to be evaluated using an
extended measure: the fitness function. It returns a measure depending on the total routing
costs given by the objective function and additional penalty costs for each invalid part of the
solution, which are evaluated by the error function.

In order to enhance the exploration of the solution space, especially during the first iterations,
the PSO should be able to accept particles as the new global best particle even if they are
invalid, but might be better than the current best particle. This can be achieved by adding
penalty costs that depend on the severity of the invalid parts of the solution and the progress
of the algorithm, that is either the number of the current iteration or the time elapsed. If the
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solution, the particle represents, is invalid, weighted penalty costs for each infeasible tour or
packing scheme are added to the objective function value. This forces the particles towards
feasible solutions. Especially in the last iterations it is crucial that the algorithm produces
valid solutions.

Each particle p that was generated by one of the two different PSO algorithms, either oper-
ating on the tour or the packing, can be infeasible due to the following reasons:

• Invalid tours: Due to the construction of the particles, as described in the position
update function on page 37, in most of the cases the tour is feasible, but it may happen
that the tour contains cycles. t(p) =

∑
(invalid tours in p).

• Undelivered orders: All orders that are demanded by the customers, but not deliv-
ered, are summed up to: u(p) =

∑
(undelivered orders in p).

• Violated incompatibility constraints: For each demand that is loaded into an in-
compatible compartment penalty costs are added. Further if two different demands
are loaded into the same compartment, but are not allowed to be in the same com-
partment, are accumulated to: i(p) =

∑
(incompatibilities violated in p).

• Overloaded compartments and vehicles: The demands for each compartment and
vehicle, which are loaded beyond the respective limit, are summed up to:
o(p) =

∑
(overloaded vehicles in p) +

∑
(overloaded compartments in p).

The first two cases can only happen when the PSO optimizes the tour of the vehicles, while
the last two cases are impossible due to the construction process of the packing scheme.
In contrast, the first two cases are impossible to happen in case of the PSO operating on
the packing, since a feasible tour will be constructed in any case. Further the PSO that
optimizes the packing scheme assigns every demand to a vehicle, but may overload and
generate incompatible packing schemes, which is impossible for the first PSO.

The resulting fitness function (3.1) and error function (3.2) for each particle p in the swarm
at iteration it are the following:

fitness(p, it)← objective(p) ∗ (1 + ε ∗ it ∗ error(p)) (3.1)

error(p)← α ∗ t(p) + β ∗ u(p) + γ ∗ i(p) + δ ∗ o(p) (3.2)

All penalty and routing costs are summed up and weighted with the respective weights
α, β, γ, δ and ε. The increasing error function value in later iterations causes the fitness
function to return larger values and the PSO to accept only feasible solutions.
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Updating the Velocity

The velocity update is the most crucial part of a PSO algorithm and difficult to fine tune,
since it determines how fast the particles fly towards the promising regions of the search
space. In the worst case they fly across the local optimum values and never actually reach
them. Contrary, the particles might be too slow and the algorithm takes too long to converge
towards a local optimum. In general parameter tuning is always an empirical trial and error
approach and the results highly depend on the instances used to tune the parameters, which
is not desirable.

An update of the velocity matrix V for every particle is done by updating the velocity of each
element. The following equation expresses the velocity update for the element that depicts
vehicle i and customer c:

V (i, c).µ ← V (i, c).µ + α ∗ (TlBest(i, c).µ− T (i, c)) (3.3)

+ β ∗ (TgBest(i, c).µ− T (i, c))

− γ ∗∆ ∗ (Tpred(i, c)− T (i, c))

The component of the velocity update function processes the influence of the local informa-
tion, the current velocity and the local best position. The second part adds the attraction of
the global best position. The third part of the velocity update function is an adaptive compo-
nent that “scares” the particles depending on the distance ∆ between them and the position
of the predator particle. The intensity of the influence of the predator on the other particles
depends on ∆ and is calculated as follows:

∆← 1∑
i∈T
∑

c∈T (T (i, c)− Tpred(i, c))2
(3.4)

Where
∑

i∈T depicts all vehicles and
∑

c∈T all compartments in the tour matrix T . The value
of ∆ is almost 0 for all particles that are far away from the predator and increases as the
particles get closer to the predator particle. The constants α, β and γ control the respective
influence of the local and global information as well as the scaring factor. Especially the
value of γ has to be chosen with care, as the algorithm can not produce good results with
particles that do not explore a promising region of the search space for a minimal number of
iterations, i.e. they are chased away too soon.

Another factor that controls the velocity is the standard deviation σ. It has no direct influence
on µ but it highly influences the results of the position update method and indirectly also the
velocity. By adapting the value of σ the algorithm reacts on the quality of the current part
of the search space the particle explores. If a particle has spent a lot of iterations in a
poor region the algorithm increases the difference between two successive positions by
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increasing σ. The standard deviation σ is therefore the random and adaptive component of
the PSO, as the quality of the current part of the search space also depends on the loading
grade of the vehicles. A solution is considered good if the vehicles are almost fully loaded.

V (i, c).σ ←


V (i,c).σ

ϕ loading grade(i) ≥ φ
V (i, c).σ φ > loading grade(i) ≥ ψ
V (i, c).σ + ω ψ >loading grade(i)

(3.5)

The value of σ is updated equally for each vehicle v and is the same for each element in
the row of the velocity matrix V that corresponds to vehicle v. The random component σ
is modified in a three conditional manner, depending on the loading grade: if the loading
grade of v is less than a first threshold ψ, σ is incremented in an additive manner. If the
loading grade is superior than a second threshold φ it will be decremented in a multiplicative
manner. If the loading grade is between the two values σ is not changed. This additive
increase / multiplicative decrease approach should allow the algorithm to react quicker on a
promising part of the search space and cause the particles to explore it better.

Position update

Updating the position of the particles means generating a random number using the µ and
σ values obtained from the velocity matrix V . Each element of the tour matrix is calculated
as follows:

T (i, c)← randn(V (i, c).µ, V (i, c).σ) (3.6)

If this position update function is applied on any element in the matrix the resulting tours are
invalid in almost any case. The consequence would be a high repairing effort having a high
impact on the running time of the PSO. Early tests have shown that it does not make sense
to follow this solution approach further. Instead, when updating the position of a particle
the algorithm focuses on generating valid tours by applying the position update function to a
subset of the elements in T only. All other elements that are not updated preserve their old
values. Algorithm 3.6 depicts how the tours are generated.

This algorithm assures that each tour starts and ends at the depot, but it does not prevent
sub-tours. In this case the corresponding solution is invalid and the penalty costs of the
particle increase.
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Algorithm 3.6: Updating the tour of vehicle v
input: The particles velocity and tour matrices V, T and vehicle v

1 next← randn(V (v, depot).µ, V (v, depot).σ);
2 T (v, depot)← next;
3 current← next;
4 while next 6= depot do
5 next← randn(V (v, current).µ, V (v, current).σ);
6 T (v, current)← next;
7 current← next;
8 end
9 return T ;

The elements in the tour matrix T that were not updated, may form an alternative partial
route of vehicle v that potentially leads to an improved fitness function value in future it-
erations of the PSO. When the algorithm selects a different customer in two successive
iterations, at least a subset of the successive tour is different. From a certain point in the
tour, the vehicle may also take a completely different path back to the depot. As the number
of iterations grows the preserved values of µ and σ along this alternative path potentially
lead towards improved solutions.

The resulting complete tour of each vehicle is calculated by following the entries in the tour
matrix T . Figure 3.3 illustrates the resulting tour of vehicle 4 and an alternative partial path.
The next section discusses how the packing scheme for each vehicle is retrieved.

Figure 3.3: The tour matrix T for a vehicle highlighting the actual route of vehicle 4
and an alternative partial route.
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Calculating the Packing Matrix

The loading matrix is calculated after the PSO has updated the tour and velocity matrices.
The algorithm aims to pack as many orders as possible in the tour of each vehicle in a
first fit manner. If no demand of a customer can be packed into a vehicle, this customer
is removed from the tour of the corresponding vehicle. As a consequence, if the vehicle is
full, the remaining customers in the tour are removed and the vehicle returns to the depot.
Algorithm 3.7 shows this procedure.

Algorithm 3.7: Calculating the packing matrix P
input: The particles velocity and tour matrices V and T

1 foreach vehicle do
2 curr_cust← T (vehicle, depot);
3 last← depot;
4 while curr_cust 6= depot do
5 skip← true;
6 foreach o.cust 6∈ P do
7 if pack(vehicle, o) then
8 skip← false;
9 end

10 end
11 if skip = true then
12 T (vehicle, last)← T (vehicle, curr_cust);
13 else
14 last← curr_cust;
15 end
16 curr_cust← T (vehicle, curr_cust);
17 end
18 end
19 return P ;

Repairing the Solutions

After calculating the packing matrix P the updated particles may be infeasible due to two
reasons: it is either possible that no vehicle reaches some customer or the customer orders
cannot be loaded into the vehicles visiting it. The repair function searches such orders and
tries to load them into vehicles using two different strategies. First the algorithm tries to find
the vehicle that can load at least one of these with the lowest additional costs. If no such
vehicle can be found, the undelivered demands are loaded into a yet unassigned vehicle
that delivers them. Algorithm 3.8 depicts the repair function.
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Algorithm 3.8: Repairing a particle
input: A particle

1 foreach o 6∈ P do
2 costs←∞;
3 best← −1;
4 foreach v : P (v) 6= ∅ do
5 if fits_in(v, o) ∧ costs ≤ additional_costs(v, o.cust) then
6 best = v;
7 costs← additional_costs(v, o.cust);
8 end
9 end

10 if best 6= −1 then
11 pack(best, o);
12 else
13 v← find_empty_vehicle(P );
14 if v 6= −1 then
15 pack(v, o);
16 end
17 end
18 end

In the outer loop the function searches for orders that are not packed yet. In the inner loop
the algorithm iterates through all vehicles that have loaded something and checks if the
order can be packed into the vehicle. The algorithm selects the vehicle where the insertion
generates the least additional costs. If no such vehicle is found the algorithm selects a new
vehicle that delivers the order. If no such vehicle can be found the solution the particle
represents is invalid and penalty costs increase the fitness function value.

The function fits_in(v,d) checks if the order o fits into any compartment of vehicle
v and is very similar to the online pack function. The only difference is that the order
is not added to the packing matrix P . The function additional_costs(v,o.cust)
calculates the additional costs that result from adding the customer that ordered o to the
tour of vehicle v. The function iterates through the tour and searches the cheapest point to
insert the customer. The function find_empty_vehicle returns an empty vehicle if there
exists one, else −1 is returned. As the problem defines an upper bound on the vehicles that
are available it is possible that the order cannot be assigned to any vehicle.

Optimizing the Particles

After executing the repair function it is possible that vehicles visit customers but deliver
nothing to them. This generates additional costs and these customers can safely be re-
moved from the tour. Further, analogously to the idea of a memetic algorithm, an additional,
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fast optimization function is executed in each iteration. The local search heuristic tries to im-
prove each particle by searching in appropriately defined neighborhoods for better solutions.
These neighborhoods are described in the next sections and are executed in the order as
they appear.

