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Kurzfassung

Im Streben nach Fortschritt in der künstlichen Intelligenz und den Suchalgorithmen wird
ein Agent als ein System betrachtet, das Entscheidungen trifft und Aufgaben auf der
Grundlage seines Verständnisses der Situation oder des Environments ausführt. Dieses
Environment ist das umgebende System oder die Welt, mit der der Agent interagiert.
Nichtdeterministische Environments mit unvollständigen Informationen sind durch Zufall-
sereignisse und einen Zustand gekennzeichnet, der den Agenten vollständig oder teilweise
verborgen bleibt.

Das AlphaZero-Framework ist bei mehreren schwierigen Spielen wie Go, shogi und Schach
sehr erfolgreich. Es verfügt über einen Baumsuchalgorithmus, der von einem deep neural
network geleitet wird. Das Netzwerk wurde ohne Verwendung menschlichen Experten-
wissens, außer den Spielregeln, durch self-play mithilfe eines allgemeinen reinforcement
learning Algorithmus trainiert.

Bis vor Kurzem gab es keine allgemeinen Frameworks für nichtdeterministische Environ-
ments mit unvollständigen Informationen. In dieser Arbeit schlagen wir eine neuartige
Erweiterung von AlphaZero vor, die in solchen Umgebungen funktioniert.

Unser Algorithmus, betitelt AlphaJust4Fun, unterscheidet sich von AlphaZero, indem
wir die Monte Carlo Baumsuche durch den Single-Observer Information Set MCTS
Algorithmus ersetzen. Der Single-Observer Information Set MCTS Algorithmus ist nicht
von vollständig bekannten Umgebungen abhängig, da die Suche auf Knoten durchgeführt
wird, die die Suchstatistiken zufälliger Instanziierungen der verborgenen Teile eines
bestimmten Umgebungszustands kombinieren.

Wir implementieren einen Prototyp und evaluieren ihn mit dem hybriden Brett- und
Kartenspiel Just 4 Fun im Zwei-Spieler-Modus. Wir evaluieren unseren Algorithmus mit
zwei verschiedenen Netzwerkarchitekturen an Testsätzen, die auf bestimmte Aspekte des
Spiels abzielen, und in einem Benchmark. Als Referenzalgorithmus für den Benchmark
verwenden wir einen Monte Carlo Tree Search Algorithmus, dem die sonst verborgenen
Teile der Spielzustände bekannt sind, und menschlichen Spielern.

Die Ergebnisse zeigen, dass AlphaJust4Fun mit den verborgenen Informationen und
dem Nichtdeterminismus in Just 4 Fun erfolgreich umgehen kann. Es übertrifft den
Referenzalgorithmus und kann auch mit erfahrenen menschlichen Spielern mithalten.
Unsere Experimente zeigen, dass die Kombination des DNN und der Baumsuche des
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AlphaJust4Fun-Agenten besser abschneidet als jede Komponente für sich. Im Gegensatz
zu neueren AlphaZero-Erweiterungen, die mehrere zusätzliche neuronale Netzwerke
verwenden, erfordert AlphaJust4Fun nur einen zusätzlichen Hyperparameter.



Abstract

In the pursuit of advancements in artificial intelligence and search, an agent can be
considered as a system that makes decisions and performs tasks based on its understanding
of the situation, or the environment. This environment is the surrounding system or
world that the agent operates in, providing the agent with information and responding to
its actions. Non-deterministic environments with imperfect information are characterised
by chance events and a state that is fully or partially hidden from the agents.

The AlphaZero framework has great success in several hard games like Go, shogi, and
chess. It features a tree search algorithm that is guided by a deep neural network. The
network was trained without using any human expert knowledge besides the rules of the
games through self-play using a general reinforcement learning algorithm.

Not until very recently, there were no general frameworks for non-deterministic envi-
ronments with imperfect information. In this thesis, we propose a novel extension of
AlphaZero which does work in these environments.

Our algorithm is termed AlphaJust4Fun. The difference to AlphaZero is that we replace
the Monte Carlo Tree Search with the Single-Observer Information Set MCTS. The
Single-Observer Information Set MCTS does not depend on perfect information, as the
search is performed on nodes that combine the search statistics of random instantiations
of the hidden parts of a particular environment state.

We implement a prototype and evaluate it on the hybrid board and card game Just 4 Fun
in its two-player setting. We evaluate our algorithm with two different neural network
architectures on test sets which target certain aspects of the game and a benchmark. As
a baseline for the benchmark, we use a Monte Carlo Tree Search algorithm that searches
with full knowledge of the hidden parts of the game state and human players.

The results indicate that AlphaJust4Fun successfully handles hidden information and
non-determinism in Just 4 Fun. It outperforms the baseline and can also compete with
experienced human players. Our experiments indicate that the AlphaJust4Fun agent’s
combination of the DNN and the tree search performs better than each component on its
own. In contrast to more recent AlphaZero-extensions that use multiple neural networks,
AlphaJust4Fun requires only one additional hyperparameter.
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CHAPTER 1
Introduction

1.1 Motivation

Even though there is a myriad of real-world problems, which AI methods can be applied
to, games have often served as abstractions and also benchmarks for the design of novel
approaches and the improvement of existing methods. The history of AI for solving
games started early. In 1948, even before computers were available, Alan Turing and
David Champernowne invented a lookahead-based algorithm for chess. [49, 10, 40]

One class of algorithms that has been successfully applied in game AI is tree search.
Nodes represent states of the game and the edges, the transition between parent and
child state, represent the actions chosen by agents. For adversarial two-player zero-sum
games (e.g. Go, chess, Connect 4, Tic-Tac-Toe, . . . ) the Minimax algorithm [42]
returns an optimal strategy by searching the whole game tree. In each node, the player’s
reward is maximised. The performance of Minimax is highly dependent on the branching
factor of a game: A high branching factor means a high number of possible actions from
each state. This in turn means, in a given period of time, the search tree cannot be
explored to the same depth as would be possible for games with a lower branching factor,
which in general results in a lower agent strength. For simple games like Tic-Tac-Toe,
searching the whole game tree is still feasible. But in more complex games like chess it is
not feasible anymore. Knuth and Moore describe the α-β procedure [30], a method to
optimise Minimax, where parts of the search tree, that would lead to worse outcomes
than already explored parts, are pruned. This allowed IBM’s Deep Blue, which is based
on α–β search, to beat Garry Kasparov, who was the reigning world champion in chess
in 1997. Deep Blue’s reward function contained a lot of domain knowledge by grand
masters of chess and was highly tuned to that particular game. Since the game of Go
has an even higher branching factor than chess, α–β search has not been successful in
achieving even amateur human-level performance in this game.
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1. Introduction

In 2007, Coulom introduced Monte Carlo Tree Search (MCTS) [11], which avoids
the necessity for a reward function by using the outcome of random game continuations
instead. As in α–β search, not all branches of the game tree are explored to the same
depth. The promising ones are more likely to be explored. MCTS is also suitable for
imperfect information and non-deterministic games because its random playouts can
result in a better estimate of a game state’s quality and a better approximation of the
corresponding Minimax tree, as Yannakakis and Togelius pointed out in their book on
artificial intelligence and games [53]. Using MCTS, Go computer programs began to be
successful in a smaller version of Go.

Silver et al. of Google DeepMind made a big breakthrough in 2016 with their AlphaGo
program [45] by beating the professional Go player Lee Sedol. AlphaGo uses a deep
neural network (DNN) (supervised learning policy network) that is trained on human
expert data to predict the next move. This network is then improved by using reinforce-
ment learning (RL) and self-play (SP) (reinforcement learning policy network).
A separate network (value network) is trained to predict the game outcomes. AlphaGo
then used the policy and value network in a modified version of Monte Carlo Tree Search
to select the next node. In 2017, AlphaGo Zero was introduced, demonstrating superior
performance compared to its predecessor’s, achieving this even without relying on any
human knowledge except for the rules of the game [46]. It replaces the two networks in
AlphaGo with a single convolutional residual neural network with a policy output as well
as a value output.

The field of artificial intelligence has seen rapid growth and major advancements in the
past two decades. RL is a paradigm, where no extensive training dataset is necessary. The
system is learning to take actions within its environment to maximise its reward based
on a predefined function. RL has seen major breakthroughs by acquiring a superhuman
skill level in hard games, where exact solutions are infeasible.

AlphaZero (AZ) [44] represents such a major milestone since it required no human
knowledge except for the rules of a game and was still able to achieve superhuman
performance on several strictly determined two-player zero-sum games with perfect
information (chess, shogi, and Go), i.e. where the entire state of the game is visible to
both players.

AlphaZero is a framework for building AI agents based on the following components:

A general purpose reinforcement learning algorithm that uses self-play, i.e. improv-
ing by competing against itself.

A deep neural network to approximate the value function, i.e. predict the game
outcome from a given state of the game, and predict the policy, i.e. a probability
distribution over the available actions from this state.

And a general purpose Monte Carlo Tree Search algorithm for generation of high-
quality actions.

2



1.2. Goals of this Work

The previously discussed approaches address deterministic games without hidden infor-
mation or randomness. Another category of games that presents a distinct challenge
are stochastic games with imperfect information. In these games, the state of the game
is fully or partially concealed, and events occur non-deterministically. This includes
actions like shuffling and dealing cards or rolling dice. Examples of such games are
Poker and Dou dizhu. Successfully navigating stochastic games with hidden information,
particularly those involving multiple players, remains a challenging undertaking.

Libratus, introduced by Brown and Sandholm [6], represents an application-agnostic
framework for solving imperfect information games, as it was the first to successfully defeat
top human professionals in the challenging game heads-up no-limit Texas hold’em
poker (HUNL). HUNL is the two-player variant of no-limit Texas hold ’em poker.
Much like AZ, Libratus does not rely on domain knowledge or human training data.

The framework consists of 3 modules:

Abstraction: The first module creates a simpler abstraction of the underlying task
and computes an initial strategy that is used in the early stages of the game.

Subgame-solving: In the later stages of the game, strategies for specific subgames
are computed.

Self-improvement: The third module improves the initial strategy based on oppo-
nents’ actions.

Pluribus [7] represents another major milestone but in the domain of multiplayer
games of imperfect information. It achieved a superhuman skill level in six-player no-
limit Texas hold ’em poker, employing SP and Monte Carlo Counterfactual Regret
Minimisation (MCCFR) which turned out to be a powerful method to address uncer-
tainty. Counterfactual Regret Minimization (CFR) is an iterative SP algorithm
that traverses the game tree by taking actions and investigating how much better or
worse it would have done, having chosen the other available actions instead, and then
minimises the regret.

More recently, AlphaZero has been extended to handle tasks within dynamic environments
(MuZero [43]) and stochastic environments (Stochastic MuZero [1]).

1.2 Goals of this Work
Until recently, most of the research focused on hard two-player games with perfect
information. This thesis contributes to the research by addressing problems that involve
multiple agents in an environment with partially hidden states and stochastic events, by
employing RL and tree search. The hybrid board/card game Just 4 Fun (J4F) [54]
serves as a benchmark problem. Just 4 Fun is a non-deterministic multiplayer game with
imperfect information.

3



1. Introduction

The goals of this thesis are the following:

• Since AlphaZero’s design does not provide particular elements to handle non-
deterministic games with imperfect information, to modify AlphaZero such that it
can be applied effectively to games with those properties.

• To model Just 4 Fun’s game mechanics and game state in the context of MCTS.
In particular, the aim is to address the two-player version of J4F.

• To find suitable inputs for the DNN.

• To evaluate the resulting AI agents in a benchmark.

• To achieve at least human level performance. We use Yucata.de, which is a web-
based online gaming platform, as a reference for human performance.

• To obtain more generally applicable algorithmic principles, machine learning archi-
tectures and concepts to handle the aspects of randomness and hidden information.

Just 4 Fun is played on a 6 × 6 board of 36 fields and with a deck of cards. Each field
has a number between 1 and 36 and each number occurs exactly once. Further, there are
playing cards with values between 1 and 19 and each player is in possession of 20 stones.
In each turn, a player can play a subset of 1–4 cards out of their hand. The sum of the
cards’ values indicates the field on which the player places one of their stones. A player
wins if they reach the majority (more stones than the opponents) on 4 fields in a row.
Either horizontally, vertically or diagonally. If no player can get four in a row, before
running out of stones, the player with the most points wins. A player gets the number of
points equal to the field value, for each field they hold the majority on. If neither player
has 4 in a row nor more points than any other player, the player who has the majority
on the field with the highest value wins. There may be at least 2 and up to 4 players.
The basic rules are taken from https://www.yucata.de/ [55]. A picture of the tabletop
edition of Just 4 Fun is depicted in Figure 1.1. A more thorough description of Just 4 Fun
follows in Section 3.1.

1.3 Structure of this Work

In the following sections, a detailed overview of the structure and organisation of this
thesis is provided, offering insights into the key components and their interconnections.

Chapter 1 An introduction of the research on game-playing AI is presented. The
structure is designed to facilitate a logical progression of ideas and insights gained through
rigorous investigation.

4
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1.3. Structure of this Work

Figure 1.1: Achim Raschka (https://commons.wikimedia.org/wiki/File:Just_4_Fun_01.
jpg), CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0), via Wikimedia
Commons

Chapter 2 This chapter begins with a thorough exploration of existing literature to
establish a solid foundation for the research. It reviews key concepts and empirical studies
relevant to game-playing AI and heuristic planning in non-deterministic environments
with imperfect information.

Chapter 3 To illustrate the applications of the research topic, we first present a
concrete constrained example problem through the game Just 4 Fun. With its non-
deterministic element and imperfect information, it provides a tangible application of
the theoretical concepts. The chapter continues with a detailed description of the two
methods, the AlphaZero framework and Information Set Monte Carlo Tree Search, the
proposed approach is based on.

Chapters 4 and 5 These chapters present AlphaJust4Fun, the approach that is
proposed to tackle the problem of planning in non-deterministic environments with
imperfect information in an effective and efficient way.

Chapter 6 This chapter outlines the methods used to assess the proposed algorithm’s
effectiveness and provides essential insights into its implementation of the algorithm
described in Chapter 4. The chapter aims to offer a clear and thorough account of the

5
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1. Introduction

experimental groundwork, including measurement techniques, to support the subsequent
findings and conclusions.

Chapter 7 A dedicated chapter is allocated to present the results of the analysis
and detailed exposition of key findings. It employs statistical tools and graphical
representations to interpret the data and derive meaningful insights.

Chapter 8 Building upon the results, this chapter critically interprets the findings in
the context of existing literature. It explores implications, limitations, and offers insights
that contribute to the broader understanding of the topic.

Appendices Supplementary materials, such as algorithms, configurations, and ad-
ditional analyses, are included in the appendices to maintain the flow of the main
narrative.
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CHAPTER 2
Related Work

In this chapter, we conduct a comprehensive review of the existing body of research, elu-
cidating the advancements and challenges that have significantly influenced the landscape
of artificial intelligence in games.

2.1 Fundamentals
This section aims to introduce methodologies, terms, and concepts that are important to
the understanding of the concepts our agent is based on.

2.1.1 Terms and Game Theory

Game theory is a broad field that includes reasoning about games as well as any com-
petitive activity in which entities contend with each other according to a set of rules.
As Osborne outlines in their introduction to game theory [38], it is used in economics,
politics, social sciences, biology as well as the more recent field of cryptocurrencies and
crypto economics, and computer games.

Extensive Games Extensive games are a model for the description of games in
which players sequentially take actions. Players can change their strategy at every
decision point according to their expected reward, i.e. their strategy is not required to
be predetermined. In accordance with Osborne and Rubinstein [39], Definition 2.1.1
illustrates the characteristics of extensive games with perfect information.

7



2. Related Work

Definition 2.1.1 (Extensive games with perfect information). An extensive game
with perfect information has the following components:

• The set of players N .

• A set H of action sequences (finite or infinite) that satisfies the following three
properties:

– The empty sequence ∅ is a member of H.
– If (ak)k=1,...,K ∈ H (where K may be infinite) and L < K then (ak)k=1,...,L ∈ H

– If an infinite sequence (ak)∞
k=1 satisfies (ak)k=1,...,L ∈ H for every positive

integer L, then (ak)∞
k=1 ∈ H.

A history (ak)k=1,...,K ∈ H is terminal if it is infinite or if there is no aK+1 such
that (ak)k=1,...,K+1 ∈ H. The set of terminal histories is denoted by Z ⊂ H.

• A function P that assigns to each non-terminal history (each member of H \ Z) a
member of N .

• For each player i ∈ N , a preference relation ⪰i on Z (the preference relation of
player i).

Game Tree An extensive game with perfect information can be described as a tree,
where the nodes represent the states s of the game and the edges represent the actions a
taken by players. h ∈ H are the sequence or history of actions (ak)k∈N. For each leaf
node st (i.e. a terminal state), the terminal history ht of actions is (ak)k=1,...,t. Z is the
set of all terminal histories, and a subset of H. The relation ⪰p, maps action sequences
h ∈ Z to a value, that indicates the payoff or reward z ∈ R for the player p.

Figure 2.1 shows an example of a game tree for a two-player game.

Branching factor The number of possible actions in each state of a game is called the
branching factor. In terms of a game tree, this is the number of edges from each state.
For many games, the branching factor is not a constant. E.g. the game of Tic-Tac-Toe
has a branching factor of 9 at the first state and only 1 at the state, in which only 1
field is not yet filled. For those games, however, the average branching factor can be
calculated instead.