Optimizing the tour

The first local search neighborhood performs only changes in the tour matrix T , i.e. it
changes the order in which the customers appear in the tour of the vehicles. The algo-
rithm distinguishes between two cases, depending on the number of customers in the tour
of each vehicle. If the tour contains less than five customers the algorithm tries all possi-
ble moves and selects the cheapest tour. As this conforms to a complete enumeration this
can only be applied to a very limited set of customers, since the size of all combinations
increases exponentially with the total number of customers in the tour. The enumeration
algorithm keeps track of the accumulated tour costs and is able to skip a subset of combina-
tions that exceeds the lower bound, which is the cheapest tour calculated so far. If a partial
tour is more expensive than an already computed tour, all possibilities to complete it can be
skipped safely. As a consequence the algorithm checks at most 24 distinct cases which can
be done in a very short time. The reason for this lies in the third neighborhood, the so called
3-opt, see Figure 3.6, where the implementation needs at least five customers in the tour to
operate correctly.

In the opposite case, with more than five customers in the tour of the vehicle, the algorithm
tries to switch the position of customers or a subset of the customers in the tour using a local
search method and accepts the first improved solution.

Figure 3.4: A 2-opt move

The neighborhood is known as 2-opt and switches the position of two customers in the tour.
The goal of this neighborhood is to find crossroads in the tour and to reorder the customers
in such a way that the tour does not cross over itself. Originally this idea was proposed
by Croes in 1958 [11] as a heuristic to improve the tour of the traveling salesman. Figure
3.4 shows the idea of this move. Lin and Kernighan improved this idea further [36] to the
lin-kernighan TSP improvement heuristic.

The second method that changes the position of customers in the tour is called 2.5-opt
and is depicted in Figure 3.5. For each customer, this neighborhood tries to find another
position in the same tour such that the total routing costs of the vehicle decrease. The third
and last neighborhood is called 3-opt, which deletes the link between three customers and
reconnects them to a feasible tour in a different order. If the resulting routing costs are less,

41



3. ALGORITHMS FOR THE VEHICLE ROUTING PROBLEM WITH COMPARTMENTS

Figure 3.5: A 2.5-opt move

the new route is accepted and the Local Search method continues the search with the next
vehicle. The 2-opt and 3-opt neighborhoods are conceptually similar, except that two or
three links in the tour are deleted and reconnected differently. Figure 3.6 shows the idea of
the 3-opt neighborhood. The tour in this example could also be improved by several 2-opt
moves, too, as is a rather simple example.

Figure 3.6: A 3-opt move

Optimizing the packing scheme

Until now, the local search method focused solely on the tour of the vehicles, as this directly
influences the costs. The last two neighborhoods try to reorganize the packing of the vehi-
cles with the goal to remove a customer from the tour of a vehicle. These neighborhoods
might reduce the total routing costs by superseding the need to visit a customer by a certain
vehicle.

The first neighborhood performs the search for a vehicle that has loaded a single customer
order. The routing costs can be decreased if this demand can be loaded into an other vehicle
that already visits the same customer. The local search method updates the packing matrix
P and tour matrix T of both vehicles.

The second neighborhood tries to remove all orders of a single customer in the tour of the
vehicle and tries to distribute them among the other. In contrast, empty vehicles are not
considered here. Both neighborhoods try to shrink the set of vehicles that deliver demands
to the same customer, as this might reduce the routing costs.
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3.2 A Branch-and-Price Approach

The heuristic solution approaches, presented in the previous section, might actually find the
optimal solution, but they cannot proof their optimality. Based on the problem formulation by
Derigs et al. [14], presented in Chapter 1, the problem is reformulated in order to be solved
by a Branch & Price approach.

The Master Problem

The basic idea of Branch & Price [18] is to utilize an appropriate (re)-formulation and suc-
cessively add new variables that might improve the current solution. The Master Problem
(MP) formulation for the VRPC is obtained by reformulating it as a Set Partitioning Problem
(SPP) [32], [23] and [43]. In an SPP the aim is to select a subset of the provided sets with
corresponding costs such that each element in the universe is covered by exactly one set
and the total costs are minimal.

For the VRPC each set represents a feasible tour and each element in the universe depicts
a single order. For each set exists a binary selection variable that defines whether the set
is selected or not. The pricing problem then deals with finding new feasible tours with a
corresponding valid packing scheme. Such a formulation supersedes the problem of finding
feasible packing schemes every time the master problem is solved, as for each variable
there already exists a feasible packing scheme. The latter has to be calculated exactly once
for each variable, which is done in the pricing subproblem.

Each binary variable in the MP conforms to a feasible tour of a vehicle and determines
if the corresponding tour is part of the solution or not. Further each variable covers the
demands that are delivered with the corresponding vehicle and has costs associated to it.
The costs of each variable are the accumulated costs along the route of the vehicle. As
the SPP model deals with finding the sets that partition the universe into distinct subsets
with minimal accumulated costs, this corresponds to a set of tours with minimal costs and
therefore the optimal solution of the VRPC. The SPP formulation for the VRPC is defined by
the linear constraints (3.7) - (3.11).

The variables xs tell whether the LP solver selected the tour that is represented by this
variable, or if this tour is not part of the solution. The objective function (3.7) minimizes the
total tour costs. The objective function value is obtained by multiplying the costs of each
tour cs with the corresponding binary selection variable xs. The partitioning constraints (3.8)
are further called the loading constraints. They enforce that each demand is delivered by
exactly one vehicle. The constants ads define if vehicle s delivers demand d or not. The
third constraints (3.9) are not necessarily needed to calculate a feasible optimal solution,
but they provide improved branching possibilities. For each customer c these constraints
provide an upper and lower bound for the number of vehicles that visit c and are therefore
called the visit constraints. Similar to the constants abs the constants bcs define whether the
customer c is visited in the tour s or not. The fourth constraint (3.10) gives an upper limit on
the number of vehicles that are allowed to start from the depot and is further called the fleet
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constraint. The last constraint (3.11) enforces the variables to be binary.

min.
∑
s∈S

cs ∗ xs (3.7)

s.t.
∑
s∈S

aos ∗ xs = 1 ∀o ∈ O (3.8)

1 ≤
∑
s∈S

bcs ∗ xs ≤ |V | ∀c ∈ L (3.9)

∑
s∈S

xs ≤ |V | (3.10)

xs ∈ {0, 1} (3.11)

The Set Covering Problem (SCP) is very similar problem formulation, which allows orders to
be delivered by more than one vehicle. The BIP formulation of the SCP is almost equal to
the one of the SPP except that each demand must be delivered by at least one vehicle, i.e.
Constraint (3.8) becomes ∀o ∈ O

∑
s∈S aos ∗xs ≥ 1. The big disadvantage of using the set

covering formulation, according to [23] and [32] are the weaker dual bounds of the master
problem.

Figure 3.7 gives a brief overview on the Branch & Price approach: the initial model is gener-
ated using the GRASP algorithm and hence consists of a small subset of all variables that
represent individual tours. Running the GRASP several times to generate the initial solu-
tions gives very similar results compared to the PSO but needs only a fraction of the time.
By relaxing the domains to be continuous, i.e. xs ∈ [0, 1], the model can be solved with the
simplex algorithm, provided by the ILP suite. This initial model is called the restricted master
problem (RMP). After the RMP is solved the algorithm generates the pricing subproblem
and solves it. Each solution to the pricing problem represents a variable for the MP and is
added to the model. If the pricer found new variables the RMP is solved again, else the
algorithm checks each variable for integrality. This means checking if each binary selection
variable has either the value 0 or 1. If there are variables that have a fractional value, the
solver makes a branching decision and limits the variable(s) accordingly. After branching
the RMP is solved again. The process terminates if all active variables are integral (in this
model if ∀xs ∈ S : xs ∈ {0, 1}) and if the primal and dual bounds are equal.
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Figure 3.7: A brief overview of the Branch & Price process.
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Solving the Pricing Subproblem

The pricing subproblem consists of solving the Elementary Shortest Path Problem with Re-
source Constraints (ESPPRC) on a directed graph. The goal of the Pricing Problem is to
find paths with negative reduced costs, since these are candidates which might improve the
objective function value, if selected in the next iteration of solving the RMP.

Definition 8. In graph theory, a path is called elementary if it contains no cycles.

In the case of the SCP formulation of the master problem each order can be delivered
with multiple vehicles. Further the pricing problem becomes a shortest path problem with
resource constraints where the negative cost paths must not be elementary anymore.

The vertexes in the graph G = (V,A) represent the orders and the artificial start vs and
terminal vertexes vt, which denote the start end the end of each path. Each vertex that
represents a demand is adjacent, over outgoing arcs, to all other vertexes, except the start
vertex. From the start vertex arcs yield to all vertexes except the start and terminal vertexes.
The terminal vertex has no outgoing arcs. The costs on the arcs are calculated depending on
the routing costs and the dual variable values of the current LP solution of the MP. To make
the long story short, the graph is a complete directed graph with costs associated to each
arc, determined by the demands, two additional vertexes, the start vertex and the terminal
vertex, and the current LP solution of the RMP. The Pricing Problem consists of finding
a shortest path through this graph, which is feasible according to the packing constraints.
Figure 3.8 shows a very simple example.

The costs on the arcs are obtained from the dual variable values of the current solution of
the RMP and the traveling costs between the depot and the customers. For each arc from
a vertex vi to vj , where vi represents either demand i or the start vertex and vj either the
demand j or the terminal vertex, the costs are derived as follows:

ĉij =


cij − ρ i corresponds to start vertex
−πi customer(i) = customer(j)

cij − πi − κi else
(3.12)

Hence the costs on the arcs are generated differently depending on the demands that the
vertexes represent:

1. Each arc that begins at the start vertex: the costs depend on the routing costs cij from
the depot to the customer that ordered demand j, and ρ, the dual variable value of the
fleet constraint (3.10) in the RMP.

2. All arcs that start and end at vertexes that correspond to demands of the same cus-
tomer: in this case the routing costs cij are 0 and only the dual variable value πi of
the loading constraint (3.8) of demand i determines the costs.
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Figure 3.8: A very simple graph with 4 demands and the start and terminal vertexes
that represent the depot. The vehicle starts from the depot, delivers demand 3 to
the customer that ordered the demand, then it delivers demand 1 to the respective
customer and finally returns to the depot. The costs of the resulting tour are -2.

3. For all arcs that are incident to vertexes whose demands come from different cus-
tomers or the arc ends at the terminal vertex the costs are accumulated from three
different values: the routing costs cij from customer i to customer j or back to the de-
pot, πi, the dual variable value of the loading constraint (3.8) and κi, the dual variable
value of visit constraints (3.9).

The dual variables are part of the dual restricted master problem that provides the lower
bound on the objective function value. The dual variables of the loading and visit constraints
are influenced by the branching decisions in the B&B tree.

When solving the ESPPRC the shortest path from the start vertex to the terminal vertex
has to be found. In addition, all constraints along the path must be satisfied: i.e. the condi-
tions that the vehicle and compartments must not be overloaded and without violating any
incompatibility constraint. For every set of demands along a (partial) path a feasible packing
scheme has to be found. If no such packing exists the partial path is infeasible and not
extended further.