Observability Observability refers to the observability of the game state. Games in
which the state is fully known to all players at all times are called perfect information
games. Games with hidden or partially hidden information, are called imperfect
information games. The card game Poker is an imperfect information game as a result
of the players’ private cards. The board game chess is a perfect information game, as the
board and all its pieces are visible to both players.

8



2.1. Fundamentals

Figure 2.1: The game tree for a simple two-player game with perfect information
(Figure 91.1 on page 91 in [39]). The numbers at the inner nodes of the tree represent the
player and the edges their respective actions. At the leaf nodes, the game has terminated,
and the numbers below the leaf nodes are the players’ rewards. The first one is the
reward for player 1 and the second, for player 2. The numbers in brackets next to the
edges show the highest achievable reward for each player. E.g. 1, 2 is a win for player 2
and 0, 0 a draw.

Stochasticity Games that contain some sort of randomness, e.g. rolling of dice or
shuffling cards, are called non-deterministic. In contrast, games without any elements
of chance are called deterministic. Poker is an example of a non-deterministic game,
and chess is one of a deterministic game.

Extensive Games with Imperfect Information Extending the definition of ex-
tensive games with perfect information, as described in Definition 2.1.1, to allow for
players to have only partial information about previous events, as well as exogenous
uncertainty, provides a better model for J4F. It covers the initial shuffle of the stack of
cards, the unknown hand of other players and possible reshuffles in later stages of the
game. The definition of extensive games, as given by Osborne and Rubinstein [39] is
shown in Definition 2.1.2:

Definition 2.1.2 (Extensive games). An extensive game with possibly imperfect
information has the following components:

• A set N (the set of players).

• A set H of sequences (finite or infinite) that satisfies the following three properties:

– The empty sequence ∅ is a member of H.
– If (ak)k=1,...,K ∈ H (where K may be infinite) and L < K then (ak)k=1,...,L ∈ H

– If an infinite sequence (ak)∞
k=1 satisfies (ak)k=1,...,L ∈ H for every positive

integer L, then (ak)∞
k=1 ∈ H.

A history (ak)k=1,...,K ∈ H is terminal if it is infinite or if there is no aK+1 such
that (ak)k=1,...,K+1 ∈ H. The set of actions available after the non-terminal history
h is denoted A(h) = {a : (h, a) ∈ H}, and the set of terminal histories is denoted Z.

9



2. Related Work

• A player function P that assigns to each non-terminal history (each member of
H \ Z) a member of N ∪ {c}, i.e. a player or a chance event.

• A function fc that associates with every history h for which P (h) = c, a probability
measure fc(· | h) on A(h), where each such probability measure is independent of
every other such measure.

• For each player i ∈ N , a partition Ii of {h ∈ H : P (h) = i} with the property that
A(h) = A(h′) whenever h and h′ are in the same member Ii of Ii. For Ii ∈ Ii, we
denote by A(Ii) the set A(h) and by P (Ii) the player P (h) for any h ∈ Ii. Ii is the
information partition of player i, and a set Ii ∈ Ii is an information set of player i.

• For each player i ∈ N , a preference relation ⪰i on lotteries over Z (the preference
relation of player i) that can be represented as the expected value of a payoff
function defined on Z.

Extensive games with imperfect information can also be described with a game tree, as
depicted in Figure 2.2.

Figure 2.2: The game tree for a simple two-player game with imperfect information
(slightly modified version of Figure 202.1 on page 202 in [39]). The numbers at the inner
nodes of the tree represent the player and the edges their respective actions. At the leaf
nodes, the game has terminated, and the numbers below the leaf nodes are the players’
rewards. The first one is the reward for player 1 and the second, for player 2. E.g. 1, 2 is
a win for player 2 and 0, 0 a draw. The information set for player 1, after the unknown
decision of player 2 between A and B, is indicated by the dotted line.

Recall Recall in terms of extensive games refers to the ability of players to recall past
actions. Perfect recall is not necessarily the case, but it is a reasonable assumption in
the case of an AI agent. Since MCTS/ISMCTS is the policymaker, which keeps track of
the cards that have been already played or even only seen, the agent proposed in this
work does have perfect recall.
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2.1. Fundamentals

Strategies A strategy for player i is denoted by σi, and the set of all strategies is
denoted by Σi. σi is a function, that assigns a probability distribution over A(Ii) for
each Ii ∈ Ii. A strategy profile contains a strategy for each player: σ = {σi | i ∈ N}.
σ−i are the strategies σ \ {σi}. The probability of a history h occurring, when players
act according to σ, is denoted by πσ(h). [32]

Equilibria The Nash Equilibrium is a strategy profile, for which all players play their
optimal strategy. That is, no player is better off deviating from its particular strategy,
which is also denoted to as the best-response strategy, given that the other players play
according to the strategy profile.

Regret Informally, the regret for a player, is the missed expected reward, when deviating
from their Nash Equilibrium strategy. Let ui(h) be the expected reward for a player i, for
a history h, and similarly, let ui(σ) the expected reward for Player i under the strategy
profile σ and ui(σ∗

i , σ−i) the expected reward for player i, when following some strategy
σ∗

i , while the other players follow the strategies σ−i. Zinkevich et al. [56] propose the
following formulation for the average overall regret for a player i. For a repeated game,
player i’s average overall regret at the time T is RT

i = 1
T · max

σ∗
i ∈Σi

ΣT
t=1(ui(σ∗

i , σt
−i) − ui(σt)).

Where σt
i ∈ σt the strategy of a player i, and σ∗

i the Nash Equilibrium strategy in round
t. An iterative, regret minimising algorithm, according to this formulation, approximates
a Nash Equilibrium when t goes towards infinity.

m, n, k-Games J4F is a multiplayer (2 up to 4 players) m, n, k-game with playing
cards. m, n, k-games are played on a grid of m columns and n rows. The goal is to
connect k game pieces horizontally, vertically or diagonally. Well-known examples of
m, n, k-games are Tic-Tac-Toe, where m = 3, n = 3 and k = 3, and Connect Four, where
m = 7, n = 6 and k = 4. In the case of J4F, m = 6, n = 6 and k = 4.

For some of these games, it can be shown that the first player will always win with a
perfect play. For others, there is no winning strategy for the first player, they are called
a draw. The 3, 3, 3-game Tic-Tac-Toe is an example of a game-theoretic draw-game.
A 6, 6, 4-game is a game-theoretic win for the first player [50].

In J4F, however, the state is only partially observable. The board, the already played
cards and the player’s own cards are known, and the shuffled stack of cards and the
opponents’ cards are unknown. Thus, there are non-deterministic restrictions on where
players are allowed to place their pieces on the board. The fact that players can put
multiple pieces on a single field and can both have pieces on the same field, distincts J4F
further from the game-theoretic properties of a 6, 6, 4-game. When played with 3 or 4
players, the game is of incomplete information, since the opponents’ policy is not known
throughout the whole game. Players might form coalitions for a limited period during a
game, or their strategy can change from reaching 4 in a row to a win by points.
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Multi-Armed Bandit Problem The multi-armed bandit problem describes the
scenario of k one-armed bandits, as it might be found in casinos. When played, each
machine yields a reward according to its own distribution. An individual usually wants
to maximise its overall reward by only playing those machines which yield the highest
expected reward. Definition 2.1.3 formulates the K-armed Bandit Problem as defined by
Auer et al. [2].

Definition 2.1.3 (K-armed Bandit Problem). A K-armed bandit problem is defined
by random variables Xi,n for 1 ≤ i ≤ K and n ≥ 1, where each i is the index of a
gambling machine. Successive plays of the machine i yield rewards Xi,1, Xi,2, ... which are
independently and identically distributed (according to an unknown law) with unknown
expectations µi. Independence also holds for rewards across machines; i.e., Xi,s and Xj,t

are independent (and usually not distributed identically) for each 1 ≤ i < j ≤ K and
each s, t ≥ 1.

A human might play every machine several times to get an intuition of the reward
distributions, and gradually give preference to the more promising machines. On the one
hand, one wants to play every machine to reinforce the intuition about each machine.
However, to keep the losses as small as possible or the reward as high as possible, one has
to only play the single machine, that yields the highest reward. Since it is not possible
to do both, the player at least wants to minimise the regret of not having always played
the best machine.

Exactly this dilemma of exploration versus exploitation, in the face of reward maximisa-
tion, or conversely regret minimisation, was addressed by Auer et al. [2]. They show that
there exists a simple policy UCB1, which is described in Definition 2.1.4, for selecting
machines over n plays with logarithmic regret.

Definition 2.1.4 (UCB1). Play each machine once. Then continue playing the machine
i, that maximises xi +

√
2 ·

√
ln n
ni

, where xi is the current average reward of the machine
i, ni the number of times the machine i has been played and n the overall number of
plays.

2.1.2 Monte-Carlo Tree Search

For the literature review on Monte Carlo Tree Search, the survey by Browne et al. [9],
which covers variants and extensions up to the year 2012, was an excellent starting
point. The survey of Świechowski et al. [48] covers more recent extensions of MCTS up
until 2021.

Monte Carlo Tree Search as presented by Coulom [11], combines Monte-Carlo evaluation
and tree search.

The general Monte Carlo Tree Search is an iterative algorithm. In each iteration, the
algorithm performs 4 steps: 1. Selection, 2. Expansion, 3. Simulation and 4. Backpropa-
gation. Figure 2.3 shows a visualisation of the incremental extension of the tree [9].

12



2.1. Fundamentals

Figure 2.3: Steps of an MCTS algorithm (Fig. 2 on page 6 in [9]).

In the context of extensive games, the game tree is searched. In the selection step, the
game tree is traversed, according to some tree policy, from the root until a leaf node
is encountered. In the expansion step, the tree is expanded by creating a new node
as a child of this leaf node. In the simulation step, the game that is represented by
the new node is played, selecting random actions (default policy) for all players until
termination. In the backpropagation step, the resulting value of the simulated game is
propagated back up through the tree.

Kocsis and Szepesvári [31] consider the decisions or, selection policy, in a game tree
as multi-armed bandit problems. In their algorithm UCB1 applied to trees (UCT),
they apply the UCB1 policy to a rollout-based tree search, similar in principle to the one
Coulom proposed.

In UCT, each node represents a state s of the game and each edge represents an action a
from s. An action’s estimated reward Q is the cumulated, discounted reward of the paths
originating from s. In the context of the K-armed bandit problem, the actions, or edges,
correspond to the machines’ arms. The algorithm keeps track of the number of times
Ns,d(t), s has been encountered at depth d during search until time t. In the selection
step, when traversing the tree, the actions that maximise Qt(s, a, d) + cNs,d(t),Ns,a,d(t),
are chosen. With Qt(s, a, d) being the estimated value, Ns,d(t) the number of times s
has been encountered at depth d until time t and Ns,a,d(t) the number of times action
a has been chosen from s at depth d until time t. Kocsis and Szepesvári show that
the bias term cNs,d(t),Ns,a,d(t) = 2Cp ·

√
ln Ns,d(t)
Ns,a,d(t) (with an appropriate constant Cp), still

accounts for the changing probabilities of the tree policy (caused by the changing reward
Qt(s, a, d)), to achieve a logarithmic regret [31].

The worst-case expected regret upper-bound is in O(
√

K · n · ln n), as shown by [41]. It
depends, besides the number of trials n, on the number of arms K or, in the context of
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game trees, the number of actions. This especially impacts the performance on games
with a high branching factor.

Rosin removes the dependence on K with their algorithm Predictor + UCB
(PUCB) [41]. They introduce a predictor that recommends actions at the root node,
before any trials, and improves as more contextual information is added with every trial.

They assume that the reward distributions for the actions from a specific game state is
constant over multiple trials. This assumption holds for deterministic games like Go,
but not necessarily for non-deterministic ones. It allows for a better upper-bound of
O( 1

M∗

√
n · ln n), where M∗ is the weight on the optimal arm and Mi (with i ∈ [1, K]

and ∑
i Mi = 1) a vector, that assigns a weight to each arm (action). The weights Mi

are proportional to the prior probability of the arm i being the optimal arm. As M∗
depends on the predictor (Rosin proposes an offline-training approach), the algorithm’s
performance does now depend on the predictor’s quality instead of the number of actions.
This makes it possible to handle games with high branching factor, such as Go.

Information Set Monte Carlo Tree Search (ISMCTS), proposed by Cowling et
al. [12], is an extension of MCTS that addresses games with hidden information and
uncertainty. In ISMCTS, the nodes of the game tree represent, besides the public
information, also all possible permutations of the hidden information. The algorithm is
described in greater detail in Section 3.3.

2.1.3 Counter-Factual Regret Minimization

In 2007, Zinkevich et al. [56] proposed the concept of counterfactual regret. Counterfactual
regret splits the overall regret into per-information set terms, which can be minimised
independently. They subsequently show that minimising those terms minimises the overall
regret and thus allows to find an approximate Nash Equilibrium. In the domain of poker,
while still dealing with a simpler abstraction of the game, their Counterfactual Regret
Minimization (CFR) algorithm was able to surpass the previous state of the art.

Lanctot et al. [32] extended CFR by Monte Carlo sampling. They show that their domain-
agnostic self-play algorithm, Monte Carlo Counterfactual Regret Minimisation
(MCCFR), significantly improves overall convergence speed towards a Nash Equilibrium
over vanilla CFR.

In 2015, Bowling et al. [5], in continuation of their previous work on CFR, presented
CFR+ which includes several optimisations over previous CFR algorithms. With CFR+,
they were the first to successfully handle the full version of heads-up limit Texas hold’em
poker (HULHE)1. With HULHE, a two-player variant of poker, they solved a challenging
real-world game with imperfect information.

1They essentially weakly solved HULHE, i.e. were able to provide a ϵ−Nash Equilibrium with
reasonable small ϵ.
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2.1.4 Neural Networks and Learning

Many algorithms [46, 44, 43, 1, 7, 8] that display state-of-the-art performance are utilising
reinforcement learning (RL) and self-play (SP).

Self-play is a popular concept in AI and learning, as outlined by Plaat in a dedicated
chapter on this topic in his book Learning to Play: Reinforcement Learning and Games
[40]. One type of SP occurs in planning. MCTS- and CFR-based algorithms, when
planning ahead (look-ahead), i.e. traversing the game tree, do explore possible histories.
In this case, the AI agent not only performs its own actions, but also acts as the opponent.
I.e. in the case of Monte Carlo Tree Search, the tree-policy for action selection. Another
way, in which SP is used, is to generate training samples for learning a model. In
AlphaZero, the agent plays games against a separate copy of itself. The resulting game
traces are used as training samples for improving the DNN.

Reinforcement learning can be divided into model-based and model-free RL. Most state-
of-the-art algorithms [44, 43, 1, 7, 8] are hybrids in this regard. Model-free RL uses
direct feedback from the environment for value and policy generation. Model-based
RL on the other hand uses an intermediate model for planning and determination of
value and policy. The model can be a learned model, domain knowledge or rules of the
environment.

E.g. in AZ, the learned model is a deep neural network, that serves as a function
approximator for value and policy. It is trained end-to-end, using the raw state of the
game as input. The output is the estimated outcome of, and the estimated policy from,
a game in a given state. The parameters of the network are updated using the stochastic
gradient descent method. The network’s architecture is based on residual network
(ResNet) [22]. Besides the other well-known elements of neural networks, i.e. fully
connected feed-forward networks, activation functions and batch normalisation, it consists
of convolutional layers and skip connections. Convolutions are particularly successful in
image classification. Deep convolutional networks can learn basic visual features as well
as higher level abstractions. Skip connections, are feeding the input of one component
of a neural network, e.g. one or more layers, to the output, i.e. the input of the next
component. This reduces the effective depth of the network, which in turn helps to
prevent accuracy degradation and vanishing gradients.

All the above concepts are explained in more detail in Plaat’s textbook [40] on reinforce-
ment learning.

2.1.5 Performance and Benchmarking

Performance evaluation is necessary to determine the strength of a player. The usually
used skill rating system, for humans as well as AI agents, for two player zero-sum perfect
information games like chess and Go, is Elo [14]. The fact that J4F is a multiplayer
game with imperfect information requires a different, more suitable skill rating system.
TrueSkill [23] is a Bayesian skill rating system that supports draws and an arbitrary
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number of players with changing skill level. It is well proven and deployed on a large scale
in online computer gaming platforms such as Microsoft’s Xbox 360 Live [23]. TrueSkill
is also necessary for comparison against human J4F players, as it is the system used on
https://www.yucata.de/. For experiment evaluation with two players, to determine, e.g.
the convergence of different agent configurations or the overall performance, a benchmark
based on the win-rate is a sufficient metric.

As the Nash Equilibrium strategy is not known, we will evaluate player strength, similar
to other works on MCTS [35, 13], in a benchmark against the following baseline opponents.
A cheating MCTS agent, i.e. an agent that performs Monte Carlo playouts with full
knowledge about the hidden parts of the game state. And the random agent that chooses
among its available actions uniformly at random.

2.2 State of The Art

In this section, we introduce the current state of research.

2.2.1 Towards AlphaZero

Silver et al.’s AlphaGo program [45] uses one DNN for policy estimation, i.e. to predict
the next move. This has been trained in a supervised fashion, using data from human
experts. This network was then improved by RL through SP. For value estimation, a
separate network was trained to predict the game’s outcome from a given state. AlphaGo
then used the policy and value network, in an MCTS algorithm, to select the next node.

In AlphaGo Zero [46], the search algorithm was simplified in terms of the used node-
and edge-information, and it uses a single DNN for both, value and policy estimation,
without any Monte Carlo rollouts. The convolutional residual neural network is now
only trained from self-play reinforcement learning, without any human expert knowledge.
Only the pieces were used as input features. The tree search implemented the game’s
rules without any heuristics.

Shortly after, in 2018, a generalised version of the algorithm was published by Silver et al.
under the name of AlphaZero [44]. AlphaZero was another major breakthrough since
it, similar to AlphaGo Zero, didn’t require any domain knowledge but the rules, and was
able to play chess, shogi and Go at a superhuman skill level. AlphaZero is one of the
main foundations of this work. It is explained in great detail in Chapter 3.

2.2.2 CFR based Algorithms for multiplayer games with imperfect
information

Since Just 4 Fun is a multiplayer game with up to 4 players, even though not directly
used in this work, I want to briefly mention the development in the realm of imperfect
information games with more than two players.
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In 2017, Moravčík et al. introduced DeepStack [37] which marks a major advancement in
mastering imperfect information games. DeepStack uses CFR and a guided tree search for
policy generation. Two feed-forward networks with several hidden layers are trained using
RL and SP to approximate the state’s value and to assist the search. With this approach,
DeepStack was able to achieve human expert level performance in heads-up no-limit
Texas hold’em poker (HUNL), a two player game with imperfect information.

One year later, in 2018, Brown and Sandholm published Libratus [6], which was able
to beat even the top professionals in HUNL. Libratus is building a blueprint for the
overall strategy. This blueprint provides a detailed strategy for the early phases of the
game. Then, taking the blueprint strategy into account, it computes more fine-grained
strategies for subgames in real-time. A third module extends the blueprint strategy. As
in DeepStack, the actual game tree is searched using a variant of CFR.

Multiplayer games with imperfect information are much harder to solve. Brown and
Sandholm presented Pluribus [7] in 2019, which was a major milestone in AI for
multiplayer games with imperfect information. Pluribus was able to achieve superhuman
performance in six-player no-limit Texas hold’em poker. It uses an abstraction of the
game and self-play to pre-compute a strategy for the overall game, and then improves on
it during and based on play against an opponent. Pluribus also uses a variant of CFR
for searching the actual game tree.

2.3 Beyond AlphaZero

In 2020, Brown et al. published the framework named Recursive Belief-based Learning
(ReBeL) [8], which combines deep RL and CFR to solve perfect information, as well
as imperfect information games. They describe a method to transform any imperfect
information game into a perfect information game. The private knowledge about the
player’s cards is replaced by a public belief state that is known by all players. CFR is
used for search in subgames, and the value network2 is trained by SP. Their system
was able to achieve superhuman performance in HUNL. Applied to perfect information
games, ReBeL reduces to an algorithm similar to AZ.

Also in 2020, Schrittwieser et al. published a further generalisation of AZ, MuZero
(MZ) [43], which did not even require a perfect simulator, i.e. the game’s rules or the
dynamics of a real-world system, and can handle environments with a continuous action
space. In addition to the policy and value, the network also predicts an immediate reward
to improve planning (model-based RL). For every state in the course of a game, an
internal state representation is predicted from the actual state, using a learned function
(representation function). From that internal state representation, a MCTS is performed,
where follow-up states and their rewards are predicted by a separate learned functions
(dynamics function). The tree search is guided by another learned function (policy and
value prediction function). The actual next action is sampled from the policy generated

2Optionally also a policy network can be trained to bootstrap CFR
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by that tree search. The training data that is used to train MuZero is generated from
the trajectories (of fictitious states, actions, and rewards), generated by the MCTS. The
parameter updates are based on the difference between the fictitious trajectories and
trajectories of actual game states, actions, and rewards. MuZero was, in addition to
matching AlphaZero’s performance in chess, shogi and Go, able to play Atari games (in
which traditionally model-free approaches were used) with state-of-the-art performance.

Even more complex and challenging than Atari games is Blizzard Entertainment’s real-
time strategy game StarCraft II. It resides in the science fiction genre and features three
different races. Successful play requires micromanagement units and economy management
in a real-time multi-agent environment. It has a vast search space with imperfect
information and a combinatorial action space. AlphaStar is another implementation
of the AlphaZero framework that, for the first time, was able to beat top human
professionals [51].

Antonoglou et al. extended MuZero even further. In 2022, they introduce
Stochastic MuZero (SMZ) in [1]. Previous versions of the framework were planning
on, and learning a deterministic model of the environment. To account for uncertainty
regarding chance events and partial knowledge of the system, their algorithm features
chance nodes within the MCTS. These chance nodes represent states (afterstates),
which represent the environment after an action has been performed, but before the
environment’s stochastic responses to that action. With those afterstates, two further
learned functions are introduced. One to predict the environment’s response to actions
(afterstate dynamics function) and a second one to predict the value of afterstates and a
distribution over possible chance outcomes (afterstate prediction function). The training
of those functions works similar to the training of MZ, with the addition of afterstates
within the compared trajectories. Besides matching the state-of-the-art performance in
benchmark games like Go, Stochastic MuZero also achieves state-of-the-art performance
in stochastic games like 2048 and backgammon.

AlphaZero’s combination of RL and planning has also been successful aside from games.
AlphaTensor is based on AlphaZero and designed to find efficient matrix multiplication
algorithms [15]. In contrast to AZ, the problem of finding those algorithms is modelled
as a single-player game in AlphaTensor. The neural network is transformer-based. It
was able to find an algorithm that improves upon a reference algorithm that has stood
for 50 years.

AlphaDev [36] is an algorithm, based on MuZero, to find fast assembly code sorting
algorithms. As with AlphaTensor, the problem is formulated as a single-player game and
the network is also transformer-based. It was able to find algorithms that outperformed
human benchmarks and, as such, was integrated into the LLVM standard C++ sort
library.
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2.4 Differentiation to ReBeL, MuZero and
Stochastic MuZero

While ReBeL, MuZero and especially Stochastic MuZero, are dealing with similar issues
as the agent proposed in this thesis is, they follow different approaches.

The differentiating element in ReBeL is the search algorithm. AlphaJust4Fun is us-
ing a SO-ISMCTS, while ReBeL’s search algorithm is based on CFR. MuZero and
Stochastic MuZero use additional neural networks, over the single one used in AlphaZero,
to handle imperfect information and non-determinism. These four additional networks,
in the case of Stochastic MuZero, mean additional parameterisation and also training
effort. This makes them computationally more expensive and potentially more difficult
to configure. AlphaJust4Fun’s SO-ISMCTS uses, with the number of determinizations
per turn, only a single additional hyperparameter over AlphaZero.
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CHAPTER 3
Just 4 Fun, AlphaZero and

Information Set Monte Carlo
Tree Search

The agent that is proposed in this work is termed AlphaJust4Fun (AZJ4F). The non-
deterministic multiplayer game Just 4 Fun is used as a benchmark problem to evaluate
the performance of AZJ4F. AZJ4F is a combination of the AlphaZero framework and
Information Set Monte Carlo Tree Search. This chapter contains the detailed descriptions
of the components, AZJ4F is based on. It starts off with the rules of Just 4 Fun, followed
by the AlphaZero framework and Information Set Monte Carlo Tree Search.

3.1 Just 4 Fun
Just 4 Fun [26] is a non-deterministic multiplayer board game with playing cards. It was
invented by the German game designer Jürgen P. Grunau in 2005 [21]. For the basic rules,
we used the ones described on https://www.yucata.de/ [54, 55]. Besides the original
field-value distribution, which is shown in Figure 3.1, Yucata also implements an ordered
distribution (shown in Yucata.de & Just 4 Fun, Figure A.1) and a random distribution.
Another source for the game’s rules is https://www.spielregeln-spielanleitungen.de, they
also provide a picture of the original rule book, published by KOSMOS1.

The game is played on a 6×6 board of 36 numbered fields and a numbered deck of 55
cards. Each field has a number between 1 and 36 and each number occurs only once.
The deck contains 4 copies of each card numbered 1 through 12 inclusive, and for cards

numbered 13 up to and including 19, there is only 1 copy of each in the deck. Players
initially have 20 stones. A player can play between 1 and 4 cards (regular action; see

1KOSMOS Verlag. https://www.kosmos.de/de
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Figure 3.1: Just 4 Fun board with original field value distribution [54]. The value of the
fields is indicated by the number in the centre. The players’ stones are placed on the
light-blue circles above, left of, right of and below the number.

also Figure 3.2) out of their hand and put a stone on the field with the number equal
to the sum of the played cards’ numbers. A player may not place a stone on a field
on which any other player has a majority of 2 stones relative to that player (see also
Figure 3.4). If there does not exist any card combination indicating a valid field to place
a stone on, all cards in the player’s hand are replaced with cards from the stack of cards
(redraw action). Cards that have been played are put onto the pile of used cards.
At the end of each player’s turn, if their hand is depleted, cards are drawn from the

stack of cards and added to their hand until it reaches the hand size of 4. This process
ensures that all players begin their subsequent turns with a full hand of cards.
If the stack of cards is depleted during the hand refilling process, the pile of used cards

is shuffled, and used to construct a new stack of cards from which subsequent draws
will occur. This prevents any scenario where a player cannot fully replenish their hand.
A player wins if they can reach a majority in the number stones on 4 fields, aligned

horizontally, vertically, or diagonally (Win Condition 1, see Figure 3.3). If no player
can fulfil a winning pattern before all players run out of stones, the player with the
most points wins. A player gets the number of points equal to the sum of field values
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for each field they hold the majority on (Win Condition 2). If neither player has 4 in
a line nor more points than any other player, the player who has the majority on the
field with the highest value wins (Win Condition 3). In the very unlikely case that
neither player fulfils the above win conditions (i.e., played the same fields), the game is
interpreted as a draw. In the case that a player runs out of stones, the other players
play on until all stones have been placed. There may be at least 2, up to 4 players. In
this thesis, we will only address the game with 2 players.

Figure 3.2: Action (with cards): Green is allowed to put their stone on field 29 because
the sum of the played cards (5, 11 and 13) equals 29.

Figure 3.3: Win by pattern (4 in a diagonal, majority): The red player has the majority
of stones on every field on the diagonal from field 1 towards field 29. I.e. they have at
least one more stone than every other player on those fields. In particular, on 11 they
have two stones, whereas yellow has only one stone.
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Figure 3.4: An invalid action: Player red has two stones on field 11 and yellow has one.
The green player is not allowed, even if they are in possession of the necessary cards, to
put one of their stones on this field (the invalid action is indicated by the white, dashed
arrow) because the red player has a majority of two stones over green. Player yellow is
allowed to put further stones on this field because they have only one stone less than red.

3.1.1 Empirical Analysis of Just 4 Fun

By repeatedly sampling 4 cards from the (full) deck and then counting all the reachable
field values from those hands, we calculate an approximation of the probability distribution
of reaching fields with a random hand. Figure 3.5 shows the field reachability on the
board as heat-map and Figure 3.7 the probability ordered by field value as a barplot.
The different probabilities for reaching fields, entails also that some patterns are easier
to achieve than others. Figure 3.6 shows the patterns which are easiest to achieve.

We divide the game result into 4 categories:

Win by pattern Either of the players won by constructing a pattern.

Win by points None of the players were able to construct a pattern, but either
player had more points than the other players and won the game that way.

Win by max field None of the players were able to construct a pattern and all
players even had the same number of points. However, one player held the majority
on a field with a higher value than all the fields of the other players.

End in draw The extremely rare case in which all players put all their stones on
the same fields and thus did not hold a majority on any field.

24



3.1. Just 4 Fun

1
26.73%

14
46.92%

30
19.87%

24
33.26%

19
48.39%

8
45.06%

33
13.53%

11
54.83%

9
48.45%

16
47.75%

35
10.55%

21
40.54%

6
39.24%

27
26.70%

31
17.63%

20
41.95%

3
31.64%

12
57.85%

15
47.74%

32
14.95%

5
36.90%

29
22.35%

17
48.33%

26
28.54%

22
38.20%

10
51.27%

18
48.09%

36
9.02%

25
30.62%

2
28.68%

28
24.39%

7
42.50%

23
36.18%

4
33.80%

13
46.71%

34
11.81%

Figure 3.5: Empirical field (field-value is in bold) reachability (probability in percent
below the field-value) calculated by sampling 106 times 4 cards from the (full) deck at
random, drawn on the game board as heat-map. As an example, the field with value 1
can be reached with a probability of 26.73% with a random hand.

By simulating two-player games, in which both players select their actions randomly, we
found that even then, 45.32% of the games (45,317 out of 100,000) terminated with a
win by pattern (54,247 or 54.25% with win by points, 436 or 0.44% with win by max field,
and none of the games ended in a draw).

As a conclusion, with the set of valid actions constrained by the cards in hand, even
though with an opponent, who is not particularly inclined to prevent patterns, it is still
reasonably easy to construct a pattern of four in a line in a two-player game.

In a similar experiment over 50,000 games, which consisted of 1,745,860 turns, we found
the arithmetic mean of the number of playable fields per turn to be 11.603, with a
standard deviation 2.210, and a median of 12.
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1 14 30 24 19 8

33 11 9 16 35 21

6 27 31 20 3 12

15 32 5 29 17 26

22 10 18 36 25 2

28 7 23 4 13 34

Figure 3.6: Approximately easiest to achieve patterns w.r.t. field reachability. The
opacity of the lines reflects the difference in likelihood, relative to the most likely pattern,
i.e. 14-9-20-17.
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Figure 3.7: Approximate field reachability, calculated by sampling 106 times 4 cards from
the deck at random, visualised in a barplot. The fields between 1 and 12 are increasingly
easier to reach, the fields between 13 and 19 are on a plateau and fairly easy to reach,
and the fields between 20 and 36 are getting increasingly harder to reach.
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3.2 AlphaZero
The key innovation in AlphaGo Zero [46] was the absence of human domain knowledge
involved in training. The algorithm used in AlphaGo [45] was improved through the
simplification of the tree search, and the combination of the two neural networks into
a single one. AlphaZero’s innovation was the high performance on various challenging
tasks, like the benchmark problems chess and Go, while using the same parameters and
network architecture.

AlphaZero is composed of three main components that complement each other as fol-
lows: The general purpose reinforcement learning algorithm is improving the DNN by
performing numerous self-play games per training iteration.2 In each iteration, training
samples are generated from the collected game traces and added to a cyclic memory
buffer. Batches of samples are then drawn uniformly at random from this buffer and
used in a stochastic gradient descent optimiser to update the network’s parameters. The
updated network is then used in subsequent iterations. During SP and evaluation, a
modified version of the PUCB MCTS algorithm [41] is being used. In each game, the
MCTS algorithm performs lookahead by searching and expanding the game tree. In
classical MCTS, in the simulation step, the value of new leaf nodes is determined by the
result of a playout, i.e. continuing the game using random actions for both players until
termination. In contrast, AZ is not performing any playouts, but is using the neural
network instead to estimate the expected reward and the best-response policy, i.e. a
probability distribution over the available actions.

Monte Carlo Tree Search AlphaZero’s MCTS maintains a search tree with nodes s
(e.g. in Go, the stones on the board) and arcs (s, a) for each action a (e.g. in Go,
placing a stone on a certain position on the board). Each edge (s, a) stores the following
information:

• The prior probability P (s, a), which is provided by the DNN.

• The visit count N(s, a), i.e. the number of times a has been performed from s
during MCTS-iterations.

• The total action value W (s, a), i.e. cumulated action value.

• The action value Q(s, a), i.e. the mean action value Q(s, a) = W (s,a)
N(s,a) .

AlphaZero’s tree search iteratively extends the game tree on each turn. In each MCTS-
iteration, the tree is traversed starting by the root node s0. At each node st, with t < L,
the actions at ∈ A(st) (among the available actions from st) are selected, which maximise
an upper confidence bound Q(s, a) + U(s, a). Equation (3.1) shows the selection policy.

at = arg max
a

(Q(st, a) + U(st, a)) (3.1)
2Silver et al. generated a total of 106 self-play games for chess.
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The term U(s, a), shown in Equation (3.2), penalises arcs (s, a) that have often been
selected in previous MCTS-iterations (

√
N(s)

1+N(s,a)).

U(s, a) = C(s) · P (s, a) ·
√

N(s)
1 + N(s, a) (3.2)

The exploration rate, denoted by C(s), increases slowly with each iteration of the
MCTS-iteration algorithm that passes the node s. This increase follows the formula
C(s) = cinit + log 1+N(s)+cbase

cbase
, where cinit and cbase are constants3, and N(s) represents

the number of visits of node s.
Once a preliminary leaf node sL (i.e. a node that is not yet present in the search
tree) is reached, the tree is extended. The new node’s edges (sL, a) | ∀a ∈ A(sL) are
initialised with N(sL, a) = 0, W (sL, a) = 0, Q(sL, a) = 0 and P (sL, a) = pa. The prior
probability P (s, a) is initialised with the policy estimation p of the neural network fθ,
with (p, v) = fθ(sL) and pa being the policy component for the respective edges (sL, a).
In a backpropagation step for all t ≤ L, the visit counts and action values are updated as
described in Equation (3.3), with v being the value, i.e. the outcome of the game from
st, estimated by the neural network (p, v) = fθ(st).

N(st, at) = N(st, at) + 1
W (st, at) = W (st, at) + v

Q(st, at) = W (st, at)
N(st, at)

(3.3)

The number of MCTS-iterations can be controlled by either a time limit or by a constant.
Algorithm 3.1 contains the pseudocode for AZ’s MCTS.
After all MCTS-iterations have been performed, i.e. the search has completed, the visit-
based probabilities π(s0), over the actions available in s0, are returned. The probability
for playing action ai ins0, with ai ∈ A(s0), is shown in Equation (3.4). The temperature
τ controls the exploitation.