MIP Formulation

The following MIP model shows the ESPPRC LP formulation for this special pricing problem.
The objective (3.13) is to minimize the costs of the path through G = (V,A), which is
evaluated by multiplying the binary selection variables x with the costs of the corresponding
arcs ĉ.
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min
∑
i∈V

∑
j∈V

ĉij ∗ xij (3.13)

s.t.
∑

j∈V \{s,t}

xsj = 1 (3.14)

∑
i∈V

xik −
∑
j∈V

xkj = 0 ∀k ∈ V \ {s, t} (3.15)

∑
i∈V \{s,t}

xit = 1 (3.16)

ui − uj + |V | ∗ xij ≤ |V | − 1 ∀i, j ∈ V (3.17)

us = 1 (3.18)∑
i∈V \{s,t}

quantity(i) ∗ yic ≤ compCapa(c) ∀c ∈ C (3.19)

∑
i∈V \{s,t}

∑
c∈C

quantity(i) ∗ yic ≤ vehCapa ∀v ∈ V (3.20)

∑
j∈V \{s,t}

xij =
∑
c∈C

yic ∀i ∈ V \ {s, t} (3.21)

yic = 0
∀i ∈ V,∀c ∈ C
∀ (i, c) ∈ IncProdComp (3.22)

yic + yjc ≤ 1
∀i, j ∈ V,∀c ∈ C
∀ (i, j) ∈ IncProd (3.23)

ui ∈ {1, . . .
∣∣V ′∣∣} ∀i ∈ V (3.24)

xij ∈ {0, 1} ∀i, j ∈ V (3.25)

yic ∈ {0, 1} ∀i ∈ V,∀c ∈ C (3.26)

Constraints (3.14) - (3.18) define the path through G to be connected and elementary, i.e.
every vertex is at most once part of the path and it starts and ends at the start and end
vertexes vs and vt respectively. The resource constraints limit the path through G further by
enforcing the vehicle and compartments not to be overloaded using constraints (3.19) and
(3.20) as well as the incompatibility constraints (3.22) and (3.23) to be feasible.

The packing sub problem is modeled using the binary variables y, which describe in which
compartment each order, represented by the vertexes along the path, is packed. They are
linked with the path selection variables x using (3.21). Constraints (3.24) - (3.26) define the
domain of the path selection and packing variables x and y, respectively, to be binary and
the sub-cycle elimination constraints to be integer.
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Adding a newly generated Variable to the Master Problem

In order to facilitate the comprehension, the procedure of extending the MP is discussed
before it will be shown how these variables are actually generated. When one of the pricing
algorithms in the next sections finds new paths from the start to the terminal vertex in the
ESPPRC graph G, new variables have to be included in the ILP formulation of the RMP.
Each new variable xn is added to the set of variables S and each constraint has to be
updated accordingly. For each demand that is delivered with the vehicle represented by xn,
a constant aon = 1 is added to the corresponding loading constraint. If the demand is not
part of the packing aon = 0. The same has to be done with the visit constraints: if customer
c is part of the tour then bcn = 1 else bcn = 0. The fleet constraint, that limits the number of
vehicles that start from the depot, is the last constraint that is updated. Algorithm 3.9 shows
the function that adds a new variable to the MP.

Algorithm 3.9: The add_variable function
input: A new variable x that represents the path p in the ESPPRC graph G

1 objective← objective + costs(xn) ∗ xn;
2 foreach o ∈ O do

3 aon ←
{

1 o ∈ orders(p)
0 o 6∈ orders(p)

;

4 end
5 loading_constraints← loading_constraints + an ∗ xn;
6 foreach c ∈ L do

7 bcn ←
{

1 c ∈ customers(p)
0 c 6∈ customers(p)

;

8 end
9 visit_constraints← visit_constraints + bn ∗ xn;

10 fleet_constraints← fleet_constraints + xn;

In order to speed up the generation of new variables, for any variable that is added to the
RMP a set of slightly modified variables will be added, too. A dedicated function generates
new variables by replacing compatible orders. An order is compatible if the customer who
ordered them is the same, the product type is the same, and the amount of the replacing
demand is at most as large as the replaced demand.
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Heuristic Pricers

Since the ESPPRC is a NP-hard problem and is called every time the master problem has
been solved, the overall process can most likely be accelerated by applying a heuristic to
find new variables. The basic idea of the heuristics is to divide the path searching process
and the packing problem. In the first part different algorithms search negative paths through
the ESPPRC graph G = (V,A), whereas the packing scheme is only calculated when a
negative path through G has been found. If the packing is unfeasible the generated path is
discarded.

For each negative path through G, the CP solver solves the model (3.27) - (3.29) and ob-
tains the packing scheme when facing the NP-hard packing problem, else the online pack-
ing algorithm, which is depicted in Algorithm 3.4, is used to calculate the packing scheme
otherwise.

Algorithm 3.10: A construction heuristic to solve the ESPPRC
input: The ESPPRC graph G

1 routes← ∅;
2 foreach a ∈ A ∧ a.cost < 0 do
3 route← extend_path(a.source, a.target);
4 if route.cost < 0 ∧ route.front = vstart ∧ route.back = vterminal then
5 routes← routes ∪ route;
6 end
7 route← extend_path_random(a.source, a.target);
8 if route.cost < 0 ∧ route.front = vstart ∧ route.back = vterminal then
9 routes← routes ∪ route;

10 end
11 end
12 foreach route ∈ routes do
13 if route.costs < 0 then
14 tour← calculate_tour(route);
15 packing← calculate_packing(route);
16 var← generate_variables(tour, tour.costs, packing);
17 if var 6∈ variables then
18 variables← variables ∪ var;
19 end
20 end
21 end

The basic idea of the first heuristic is to start from a negative arc and extend the path towards
the start and terminal vertexes using two different path extension functions. Algorithm 3.10
describes this process. The first path extension algorithm is called extend_path and is
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depicted in Algorithm 3.11. This algorithm starts with the partial path (vi, vj) that contains
only the negative arc aij and tries to extend this path from the front towards the start vertex
by either adding a negative arc or finishing the partial path towards the start vertex if the
resulting partial path is negative. The same is done from the end of the partial tour towards
the terminal vertex. The path extending loop is terminated if the path is complete, the
algorithm is not able to extend the partial path further, or the iteration limit is reached.

Algorithm 3.11: The extend_path algorithm
input: A partial path that has to be completed

1 improvement← true;
2 while route.front 6= vstart ∧ route.back 6= vterminal ∧ improvement do
3 improvement← false;
4 if route.front 6= vstart then
5 if ∃ a(vstart,tour.front).cost < 0 then
6 tour← (vstart, tour);
7 improvement← true;
8 end
9 if ∃ a(vx,tour.front).cost < 0 ∧ vx 6∈ tour then

10 tour← (vx, tour);
11 improvement← true;
12 end
13 end
14 if route.back 6= vterminal then
15 if ∃ a(tour.back,vterminal).cost < 0 then
16 tour← (tour, vterminal);
17 improvement← true;
18 end
19 if ∃ a(tour.back,vx).cost < 0 ∧ vx 6∈ tour then
20 tour← (tour, vx);
21 improvement← true;
22 end
23 end
24 end

The extend_path_random algorithm is very similar to the extend_path algorithm,
except that a random arc is accepted to extend the partial tour. This arc must not necessarily
have negative costs, instead it is enough that the costs of the resulting partial path are
negative. This algorithm terminates if the tour is complete or an iteration limit is reached. It
is not depicted in detail here as it does not differ much from the extend_path algorithm.
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A second heuristic approach is similar to the REUSE heuristic described in [44], which
builds upon a similar idea used in combination with a tabu search [15]. The idea is to take
the result of the current primal LP solution, slightly modify it and use a local search method
to find a path with negative costs. The adapted heuristic takes the current active variables
from the current LP solution of the MP and performs random modifications to it without using
a successive local search procedure. The modifiers are defined such that the resulting path
remains feasible and potentially has negative costs.

Following operations are performed on the paths by the REUSE heuristic. For each vari-
able the algorithm performs up to ten random operations to generate new variables. If the
resulting costs are negative and a feasible packing scheme can be found, a new variable
is generated. Most functions use a neighborhood of the current customer to select the ver-
texes for the corresponding operations. Here the neighborhood is defined by the set of all
orders of the three nearest customers to the considered customer.

1. Remove: If the path contains at least 1.5 times more vertexes than a vehicle has
compartments, this function removes one or two random vertexes from the current
path. The path is modified such that the vertexes to be removed are skipped without
performing any reordering of the remaining vertexes in the path.

2. Add 1: This function selects a random vertex and adds one or two random vertexes
to the current path. They are selected such that the random vertex and the vertexes
that are inserted correspond to orders of the same customer.

3. Add 2: This function adds randomly one or two vertexes to the current path at a ran-
dom position. The vertexes that are inserted are selected randomly from all demands
of the three nearest customers of the current vertex.

4. Exchange 1: This function selects a random vertex and exchanges it with one or two
vertexes belonging to the neighborhood of the removed vertex.

5. Exchange 2: This function selects a random vertex and exchanges it with one or two
vertexes that correspond to the same customer.

Dynamic Programming Approach

Even though optimality is not needed in each iteration, the algorithm that solves the Pricing
Subproblem must find a path with negative costs if one exists. Else the solution obtained by
the overall CG approach is not guaranteed to be optimal. Hence applying an exact algorithm
to the ESPPRC guarantees that no such path is omitted. The first algorithm is a dynamic
programming approach. The idea of dynamic programming goes back to Richard Bellman
in 1953 where he had the idea of solving a larger problem by solving smaller subproblems
and then combining them to the optimal solution of the larger problem [5]. The results of the
subproblems are stored in a table and when needed they are read from it.
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More specifically the dynamic programming approach used to calculate the negative paths
through the ESPPRC graph G is a label correcting algorithm [32, 50, 23, 43]. Each label
represents a path from the start vertex to those where the label is stored and an upper
bound on the costs of any path to this vertex. If the algorithm finds a path with less costs
ending at the same vertex the old label is discarded and a new, improved upper bound is
found. Each label at a specific vertex holds further the accumulated consumed resources
along the path it represents. These resources are, as mentioned before, the costs along the
arcs of the path, the vertexes that the path visits, a reference to the predecessor label to
reconstruct the path, and the amounts of the orders of the vertexes that are part of the path.
An implicit bound on the path is due to the total loading capacities of the compartments and
the vehicle.

When the label correcting algorithm extends a label that was not extended yet, it generates
new labels at any incident vertex that is not already in the path of the label. By applying this
extension on all nonextended labels, all possible paths through the graph are enumerated.
Yet in most cases only a very limited subset of all paths is generated since new labels that
have larger costs than already calculated labels are not extended further. If the accumulated
demands cannot feasibly be loaded into the vehicle the label is discarded and not extended
further as well.

Algorithm 3.12 shows how this algorithm generates the path from the start vertex to the
terminal vertex in the ESPPRC graph G. The algorithm starts with a single label at the start
vertex that is pushed into the queue Q. Every time a new label is created it is pushed into
Q. The algorithm can pop out each label that is not extended yet and extend it to incident
vertexes in G. The function extend_label tries to calculate a feasible packing for each
new label. If the orders cannot be feasibly packed into a single vehicle, the function returns
an empty label to indicate a path that cannot be extended further.

The algorithm uses two main data structures: Q, the priority queue that holds all labels that
are not extended yet and a set containing all generated labels L. At the beginning the priority
queue holds a single label that marks the root label at the start vertex. The set of labels is
divided among the vertexes in G where each one holds a list of labels Lv of partial paths
through G ending in v. Further each label l ∈ Lv holds a reference to its predecessor label.
The path ending at any label can be reconstructed by following these references to the root
label in the start vertex. Using a priority queue enables the algorithm to extend promising
paths with a higher priority, since the labels having the least costs appear first in the queue.
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Algorithm 3.12: Label correcting algorithm to find the shortest path in G
input: The graph G = (V,A)

1 Lstart ← {new_label(vstart)};
2 push(Q, Lstart);
3 while Q 6= ∅ do
4 current_label← pop(Q);
5 foreach (current_label.vertex, v) ∈ A) do
6 if v 6∈ current_label.path then
7 new_label← extend_label(current_label, v);
8 if new_label 6= ∅ then
9 if new_label.node = vterminal then

10 if L.costs < 0 then
11 generate_variables(L.tour, L.costs, L.packing);
12 end
13 else
14 not_dominated← true;
15 foreach label ∈ Lv do
16 if new_label dominates label then
17 recursive_eliminate(label);
18 end
19 if label dominates new_label then
20 not_dominated← false;
21 end
22 end
23 if not_dominated then
24 push(Q, new_label);
25 Lv ← Lv ∪ new_label;
26 end
27 end
28 end
29 end
30 end
31 end

The dominance function avoids the further extension of partial paths in case cheaper paths
are already present at the current vertex. Every time the algorithm extends a path to a
vertex, the newly generated label is checked whether it is dominated by any of the other
labels at this vertex. Further it is checked if the new label dominates any other label. If this
is the case all other labels that were extended from this label are superfluous too, since it
is possible to generate a cheaper path to all these labels starting from the newly generated
label.
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Function recursive_eliminate, depicted in Algorithm 3.13, finds these labels and
eliminates them recursively, since other labels may have already been extended from these
dominated labels, too.

Algorithm 3.13: Recursively eliminate all dominated labels
input: A dominated label label

1 foreach v ∈ V do
2 foreach l ∈ Lv do
3 if l.pred = label then
4 rekursive_eliminate(l);
5 end
6 end
7 end
8 delete(label);

In order to enable a faster termination of the label correcting algorithm two different domi-
nance functions are used: a restrictive, that invalidates more, potentially too many labels,
and one that guarantees optimality.

1. Label l1 dominates label l2 iff l1.cost < l2.cost

2. Label l1 dominates label l2 iff l1.cost < l2.cost ∧ l1.demands ⊂ l2.demands

The first dominance function invalidates each label that has larger costs. This causes many
labels to be invalidated and results in a faster termination of the algorithm. If the label
correcting algorithm with this so-called weak dominance rule does not find any new variable,
it is executed again using the second, strong dominance rule.

Breaking the Symmetry

Symmetries in ILP models cause additional and costly computation efforts that make no
progress in solving the ILP [37, 19]. In this formulation for the VRPC there occur two different
cases of symmetries, one in the MP and one in the ESPPRC formulation.

The symmetry in the MP formulation arises from the permutation in the packing problem:
if the tours represented by two different variables contain exactly the same demands, but
which are packed in different compartments, they are still symmetric. Note that a permuta-
tion in the packing scheme has no influence on the objective function. This kind of symmetry
can be eliminated by comparing the packing schemes before adding a new variable to the
MP. Each variable holds an array of boolean values that determines which demands are
loaded into the vehicle represented by the variable. Lets assume w.l.o.g. that the i-th value
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is 1. This means that the i-th demand is loaded into the vehicle. If the costs and these
arrays are equal for two variables, the newly generated variable can be omitted safely.

Figure 3.9: A symmetric path in the ESPPRC graph G. All demands are from the
same customer, depicted by the dashed line around the demands.

The second symmetry comes from the order of the demands in a negative cost path in the
ESPPRC problem. This symmetry causes the label correcting algorithm to extend more
labels than actually needed. Figure 3.9 shows a symmetric path in the ESPPRC graph G.
The two different paths are p1 = (s, d1, d2, d3, t), the red path, and p2 = (s, d2, d3, d1, t), the
blue path. This symmetry occurs only when demands of the same customer are permuted
in the path. Due to the definition of the costs they are equal for both paths. This kind of
symmetry can be avoided by defining an additional constraint for the extension of a label:
each label can only be extended to vertexes of demands of the same customer, if these
demands have a higher index than the demand of the current label.

Lemma 1. This symmetry breaking constraint preserves the optimality of the label correcting
algorithm.

Proof. This assertion can be proven by contradiction: Lets assume w.l.o.g. that the only
optimal path p violates this constraint and therefore there exists at least one vertex vi in p
where the demand of the successor vi+1 has a lesser index than the demand of vi. For sake
of simplicity the order of the vertexes corresponds to the order of the demands, which is a
unique natural number. For p this means ∀j 6= i ∈ p : vj < vj+1 and vi > vi+1.

From the construction of the ESPPRC graph it is obvious that the costs on each arc, where
both incident vertexes correspond to the same customer, are equal, namely the dual variable
value −π (Note: all arcs where the incident vertexes correspond to different customers are
not relevant for this constraint and need not be considered in the proof). Let pc be the
path through G where the position of vi and vi+1 is switched. For pc the following holds:
∀j ∈ pc : vj < vj+1 and by assumption costs(p) < costs(pc).

Since the vertexes vi and vi+1 belong to the same customer and p and pc have exactly the
same customers (∀vj ∈ pc → ∃vj ∈ p and ∀vj ∈ p → ∃vj ∈ pc) we have a contradiction:
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Figure 3.10: The paths p and pc through G.

it is not possible that costs(p) < costs(pc), since all outgoing arcs from each vertex are
added exactly once and the arcs (vi−1, vi) = (vi−1, vi+1) = πi−1, (vi, vi+1) = (vi, vi+2) =
πi, (vi+1, vi) = (vi+1, vi+2) = πi+1 and both paths must have the same costs. Figure 3.10
shows this case: p is the red and pc the blue path.

This constraint invalidates the creation of the blue path in Figure 3.9, since the path cannot
be extended from d3 to d1.

Branching Rules

For the performance of the B&P approach it is crucial that the B&B tree is balanced. Setting
a binary variable to 0 has a very low impact on the LP solutions of this subtree, whereas
setting the same variable to 1 has a very high influence on the LP solutions. Especially as
the number of variables increase it is important to define sophisticated branching rules that
generate a balanced tree and limit the domain of a larger set of variables.

A new branch for a fractional LP solution is opened if solving the ESPPRC did not gener-
ate any new variables and the LP solution of the MP did not change since the last time it
was solved. The first branching rule counts the number of active variables and checks if
the sum is a natural number. This branching rule limits the number of vehicles that start
from the depot to be less or larger than a natural number, which is calculated by rounding
the summed up, current LP solution values. If the sum is rational the B&B tree is extended
by two new subtrees with the corresponding limits on the sum of variables. A short exam-
ple demonstrates this branching rule: lets assume w.l.o.g. the number of active variables∑

s∈S xs = 16.7521 then two new constraints are added. The first constraint
∑

s∈S xs ≤ 16
is added to the left subtree and the second constraint

∑
s∈S xs ≥ 17 is added to the right

subtree.

The second branching rule limits the number of vehicles that visit each customer. For this
the branching rule determines the number of vehicles that visit each customer and creates
new subtrees for the first customer where the number of active variables is fractional. In
order to have a link from the variable to the customers, constraints (3.9) and the constants
bcs in the MP are used and updated every time a new variable is generated. These two
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branching rules provide a balanced B&B tree and the solver does not need to branch on
single variables anymore.

Limiting the Number of Variables in the MP

In order to improve the memory usage of the whole program some variables that are added
to the MP, but are never part of the basis of the LP, i.e. they are never part of any solution
during the solving process, should be removed. The algorithm keeps track of the number
of iterations and the number of times the variable is part of the solution. If the number of
iterations the variable was part of the LP, but never part of the solution, exceeds some limit,
the variable is removed from the MP.

3.3 The Packing Problem

The packing problem is highly relevant for the overall performance, since it has to be solved
every time an algorithm extends a partial solution or tries to find a feasible packing for an
already calculated tour. Packing demands for the food instances is easy in the sense of
computational complexity, since there is only one compartment for each product. Therefore
checking if the packing is feasible means checking if the sum of all demands does not exceed
the limits of the compartment and the vehicle. The loading scheme for these instances can
be calculated with the online algorithm 3.4 that provides optimal solutions in this case. This
section describes how the packing for the petrol instances, with the fixed size compartments,
is calculated, which is the weakly NP-hard packing subproblem of the VRPC.

Since the heuristic algorithms do not provide optimal routes for the vehicles there is no
need to solve the packing problem to optimality. Therefore the heuristic solvers use only the
online heuristic algorithm 3.4 to obtain a valid packing scheme. Contrary when the problem
is solved to optimality the packing problem has to be solved in an optimal manner, too. Every
time the label correcting algorithm adds a vertex to the (partial) path from the start vertex to
the terminal vertex, the packing problem has to be solved again.

This special packing problem is simpler to solve than the bin packing problem from a prac-
tical point of view: the number of bins is fixed and only a feasible packing has to be found
instead of minimizing the total number of used bins. None the less it is important to point out
that from a theoretical point of view the packing problem is a weakly NP-hard problem [40].
In the following sections several algorithms are presented that solve this special packing
problem.

Approximation Algorithms

Since a feasible packing is known from the previous node, it can be checked if the new de-
mand fits into a bin of the already known packing scheme using the online algorithm 3.4. If
this is the case a feasible packing is found and the packing algorithm can terminate, else a
new packing scheme is calculated using the greedy First Fit Decreasing (FFD) approxima-
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tion algorithm 3.14. The demands are sorted according to their amounts and packed in a
first fit manner.

Definition 9. An algorithm is called greedy if it makes a choice at each stage of the algo-
rithm without ever reconsidering any decision made.

The FFD algorithm starts by inspecting whether the first compartment can accommodate the
current demand. If it fits in, the FFD algorithm packs the demand into the first compartment
without further consideration. If the current demand does not fit into the current compartment
or it is incompatible with any demand in the current compartment it searches in the next
compartment. When the FFD algorithm is finally able to pack the current demand it begins
the search with the next demand starting at the first compartment again. If the FFD algorithm
is not able to pack an item, it finishes without providing a complete solution, and a more
sophisticated method has to be used in order to find a feasible packing or proof that none
exists for this particular set of demands.

Algorithm 3.14: First Fit Decreasing approximation algorithm

1 D← sort(D);
2 foreach comp ∈ C do
3 pcomp ← ∅ ;
4 end
5 foreach dem ∈ D do
6 packed← false ;
7 foreach comp ∈ C do
8 if fits_in(dem, pcomp) then
9 pcomp ← pcomp ∪ {dem};

10 packed← true ;
11 continue on line 5 with next demand;
12 end
13 end
14 if ¬ packed then
15 return ∅ ;
16 end
17 end
18 return p ;

Constraint Programming Models

If the approximation algorithms fail, the CP solver either finds a feasible packing scheme or
proves the nonexistence of such. In the first model the constraints are defined on a two
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dimensional binary Matrix M . A value of 1 in the d-th column and the c-th row denotes that
demand d is packed into compartment c. The incompatibilities between two demands in the
same compartment are modeled by inequality constraints of the corresponding elements in
the matrix.