π(ai|s0) =
τ
√

N(s0, ai)∑
aj∈A(s0)

τ

√
N(s0, aj)

(3.4)

The temperature in AZ is controlled by the number of turns t into the game. During
self-play, the first 30 turns are performed with τ(t) = 1 |1≤t≤30. This results in actions
being selected proportionally to their visit count N(·, ·), and thus more exploration. For
following turns t > 30, τ is set to an infinitesimal value, which results in more exploitation
(heavy bias towards most frequently visited actions). Another way, in which exploration
is achieved, is the addition of Dirichlet noise to the prior probabilities at s0. I.e. setting
P (s0, a) = (1 − ϵ) · pa + ϵ · ηa, with η ∼ Dir(α). The parameter α was chosen as the
inverse of the approximate number of legal moves in a typical position.4

3Silver et al. use cbase=19,652 and cinit = 1.25.
4Silver et al. use α = 0.3 for chess.

29



3. Just 4 Fun, AlphaZero and Information Set Monte Carlo Tree Search

Algorithm 3.1: AlphaZero’s MCTS algorithm
Input: s0 - the a root node of a game subtree, composed of nodes sw and arcs

(sx, ay), where some player z is about to play
niter - the number of iteration

1 for niter iterations do
2 Start from the root node, assigning si = s0

3 repeat // Selection
4 Descend the subtree by selecting arcs (si, aj) with aj ∈ A(si), that

maximise the upper confidence bound Q(si, aj) + U(si, aj), and
updating si to the selected child node si = sj// see Eq. (3.1)

5 until an arc (si, aj), that leads to a node which is not in the game tree yet, is
reached or until arc (si, aj) leads to a terminal node sj

6 if arc (si, aj) has no child node then // Expansion

7 Add a child node sj to si’s arc (si, aj)
8 end

9 if sj is a terminal node then // Simulation
10 Initialise sj value using the terminal reward
11 else
12 Initialise sj using the value estimation of the DNN
13 Initialise sj ’s arcs (sj , ak) with ak ∈ A(sj) using the policy estimation of

the DNN
14 end

15 for each arc (si, aj) visited during this iteration do // Backpropagation

16 Update (si, aj)’s visit count N(si, aj) and total action value W (si, aj)
17 end
18 end
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This ensures that despite a high degree of exploitation introduced by small τ , all action
may be explored, but the search may still overrule bad actions. [44, 46]

Algorithm 3.2 describes AZ’s decision-making in each turn.

Algorithm 3.2: AlphaZero’s decision-making algorithm
Input: g - a game in state r

t - the current turn since the start of g
τ - the temperature-function
dn - the dirichlet-noise-function

1 Look-up node sr representing state r
2 Apply exploration noise dn(sr, ai) to the prior probabilities P (sr, ai) of sr’s arcs

with ai ∈ A(sr)
3 Perform Algorithm 3.1 with root node sr

4 Get the policy Pr = π(sr, T) with temperature T = τ(t) applied
5 return Pr

Learning AlphaZero’s neural network parameter updates and its self-plays are running
independently and in parallel. Algorithm 3.3 describes the process of generating training
data during self-play.

The neural network’s parameters θ are initialised with random values before RL starts,
and the memory buffer is initially empty. The network parameters are continually
updated in each training steps u5, using a batch of samples bu (drawn uniformly at
random)6 from the current memory buffer7.

Every 1,000th training step, a checkpoint c is reached, and the most recent network fθc is
saved and from then on used within self-play. Every game that is being generated during
SP using the MCTS algorithm with the neural network fθc is continually pushed to the
memory buffer as a game-trace. A game-trace is the game’s state- and action-history st

and πt respectively, and the outcome of the game z for all t ∈ [0, T], i.e. from the initial
state s0 to the terminal state sT.

In every training step u, the current network’s parameters θu−1 are being updated to
minimise the value prediction error and maximise the policy similarity over a batch
bu of triples (s, π, z) using stochastic gradient descent (with momentum8 m and the
learning-rate lr) on the loss function l. The learning-rate was decreased three times
during training from 0.2 down to 0.0002. Equation (3.5) shows the loss function l, which

5Silver et al. use 700,000 training steps (0< u ≤700,000).
6Silver et al. use a batch size of |bu|=4,096.
7Silver et al. use a memory buffer size of 106.
8Silver et al. use the momentum m = 0.9 for chess.
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Algorithm 3.3: AlphaZero’s self-play algorithm
Input: nsp - the number of self-play games

1 Initialise player pc with the current neural network checkpoint fθc

2 for nsp iterations do
3 Initialise player pu with the most recent neural network fθu

4 Start a new game g between pu and pc

5 repeat
6 Perform search on g using the current player according to Algorithm 3.1
7 Obtain the policy P for the current player according to Algorithm 3.2
8 Record the state of g and the policy P
9 Sample an action a according to the probabilities P

10 Apply action a to game g

11 Record the current reward on g // 0 if g is in a non-terminal
state, otherwise +1, 0 (draw), or −1

12 until g has terminated
13 Generate training samples from the recorded game data
14 Update the memory buffer with the most recent samples
15 end

is the sum of the mean-squared-error of the value v and the entropy loss of the policy
p, plus the L2 loss of the weights θ, multiplied with a constant weight decay9 wd with
wd << 1, where (p, v) = fθ(s).

l(θ, b) =
∑

(s,π,z)∈b

[(z − v)2 + πT · log p] + wd · ∥ θ ∥2
2 (3.5)

Algorithm 3.4 describes the learning process for the DNN on the memory buffer, populated
by SP using Algorithm 3.3.

9Silver et al. use a weight decay factor of wd = 10−4.
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Algorithm 3.4: AlphaZero’s learning algorithm
Input: nlearn - the overall number of training steps

dc - the number of network update steps, after which the neural network,
used in SP, is replaced

1 Initialise the neural network f ’s weights θc randomly and set θu = θc

2 for nlearn iterations do
3 Sample a batch bu from the memory buffer uniformly at random
4 Evaluate bu using fθu

5 Calculate the loss on the data from bu and fθu ’s estimation
6 Perform stochastic gradient descent to optimise θu according to the loss
7 if every dc-th update step then
8 Set θc = θu

9 end
10 end

Neural network The DNN is a convolutional residual neural network based on the
residual network architecture. It consists of a trunk, which receives the board state as
input, and two heads. One head is generating the value output v (value head) and
the other one is generating the policy output vector p (policy head). The high-level
network architecture is depicted in Figure 3.8.

The trunk is composed of one convolutional block CBt followed by a series of 19 residual
blocks RBi. The initial convolutional block CBt is depicted in Figure 3.9. It consists of a
convolutional layer with a 3×3-kernel, a stride of 1 and 256 filters, followed by batch
normalisation and a rectifier nonlinearity [46, 47].

Each residual block RBi contains a convolutional layer (3×3-kernel, stride 1, 256 filters)
and a batch normalisation, followed by a rectifier nonlinearity, followed by another
convolutional layer (3×3-kernel, stride 1, 256 filters) and batch normalisation, followed
by an addition operation, that adds the input of the residual block, and finally a last
rectifier nonlinearity [46, 47]. Figure 3.10 shows on residual block.

The output of the trunk is the input for both, the value head and the policy head. The
value head consists of a convolutional block CBv which is depicted in Figure 3.11a, made
up of a convolutional layer (1×1-kernel and 1 filter), followed by batch normalisation and
a rectifier nonlinearity. The convolution with a 1×1-kernel reduces the dimensionality of
feature planes [34]. CBv is followed by a fully connected linear layer to a hidden layer
with size 256, a rectifier nonlinearity, another fully connected linear layer to a scalar (Fv)
and a final tanh-nonlinearity that outputs the value v (see Figure 3.8) [46, 47].

The policy head consists of a convolutional block CBp which is depicted in Figure 3.11b,
made up of a convolutional layer (1×1-kernel and 2 filters), followed by batch normalisation
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Figure 3.8: The architecture of AZ’s DNN. Input is the batch bu on the left. The
initial convolutional block CBt is followed by a series of residual blocks RB1 to RB19.
Afterwards, the data is duplicated and put into two heads for value and policy. Both
of them with convolutions (CBv and CBp) at the start and followed up with a fully
connected network (Fv and Fp). The value head output is generated by applying a
tanh-function and the policy head output is generated by Fp.

Figure 3.9: The initial convolutional block of the trunk part of the network consists of a
convolutional layer with 256 filters (NT), batch normalisation and a rectifier nonlinearity.

and a rectifier nonlinearity [46, 47]. CBp is followed by a fully connected linear layer Fp,
that outputs the policy vector p (see Figure 3.8) [46, 47]. The value head for chess and
shogi is different, i.e. instead of Fp, it contains another a convolutional layer. Silver et al.
[47] however, mention that the reason was only shorter training times and not agent
performance.
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Figure 3.10: Each residual block in the trunk part of the network consists of two
convolutional layers with 256 filters (NT), batch normalisation and rectifier nonlinearities.
The input additively combined with the output of the convolutional layers, followed by a
rectifier nonlinearity.

Neural Network Inputs and Outputs for Go The network input, which is based
on the state of the game, is a tensor of 17 binary feature planes of the board size (19×19).
The first 16 planes contain the positions of the players’ stones for the past 8 turns, starting
with the most recent turn. The planes contain the value 1 if the corresponding position
on the board has a stone of the one player, and the value 0 if the other player or no
player has a stone on the position. A subsequent plane then contains the stone positions
from the perspective of the other player. The player positional planes are interleaved for
the past 8 turns. From the beginning of the game until 8 turns into the game, the planes
are all 0. The final plane indicates the player, which is about to play, all 1 for the player
in black and all 0 for the player in white.

The value output v ∈ [−1, +1] is a prediction of how likely it is to win (+1) or lose (−1)
from the current state of the game. The policy output p in Go is the logit probabilities
for all positions on the board and the pass action |p| = 19 × 19 + 1 = 362.

Regular Play and Competition During training, AZ is generating games much faster
than during competition/evaluation, i.e. taking much less time for MCTS-iterations.
The number of iterations performed by MCTS during training was set to only 800 [44].
During competition, the number of iterations is usually determined by a time control, e.g.
a limited total thinking time. AlphaZero used 1

20 of the remaining total thinking time for
each turn [44].

Summary of AlphaZero’s Hyper-Parameters

Dirichlet Noise The two parameters ϵ and α are controlling the noise that is
applied to the prior policy, when selecting the next action to play. Silver et al.
chose the value of ϵ inverse proportion to the approximate number of legal moves
in a typical position (0.3 for chess).

35



3. Just 4 Fun, AlphaZero and Information Set Monte Carlo Tree Search

(a)

(b)

Figure 3.11: The head parts of the network consist of a convolution with a kernel size of
1×1, batch normalisation and rectifier nonlinearities. The value head (a), applies one
filter (NV) and the policy head (b) two (NP).

Exploration Rate The parameter C(s) in the tree search controls the explo-
ration/exploitation when selecting actions during MCTS-iterations.

Temperature schedule The schedule τ(t) that depends on the turn.

MCTS-iterations The number of iterations or “thinking time” per turn and the
reward discount factor γ.

Network and Learning The number of training steps (weight updates), the
number of self-play games, the checkpoint interval (agent-network update during
SP), weight-update batch size, memory size (or memory size schedule), batch
normalisation momentum, the gradient descent momentum, the learning-rate
schedule, the weight decay and the sample weight policy ω.

3.3 ISMCTS

In a scenario with imperfect information, classical tree search cannot be used out-of-the-
box. A simple but still successful solution is determinization [19, 4]. Determinization
uses the same algorithm as for perfect information games on determined instances of
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a game with imperfect information. That is, making an assumption about the hidden
information and using the resulting perfect information instance instead.

Frank and Basin [16] identify two main issues of determinization:

Strategy fusion An agent erroneously assumes, it can decide on the right strategy
in different states within an information set. This leads to incorrect decisions, as
the states within an information set cannot be distinguished from each other.

Non-locality During search, only a particular subtree is used to evaluate the
payoff of a strategy. This subtree, however, might not be relevant, as the subtree
from the actual state is in a different part of the game tree and has a different set
of payoffs.

Long et al. [35] identify the following properties of a game tree, which can be used to
determine the effectiveness of determinization or conversely the impact of strategy fusion
and non-locality:

Leaf Correlation The probability of sibling terminal nodes having the same
payoff. A low leaf correlation makes it difficult for a player to affect their payoff.

Bias The probability of a game, favouring one player over the other. With very
high bias, the search space is expected to have large, homogeneous sections [35].

Disambiguation Factor The rate, w.r.t the depth of the game tree, at which
the number of nodes in a player’s information set decreases. The disambiguation
factor might be high in games, where hidden information is gradually revealed with
each turn.

All of these will be present in J4F to a certain degree. Leaf correlation is likely to be
present in longer games that end in points, with one player having many more points
than the other player. In games in which one player manages to start a pattern early,
might also have many correlated leafs. As we will see later in the results chapter, since
the starting player appears to have an advantage, bias is present to some degree. The
disambiguation factor is expected to be non-negligible as well, since the played cards in
each turn narrow down the cards, the opponent can potentially still have or get.

To address the issue of strategy fusion and non-locality, Cowling et al. [12] proposed a
new family of algorithms, Information Set Monte Carlo Tree Search (ISMCTS).
ISMCTS is an online search algorithm for games with imperfect information, partially
observable moves and chance events. The algorithm is based on MCTS and UCT. It
builds a game tree based on information sets instead of actual states. With information
sets being the decision nodes, the multi-armed bandit problem does not fit well anymore.
A better fit is the subset-armed bandit problem [12]. In the subset-armed bandit problem,
only a subset of machines is available in each trial. To account for the different availability
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of arms, Cowling et al. use a modified version of UCT (Definition 3.3.1). They modify
the UCB1 by replacing the overall number of trials n in Definition 2.1.4, i.e., the visit
count of a parent node, with the number of trials in which machine i was available, i.e.
action i was legal.

Definition 3.3.1 (UCB1-based bandit algorithm proposed by Cowling et al. [12]). Play
the machine i, that maximises xi + c ·

√
ln ai
ni

, where xi is the current average reward of
the machine i, ni the number of times the machine i has been played and ai the number
of times, machine i was available.

This modification addresses cases where rare actions would otherwise be over-explored.
Rare in this context refers to actions that are only available in few states of an information
set. That is, when ni is still small after numerous trials n, the UCB1 gets disproportion-
ately large. One specific ISMCTS algorithm is the Single-Observer Information Set
MCTS (SO-ISMCTS), described in Algorithm 3.5. Over several MCTS-iterations n,
SO-ISMCTS samples a concrete state, i.e., a determinization, from an information set.
During selection, expansion and simulation, the selected determinization determines the
available actions.

Note that Cowling et al. also proposed other algorithms in [12], which address certain
issues that may arise from properties of the game at hand. These issues, however, appear
less prominent when SO-ISMCTS is used in SP, noise and temperature are applied to
the policy, and with a DNN as a reward estimation.

Cowling et al. compare the performance of several agents in different games. A Cheating
UCT (i.e. search in full knowledge about the hidden state), a Determinized UCT (using
several trees built from individual determinizations), Single-Observer Information Set
MCTS and two further ISMCTS variants.
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Algorithm 3.5: SO-ISMCTS, as proposed by Cowling et al. [12]
1 Create the root node v0 of the search tree, corresponding to the root information

set Ii,0, composed of nodes vw and arcs (vx, ay), where some player z is about to
play

2 for n iterations do
3 Choose a determinization d from Ii,0 at random

4 repeat // Selection
5 Descend the tree following arcs according to d and the modified UCB1
6 until A node v is reached, that leads to an information set Ii,v which is not in

the tree yet or until v is a terminal node

7 if v is non-terminal then // Expansion

8 Choose at random an action from node v according to d

9 Add a child node c that is corresponding to the information set Ii,c

reached using the action and set it as the new current node v
10 end

// Simulation
11 Run a playout from v to the end of the game using determinization d

// Backpropagation
12 for each node u visited during this iteration do
13 Update u’s visit count and total simulation reward

14 for each sibling w of u, that was available for selection when u was
selected, including itself do

15 Update w’s availability count
16 end
17 end
18 end
19 return an action a from the root node v0 such that the number of visits to the

corresponding child node is maximal
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CHAPTER 4
AlphaJust4Fun

This chapter describes the AlphaJust4Fun (AZJ4F) algorithm. AZJ4F takes the
AlphaZero framework and replaces its tree search with Information Set Monte Carlo
Tree Search.

The proposed agent addresses the hidden information (i.e. hidden cards on the stack and
in the opponent’s hand) and randomness (i.e. recreating the stack of cards by shuffling
the pile of used cards) in J4F by changing the planning algorithm of AlphaZero.

More specifically, AZJ4F uses the Single-Observer Information Set MCTS [12] that is
described in Section 3.3.

Stochastic aspects of Just 4 Fun The randomness that is introduced when the stack
is empty, and the pile of used cards is shuffled and used as the new stack, is simplified as
another piece of hidden information. It is in a sense considered as (a possibly endless)
order of hidden cards, with some patterns of periodicity, as the reshuffling is treated as
part of a players’ turn, not as a dedicated chance node in the information set tree, and
thus handled by the information set nodes (in combination with the determinization).

At the beginning of a game, the player’s knowledge about the hidden cards is as a
probability distribution over the unknown cards. With each turn, cards are put onto the
pile of used cards, which makes the remaining hidden cards more predictable. Once the
stack of cards is empty, the probability distribution is reset to one that is closer to the
initial one.

These patterns of increasing and decreasing certainty, or increasing and decreasing size
of information sets, are handled by the information set tree search and the learned,
discounted terminal rewards.
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Hidden information in Just 4 Fun We distinguish the following sets of information
among the game-state:

Player-cards-state Contains the player’s own cards which are only visible to the
player they belong to.