∑
c∈C

Md,c = 1 ∀d ∈ D (3.27)

(d1, d2) ∈ IncProdProd→Md1,c 6= Md2,c ∀d1 6= d2 ∈ D,∀c ∈ C (3.28)∑
d∈D

amountd ∗Md,c ≤ CompCapac ∀c ∈ C (3.29)

The set of demands D is the set of demands that has to be loaded into the vehicle and is a
subset of all demands. C is the set of compartments. The constraints applied on the matrix
are presented in (3.27) - (3.29) and this assignment problem is solved using the depth first
search algorithm the CP solver offers.

This model solves only the cascaded bin packing like problem with incompatibilities between
two products in the same compartment. Including the incompatibilities between demands
and compartments (from the simpler packing problem) in this model can be achieved by
adding the following constraint:

∀d ∈ D,∀c ∈ C (c, d) ∈ IncProdComp→Md,c = 0 (3.30)

Many CP solvers offer special constraints to model a specific problem. The CP solver used
in this thesis implements a special propagator to solve the Bin Packing Problem. The big
advantage of using special constraints is the faster propagation, since algorithms, that use
problem specific knowledge, can be implemented. The second model uses the bin packing
constraint. The CP model becomes an optimization problem with the additional constraint
that the number of bins is limited by the number of compartments. The incompatibility con-
straints remain the same as in the already presented model (3.27) - (3.29). This new model
is solved using a Branch & Bound algorithm and is given by constraints (3.31) - (3.33).

(d1, d2) ∈ IncProdProd→ bd1 6= bd2 ∀d1 6= d2 ∈ D (3.31)

(c, d) ∈ IncProdComp→ bd 6= c ∀d ∈ D,∀c ∈ C (3.32)

binpacking(l, b, s) (3.33)

The constraints in the second model are defined on a set of integer variables b = {b1, . . . bn},
the constants s = {s1, . . . sn} and l = {l1, . . . lm}. Each variable bi ∈ b represents a
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specific demand with the corresponding size information in si ∈ s. The value of each vari-
able denotes the compartment into which the demand is loaded. Each constant li ∈ l
represents a compartment and holds the size of the corresponding compartment. The first
two constraints model the incompatibility constraints and the last one (3.33) is the special
binpacking constraint.

The CP solver, used in the implementation of this thesis, allows to implement own spe-
cialized branchers, which are classes that are passed to the CP solver in order to make
improved branching decisions. These branchers can use problem specific knowledge and
sophisticated heuristics to provide a faster pruning of parts of the search tree and therefore
speed up the overall process. Heuristics in CP solvers often provide improved bounds on the
variables to branch on. Gent and Walsh [26] published the Complete Decreasing Best Fit
(CDBF) pruning and propagation rules, which are able to solve the BPP and some related
problems to optimality. They used modular arithmetic applied on the constraints to calculate
a bound and to prune the search tree. Shaw [56] defined propagation and pruning rules to
determine non-packable bins and to decide if items do not fit into bins. They further provided
improved lower bounds for partial solutions. Based on these works Schulte implemented the
cdbf brancher for Gecode which is provided with the examples of Gecode (ver. 3.7.1) [55].
The third model is the same as the second one using this cdbf branching rule to construct
the B&B tree.

The difference between the first and the last two models lies in the way they are solved.
The first model is an assignment problem where a feasible assignment of the demands to
the compartment has to be found. The second and third models are optimization problems
where the CP solver tries to pack the demands in the least number of bins as possible, with-
out an early termination when the demands should already fit into the given compartments.
All models have their pros and cons. For a small amount of demands the CP solver finds
a feasible packing for the first model faster than for the last two since it terminates quicker,
whereas for a larger set of demands the CP solver using the latter two models finds a fea-
sible packing scheme or proves its nonexistence faster compared to using the first model.
See Section 4.2 for a discussion about the performance of the different models.
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CHAPTER 4
Computational Results

This chapter provides a very brief overview of the algorithms’ implementation, the frame-
works and libraries applied, the test instances used for the performance evaluation and a
detailed analysis of the performance of the algorithms. The first part gives a short overview
on the software that was used to implement the solvers.

4.1 Used Frameworks and Libraries

All tests were executed on a scientific cluster, consisting of 16 machines with 14 having
two Intel Xeon E5540 processors, running at 2.53 GHz and 24 GB of RAM and two having
three such processors. The whole cluster has 136 cores with 3GB of RAM dedicated for
each core and is connected with an Infiniband layer. The program was compiled with GCC
version 4.6.3. The following libraries and frameworks were used:

• The Standard Template Library (STL) provides a large set of basic algorithms and
data structures, including container classes (vector, queue, list, set, map, ...), basic
algorithms (searching, sorting, transforming, ...) and iterators to iterate over the data
in the containers in a common, convenient and efficient manner.

• The Boost library is a very large collection of different, smaller libraries. In this work
two libraries were used: the boost graph library (BGL) to model the ESPPRC graph
and the boost program options library to simplify parsing the arguments passed from
the console. The BGL offers the possibility to implement the graphs on a very high
level and to add arbitrary objects at the vertexes and edges.

• The Solving Constraint Integer Programs (SCIP) [1] B&C&P suite is a fast, non-
commercial and highly customizable optimization solving suite, which offers solving
linear and nonlinear optimization problems. It supports solving CP models and CG
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formulations and allows to use several LP solvers. SCIP provided the lattice for the
exact solution approach. Besides the large set of predefined components it provides
very simple mechanisms to add custom ones, such as branchers and pricers.

• Gecode [55] is one of the fastest and largest CP solvers available under a free license
during the implementation of the CG approach for the VRPC. Gecode provides a large
set of constraints on binary, integer and set variables that can be solved using DFS,
B&B or an algorithm that is able to restart the search with the best solution found
so far. Further it provides a simple interface to extend it with custom functions, such
as heuristics [6] to provide bounds and improve the overall performance. Gecode is
easily extensible with own propagators and branchers, which enable the developer to
include problem specific knowledge and algorithms to speed up the overall process.

An extended description of the classes and the interaction between them is beyond the
scope of this work, as the main focus lies on the models and algorithms for the VRPC.
Note that Chapter 3 already provided a detailed insight on the interesting components of the
software from a higher level viewpoint.

4.2 Performance Analysis

For every heuristic and exact algorithm an empirical analysis of the performance is needed
in order to state something about the competitiveness to other implementations and models,
provided by the scientific community. First a description of the test instances is provided.
Then the performance of the algorithms is evaluated on these test sets.

The Test Data

For the performance tests three different classes of test data were used: the test instances
provided by Derigs et al. [13], the instances based on Eilon, and newly generated, smaller
instances for the CG approach. For each algorithm setting and instance 25 test runs were
executed on the scientific cluster with a time limit of 10 minutes for the PSO and a time limit
of two hours for the CG approach.

Derigs et al. provided a large benchmark suite of 200 instances for the VRPC to evaluate
different algorithms that solve the VRPC. The test instances are available online [13]. The
benchmark suite can be divided into two large classes: the food and petrol instances with the
corresponding incompatibilities between the product types and the compartments. Further
the instances differ by the number of customers (10, 25, 50, 100 and 200), the geographical
distribution of the customers (clustered, not clustered), the number of product types (2, 3),
and a different maximal amount of the demands (the half of each compartments size, the
compartments size).

The GRASP and the PSO are able to handle all instances, whereas the test data provided
by Derigs et al. is in almost any case too complex for the CG approach, new test instances
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were created in order to identify the main criteria that influences the long execution times of
the exact algorithm.

The packing problem in the Derigs et al. benchmark suite only has a minor importance.
Although the packing problem for the petrol instances is weakly NP-hard, it can be solved
quite easily, since the number of demands that have to be packed into the vehicles is less
than 10 and many demands have the same amount: either the half or the full compartment
size. All customers for each instance have a very similar or even equal list of demands. In
instance vrpc_p_n25_p3_k1_100, for example, each customer orders 6 × 100, 1 × 83
for product 1, 2× 100, 1× 37 for product 2 and 1× 83 for product 3.

The second test set is based on the instances of Eilon and Christofides. The original in-
stances are extended versions of the symmetric CVRP instances, which are available online
[61]. These instances consider only the simpler case of the VRPC, i.e. the food instances.
These instances were generated by doubling each order of the second product type, the
vehicle loading capacity, and adding a second, equally sized compartment. The optimal
solution for these instances is correlated to the optimal solution for the original instances:
the second compartment holds the same amounts as the first one of the other product type.
With this scheme the optimal objective value is the same. Two other sets of instances are
derived from the Eilon and Christofides instances. In contrast the demands are generated
at random, but these instances were not published. The results of them are mentioned in
[21, 39].

The third set of manually derived, smaller instances is similar to those of Derigs et al.
They were generated in order to evaluate the performance of the CG approach and to iden-
tify the complicating components of the problem. This set of instances consists of petrol and
food type instances, too. The food type instances can be divided further into three subsets
where each customer demands 8, 12, or 16 orders. The petrol type instances consist of
three subsets, with a different number of compartments, which are 2, 3, or 4 where each
compartment has the same size. Each instance can be classified further into 4, 6, 8, or 10
locations, and 2 or 3 different product types. The geographical distribution of the locations,
which are the depot and the customers, is determined at random in the interval[0, 1000]
without any further constraints. The costs on the arcs between the customers and the depot
is the Euclidean distance.

The Performance of the Heuristic Algorithms

First the performance of the GRASP was analyzed with different settings for the size of
the restricted candidate list. The settings vary from a strict Clarke and Wright Savings like
behavior (RCL = 0) to a random search (RCL = 1), using the configurations described in
Figure 4.1. The GRASP is analyzed by solving each instance 25 times for each setting
and taking the average costs. Figure 4.1 shows the average performance of the GRASP
algorithm executed on four Eilon and Christofides based instances with the different sizes
of the restricted candidate list. The red curve represents the GRASP algorithm where the
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Figure 4.1: Results of the GRASP algorithm with different sizes of the RCL (0.0,
0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)
and additional local search optimization of the results on four datasets from the Eilon
and Christofides dataset.

Local Search algorithm optimizes its results further, the blue one the case without. The
dotted lines represent the best solutions among the 25 runs. This Local Search algorithm
uses the same neighborhoods as the PSO.

It is observable that the size of the RCL directly influences the performance of the GRASP.
The positive influence of the LS procedure on the results is noticeable for any size of the
RCL. With an increasing size of the RCL, the random component causes the algorithm to
generate randomized solutions having worse quality. It is observable that the additional LS
step improves the results in any case and that accepting non optimal local decisions to a
certain degree may result in improved solutions. Especially the best results for instance
E051-e05 have significantly improved costs compared to the pure greedy variant (RCL of
0). The first column in Tables 4.1, 4.2, and 4.3 shows the instance, the next few columns the
best and average results of the corresponding algorithm and instance and the last column
the current BKS.
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Table 4.1: Performance of the GRASP algorithms compared to the BKS published in
[44]

Instance
GRASP GRASP + LS # sign. BKS

min avg min avg better min

10
2 10948.8 11317.2 10808.5 11236.1 1/2 10180.5
3 14823.8 16046.2 15054.2 16071.7 0/2 14214.0

25
2 29391.6 30135.8 29264.7 30129.0 0/6 25804.5
3 24982.1 25872.6 24889.8 25939.4 0/8 22853.6

f 50
2 45097.5 46227.7 45123.3 46154.5 1/11 40349.2
3 42102.5 43332.0 41872.1 43231.0 2/11 38327.1

100
2 79692.6 81018.9 79512.5 80822.7 4/12 71535.5
3 76479.6 77942.4 76147.2 77787.8 2/12 69944.7

200
2 229638.0 232497.0 228455.0 231443.0 4/6 203722.0
3 156433.0 158794.0 155725.0 157803.0 2/5 145503.0

10
2 9893.9 10573.1 10033.5 10530.7 1/4 9510.0
3 8970.5 9589.5 8888.8 9523.1 1/10 8191.5

25
2 21476.8 22274.2 21492.5 22249.5 0/15 19811.9
3 20136.6 20939.3 20328.6 20960.7 2/17 18080.2

p 50
2 35831.7 36687.1 35883.1 36711.5 1/18 32849.4
3 37022.7 38121.3 37038.6 38122.9 3/18 32891.7

100
2 65630.2 66719.7 65683.0 66715.7 2/16 60615.7
3 64837.2 65952.5 64665.6 65918.2 3/15 58631.3

200
2 102749.0 104333.0 102276.0 103835.0 4/6 95263.2
3 115484.0 118310.0 115380.0 117520.0 4/6 96810.7

avg. costs 59581.1 60834.2 59426.1 60635.3 37/200 53754.5

In the tables showing the results of the heuristic approaches the average solutions, which
are significantly better than those of the corresponding other algorithm, are marked bold.
The following configurations where compared: the GRASP to the additional LS improve-
ment step and the GRASP without LS, the PSO II to the PSO III, and the PSO III to the PSO
IV. The first check determines if the additional LS improvement step is able to significantly
improve the GRASP solutions. The second checks if the hunter particle provides any sig-
nificant improvement and the last one checks if repetitive calling the LS improvement step
yields to significant better solutions. The PSO I, which operates on the packing matrix was
omitted in the significance checks, since it is not competitive to the other algorithms. The
Wilcoxon rank sum test with a significance level of 5% was used to test whether an algo-
rithm variant performs better than another one. The fourth column in Table 4.1 shows how
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often GRASP+LS yields a significantly better performance, also stating the total number of
instances of this subset. In Table 4.2 the average result of the significance tests was taken
in order to determine if a set of solutions is significantly better than the other.

Table 4.1 shows the results of the two GRASP algorithms for different classes of instances
taken from the Derigs et al. testbench [13]. It consists of 200 instances that can be divided
into different classes, which are: first the problem class (food or petrol industry inspired
problem definition), second the number of customers (10, 25, 50, 100 or 200) and third the
number of product types (2 or 3). As the number of instances is not equal in each class, the
overall averaged results differ from those in Figure 4.1. The GRASP results in Tables 4.1
and 4.2 are generated with a RCL size of 0.25.

As already mentioned, two different PSO algorithms were implemented: one that operates
on the tour matrix T and one that operates on the packing matrix P . In order to get a more
diverse set of particles, the GRASP uses a RCL size of 25%. The results of the different PSO
algorithms are shown in Table 4.2. The columns are the following: the PSO that operates on
the packing matrix P (PSO I), which is denoted shortly in Section 3.1, while the next three
PSO configurations operate on the tour matrix T , namely the PSO with both, the predator
and the LS optimization step (PSO II), the PSO without a predator (PSO III), as well as the
PSO without the LS optimization step and without a predator (PSO IV). The instances were
divided into the same classes as for the evaluation of the GRASP. The table shows the best
and average costs calculated of 25 runs for each data set from the Derigs et al. testbench.
The BKS are taken from Pirkwieser [44] who improved most of the results of Derigs et al.

The table gives an overview on the performance of the PSO algorithms with respect to the
three different classes of the Derigs et al. instances. As already mentioned, the performance
of the PSO that operates on the packing scheme (Packing PSO) is inferior to all other PSO
configurations. Although the packing PSO comes close to the performance of the other
algorithms for the small classes, its performance is actually worse for each class. Further
it can be observed that the predator and the LS optimization step are able to improve the
results of the PSO.
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4. COMPUTATIONAL RESULTS

The performance of the heuristic algorithms on the Eilon and Christofides instances is shown
in Table 4.3. Looking at the average costs on all instances, it is observable that the PSO,
which operates on the tour matrix, has an average 6.1% higher costs than the average
best known solutions (BKS). The PSO that operates on the packing matrix has average
higher costs of 29.6% than the average BKS. Whereas the influence of the predator with
average 6.2% higher costs is relatively low compared to the influence of the LS optimization
step with 16.1% higher costs than the average BKS. The best run of the PSO without the
predator on instance E121-07c almost reached the BKS with only 0.1% higher costs: i.e.
1043.4 compared to 1042.1.

It turns out that the additional hunter particle might be able to result in significant better
solutions. But the additional LS optimization step provides even more significant better
solutions. Unexpectedly the significance tests show that most of the results of the GRASP
with the LS in the Derigs et al. instances are not significantly better in contrast to the Eilon
and Christofides instances where all are significantly better.
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4. COMPUTATIONAL RESULTS

Evaluating the CG approach

As the B&P solver generates a lot of variables without making any progress on the Derigs et
al. instances, new smaller instances have been created. The results for these food type in-
stances are shown in Table 4.4. This set is divided into the same classes as the Derigs et al.
instances and consists of two instances each. One with symmetric and one with asymmetric
demands. In the symmetric case each customer demands the same number of orders for
each product type. In the asymmetric case each customer demands twice the number of
product type 1 than product type 2 and in case of three product types each customer de-
mands twice the number of product type 2 than product type 3. The largest instance in this
set has 10 locations, 9 customers and the depot, with each customer demanding 16 orders.
The resulting ESPPRC graph has 146 vertexes.

The first column in Tables 4.4, 4.5, and 4.6 shows the instance, the second and third columns
the primal and dual bounds obtained by the B&P suite. The fourth column shows the re-
maining gap between them. The sixth and seventh columns the initial solution, which was
obtained by the PSO, and the gap to the primal bound. The next three columns give the
number of B&B nodes and the number of initial and priced variables. The last column the
average time SCIP needed to calculate the solutions.

Table 4.4: The performance of the B&P approach on the food type self generated
instances with each customer demanding 8, 12, and 16 orders.

Instance Prim. B. Dual B. Gap Initial Solution B&B Nodes Init. Var. Priced Var. Time

8

4
2 5980.1 5980.1 0.0% 6370.7 6.1% 6.3 12.0 126.3 0.0 s
3 5532.4 5532.4 0.0% 5532.4 0.0% 43.8 0.0 2199.5 12.1 s

6
2 12274.2 12274.2 0.0% 13173.8 6.8% 21.4 22.0 575.3 0.6 s
3 7677.0 7676.9 0.0% 7694.4 0.3% 165.9 6.0 7951.7 227.2 s

8
2 21685.4 21685.4 0.0% 22916.1 5.4% 176.4 69.3 998.6 10.8 s
3 9588.9 9539.0 0.5% 9588.9 0.0% 993.9 23.9 42055.2 2582.3 s

10
2 24031.6 24030.1 0.0% 26259.8 8.5% 2254.9 140.9 3504.6 389.1 s
3 12926.2 12153.8 7.1% 12928.4 0.0% 506.4 86.3 25140.1 3612.6 s

12

4
2 14079.2 14079.2 0.0% 14760.2 4.6% 10.3 18.0 367.3 0.2 s
3 11406.8 11406.8 0.0% 11469.0 0.6% 141.8 10.5 6303.4 72.9 s

6
2 24019.9 24019.9 0.0% 25159.3 4.3% 19.8 89.5 645.0 1.0 s
3 11143.1 11134.0 0.1% 11239.0 0.8% 514.1 135.5 19964.8 977.4 s

8
2 31312.7 31306.2 0.0% 32922.8 4.9% 4117.1 234.2 6062.7 1418.8 s
3 17955.4 17564.8 1.9% 17962.2 0.0% 741.8 346.0 17733.6 5509.0 s

10
2 41134.8 41133.8 0.0% 43540.0 5.6% 754.2 354.4 5185.4 352.7 s
3 25023.2 23862.0 4.6% 25141.6 0.5% 350.4 620.8 30297.6 7105.3 s

16

4
2 18779.3 18779.3 0.0% 19186.0 2.1% 14.0 51.7 475.3 0.4 s
3 8985.1 8985.1 0.0% 8985.8 0.0% 186.0 27.6 7650.9 212.0 s

6
2 29930.8 29930.8 0.0% 31159.2 3.9% 57.5 212.0 1286.0 10.1 s
3 19052.5 19004.0 0.3% 19052.5 0.0% 1001.4 213.0 37246.5 3506.9 s

8
2 44482.2 44417.7 0.1% 46016.5 3.3% 3894.6 395.6 8328.8 3395.8 s
3 19580.1 19519.7 0.3% 19670.9 0.5% 577.7 561.4 32407.4 4967.5 s

10
2 51496.8 51496.8 0.0% 53882.6 4.4% 46.7 615.8 3392.6 33.8 s
3 29663.8 26896.2 9.4% 29840.1 0.6% 217.8 939.0 47596.4 ≥ 2 h
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4.2. Performance Analysis

The results of the B&P approach on the petrol type instances are shown in Table 4.5. The
table shows three subsets of instances, which differ in the number of compartments of the
vehicles. The largest instance in this set with 63 orders has 10 locations with nine customers,
each demanding 7 orders, and the depot. This instance is relatively small compared to the
food type instances with 144 orders.

Table 4.5: The performance of the exact approach on the petrol type self generated
instances with each vehicle having 2, 3, or 4 compartments.