Public cards-state Contains the pile of used cards, visible to all players.

Board-state Contains the number of stones of each player on each field.

Full cards-state Contains the player’s own cards, the pile of used cards, the
(hidden) stack of cards and the (hidden) opponent’s cards.

Full game-state Contains the board-state and the full cards-state.

Information set key-state The part of the full game-state that is common to
all possible full game-states within an Information Set.

The set of hidden information not only includes the opponent’s cards, but also the
(inexhaustible) stack of cards. In practical scenarios, when both players consistently play
their entire hand and the game reaches its maximum duration, the stack will be shuffled
twice at maximum. The set of known information, in a game in state s, where Player
i is about to play, is Ki

s = BSs ∪ UCs ∪ PCi
s, where BSs is the board-state, UCs is the

set of already played cards and PCi
s player i’s own hand. The set of hidden information

is Hi
s = DC \ (UCs ∪ PCi

s), where DC is the deck of cards. Hi
s can be decomposed into

Hi
s = SCs ∪PCo

s, with two unknown components SCs and PCo
s, the current stack of cards,

and the opponent’s o hand respectively.

Information Set There are two factors that influence the size of an information set.
First, the nature of the deck of cards, i.e. having some cards occur four times, while
others only once. The redundancy is introduced by the fact, that the order of cards in
the opponent’s hand is not relevant.

The second, greater influence, is due to the increasing set of revealed cards during play.
With each action, a set of one to four cards is added to a set UCs, which in turn increases
the set Ki

s. As a result, the size of Hi
s continually decreases until it is empty. When that

happens, the stack of cards is recreated by shuffling the pile of used cards to form a new
stack. The follow-up stack is then composed of DC \ (PCo

s ∪ PCi
s).

The information set for a game in state s, where Player i is about to play, is denoted by
Ii
s and shown in Equation (4.1), where D(Hi

s) is the set of all permutations of Hi
s.

Ii
s = BSs ×

 ⋃
dj∈D(Hi

s)

Ki
s ∪ dj

 (4.1)
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As Cowling et al. noted, it might not be optimal to use a different determinization for
every MCTS-iteration [12]. They investigate the effect of the balance between the number
of MCTS-iterations and the number of determinizations in two different games. For
one of the games1, they report that this trade-off has little effect on the agent strength,
given both, the number of MCTS-iterations and the number of determinizations, are
sufficiently large. For the other game2, agent strength decreases with an increasing
number of determinizations. They conclude that the effect depends on the characteristics
of the game. When long-term planning is required, a smaller number of determinizations
(for a given number of MCTS-iterations) is beneficial, as it increases the average search
depth.

The determinizations dj of a state s, where player i is about to play, are defined by
Equation (4.2), where sb is the MCTS-iteration-budget and nd the chosen number of
determinizations.

dj ∈ D(Hi
s) |j ≤ ⌊ sb

nd ⌉ (4.2)

Monte Carlo Tree Search The tree search is performed by iteratively extending
the tree of information sets, using a modified version of AlphaZero’s tree search policy
(see Equation (3.1)), on sampled determinizations. The selection policy uses, similar to
SO-ISMCTS, the actions’ availability count Na(s, a) instead of the node’s visit count
N(s, a) at a node s with actions a. Na(s, a) is the number of times in which s has been
visited and a has been available from s, i.e. a ∈ Ad(s). As a result, rarely available
actions are not disproportionally often explored during search. The selection policy is
the same as in AZ (Equation (3.1)), but uses the upper confidence bound shown in
Equation (4.3).

U(s, a) = C(s) · P (s, a) ·
√

Na(s, a)
1 + N(s, a) (4.3)

In a backwards pass, for all the taken arcs at from the visited nodes st, also the
availability counts, i.e. in addition to the arc-data maintained by AZ that are described
in Equation (3.3), under a determinization d, are updated:

Na(st, at) = Na(st, at) + 1, ∀at ∈ Ad(st)

The total action value is updated using the discounted value of the node snext, which at

lead to, either the terminal reward rsnext or the value estimated by the DNN fθ:

W (st, at) = W (st, at)+γ ·
{

rsnext , if snext is terminal
vsnext , if snext is non-terminal, with vsnext , psnext = fθ(snext)

Algorithm 4.1 contains the pseudocode for AlphaJust4Fun’s MCTS algorithm on a high
level, the detailed algorithm can be found in Appendix B (Algorithm B.1).

1Dou dizhu
2Lord of the Rings: The Confrontation
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4. AlphaJust4Fun

Algorithm 4.1: AlphaJust4Fun’s MCTS algorithm
Input: s0 - the a root node of a game subtree, composed of nodes sw and arcs (sx, ay),

where some player z is about to play and which corresponds to the root
information set Ii

0 of that subtree
niter - the number of MCTS-iterations
ndet - the number of determinizations
γ - the value discount factor

1 for niter iterations do
2 if first iteration OR every niter

ndet
-th iteration then

3 Select determinization dj from D(Hi
0) at random

4 end
5 Start from the root node by assigning sk = s0

6 repeat // Selection
7 Descend the subtree by selecting arcs (sk, al) with al ∈ Adj (sk), that are

available from sk under determinization dj , and maximise the upper
confidence bound Q(sk, al) + U(sk, al) // see Eq. (3.1) with U(s, a)
from Eq. (4.3)

8 until an arcs (sk, al) is reached that leads to a node (corresponding to an information
set), which is not in the tree yet or until arc (sk, al) leads to a terminal node

9 if arc (sk, al) leads to a node, which is not in the tree yet then // Expansion

10 Add a child node sl to sk’s arc (sk, al), that is corresponding to the information
set Ii

sl

11 end
12 if sl is a terminal node under dj then // Simulation
13 Initialise sl value using the terminal reward
14 else
15 Initialise sl using the value estimation of the DNN
16 Initialise sl’s arcs (sl, am) with am ∈ Adj (sl) using the policy estimation of the

DNN
17 end
18 for each arc (sk, al) visited during this iteration do // Backpropagation

19 Update (sk, al)’s visit count N(sk, al) and total action value W (sk, al) with the
discounted value of the node, (sk, al) lead to.

20 for each sibling (sk, am) with (sk, am) ∈ Adj (sk), that was available for selection
when (sk, al) was selected, including itself do

21 Update (sk, am)’s availability count Na(sk, am)
22 end
23 end
24 end
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AZJ4F’s decision-making during play is similar to the one of AlphaZero and shown in
Algorithm 4.2.

Algorithm 4.2: AlphaJust4Fun’s decision-making algorithm
Input: g - a game in state r

t - the current turn since the start of g
τ - the temperature-function
dn - the dirichlet-noise-function

1 Look-up node sr (representing the information set Ii
sr for the AZJ4F player i)

using the information set key-state (e.g. Ki
sr)

2 Apply exploration noise dn(sr, aj) to the prior probabilities P (sr, aj) of sr’s arcs
with aj ∈ A(sr)

3 Perform Algorithm 4.1 with root node sr

4 Get the policy Pr = π(sr, T) with temperature T = τ(t) applied
5 return Pr

Learning Training samples are generated during self-play. If SP is performed using a
perfect simulator, i.e. in full knowledge of hidden information, then AZ’s tree search is
used as-is. If performed on an imperfect simulator, i.e. only using the known information,
then AZJ4F’s tree search is used. However, using a perfect simulator may lead to strategy
fusion (see Section 3.3) having a bigger impact. In situations where the decision on the
next action in a perfect information scenario is obvious, it might lead to the network
learning an overconfident policy w.r.t. the cards the agent will get next. With vast
amounts of training data, this might be circumvented, but it might introduce effects of
overfitting for the value head.

Algorithm 4.3 describes the process of generating training data during self-play.

The learning process for the DNN on the memory buffer, populated by SP using Algo-
rithm 4.3, works mostly similar to the one in AZ and is described in Algorithm 4.4. The
difference is, that the discounted outcome z′ is used:

z′
T = zT

z′
t−1 = γ · z′

t for all t ∈ [0, T]

Another difference is that the reward and the policy of samples in the replay buffer, that
represent the same game state, are averaged using the arithmetic mean. All samples
are then weighted with some factor wi, according to the sample-weight policy ω(ni),
e.g. wi = ω(ni) = log2(ni) + 1, with ni being the number of duplicates of a sample i.
Very common samples, e.g. from the beginning of the games, are thus drawn with a
probability inverse proportional to their number of duplicates.
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4. AlphaJust4Fun

Algorithm 4.3: AlphaJust4Fun’s self-play algorithm
Input: nsp - the number of self-play games

1 Initialise player pc with the current neural network checkpoint fθc

2 for nsp iterations do
3 Initialise player pu with the most recent neural network fθu

4 Start a new game g between pu and pc

5 repeat
6 Perform search on g using the current player according to Algorithm 4.1

(and Alg. B.1)
7 Obtain the policy P for the current player according to Algorithm 4.2
8 Record the state of g and the policy P
9 Sample an action a according to the probabilities P

10 Apply action a to game g

11 Record the current reward on g // 0 if g is in a non-terminal
state, otherwise +1, 0 (draw), or −1

12 until g has terminated
13 Generate training samples from the recorded game data
14 Update the memory buffer with the most recent samples
15 end

AlphaJust4Fun uses the same loss function as AZ (see Equation (3.5)), but the network’s
parameters are updated using the Adam algorithm [28].

Neural Network The DNN’s input is based on the known information of an information
set Ii

s from the perspective of a player i in a state s. The output is, similar to AlphaZero,
the value and policy estimation. In Chapter 5, we present several candidate network
architectures.

Neural Network Inputs and Outputs for Just 4 Fun When comparing Just 4 Fun
to Go, chess and shogi, part of J4F’s game-state is similar in type. The board-state,
which is known to all players, is mostly similar to Go. The first difference is the possibility
of having multiple stones per field. The second one is the limited symmetry, introduced
by the different field values. That is, the board state is only symmetric regarding win-
patterns. This makes it suitable to be used in an architectural setting similar to AZ,
i.e. with convolutional residual blocks, and with similar modelling of network inputs.
The part of the state consisting of cards is different in kind and may require a different
architectural setting and modelling of inputs. The modelling of network inputs and
features is described in Chapter 5, along with the investigated network architectures.
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Algorithm 4.4: AlphaJust4Fun’s learning algorithm
Input: nlearn - the overall number of training steps

dc - the number of network updated steps, after which the neural
network used in SP is replaced

1 Initialise the neural network f ’s weights θc randomly
2 Set θu = θc

3 for nlearn iterations do
4 Sample a new batch bu from the memory buffer uniformly at random
5 Evaluate bu using fθu

6 Calculate the loss on the data from bu and fθu ’s estimation
7 Perform gradient descent to optimise θu according to the loss
8 if every dc-th update step then
9 Set θc = θu

10 end
11 end

The value output is similar to AZ with v ∈ [−1, +1], +1 for win, −1 for loss and 0 for
draw. The policy output p can be modelled similar to AZ in Go, as the logit probabilities
for all positions on the board. This requires heuristics to select which cards to play
specifically. Further possibilities to model the policy output are, e.g. over all possible card
combinations or having separate outputs for board positions and cards. The modelling
of network outputs is also described along with the investigated network architectures in
Chapter 5.

Regular Play and Competition During self-play, AZJ4F might use a perfect or an
imperfect simulator for the tree search. However, during regular play or competition (i.e. in
an imperfect simulator), the number of MCTS-iterations and determinizations has a
significant impact on agent performance and generally needs to be higher than during
training.

Summary of AlphaJust4Fun’s Hyper-Parameters

MCTS-iterations In addition to the ones of AlphaZero (see Section 3.2, Para-
graph 10), AZJ4F adds one further MCTS related hyperparameter, the number of
determinizations. It specifies the number of random determinizations to be used
throughout MCTS-iterations or “thinking time” in each turn.
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CHAPTER 5
Network Architectures and

Feature Engineering

This chapter describes two network architectures we investigated, the input features, and
initialisation of kernels.

The FieldNet (FNet) architecture in Section 5.1 is closely related to AlphaZero’s
network architecture, with a single trunk and two heads. CardFieldNet (CFNet),
which is presented in Section 5.2, has two separate trunks for the board-based information
and the information based on cards, and two heads.

A cards-based action space in Just 4 Fun is the set of all combinations of cards (with
the order being irrelevant), restricted by firstly the cards in the deck (varying number of
duplicates per card value), secondly the field values (i.e. the sum of cards being between
1 and 36) and thirdly the action-size (i.e. 1, 2, 3 or 4 cards). The card action space can
be denoted by the set A in Equations 5.1 where nh is the size of the players’ hand, FV
the set of all field values, DC the multiset of all cards in the deck and Ph the powerset
of cardinality h.

nh = 4
FV = {v | 1 ≤ v ≤ 36}
DC = {14, 24, 34, 44, 54, 64, 74, 84, 94, 104, 114, 124, 131, 141, 151, 161, 171, 181, 191}

A = {psi | psi ∈ Ph(DC), h ∈ [1, nh],
∑

(psi) ≤ max(FV)}

(5.1)

We determined the total number of unique and legal actions that can be formed from
the deck of cards by constructing, filtering and counting the powersets of cardinality 1 to
4 and found it to be 3,923.
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5. Network Architectures and Feature Engineering

Building the logit probabilities for such a high number of actions might lead to numeric
issues. Therefore, we focus on architectures that output a board-based policy (Section 5.1
and Section 5.2), i.e. a policy over the 36 fields.

The following sections contain variables for the number of network layers (e.g. LP) and
the layer sizes (e.g. NP) thereof. In the following chapters, we will always refer to
those variables when describing the actual networks that are being experimented with.
For easier understanding, the components in architecture depictions are represented by
different shapes and colours as follows:

• Components containing convolutions (rectangular box, “Conv”)

• Components containing skip connections (rectangular box, “RB”)

• Dense neural networks (circle)

• Batch normalisations (circle; rectangular box, “BN”)

• Components with rectifier nonlinearities as activation function (circle;
rectangular box, “ReLu”)

• Components with tanh as activation function (circle)

• Components with softmax output (circle)

5.1 FieldNet

FieldNet (FNet) consists of several convolutional residual blocks in the board trunk.
Both, the value head and the policy head, are connected to the trunk and consist
of a convolutional block and fully connected linear layers. The FieldNet architecture is
depicted in Figure 5.1.

Input The input tensor for the FieldNet architecture is inspired by the inputs used
in AlphaZero. Its dimensions are given by the board’s dimensions times the number
of feature planes. The feature planes are described formally in Section 5.3. They are
based on the board-state and a mapping of the public cards-state (see field reachability
in Section 5.3) onto the board. The significant difference to the inputs in AlphaZero for
Go is the absents of the ply history and the layer that indicates the current player. We
consider several sets of feature planes and compare them in Chapter 7.
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5.1. FieldNet

Figure 5.1: Overview of the FieldNet architecture.

Figure 5.2: The initial convolutional block of FieldNet architecture.

Trunk The trunk is composed of one convolutional block CBT followed by a series of i
convolutional residual blocks RBi. The initial convolutional block CBT is depicted in
Figure 5.2. It consists of a convolutional layer with a 3×3-kernel, a stride of 1 and NT
filters, followed by batch normalisation and a rectifier nonlinearity.

Each convolutional residual block RBi contains a convolutional layer (3×3-kernel, stride 1
and NT filters) and a batch normalisation, followed by a rectifier nonlinearity, followed by
another convolutional layer (3×3-kernel, stride 1 and NT filters) and batch normalisation,
followed by an addition operation, that adds the input of the convolutional residual
block, and finally a last rectifier nonlinearity. A convolutional residual block is shown in
Figure 5.3.

The output of the trunk is the input for both, the value head and the policy head.

Value head The value head consists of a convolutional block CBV and a fully connected
network FV, which are depicted in Figure 5.4a. CBV consists of a convolutional layer (1×1-
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5. Network Architectures and Feature Engineering

Figure 5.3: A convolutional residual block from the trunk part of the FieldNet architecture.

kernel, stride 1 and NV filters), followed by batch normalisation and a rectifier nonlinearity.
FV consists of a fully connected layer and a hidden layer (size NV) with a rectifier
nonlinearity, followed by a fully connected layer that returns a scalar value. This value is
finally transformed by a tanh-nonlinearity to the value output v (see Figure 5.1).

Policy head The policy head consists of a convolutional block CBP and a fully
connected network FP, which are depicted in Figure 5.4b. CBP consists of a convolutional
layer (1×1-kernel, stride 1 and NP filters), followed by batch normalisation and a rectifier
nonlinearity. FP is a fully connected linear layer that returns a vector which is finally
transformed by a softmax-function to the policy output vector p (see Figure 5.1).

Policy output The policy output vector p of the FieldNet architecture is a probability
distribution over the board-based action space, i.e. the 36 fields. This probability
distribution is then multiplied with the binary-value mask that indicates the valid actions
(i.e. the fields reachable with the player’s hand and not secured by any player; see
Section 3.1). The mask has a value of 1 on positions of fields that are valid and a value
of 0 on the other fields’ positions. After masking, p is re-normalised over the remaining
legal moves: |p| = 36 and ∑36

i=1 pi = 1

Value output The value output v is a real number from the interval [−1, 1], 1 means
the current player is likely to win, 0 the game will likely end in a draw and −1 means
the current player will likely lose: v ∈ [−1, 1]
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5.2. CardFieldNet

(a)

(b)

Figure 5.4: The value head (a) and the policy head (b). The input and output dimen-
sionalities are indicated below the directional arrows.

5.2 CardFieldNet
The CardFieldNet (CFNet) architecture consists of two trunks, one board trunk and one
cards trunk (for the public cards-state-based inputs). Similar to the trunk in FieldNet,
the board trunk consists of several convolutional residual blocks. The cards trunk consists
of a dense neural network. Both trunks are connected by the common trunk, which
is a dense neural network. The common trunk is followed by the value head and the
policy head. Both consist of dense neural networks. The CardFieldNet architecture is
depicted in Figure 5.5.

Inputs The input tensor for the board trunk is similar to the input for FieldNet as
described in Section 5.1 on Page 50.

The inputs for the cards trunk are vectors of cards. The feature vectors for the cards
trunk are described formally in Section 5.3.

Board trunk The board trunk is composed of one convolutional block CBS followed
by a series of convolutional residual blocks RBi, another convolutional block CBT, and
a fully connected linear layer FBT. The initial convolutional block CBS is the same
as FieldNet architecture (see CBT in Figure 5.2), with the number of filters being NS.
The blocks RBi are also similar to the ones in the FieldNet architecture and shown

53



5. Network Architectures and Feature Engineering

Figure 5.5: Overview of the CardFieldNet architecture.

in Figure 5.3. The final convolutional block CBT consists of a convolutional layer with a
1×1-kernel, a stride of 1 and NT filters, followed by batch normalisation and a rectifier
nonlinearity. After CBT follows the fully connected linear layer FBT, which transforms
the data from 36 × NT (with 36 being the size of the board) to a vector output of size
NC. CBT and FBT are depicted in Figure 5.6. Unless otherwise mentioned, for all dense
neural networks Fj , the constants Nj refer to the number of neurons and the constants
Lj refer to the number of layers.

Figure 5.6: The final convolutional block and the fully connected linear layer at the end
of the board trunk, which brings board trunk output to a common dimension.

Cards trunk The cards trunk is the dense neural network FCT, which is depicted in
Figure 5.7. It consists of LCT hidden layers of size NCT. The first layer converts from
the input size |I| to size NCT. Each hidden layer incorporates batch normalisation and a
nonlinear activation function. The last layer converts from size NCT to size NC and also
uses a rectifier nonlinearity as the activation function.
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5.2. CardFieldNet

Common trunk Figure 5.6 displays the common trunk FC which takes the combined
output of both, the cards trunk and the board trunk as an input. It consists of a dense
network with LC hidden layers of size NC. The first layer converts the data from size
2×NC to size NC. Each hidden layer and the output layer incorporate batch normalisation
and a nonlinear activation function.

The output of the common trunk is the input of the value head and the policy head.

Figure 5.7: The cards trunk of the CardFieldNet architecture.

Figure 5.8: The common trunk of the CardFieldNet architecture.

Policy head The policy head is depicted in Figure 5.9, it consists of LP hidden layers
of size NP. The first layer converts the data from size NC to size NP. Each hidden layer
and the output layer incorporate batch normalisation and a nonlinear activation function.
The last layer has the size of the policy (i.e. 36 for J4F) and is followed by a softmax
function.

Value head The value head is depicted in Figure 5.10, it consists of LV hidden layers
of size NV. The first layer converts the data from size NC to size NV. Each hidden layer
incorporates batch normalisation and a nonlinear activation function.

The last layer outputs a scalar value and uses the tanh activation function.
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5. Network Architectures and Feature Engineering

Figure 5.9: The policy head of the CardFieldNet architecture.

Figure 5.10: The value head (b) of the CardFieldNet architecture.

Policy output and value output The policy output vector p and the value output
v are similar to the ones of the FieldNet architecture and described at the end of
Section 5.1.

5.3 Input Features
In this section, we present the input feature planes (available for FieldNet and
CardFieldNet) and feature vectors (CardFieldNet only), which we used in our experiments.
We start off by defining the matrix, representing the positions of field values, and the
vector of card values. Both will be referred to when the specific input feature planes and
vectors are defined. For feature planes that have different values for each player, we will
define them for some player c ∈ {1, . . . , np}. All the input features are in dependence
on some state s (except for the field values F), for the sake of readability, we omitted
the state variable. The input tensors used in our experiments are compositions of those
feature planes.
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5.3. Input Features

Let F = [fij ] in Equation (5.2) be the matrix representing the field values on the
Just 4 Fun board.

F =



1 14 30 24 19 8
33 11 9 16 35 21
6 27 31 20 3 12
15 32 5 29 17 26
22 10 18 36 25 2
28 7 23 4 13 34


(5.2)

cd in Equation (5.3) is an ordered vector that represents all the cards from the deck DC,
and cv in Equation (5.4) is a vector that represents the corresponding card values.

cd = (ci)1 ≤ i ≤ 55 (5.3)

cv = (1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5,

6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10,

11, 11, 11, 11, 12, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19)
(5.4)

Let Bc in Equation (5.5) be the matrix representing the number of stones on each
field (i, j) of the board for some player c ∈ {1, . . . , np}, with np being the number of
players.

Bc = [bc
ij ]1 ≤ i,j ≤ 6 (5.5)

bc
ij represents the number of stones of Player c on the field with coordinates i and j and

value F(i, j).

Number of stones of a player The most basic input feature is the number of stones
on each field for a certain player. The number of stones as feature planes can be used
with the FNet architecture and for the board trunk of the CFNet architecture.

For some player c, it is the 6×6 matrix Istones
c = [mc

ij ]1 ≤ i,j ≤ 6 shown in Equation (5.6),
where mc

ij is the number of stones of Player c on the field with indices i and j.

Istones
c = Bc (5.6)

Empty field The binary plane indicates the fields, where none of the players has any
stones. It can be used with the FNet architecture and for the board trunk of the CFNet
architecture.

It is a 6 × 6 matrix Iempty = [mij ]1 ≤ i,j ≤ 6 shown in Equation (5.7), where mij is 1 if
the field with indices i and j has no stones.

Iempty = [mij ] =
{

1, if ∀p ∈ {p | 1 ≤ p ≤ np} : Bp(i, j) = 0
0, otherwise

(5.7)
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Minority of stones for a player This is a binary plane that indicates the fields on
which a certain player has a minority. It can be used with the FNet architecture and for
the board trunk of the CFNet architecture.

For some player c, it is the 6 × 6 matrix Iminority
c = [mc

ij ]1 ≤ i,j ≤ 6 shown in Equa-
tion (5.8), where mc

ij equals 1, if there exists another player, which has more stones than
Player c on the field with indices i and j, and 0 otherwise.

Iminority
c = [mc

ij ] =
{

1, if ∃p ∈ {p | 1 ≤ p ≤ np and p ̸= c} : Bp(i, j) > Bc(i, j)
0, otherwise

(5.8)

Majority of stones for a player This is a binary plane that indicates the fields
on which a certain player has the majority of stones. It can be used with the FNet
architecture and for the board trunk of the CFNet architecture.

For some player c, it is the 6 × 6 matrix Imajority
c = [mc

ij ]1 ≤ i,j ≤ 6 shown in Equa-
tion (5.9), where mc

ij equals 1, if Player c has more stones than any other player on the
field with indices i and j, and 0 otherwise.

Imajority
c = [mc

ij ] =
{

1, if ∀p ∈ {p | 1 ≤ p ≤ np and p ̸= c} : Bc(i, j) > Bp(i, j)
0, otherwise

(5.9)

Secured fields for a player This is a binary plane that indicates the fields which
have been secured by some player, i.e. the player has two stones more on a certain field
than any other player. It can be used with the FNet architecture and for the board trunk
of the CFNet architecture.

For some player c, it is the 6 × 6 matrix Isecured
c = [mc

ij ]1 ≤ i,j ≤ 6 shown in Equa-
tion (5.10), where mc

ij equals 1, if Player c has two stones more than any other player on
the field with indices i and j.

Isecured
c = [mc

ij ] =
{

1, if ∀p ∈ {p | 1 ≤ p ≤ np and p ̸= c} : Bc(i, j) ≥ Bp(i, j) + 2
0, otherwise

(5.10)

Field values This is a constant plane equal to F. It can be used with the FNet
architecture and for the board trunk of the CFNet architecture.

Field probability The constant 6 × 6 plane Ifp described in Equation (5.11) contains
for each field the empirical probability of getting a hand such that, that field can be
reached. It can be used with the FNet architecture and for the board trunk of the CFNet
architecture.

The probabilities are calculated based on repeatedly sampling hands from the deck as
explained earlier in Subsection 3.1.1 and visualised in Figure 3.5. As an example, the
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field with value 1 at F(1, 1), which can be reached with a probability of 26.73% with a
random hand, is represented by the value 0.26729 in Ifp(1, 1).

Ifp =



0.26729 0.46924 0.19872 0.33259 0.48385 0.45061
0.13534 0.54831 0.48448 0.47750 0.10548 0.40535
0.39241 0.26695 0.17633 0.41948 0.31642 0.57851
0.47742 0.14947 0.36902 0.22352 0.48332 0.28535
0.38196 0.51268 0.48087 0.09019 0.30623 0.28683
0.24392 0.42499 0.36178 0.33798 0.46713 0.11814


(5.11)

Field reachability The 6 × 6 plane Ifr
c described by Equation (5.12) is a matrix of

binary values, based on the cards state only. For some player c, it indicates the fields on
the board, which Player c has the cards for in his hand of size nhand, while ignoring any
restrictions associated with the board state.

It can be used with the FNet architecture and for the board trunk of the CFNet
architecture.

Ifr
c = [mc

ij ] =
{

1, if F (i, j) ∈ {sum(a) | a ∈ Ph(PCc) and 1 ≤ h ≤ nhand}
0, otherwise

(5.12)

Field availability The 6 × 6 plane Ifa
c described in Equation (5.13) is a matrix of

binary values, based on the board state only. For some player c, it indicates the fields on
the board, which are neither secured by Player c w.r.t. every other player, nor any other
player has secured the field w.r.t. Player c.

It can be used with the FNet architecture and for the board trunk of the CFNet
architecture.

Ifa
c = [mc

ij ] =


1, if ¬(∃p ∈ {p | 1 ≤ p ≤ np and p ̸= c} : Bc(i, j) + 1 < Bp(i, j))

∧¬(∀p ∈ {p | 1 ≤ p ≤ np and p ̸= c} : Bp(i, j) + 1 < Bc(i, j))
0, otherwise

(5.13)

Player hand The player hand vector iph
p contains binary values that indicate Player p’s

hand PCp ⊂ DC in cd such that iph
p indicates the positions in cv, starting with the left

most position for a given card value for each card with equal value.

It can only be used with the cards trunk of the CFNet architecture.

Let iph
p be Player p’s hand indicator vector, initialised as:

iph
p = (0)1≤i≤|cv|
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For each card cj in PCp do the following:

Let vj be the value of card cj

Find the leftmost card ck with value vj in cv such that iph
p(k) = 0

Assign 1 to the position k in iph
p

Used cards The player hand vector iuc contains binary values that indicate the cards
that have been already used, i.e. iuc represents UC = DC \ (SC ∪

⋃
p∈{1,...,np} PCp), in

cd such that iuc indicates the positions in cv, starting with the left most position for a
given card value for each card with equal value.

It can only be used with the cards trunk of the CFNet architecture.

Let iuc be the used cards indicator vector, initialised as:

iuc = (0 |1≤j≤|cv|)

For each card cj in UC do the following:

Let vj be the value of card cj

Find the leftmost card ck with value vj in cv such that iuc(k) = 0
Assign 1 to the position k in iuc

5.4 Convolutional Kernel Initialisation
The initial convolutional layer of the convolutional residual trunk of both, the FieldNet
and the CardFieldNet architecture, can be supplied with custom filter kernels. The
idea is to accelerate the learning by supplying the kernels that support the detection of
horizontal, vertical and diagonal patterns within the input. The custom filter kernels
take up the share NCF of the overall number of filters Ns, defined for the convolutional
block, and determine the kernel size dCF × dCF for the convolutional layer. An example
is depicted in Figure 5.11. In addition to the colour coding defined at the beginning of
this chapter, custom convolutional filters are coloured in a slightly darker orange than
randomly initialised convolutional filters.

Similar to the randomly initialised filter kernels RFi, each custom filter kernel CFi is
applied to all feature planes, as depicted in Figure 5.12.
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Figure 5.11: The initial convolutional block from the trunk of FieldNet or CardFieldNet
with customised filter kernels.

Figure 5.12: Every filter kernel RFi and CFi is applied to every feature plane of the
input tensor bu. In this example, there are 2 custom and 2 random filter kernels.
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CHAPTER 6
Methods and Implementation

This chapter describes the methods used to construct the proposed agent and evaluate its
performance. It describes the experimental setup, i.e. how experiments were performed,
result data were generated, collected and processed.

6.1 Prototype Implementation
Julia To evaluate the proposed agent, we implemented a prototype in Julia [3] as it
offers flexibility and good performance. The description in its documentation [25] reads
as follows:

Julia features optional typing, multiple dispatch, and good performance,
achieved using type inference and just-in-time (JIT) compilation (and op-
tional ahead-of-time compilation), implemented using LLVM. It is multi-
paradigm, combining features of imperative, functional, and object-oriented
programming. Julia provides ease and expressiveness for high-level numerical
computing, in the same way as languages such as R, MATLAB, and Python,
but also supports general programming.

With Laurent’s AlphaZero.jl (AZ.jl) package [33], there exists a solid and well-maintained
implementation of the AlphaZero framework. AlphaZero.jl already implements mecha-
nisms to run Benchmarks, collect and plot performance metrics during training, and
to encapsulate hyperparameter configurations in Experiments. In the following, the
words shown in verbatim text (e.g. MyStructure) refer to identifiers in the source code
of either AZ.jl or our prototype implementation.

Our implementation is split into two Julia packages. The implementation of the game
mechanics, i.e. the GameInterface used by AlphaZero.jl, is in the Just4Fun.jl pack-
age [18]. The implementation of the neural network architectures (see Chapter 5), the

63



6. Methods and Implementation

SO-ISMCTS (see Chapter 4 and Section 6.4), debugging tools, benchmarking tools
(Section 6.3), the network input feature planes (see Chapter 5) and the hyperparame-
ter configurations of our experiments (see Chapter 7) are in the AlphaZeroJust4Fun.jl
package [17].

The agent has been developed incrementally. We started with a setup close to AZ on
Tic-Tac-Toe variants, then replaced the neural network architecture by FieldNet and
implemented feature planes. Then we added the cards to the game mechanics, added
SO-ISMCTS and used the CFNet architecture. Afterwards, we added the field value
mechanics and further feature planes. Finally, by incorporating the multi-stone mechanics,
we evaluated the proposed agent on the full two-player version of Just 4 Fun, as it is
described in Section 3.1.

6.2 Benchmarking

The agent’s (AlphaJust4FunZeroPlayer) performance was evaluated within a bench-
mark. As a baseline, we used random play, a vanilla SO-ISMCTS agent, a cheating
MCTS agent, and human players. During hyperparameter search, to monitor the learning
success of the DNN, a network-only agent was used. To determine parameters for the
SO-ISMCTS within AZJ4F, the vanilla SO-ISMCTS agent was used. All are part of the
AlphaZeroJust4Fun.jl package.

Random Play (RandomPlayer) This agent always picks its actions uniformly
at random from the available actions. With A(s) being the available actions from
a state s, the selected action a is always a ∼ Uniform(A(s)). It is mostly used
for monitoring the neural network performance, i.e. convergence speed, overall
performance, performance specifically on pattern-win and points-win, and for
hyperparameter search.

Network Agent (NetworkOnly) This agent selects actions by sampling accord-
ing to the DNN’s policy output.

Vanilla SO-ISMCTS Agent (IsMctsRollouts) This agent performs actions,
similar to AlphaJust4Fun, as described in Algorithm 4.2. On each turn, it per-
forms niter MCTS-iterations on ndet determinizations of the current game state as
described in Algorithm 4.1, but initialises new nodes (see Line 16 in Algorithm 4.1)
based on random playouts. The value is set to the terminal reward of the random
playout, and the prior probabilities are set to a uniform distribution.

Cheating Monte Carlo Tree Search Agent (CheatingMctsRollouts)
This agent is in full knowledge of the game’s true state. It also performs actions,
similar to AlphaZero, as described in Algorithm 3.2. On each turn, it performs niter
MCTS-iterations from the current game state as in Algorithm 3.1, but initialises
new nodes (see Line 12 in Algorithm 3.1) based on random playouts. The value is
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set to the terminal reward of the random playout, and the prior probabilities are
set to a uniform distribution.

Human Player Besides the artificial agents above, human players on
https://www.yucata.de/, and the author1 served as a baseline. The AlphaJust4Fun
agent acted as the user AlphaJust4Fun2 (CFNet) and AlphaJ4FZeroFNet3

(FNet) on Yucata. All its games can also be reviewed and downloaded on
https://www.yucata.de/en/Ranking/AlphaJust4Fun and
https://www.yucata.de/en/Ranking/AlphaJ4FZeroFNet respectively.

The benchmark was conducted during training as well as with the fully trained agent.
During training, i.e. after every update of the DNN’s parameters, a benchmark of
the Network agent against the Random agent was conducted with 1,000 randomly
initialised games. This allows to monitor the DNN’s learning progress while keeping the
duration of a learning cycle short in comparison to always running the benchmark with
the very CPU-intensive MCTS agents. For the benchmark of the fully trained agent,
the number of games was smaller, as a game between two MCTS players is a lot more
resource-intensive.

The win-rate, i.e. the number of games won, divided by the number of games played
between two agents, was used as the main performance metric. Other performance
metrics are described in Section 6.3.