Instance Prim. B. Dual B. Gap Initial Solution B&B Nodes Init. Var. Priced Var. Time

2

4
2 6982.4 6982.4 0.0% 7042.6 0.6% 4.6 5.5 103.6 0.1 s
3 4643.8 4643.8 0.0% 4985.1 7.0% 7.2 5.0 147.0 0.2 s

6
2 12073.4 12073.4 0.0% 12650.2 4.6% 38.4 16.0 556.9 6.1 s
3 12607.9 12607.9 0.0% 14215.8 11.4% 344.7 15.5 3368.7 130.1 s

8
2 16393.3 16388.6 0.0% 16831.3 2.3% 2547.4 40.5 2134.4 1202.6 s
3 14271.8 14271.8 0.0% 15738.2 9.5% 926.0 41.9 8286.6 870.3 s

10
2 21737.4 21737.4 0.0% 22831.3 4.8% 803.7 93.6 7300.7 1478.4 s
3 20744.5 20301.3 2.1% 23693.1 12.5% 631.6 103.5 35981.2 ≥ 2 h

3

4
2 6405.6 6405.6 0.0% 6405.6 0.0% 11.9 0.0 354.9 1.2 s
3 5400.9 5400.9 0.0% 5740.1 5.8% 22.3 0.0 701.8 8.9 s

6
2 8430.9 8421.7 0.1% 8452.4 0.3% 952.2 10.5 7905.3 1503.1 s
3 8699.9 8531.8 2.0% 9519.9 8.5% 928.4 10.5 33557.9 5742.6 s

8
2 13310.2 12663.0 4.8% 13497.3 1.3% 651.5 43.9 26723.2 ≥ 2 h
3 8826.0 8219.1 6.5% 9402.2 7.1% 174.5 42.3 16063.6 ≥ 2 h

10
2 16049.6 15494.6 3.2% 16077.3 0.2% 301.5 126.1 22889.4 ≥ 2 h
3 14221.2 12482.9 12.2% 14755.4 3.5% 23.6 104.1 7001.7 ≥ 2 h

4

4
2 3896.9 3896.9 0.0% 3896.9 0.0% 13.4 0.0 443.5 10.1 s
3 4198.3 4198.3 0.0% 4366.0 3.9% 33.4 0.0 2083.1 202.9 s

6
2 6811.8 6182.4 9.0% 6886.6 1.3% 225.9 5.0 13899.4 ≥ 2 h
3 4584.5 4351.5 6.0% 4784.1 3.5% 116.9 0.0 11205.8 ≥ 2 h

8
2 9264.5 8376.3 8.4% 9304.6 0.4% 64.4 22.4 5870.1 ≥ 2 h
3 9190.7 3483.0 58.0% 9201.1 0.1% 8.0 30.4 4216.5 ≥ 2 h

10
2 13067.0 11894.5 8.0% 13069.6 0.0% 70.8 78.0 4759.5 ≥ 2 h
3 12708.1 — ∞ 12731.3 0.2% 1.0 71.8 4960.6 ≥ 2 h

A third set of instances was generated in order to show how the complexity increases when
the capacity of the compartments and the vehicles are doubled. For this the small instances
with each customer demanding 8 orders are taken and the capacity limits were doubled.
Table 4.6 shows the results of the B&P model on these instances. Here the paths in the
ESPPRC graph now have approx. twice the number of orders resulting in much more com-
binations.
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4. COMPUTATIONAL RESULTS

Table 4.6: The results of the exact approach on the food type instances with each
customer demanding 8 orders and each vehicle and compartment having twice the
capacity as for the second set.

Instance Prim. B. Dual B. Gap Initial Solution B&B Nodes Init. Var. Priced Var. Time

4
2 3185.3 3185.3 0.0% 3185.3 0.0% 37.4 0.0 1706.5 36.7 s
3 2978.0 2978.0 0.0% 2978.0 0.0% 7.6 0.0 7072.3 227.3 s

6
2 6505.0 6264.8 3.6% 6586.9 1.2% 619.1 10.0 39616.1 5656.1 s
3 3924.6 1556.6 48.0% 4014.5 3.0% 1.0 0.0 6916.4 5225.2 s

8
2 11449.6 10955.0 4.3% 11458.1 0.1% 865.3 71.3 75231.5 ≥ 2 h
3 5411.8 — ∞ 5419.1 0.1% 1.0 0.0 10063.3 ≥ 2 h

10
2 12965.0 11917.1 8.0% 13129.9 1.3% 226.5 136.5 25341.8 ≥ 2 h
3 7087.9 — ∞ 7214.8 1.8% 1.0 0.0 15241.6 ≥ 2 h

The CP Models for the Bin Packing Problem

The performance of the exact solution approach for the VRPC highly depends on the perfor-
mance of the cascaded packing model as it is solved each time the label correcting algorithm
extends a partial path. The models were tested by generating random sets of demands
taken from different test instances provided by Derigs et al. [14].

As the demands per customer in the Derigs et al. datasets do not differ too much, one from
each of the three main ordering patterns was used for the tests. The number of demands
for each customer does not change for different number of customers. The number of com-
partments is 5 and the size of all compartments is equal. The following is a short overview
on the different ordering patterns of the instances with respect to the packing subproblem:

1. At most 15 random demands, 2 product types and 17 orders per customer. All cus-
tomers order 9 demands of product type 1 and 8 of product type 2. Each demand is
at most as large as half of the compartment size.

2. At most 15 random demands, 3 product types where each customer orders 9 demands
of product type 1, 3 of product type 2 and 1 of product type 3. Each demand is at most
as large as half of the compartment size.

3. At most 10 random demands, 3 product types where each customer orders 4 demands
of product type 1, 2 of product type 2 and 1 of product type 3. Each demand is at most
as large as the compartment.

To evaluate the three models, the program selects 100000 random sets of demands from
each of the three instances. Each of these sets consists between 5 and 15 random demands
of random customers.

The performance of the three different search algorithms that Gecode provides, executed
with the three models on three different instances, is shown in Table 4.7. It shows the case
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Table 4.7: The running times [ms] of the three CP models for the packing problem.
Note: ∃ P denotes that there exists a feasible packing scheme and @ P means it is
not possible to pack the given demands into the vehicle.

Model/Algorithm
Instance 1 Instance 2 Instance 3
∃ P @ P ∃ P @ P ∃ P @ P

Model 1
DFS 14.51 18489 14.59 13861 10.27 857
B&B 15.69 18371 15.95 13468 11.2 857

Restart 16.83 18079 17.36 13518 12.62 872

Model 2
DFS 17.15 1432 17.54 1660 12.29 45.4
B&B 17.75 1379 18.35 1694 12.42 43.71

Restart 18.32 1326 19.16 1626 13.16 45.49

Model 3
DFS 19.6 12.4 19.3 19.22 12.29 8.48
B&B 25.32 12.52 24.99 19.52 18.39 8.43

Restart 28.65 13.23 29.01 22.36 22.57 9.05

Packing found 70149 69071 45674
No packing found 29851 30929 54326

where the solver found a packing scheme and the opposite case where no feasible packing
exists. It is observable that model 1, the naive assignment formulation, is the fastest if there
exists a feasible packing scheme. The reason for this is the formulation of the first and the
last two models. While the optimization models try to improve the solution further, the CP
solver terminates when it found a feasible assignment for model 1. Due to the definition
of the BPP the CP solver tries to determine the minimal number of compartments. This
minimization is not needed for the VRPC, if a feasible packing scheme has already be found.

If it is not possible to pack the demands into the vehicle, the naive formulation needs a lot
of time to prove it, whereas the other two models outperform the naive model. Using the
binpacking constraint, the CP solver is able to make better propagation and branching
decisions, as it highly uses problem specific knowledge and bounds: it is possible to calcu-
late simple upper and lower bounds for the number of bins needed. Due to the existence of
these bounds the resulting search tree is much smaller.

4.3 Comparison to Related Work

Although the PSO was unable to improve any of the current best known solutions it was
able to find several solutions which come close to the BKS. A comparison to the BKS of the
Derigs et al. instances can be found in Table 4.2. Table 4.3 shows the performance of the
heuristic algorithms on the modified Eilon and Christofides [21, 39, 44] instances with the
current BKS.
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As to the best of our knowledge no exact approaches for the VRPC have been previously
reported in the literature, it is not possible to compare the performance of this B&P ap-
proach. None the less the performance can be compared to similar problem definitions of
generalized VRPs in terms of the size of the instance that are solved. When doing this one
encounters the problem of the different computing power of the machines where the results
are obtained and the problem of finding a feasible metric to compare the results. One pos-
sibility could be to compare the CPUs using the results of benchmarks like [42]. This gives
very limited possibilities to compare as the influence of different compilers and operating
systems and their respective versions are not taken into account. Yet this only allows a
rather coarse comparison as the time limits given in this section are fuzzy and approximate.

Pirkwieser and Raidl [45] provided a CG approach for the Periodic VRP with Time Windows
(PVRPTW) which performs relatively good on all instances. They solved instances with up
to 160 customers within a small gap of less than 6.5% in approx. 900 seconds on a single
core of an AMD Opteron 2214 running at 2.2 GHz with 4 GB of RAM. They used both, a
heuristic and optimal pricing algorithm. Compared to the CPU used to evaluate the VRPC
these running times should be multiplied with approx. 0.35 resulting in a time limit of 300
seconds.

Ceselli et al. [8] provided a B&P approach for a general VRP with multiple depots and cus-
tomers that were arranged in groups according to the corresponding geographical region.
Further the customers have time windows and a maximal number of allowed visits per day
and rest periods for the driver were kept strictly. Incompatibilities between items in the same
vehicle and items and customers were also considered. They evaluated datasets with up to
100 orders, consisting of up to 461 items, and up to 47 locations. The performance of their
model was measured in three phases. The first and the second phase were not solved to
optimality as only a heuristic pricer was used. In the last phase the optimal pricer provided
valid lower bounds. As a side effect the computation time increased remarkably. With a time
limit of 4 hours on a Pentium IV at 1.6 GHz, this model was able to solve only a small set
of instances to optimality. For the larger instances their approach has similar problems: the
huge number of variables already generated in the root node of the B&B tree causes the
solver to not provide any dual bound. The CPUs, Pentium IV 1.6GHz and Xeon E5540 2.53
GHz, have a huge performance difference. In order to be able to compare the results the
time limit for the VRPC model should be set between 20 and 30 minutes.

Desrochers et al. [16] presented an optimal solution approach for the VRPTW using a B&P
model. Their approach was able to solve instances with up to 100 customers with an average
gap of 1.5% on a SPARC 1 workstation which gives a relative time limit of a few minutes. In
these test instances the customers are not fully connected to each other, which simplifies
the instances. In the conclusions they observed that the ability of the exact approaches to
solve generalized VRPs decreases drastically with the size and complexity of the additional
constraints. Further they proposed that the density of the LP and degeneracy become a
problem for set partitioning models as the number of customers in the same route increases.
This behavior is observable in the results of the B&P approach for the VRPC too, especially
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as the number of demands that can be loaded into the same vehicle increases. Table 4.6
shows the results of the smallest set of food instances with compartments which have a
doubled capacity where a huge difference to the results in Table 4.4 with the original vehicle
and compartment capacity is observable.

Goel [27] describes a B&P approach with only a heuristic pricer for a generalized VRP. This
approach is able to find improved solutions but not to prove their optimality. Heuristically
solving the pricing problem decreases the running time of the models by a huge factor.
The exact approach for the VRPC spends more than 98% of the total running time solving
the pricing problem. By running only the heuristic pricers, the total running time could be
decreased substantially as the heuristic algorithms terminate quick and omit variables too.
They evaluated their model on a AMD Athlon 400 MHz which results in a relative time limit
of less than 10 minutes.

Table 4.8 shows a summary of the different approaches for a general VRP. The first column
names the authors, the second the largest instance they considered, which is either the
number of locations or orders, the third the average gap over all instances and the last
column shows the average relative running time for all instances in seconds. As Ceselli et
al. used different stages only the results of the first stage with a maximum of 100 orders is
shown in the table. As some approaches use heuristics to solve the model it is not possible
to provide any gap. The corresponding average gap values are marked with −−−.

Table 4.8: An overview on the results of different B&P approaches

Authors Size avg. Gap rel. avg. Time

Gebhard 144 3.1% 2674
Pirkwieser and Raidl 160 3.3% 137
Ceselli et al. 100 — 625
Desrochers et al. 100 1.5% 30
Goel 1000 — 10
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CHAPTER 5
Critical Reflection and Outlook

This chapter provides a critical reflection on the implemented algorithms and approaches
to solve the VRPC. The second part describes some considerations to improve the branch
and price model further.