Since the skill rating system on Yucata is TrueSkill, we use TrueSkill to compare the
agent’s performance with human players. The win-rate of AlphaGo Zero has been
evaluated on 100 games [46] and, according to the creators of TrueSkill, there are 50–
100 games4 required to reflect a significant skill change. Since J4F is a non-deterministic
game, we used a minimum of 100 games to evaluate our agents. The number of games
against humans will be much lower, as they are much more time-consuming.

6.3 Other Performance Metrics

We implement sets of test cases that provide insight into certain aspects of a fully trained
agent’s intelligence in different situations.

The test sets address the following desired abilities for an intelligent agent:

• The ability to recognise a win by pattern with the current turn.
In one set of tests (win-pattern), each player has exactly one stone on each of
its fields and fields are occupied by one player only. In this test set, there is only

1TrueSkill of 1,029 after 273 played games; https://www.yucata.de/en/User/gwario
2https://www.yucata.de/en/User/AlphaJust4Fun
3https://www.yucata.de/en/User/AlphaJ4FZeroFNet
4https://www.microsoft.com/en-us/research/project/trueskill-ranking-system/
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one single action that forms a pattern. In another set of tests (win-pattern-ms),
players have multiple stones on their fields, i.e. are competing for some fields of
the partial pattern.

• The ability to prevent loss by pattern with the next opponent’s turn (win by pattern
for the opponent). Similar to the win by pattern scenarios, there are also two sets of
tests. In one set, agents are competing for the fields (prevent-loss-pattern-
ms) and in another one they are not (prevent-loss-pattern).

• The ability to pick a winning action (pattern win) over an action that is preventing
the opponent from (possibly) scoring a win by pattern in its next turn (prefer-
win-pattern).

• The ability to recognise a win by points (win-points-ms) with the current turn.

• The ability to set up double-win conditions (double-pattern), i.e. where the
agent has two options to score a win by pattern on its next turn.
E.g. the agent under test has secured two neighbouring fields in the middle of the
board and it can secure the fields that extend the pattern to a line of 3 fields. Then
the agent is expected to recognise that by extending the pattern to a line of 3, even
if the opponent blocks the pattern on one side, it can win by pattern on its next
turn.

• The ability to build triple-win conditions, i.e. the agent under test has two options
to set up a double-win (pattern win) condition on its next turn (triangle-
pattern). In these scenarios, the player has three stones next to each other, i.e.
forming a triangle, in the middle area of the board.

• The ability to recognise a win by max field with the current turn (win-max-
field-ms). In these test cases, players are competing for fields and there is only
one single action that ends the game with a win.

Each test set is designed, such that the expected agent output metric value, is similar for
each individual test case of a test set. For example, in all test cases in which the agent is
close to winning, the network’s value output is expected to be close to 1 and the policy
should emphasise the winning action.

Each test case is described by a sequence of actions for both players that lead to some
game state s, the agent is tested in. Ae(s) is a set of expected actions which an intelligent
agent is expected to select for that game state. Let (se, ae) ∈ Ae(s) be an arc in the
game tree from s to se, by taking action ae.

In every test case, the game state is created according to the sequence of actions for both
players. Then, for outputs related to the agent’s estimation of the game’s outcome, it is
tested whether the outputs are within some predefined intervals. For outputs related to
the agent’s estimated policy, we use the averaged cross-entropy for the comparison of the
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agents. The constructed game state ensures that the agent is in possession of the cards
that are necessary to be able to play at least one of the expected actions.

The following examples illustrate how the tests work:

1. For the value network output, we define the following set of intervals: {[−0.3, −1.0],
[0.0, 1.0], [0.3, 1.0], [0.5, 1.0], [0.8, 1.0]}. E.g. assume the agent’s value network
output for each test case from the test set, is expected to be close to 1.0, i.e. a
high-value state for the current player. Now assume that, for the first test case, the
actual value network output is 0.3, i.e. an underestimation of the game state, for
the second test case it is 1.0, i.e. expected value estimation. At the end of each
test set, for each interval, we count the number of test cases, for which the agent’s
output was within each interval.

2. For the policy network output, we expect the agent to select one of two sensible
actions in each test case. Then the probabilities estimated for these two actions
are summed up and also counted per some intervals.

3. For the value-type metrics Q and UCT on the expected actions, calculate the scaled
mean and again, count them per some intervals.

4. For the tree search policy and the policy network output, we calculate the cross-
entropy between the agent’s estimation and an ideal distribution over the available
expected actions, i.e. assigning probability 1 to the expected actions and 0 to
the other actions. A value of 0 means the agent’s policy meets the expectation.
Subsequently, we average cross-entropy for each test set. The average cross-entropy
of each test set is again averaged over all repetitions of the particular test set. We
use those values to compare the agents.

For each of the test sets, we implemented multiple test cases. The win-pattern,
prevent-loss-pattern, and prefer-win-pattern test sets, with 128–184 in-
stances, cover almost all the win-patterns. The double-pattern and triangle-
pattern sets, with only 84 and 40 instances, respectively, cover nearly all the double
and triangle pattern situations. win-points-ms and win-max-field-ms have the
smallest number of instances, with 19 and 10 test cases, respectively.

In most of the test sets, the scenario is constructed in the early game stages. As
a reminder, a J4F game with two players takes at least 7 up to at most 40 turns.
The win-pattern, prevent-loss-pattern, prefer-win-pattern, double-
pattern, and triangle-pattern test sets are constructed between the 4th and
the 6th turns. The win-pattern-ms and prevent-loss-pattern-ms test sets are
constructed at the intermediate phase of the game. The win-points-ms and win-
max-field-ms test sets are naturally constructed in the late stages of the game.

The number of test cases per test set, along with basic statistics on the number of turns
for the test cases per test set, are summarised in Table 6.1.
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Test set Number of test cases
Turns per test case
Median µ ± σ

win-pattern 152 6 6 ± 0
prevent-loss-pattern 128 5 5.44 ± 0.50
prefer-win-pattern 184 6 6 ± 0
double-pattern 84 4 4 ± 0
triangle-pattern 40 4 4 ± 0
win-pattern-ms 136 22 14.65 ± 8.20
prevent-loss-pattern-ms 90 17 18.22 ± 4.92
win-points-ms 19 39 39 ± 0
win-max-field-ms 10 39 39 ± 0

Table 6.1: Basic statistics of the test sets, including the number of test cases per test set,
and statistics on the number of turns per test set.

We test the following metrics:

Value estimation of the DNN (Vnet) This is the output vt of the network’s
value head on some game state t: Vt

net = vt

Mean of the scaled action value estimations of the DNN (Qnet,scaled)
This is the arithmetic mean of the scaled action values over all expected actions.
Let Qt

net be the action value for some state t, with the reward rt for state t, the
value vt of state t and the discount factor γ:

Qt
net = rt + γ · vt

Let with A(t) being the set of all actions af and follow-up states sf from some
state t, let At = {(sf , af ) ∈ A(t)} and At

e = {(sf , af ) ∈ Ae(t)} the set of expected
actions with Ae(t) ⊆ A(t). The set of action values QAt

net for all follow-up states
from some state t is:

QAt

net = {Qsf

net : (sf , af ) ∈ At}

Similarly, for the follow-up states that are reached via the expected actions:

QAt
e

net = {Qsf

net : (sf , af ) ∈ At
e}

We employ the scaling function SCL, defined in Equation (6.1), to normalize the
action values for the follow-up states sf corresponding to a given state t:

QAt
e

net,scaled = {SCL(Qsf

net) : (sf , af ) ∈ At
e}

QAt
e

net,scaled = 1
|QAt

e
net,scaled|

·
∑

(sf ,af )∈At
e

SCL(Qsf

net)
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Combined policy estimation of the DNN (cPpre
net) This is the sum of the net-

work’s policy estimations paf over all expected actions af :

cPpre,At
e

net =
∑

(sf ,af )∈At
e

pt
af

Combined policy estimation of the DNN after masking (cPnet) This is the
similar to cPpre,At

e
net , but the actions an/a ∈ NA(t) that are not available from s have

been removed, i.e. those components were set to 0 and the vector was subsequently
renormalized:

pt
a =

0 if a ∈ NA(t)
pt

a∑
b/∈NA(t) pt

b

if a /∈ NA(t)

Mean of the scaled action values (Qmcts,scaled) This is the arithmetic mean
of the scaled action values over all expected actions: QAt

e
mcts,scaled

The scaling is done similar to Qnet,scaled, but over Qt
mcts = ∑

(sf ,af )∈At
e

Waf

n
af , with

the total action value Waf and the number of visits naf in t.

Combined MCTS policy (cPmcts) This is the sum of the MCTS based policy,
over all expected actions af , with total visit count nt in state t:

cPAt
e

mcts =
∑

(sf ,af )∈At
e

naf

max(1, nt)

Mean of the scaled UCT values (UCTscaled) This is the arithmetic mean of
the scaled UCT scores, without Dirichlet noise, over all expected actions: UCTAt

e
scaled

The scaling is done similar to Qnet,scaled, but over

UCTt =
∑

(sf ,af )∈At
e

[
Waf

max(1, nt) + C(t) · pt
af

·
√

nt

n
af
av + 1

]
,

with n
af
av being the number of times af was available during tree search and C(t)

being the exploration factor for t.
The above equations were used for SO-ISMCTS-based agents. For the MCTS-based
agents, we used the vanilla AZ tree policy instead.

Cross-entropy This is the cross-entropy between the agent’s estimated policy
P At

mcts and the ideal distribution P At

I over the available expected actions (sf , af ) ∈
At

e. The ideal policy is

P At

I =
(
p

af

I

)
(sf ,af )∈At

=

0 if af /∈ At
e

1
|At

e| if af ∈ At
e
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and the estimated policy is P At

mcts =
(
p

af

mcts

)
(sf ,af )∈At

(and similarly for the network

policies P At

net and P pre,At

net ). The cross-entropy based on the MCTS policy CEAt

mcts is
then calculated with

CEAt

mcts = H(P At

I , P At

mcts) = −
∑

(sf ,af )∈At

p
af

I · log(paf

mcts)

and similarly for the network policies CEAt

net and CEpre,At

net . The cross-entropy based
on a uniformly random policy is denoted by CEAt

rand. In our implementation, we
group actions into expected and non-expected actions, sum up their probabilities
and calculate the cross-entropy based on those. The justification is, as discusses
in Section 6.4, that we want to avoid penalisation of agent estimations that only
emphasises one among multiple equally valid expected actions.

Since the Q-values can get larger than 1, the Q-value metrics are scaled using the tanh-
based function SCL(x) described by Equation (6.1) and visualised in Figure 6.1. It is
close to linear for x ∈ (−1, 1) and saturates towards −4 and 4.

SCL(x) = 4 · tanh
(

x · tanh−1
(1

4

))
(6.1)

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

x (metric value)

SCL(x) (scaled metric value)

Figure 6.1: The function used to scale the metric values to the interval of [−4, 4]. For
values from the interval (−1, 1) it is close to linear.

We define the categories “Successful” , “Acceptable” and “Unsuccessful” . For each
test set, we assign each of the metric intervals one of these categories. We repeat the
tests several times and record the number of times a metric falls into each category. Then
we calculate the average percentage, which reflects how close an agent is to making the
expected judgement. The chosen interval to category assignments for the value metrics
are listed in Table 6.2 and the ones for the policy metrics in Table 6.3.
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Value metrics

win-pattern, win-pattern-ms & prefer-win-pattern Since this situa-
tion is trivial to judge, we interpret only the uppermost value range of (0.8, 4] as a success.
But we deem probabilities of greater than 0.6 for the single expected action as acceptable.

win-points-ms & win-max-field-ms While the value range interpreted as a
success is similar to the pattern-win/loss, we even consider a value of greater than 0.45
as acceptable.

prevent-loss-pattern & prevent-loss-pattern-ms In these situations,
the player is on the brink of being defeated by a pattern but can still prevent it for at
least a few turns. For that reason, we consider a value range of [−0.3, 0] and [−0.45, 0.1]
(multi-stone) as a success. In the non-multi-stone scenario, we deem the surrounding
intervals of [−0.8, −0.3) and (0, 0.3] as still acceptable. In the multi-stone scenario, we
accept values from the intervals [−0.8, −0.45) and (0.1, 0.3].

double-pattern & triangle-pattern Building these situations doesn’t im-
mediately lead to a reward, but it is a good mid- and long-term strategy. For that
reason, we interpret a larger interval in the positive value range as a success. That
is, for double-pattern, (0, 0.6] and we accept values from [−0.1, 0] and (0.6, 1]. For
triangle-pattern, (0.1, 0.6] is a success and acceptable are values from [−0.1, 0.1]
and (0.6, 1.1].

Policy metrics

win-pattern, win-points-ms, prefer-win-pattern,
prevent-loss-pattern & prevent-loss-pattern-ms Since these situations
are trivial to judge and require early intervention, we interpret only the value range of
(0.8, 1] as a success.

win-points-ms & win-max-field-ms For these situations, the success-range
is similar to the one for win-pattern, but the acceptable-range is slightly wider.

double-pattern & triangle-pattern Here we interpret an even larger value
range of (.45, 1] as a success.

Cross-entropy The cross-entropy is not rated on its own but compared among the
agents and test sets. Generally, for agent policies closer to the expected policies, the
cross-entropy is lower (ideally 0).
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Test set Interval ratings
UCTscaled, Qmcts,scaled, Qnet,scaled, Vnet

win-pattern [-4.0, 0.6] (0.6, 0.8] (0.8, 4.0]
prevent-loss-pattern [-4.0, -0.8) [-0.8, -0.3) [-0.3, 0.0] (0.0, 0.3] (0.3, 4.0]
prefer-win-pattern [-4.0, 0.6] (0.6, 0.8] (0.8, 4.0]
double-pattern [-4.0, -0.1) [-0.1, 0.0] (0.0, 0.6] (0.6, 1.0] (1.0, 4.0]
triangle-pattern [-4.0, -0.1) [-0.1, 0.1] (0.1, 0.6] (0.6, 1.1] (1.1, 4.0]
win-pattern-ms [-4.0, 0.6] (0.6, 0.8] (0.8, 4.0]
prevent-loss-
pattern-ms

[-4.0, -0.8) [-0.8, -0.45) [-0.45, 0.1] (0.1, 0.3] (0.3, 4.0]

win-points-ms [-4.0, 0.45] (0.45, 0.8] (0.8, 4.0]
win-max-field-ms [-4.0, 0.45] (0.45, 0.8] (0.8, 4.0]

Table 6.2: Mapping of value ranges to rating categories for state-value-related metrics.

Test set Interval rating
cPmcts, cPnet, cPpre

net

win-pattern [0.0, 0.6] (0.6, 0.8] (0.8, 1.0]
prevent-loss-pattern [0.0, 0.6] (0.6, 0.8] (0.8, 1.0]
prefer-win-pattern [0.0, 0.6] (0.6, 0.8] (0.8, 1.0]
double-pattern [0.0, 0.3] (0.3, 0.45] (0.45, 1.0]
triangle-pattern [0.0, 0.2] (0.2, 0.45] (0.45, 1.0]
win-pattern-ms [0.0, 0.6] (0.6, 0.8] (0.8, 1.0]
prevent-loss-pattern-ms [0.0, 0.6] (0.6, 0.8] (0.8, 1.0]
win-points-ms [0.0, 0.45] (0.45, 0.8] (0.8, 1.0]
win-max-field-ms [0.0, 0.45] (0.45, 0.8] (0.8, 1.0]

Table 6.3: Mapping of value ranges to rating categories for policy-related metrics.

6.4 Implementation Details

Exploration Factor C(s) The exploration factor, described by Equation (4.3), is
implemented as a constant in AlphaZeroJust4Fun.jl, similar to AlphaZero.jl.

Position Averaging and Sample Weights AlphaZero.jl provides an option for
position averaging (see Chapter 4, Paragraph 5), i.e. samples in memory that correspond
to the same tree node are averaged. The resulting merged sample is weighted according
to the sample-weight policy ω(ni). We always use logarithmic sample weighting: ω(ni) =
log2(ni) + 1, with ni being the number of samples that correspond to the same tree node.

Network Policy The policy head output is masked, i.e. the probabilities for all
unavailable actions are set to 0, and renormalised before e.g. sampling an action. To
prevent the divisor from being 0, when all remaining network outputs are 0, the smallest
possible value of the 32-bit float type, that is being used, is added to the divisor.
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Information Set Nodes The search tree in AlphaZero.jl’s MCTS is implemented as a
map structure. In AlphaZeroJust4Fun.jl we implement the information set tree nodes by
using only the information set key-state, a subset of the full game-state, when performing
node look-ups. This effectively combines all full game-states of an information set into
a single node when updating node or arc statistics. The information set key-state is
configurable, but not considered a hyperparameter as it is a fundamental element of the
algorithm. The CheatingMctsRollouts agent is implemented as a vanilla MCTS
agent that operates with the full state as information set key-state.

Redraw The mandatory redraw, triggered when a player has no valid card combinations,
is implemented as a game mechanic. That is, no network evaluations nor MCTS-iterations
are performed, only the player’s hand is replaced.

Card Selection In case there are several subsets of a player’s hand, that target the
selected field, one is selected uniformly at random.

Training on Perfect Information When training, during SP, a perfect information
version of the game, i.e. a perfect simulator, can be used. In this case, the bias term of
AZ, which is described by Equation (3.2), is being used. When playing with the imperfect
information version of the game, the AlphaJust4Fun bias term, which is described by
Equation (4.3), is used.