5.1 Considerations about the Approaches

The discrete PSO for the VRPC is able to improve the solutions provided by the GRASP
algorithm and is able to solve most of the given test instances within a gap of 10% compared
to the best known solutions. Especially on the Eilon and Christofides based instances the
PSO was able to solve all, except three instances, within a gap of 10%. The average gap
over all Eilon and Christofides based instances is 6.7%. Although the PSO was able to
improve the results of the Savings algorithm, it is not really competitive to other algorithms,
such as the solvers provided by Derigs et al. [14] and the VNS by Pirkwieser et al. [47]
which outperformed the former. A huge problem when configuring the PSO is the large set
of parameters. The PSO for the VRPC has 9 parameters, namely the swarm size, the initial
velocity, the lower and upper bounds for the influence of the packing on the velocity of the
particles, the lower and upper bound for the standard deviation σ and the weights of the own
velocity, the velocity of the best particle and the predator in the velocity update function.

The idea to improve the results of an algorithm by iteratively calling a simple and fast LS
search heuristic is widely applied on genetic algorithms, which is known as memetic algo-
rithm. The positive effect of the LS optimization step on the results of the PSO is observable
on the Derigs et al. instances and further proven by the results of the modified Christofides
and Eilon instances.

It seems the performance of exact solution approaches for different generalized VRP models
highly depends on the additional constraints to be considered. This approach affirms the
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observation of Desrochers et al. [16] that the length of the paths in the ESPPRC graph
is crucial to obtain competitive results. On the smallest Derigs et al. instances with 10
locations the algorithm generates more than 50000 variables before creating the first branch.
Therefore the MIP solver is able to solve problem instances with a very limited size only.

5.2 Open Issues and Considerations about Future Work

From a personal and educational point of view it was very instructive and interesting to deal
with the PSO heuristic and the problems it induced. Since the PSO is originally defined on
a continuous domain, it is challenging to define proper conversion rules in order to solve a
COP with its discrete domain. Further an algorithm with 9 parameters is generally difficult to
fine tune. Machine learning provides several methods to tune parameters while taking care
of the problems such as overfitting. With an increasing number of parameters the number of
possible combinations increase too and it becomes harder to determine good combinations
of values. This is also a reason why the proposed PSO should be seen as a proof of concept
and not as an algorithm for a practical use on a daily basis.

The large number of generated variables causes a high memory consumption above 4.0
GB within a few hours. By deleting the variables that are never part of the basis of the LP
solution, the memory consumption can be handled. None the less the problem of the large
number of variables that are generated by the pricers remains. The performance of the
branch and price approach might be improved further by using additional methods that are
able to generate improved variables, such as stabilization techniques. Another possibility
is to solve the pricing problem by using only heuristic algorithms. Though this approach
provides only heuristic solutions, as variables that are part of the optimal solution might not
be found during the pricing process.

Including Stabilization Techniques

Column generation models highly depend on the dual variable values as they provide the
costs for the pricing problems. Stabilization techniques try to increase the quality of these
values, such that less columns need to be generated in total. The goal is to generate only
those variables that actually improve the current solution. There exist several approaches
that can be divided into two classes: stabilization techniques which modify the RMP and
ones that operate only on the dual values. See [22] for an overview on the different stabi-
lization techniques. The goal is to penalize dual variable values that are away from a, so
called, stability center.

Stabilization potentially enhances the solving process as it effectively helps to avoid creating
variables which do not improve the current solution. Hence this approach prevents the
creation of many variables that are deleted later on, when never being part of any solution
over a certain number of pricing iterations.
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Including a Packing Database

Every algorithm has to calculate a packing scheme for a given set of demands, which is
time consuming, especially for the weakly NP-hard bin packing like problem. A potential
improvement of the performance of the algorithms could be achieved by using a solution
database for the packing subproblem, where the algorithms can look for already computed
solutions. One potential solution database is a cache that stores the following information
for each set of orders: first a boolean state variable, which tells whether the packing scheme
is feasible or none exists, and second the packing scheme for the given set of orders.

Especially on the Derigs et al. instances it is important to use the product type and amount
as key in order to prevent symmetry, which could occur if identifiers for each order were used
instead. As already mentioned in Section 4.2, many amounts of the different demands of
the customer are equal: e.g. for the Derigs et al. instance vrpc_p_n10_p3_k1_100.vrp
every amount of the demands is one of the values in the set {37, 80, 83, 100}. The resulting
packing cache may cover a major part of all feasible packing schemes with a small memory
footprint. The packing schemes are evaluated and stored as they occur during the solving
process.

Enhancing CG with CP Models

In recent publications several approaches have been studied where the pricing problem was
solved with a CP model. The survey paper of Gualandi and Malucelli [28] gives an overview
of the problems and applications with some successful combinations of column generation
and constraint programming. They successfully implemented or modified already existing
B&P approaches where the pricing subproblem is solved with CP. Some of the problems
considered in their work are different routing, timetabling, scheduling and assignment prob-
lems. They observed a slower convergence of some of the modified B&P models compared
to the original models with an alternative pricing approach. They explain the slow conver-
gence by the generation of too many similar variables due to the nature of the depth first
search algorithm, which is widely used in CP solvers, and how it explores the search space.
This slow convergence also often occurs when solving B&P models in a classical way and
could be handled with stabilization methods.

Since the main goal of the pricing subproblem is to find new negative cost variables and
not necessarily the path with the least costs, it is enough when at least one new variable is
generated. A CP approach to solve the ESPPRC pricing problem can be formulated by re-
stricting the costs of the path to be less than 0 and terminating if such a path results in a new
variable. This transforms the pricing problem from an optimization problem into a decision
problem: does there exist a negative path in G? Gualandi and Malucelli [28] mentioned the
advantages of such a transformation, from an optimization problem to an assignment prob-
lem. Further the packing subproblem can be included directly into the problem formulation
by constraining the paths in G.
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The following binary CP formulation was mainly used for testing, but not considered further
as the convergence of the CP model was disappointing. The label correcting algorithm
outperformed the CP model in any case. Anyway, an advantage of using the CP model
was observed: every time after a new branch was created the CP pricer generated more
variables than any other pricing algorithm within a few seconds. Another crucial problem
was the huge memory consumption of the CP solver, especially as the number of orders
increased. On the small instances with 10 customers and approximately 70 orders Gecode
quickly needed more than four GB of main memory. As consequence the operating system
started to use the swap partition on the hard disk, which slows the computation by a very
large factor.

The CP pricing model (5.1) - (5.17) uses the binary matrices M = (|D| + 2 × |D| + 2)
to describe the path through the ESPPRC graph and P = (|D| × |C| + 1) for the packing
scheme. The constant |D| is the number of demands and |C| the number of compartments
of each vehicle in the instance. If w.l.o.g. the value of variable mi,j ∈M is 1, the path goes
from vertex i to vertex j. The matrix P models the packing of the demands. The last column
represents a virtual unconstrained compartment where all demands are packed into, whose
corresponding vertexes are not part of the path. Constraint (5.1) causes the CP solver to
generate negative paths and acts as the objective function.

∑
i∈row(M)

∑
j∈col(M)

ci,j ∗mi,j < 0 (5.1)

∑
i∈row(M)

mi,j ≤ 1 ∀j ∈ col(M) (5.2)

∑
j∈col(M)

mi,j ≤ 1 ∀i ∈ row(M) (5.3)

mi,i = 0 ∀i ∈ V (5.4)∑
i∈row(M)

mi,j =
∑

k∈col(M)

mj,k ∀j ∈ V − (5.5)

∑
i∈row(M)

mi,vs = 0 (5.6)

∑
j∈col(M)

mvs,j = 1 (5.7)

∑
i∈row(M)

mi,vt = 1 (5.8)

∑
j∈col(M)

mvt,j = 0 (5.9)

ui ∗mi,j ≤ uj + |D| ∗ (1−mi,j) ∀i ∈ row(M),∀j ∈ col(M) (5.10)
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∑
i∈row(M)

mi,j = 0→ pvirt,i = 1 ∀j ∈ V − (5.11)

∑
i∈row(M)

mi,j = 1→ pvirt,i = 0 ∀j ∈ V − (5.12)

∑
i∈row(P )

pi,j = 1 ∀i ∈ V − (5.13)

∑
j∈col(P )

wdj ∗ pc,j ≤ CompCapa(c) ∀c ∈ C (5.14)

∑
c∈C

∑
j∈col(P )

wdj ∗ pc,j ≤ V ehCapa (5.15)

(d1, d2) ∈ IncProdProd→ pc,d1 ∧ pc,d2 = 0 ∀d1 6= d2 ∈ D,∀c ∈ C (5.16)

(c, d) ∈ IncProdComp→ pc,d = 0 ∀d ∈ D,∀c ∈ C (5.17)

Constraints (5.2) and (5.3) limit the number of times the path enters and leaves each vertex.
Constraints (5.4) eliminate each arc starting and ending in the same vertex. The fourth
constraints (5.5) guarantee that each path entering a vertex, except the start and terminal
vertexes, will also leave it, with V − being the set of all vertexes, without the start and terminal
vertex. The next four constraints define the start and the end of the path: no ingoing (5.6)
and one outgoing (5.7) arc at the start vertex and one ingoing (5.8) and no outgoing (5.9)
arc at the terminal vertex. The linking constraints (5.11) and (5.12) define the dependencies
between the two matrices. The Miller Tucker Zemlin (5.10) constraints are used to eliminate
all sub cycles.

Any vertex that is part of the path must be loaded into a vehicle compartment (5.11). Con-
straint (5.13) forces every demand to be loaded into a compartment, either a compartment
of a vehicle or the virtual compartment. Constraints (5.14) and (5.15) limit the packing to the
compartment and vehicle capacities. The last two constraints define the incompatibilities
between different demands in the same compartment (5.16) and between the demands and
compartments (5.17).

It remains to improve this model by evaluating the cause of the poor performance. For
example it might be better to use an integer array to model the path through G. This model
would need less variables, but the branching becomes more difficult, since for each variable
the size of the domain is at least the number of vertexes in G. Gualandi and Malucelli
[28] mention that when using sophisticated constraints and propagators it is possible to
improve the performance of the model a lot, which is confirmed by the results of the three
different packing models shown in Table 4.7. By extending this model with sophisticated
propagators and branching rules the search tree might be shrunk, which would lead to a
quicker termination and potentially a competitive pricing model.
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CHAPTER 6
Summary

The VRPC is a quite recently proposed routing problem which generalizes the classical VRP
by considering several compartments instead of a single one. In this work two heuristics to
solve the VRPC are presented. The first is an adaption of the GRASP metaheuristic on the
Clarke and Wright Savings algorithm to provide the start solutions for further improvement
approaches. The second is a combination of a discrete version of a particle swarm opti-
mization algorithm, which is rarely used to solve combinatorial optimization problems, and
a local search heuristic, which proved to be advantageous. None the less the combination
of these algorithms provided solutions lying within a small gap, compared to current best
known solutions.

The second part of this work describes a Branch and Price approach to provide optimal
solutions. This model performs relatively good as long as the number of orders that fit into a
vehicle is kept low. This affirms the conclusion of Desrochers et al. [16]. This approach was
able to solve instances with up to 10 locations and 16 orders for each customer to optimality
or with a small remaining gap.

Further the effect of three different Constraint Programming formulations for the packing
problem was analyzed. In the case where a feasible packing scheme exists the naive as-
signment formulation is faster than the sophisticated propagation and branching rules. In
contrast, when the given orders do not fit into a vehicle the first model is far from being
competitive.
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