Hyperparameter Schedules AlphaZero.jl only implements a parameter schedule for
the replay buffer size. Any other hyperparameter scheduling is performed manually,
by interrupting the training process, changing the parameters and then resuming the
training process.

Self-play and Network Updates In the version of AlphaZero.jl we used, SP and
network updates are not performed in parallel. Instead, each iteration or epoch consists
of the three steps, self-play (SP), mini-batch updates, and training benchmark. We only
used the learning-rate parameter η of the Adam optimiser, for the other parameters we
always used the defaults β1 = 0.9, β2 = 0.999 and ϵ = 10−8.

Play Against Humans on Yucata When playing against humans, we use a local
game with an interactive agent. On each turn, we manually apply the game state from
the Yucata game to our corresponding local game, i.e. set the visible state and randomise
the hidden state. Specifically, the opponent’s hand is set to contain the cards of its most
recent action. After setting the game state in the local game instance, the opponent’s
action in the Yucata (Yucata) game is applied manually as the opponent in the local
game. Then the local agent’s response is computed and applied locally and also in the
game on Yucata.
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6. Methods and Implementation

Random Seed The random seed is set at the beginning of scripts that are performing
training, benchmarking, or testing, to some value sinit. Additionally, before every training
iteration i, the random seed is set to sinit + i. This makes the self-play and network
updates reproducible, independent of the training benchmarks that are performed at the
end of each training iteration, and allows for the resumption of the training from any
iteration on. One drawback of our benchmark implementation is that, when multiple
benchmarks are scheduled in one run, the resumption of the run starts with the initial
random seed. Furthermore, each individual benchmark of a run is not based on the same
randomly initialised games. To counter the impact, we set the number of games in each
benchmark to at least 100.

Test Sets The multi-stone test sets (indicated by the suffix “ms” in the test set name)
are in a multi-stone scenario, which means that the fields of e.g. the pattern have multiple
stones of each player, but there is still only one winning action in the win-pattern-ms
test set.

In our implementation of the test cases in the prevent-loss-pattern and prevent-
loss-pattern-ms test sets, we only ensure that the acting player can prevent a
potential loss, but it is not ensured that the opponent has the cards to actually win.

For the test cases of the prevent-loss-pattern, prevent-loss-pattern-ms,
double-pattern, triangle-pattern, and win-points-ms test sets, there are
multiple expected actions. Since in some game states, the agent’s hand might only allow
a subset of the expected actions to be played, we use the sum of probabilities of available
expected action and non-expected actions for the value- and policy-metrics. For the
calculation of the cross-entropy, we used a probability of 1 for the expected actions
and 0 for the other actions as actual values. For the agent’s prediction, we group the
probabilities, into expected and non-expected, and sum them up. Then we calculate the
cross-entropy for these grouped probabilities. Due to the implementation of the cross-
entropy formula, numerical errors can occur. To avoid undefined values for 0 probabilities,
an ϵ is added to the arguments of the logarithm, where ϵ = eps(Float64).

Since each test set is run multiple times, we aggregate the outcomes. For the value-
and policy-metrics, we determine the number of test cases with metric values that fall
within the specified range for each rating category. Following this, we compute the overall
percentage for every rating category. For the cross-entropy, we compare the arithmetic
mean of the arithmetic mean values (mean, median, and standard deviation) of the test
cases within a test set over all runs of that test set.

Number of MCTS-iterations per Determinization Our implementation provides
the number of MCTS-iterations (niter) per turn and the number of determinizations (ndet)
per turn as hyperparameters. These values can be set independently of each other. The
number of MCTS-iterations per determinization nsim,det is calculated by dividing the
number of MCTS-iterations by the number of determinizations. We use the round-to-
nearest method with round-to-even as a tie-break rule for the division, i.e. if the fraction
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6.4. Implementation Details

is exactly 0.5, the value is rounded to the nearest even integer. nsim,det is then used for
every determinization. It should be noted that due to the rounding, this can lead to a
different number of overall MCTS-iterations than defined by niter (at most ndet

2 ).

CardFieldNet Architecture Details As we will mention later in Subsection 7.6.2,
we needed to fine-tune some aspects of the architecture to make it work. After continuous
issues with exploding and vanishing gradients, we made the following adjustments:

• The convolutional layers in the board trunk were all initialised with values from
the Glorot-uniform distribution [20].

• After each convolutional layer in the board trunk we added a dropout layer [24].

• As rectifier nonlinearities after convolutional layers in the board trunk, we used the
Randomised Leaky Rectified Linear Unit [52].

• In the cards trunk, after the last dense layer, but before batch normalisation, we
added a dropout layer.

• All dense layers were initialised with values from the Glorot-normal distribution [20].

• As rectifier nonlinearities after all dense layers, we used the Scaled Exponential
Linear Unit [29].

• In the common trunk, the value head and the policy head, after the last dense layer
and after batch normalisation and activation, we added a dropout layer.
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CHAPTER 7
Experimental Findings

In this chapter, we present the results on benchmarks and test sets and other experimental
findings.

7.1 Baseline Agent Performance
We chose several ways of determining an agent’s strength. The first one is to compare the
performance against the RandomPlayer. The second way is to compare the performance
against a MCTS agent that does its random playouts with full knowledge of the hidden
information (CheatingMctsRollouts). The CheatingMctsRollouts baseline al-
lows us to benchmark not only AlphaJust4Fun but also the isolated performance of an
IsMctsRollouts agent. This in turn allows tuning of the hyperparameter configuration
of the SO-ISMCTS part of AlphaJust4Fun, i.e. the information set key-state and the
number of determinizations, for follow-up tests and benchmarks.

7.1.1 RandomPlayer baseline

We first analyse the random baseline in isolation by letting two RandomPlayer agents
compete against each other. In addition to the findings briefly mentioned in Subsec-
tion 3.1.1, we find that there was no advantage for the starting player in this scenario.
However, as we will describe later, there is an advantage for a non-random starting player.
We also observe, that it is not unlikely, even with the restriction imposed by the cards,
for randomly played games to end with patterns and thus, games ending with patterns
are not necessarily an indicator of intelligence or successful strategies. Conversely, we
hypothesise that preventing the opponent from achieving a pattern is an important element
of successful strategies.

The results are summarised in Table 7.1. The randomness seeds we used for this
benchmark are listed in Table C.3c.
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When Started (%) When Not Started (%)

Won

Pattern 5,938 (23.76) 5,387 (21.54)
Points 6,532 (26.14) 6,801 (27.19)
Max-Field 54 (0.22) 48 (0.19)
Total 12,524 (50.12 won) 12,236 (48.92)

Lost

Pattern 5,427 (21.72) 6,032 (24.12)
Points 6,979 (27.93) 6,686 (26.73)
Max-Field 59 (0.24) 57 (0.23)
Total 12,465 (49.88 lost) 12,775 (51.08)

Total 24,989 (49.98 started) 25,011 (50.02)

Table 7.1: The results of Player 1 in the RandomPlayer vs. RandomPlayer benchmark
are based on 50,000 games. It shows that winning through pattern is, despite the constraint
imposed by the cards, fairly easy if the opponent does not actively try to hinder it.

We also ran the RandomPlayer agent, which is always using a uniform distribution as a
policy over the available actions, on our test sets. When running our test sets 120 times
from randomly initialised initial game states, we observe an average mean cross-entropy
values of around 2.5 with average standard deviations of around 0.93 on most test sets.
For win-points-ms it performs noticeably better, with 0.93 ± 0.75. Due to the higher
share of expected (“correct”) actions in some states, the probability of guessing correctly
can become fairly high. Thus, correct behaviour in those scenarios becomes less indicative
of intelligence. This can be observed especially in the win-points-ms test set. It is
often the case that several game-ending actions are available that let a player have more
overall points than the opponent. The average median cross-entropy values are around
2.3. For prevent-loss-pattern, the average median is slightly lower with 1.91, and
for win-points-ms, it is significantly lower with 0.75. The average mean values and
the average standard deviations (formatted as µ ± σ) are summarised in Table 7.2, the
average median values are visualised in Figure 7.9 and the randomness seeds are listed in
Table C.1.

Test set
RandomPlayer

CErand

win-pattern 2.81 ± 0.98
prevent-loss-pattern 2.09 ± 0.84
prefer-win-pattern 2.76 ± 0.98
double-pattern 2.74 ± 0.96
triangle-pattern 2.50 ± 0.91
win-pattern-ms 2.73 ± 0.98
prevent-loss-pattern-ms 2.49 ± 0.94
win-points-ms 0.93 ± 0.75
win-max-field-ms 2.48 ± 0.89

Table 7.2: Cross-entropy metrics for the RandomPlayer, averaged (µ ± σ) over 120
repetitions per test set.
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7.1.2 CheatingMctsRollouts baseline

The cheating MCTS agent is our main baseline for benchmarking our AlphaJust4Fun
agents. The main parameter for the CheatingMctsRollouts agent is the number of
playouts per turn. To estimate its skill-level, we recorded the number of playouts at which
its win-rate matched one of a RandomPlayer. We did the same also against a human
player. The author, an experienced1,2 player, was used as a human baseline. Note that
the search tree has been reset after each game, which might weaken the cheating player
in comparison to one that maintains its search tree over many games. For future work, it
would be interesting to compare the performance over a larger number of competitive
games without resetting the search tree after every single game. However, the “fresh”
CheatingMctsRollouts agent is a fair comparison during training.

Benchmark performance Our benchmark shows that a CheatingMctsRollouts
agent with only 2 playouts can beat a RandomPlayer agent convincingly. With 50
MCTS-iterations, a CheatingMctsRollouts agent wins approximately 80% of
the games against a RandomPlayer agent.

To achieve a win-rate of 40% in 50 games against our baseline human player, a
CheatingMctsRollouts agent needs to perform 8,000 playouts per turn.

The full configurations used for the benchmark are displayed in Tables C.3a and C.3b.

Test performance The CheatingMctsRollouts agent, which we ran against the
test sets, performed 900 MCTS-iterations. The full configuration used for the tests is
displayed in Table C.2a.

It is typically capable of recognising actions that result in a win, which are represented by
the win-pattern, prefer-win-pattern, win-pattern-ms, and win-points-
ms test sets. This is indicated by average median values of close to zero as well as the
low average mean values compared to the RandomPlayer. For the win-max-field-
ms test set, which consists of rather trivial game situations, the typical cross-entropy
is also close to zero. However, the high average mean value of 3.26 and the very high
average standard deviation of 7.76 indicate that there are still instances where the
agent’s estimation significantly diverged from the optimal policy. The bad performance
in situations, in which an action would prevent a potential loss on the following turn by
the opponent (the prevent-loss-pattern and the prevent-loss-pattern-ms
test sets), is most likely because the opponent has a low probability of having a winning
hand (as we described in Section 6.4). A cheating player is aware of the opponent’s hand
during playouts, and might thus choose a different, potentially more effective, policy than
the one we would expect from a player unaware of the opponent’s hand in these situations.
The low performance on the double- and triangle-pattern test sets (double-pattern

1Player profile: https://www.yucata.de/en/User/gwario
2µ and σ are displayed in the ranking table for Just 4 Fun: https://www.yucata.de/en/Ranking/G

ame/Just4Fun; TrueSkill=1,029, µ = 1133.122 and σ = 34.66538 after 273 games at the time of writing
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and triangle-pattern) is not surprising, as it requires long-term planning, for which
900 playouts are likely not enough. Additionally, the knowledge of the full game state also
allows for more exploitation and earlier wins, which is especially the case for the cheating
MCTS agent. The average standard deviations of the CheatingMctsRollouts agent’s
cross-entropy are relatively high on all test sets. Table 7.3 summarieses the average mean
values and the average standard deviations of the cross-entropy, with the Cheating-
MctsRollouts agent’s values highlighted in gray. The average medians are visualized
in Figure 7.9.

Test set
CheatingMctsRollouts RandomPlayer

CEmcts CErand

win-pattern 0.65 ± 4.16 2.81 ± 0.98
prevent-loss-pattern 3.21 ± 2.84 2.09 ± 0.84
prefer-win-pattern 0.45 ± 3.40 2.76 ± 0.98
double-pattern 5.92 ± 2.19 2.74 ± 0.96
triangle-pattern 5.44 ± 2.21 2.50 ± 0.91
win-pattern-ms 0.69 ± 4.54 2.73 ± 0.98
prevent-loss-pattern-ms 4.06 ± 2.98 2.49 ± 0.94
win-points-ms 0.70 ± 2.91 0.93 ± 0.75
win-max-field-ms 3.26 ± 7.76 2.48 ± 0.89

Table 7.3: Comparison of the cross-entropy for the CheatingMctsRollouts player
(MCTS policy; 900 MCTS-iterations in each turn; 60 repetitions) and the Random-
Player (120 repetitions), averaged (µ ± σ) over multiple repetitions of each test set.

The suboptimal performance in situations represented by the prevent-loss-pattern
and prevent-loss-pattern-ms test sets is also reflected in our rating of the policy-
based metric cPmcts on the expected actions. The UCTscaled values are mostly in the
acceptable range, as Figure 7.1a shows. The weakness in longer-term strategies (double-
pattern and triangle-pattern) is also expressed clearly by the bad ratings of both
metrics. Figure 7.1 shows the rating for the value- and policy-metrics.
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7.1. Baseline Agent Performance

(a) UCTscaled

(b) cPmcts

Figure 7.1: Rating of UCT-quality (a) and policy-quality (b) of CheatingMcts-
Rollouts on the test sets, averaged over 60 repetitions of each test set. The agent
performed 900 playouts.
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7.2 Information Set Key-State

The high branching factor introduced by the cards has a big impact on the computational
costs of exploration depth. The information set key-state introduced in Section 6.4 allows
us to change the amount of game states that are combined in the information set nodes,
which impacts the branching factor. This in turn impacts the exploration depth for a
given number of SO-ISMCTS iterations per turn. We evaluated different information
set key-states in a benchmark, using the vanilla SO-ISMCTS agent (IsMctsRollouts)
against the cheating MCTS agent (CheatingMctsRollouts).

For the information set key-states, we consider combinations of the player-cards-state
(HC - the cards in the player’s hand), the public cards-state (UC - used cards) and the
board-state (BS).

We compare the performance of the IsMctsRollouts with the following information
set key-states:

BS, HC, and UC This effectively combines the statistics of all game states,
collected during the MCTS-iterations, that share the same board-state, player-
cards-state, and public cards-state. This is the largest information set key-states.
It combines the least number of (full) game states.

BS and HC This combines the statistics of all game states that share the same
player-cards-state and board-state. This information set key-states is much smaller
than BS, HC, and UC as it combines all permutations of the pile of used cards,
the stack of cards and the cards in the opponent’s hand.

BS This combines the statistics of all games states that share the same board-state.
It is the smallest information set key-states and combines all permutations of the
full cards-state.

In a first benchmark on 100 randomly initialised games, we used a moderate number
of playouts per turn (900), and a rather large number of determinizations (120). This
results, after rounding, in 8 playouts per determinization and 960 overall playouts for
the IsMctsRollouts agent. The CheatingMctsRollouts baseline still performs
exactly 900 playouts.

The result indicates that the IsMctsRollouts agent with the smallest information set
key-state performs best against the CheatingMctsRollouts baseline. With a win
rate of 52%, its performance is similar to the baseline’s performance. Most wins were due
to win by pattern. The fact that IsMctsRollouts performed even slightly better than
CheatingMctsRollouts also might indicate that the number of played games is not
sufficient for comparison, or that the CheatingMctsRollouts baseline does not per-
form optimally with only 900 playouts per turn, or a suboptimal exploration/exploitation
balance. The second-best performance was observed for the largest information set
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key-state, BS, HC, and UC. Figure 7.2a shows the benchmark performance for different
information set key-states.

For a second benchmark, we increased the number of playouts per turn (8,000) and the
number of determinizations per turn (700) significantly. This results in 11.4 playouts
per determinization and should lead to a deeper search per determinization for the
IsMctsRollouts agent.

The results of this benchmark show overall a much lower win rate for the IsMcts-
Rollouts. The IsMctsRollouts agent with BS, HC, and UC and the one with BS
performed best, but with only 29% and 23% win rate, respectively. The number of win
by pattern outcomes was similar for both, the agent with BS and the agent with BS, HC,
and UC. The agent with BS scored more win by points. Comparing the performance
of the agent with BS, HC, and UC for the higher and the lower number of playouts, it
appears that its performance decreased less, relative to the BS agent. Figure 7.2b shows
the results of this benchmark.

The results suggest that the smaller information set key-state works better for IsMcts-
Rollouts agents with a lower number of MCTS-iterations, at least without the support
of a DNN. The reason might be that the search depth with 900 MCTS-iterations was not
sufficient for the largest information set key-state. The results also suggest that agent
performance scales better with w.r.t. the number of MCTS-iterations for BS, HC, and
UC. For a more meaningful comparison of MCTS based agents, more playouts per turn
might be necessary. This would also be the case in competitive play against humans.

The complete set of hyperparameters for this experiment is listed in Table C.6.
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(a) Win rate of IsMctsRollouts (120 determinizations) against Cheating-
MctsRollouts with 900 of playouts based on 100 games.

(b) Win rate of IsMctsRollouts (700 determinizations) against Cheating-
MctsRollouts with 8,000 of playouts based on 100 games.

Figure 7.2: Win rate of SO-ISMCTS against the baseline with different information set
key-states.
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7.3 Determinization/MCTS-Iteration Balance
To investigate the relationship between the number of playouts per turn niter and the
number of determinizations per turn ndet, we conduct experiments similar to those
presented by Cowling et al. [12]. We benchmark the IsMctsRollouts agent against
the CheatingMctsRollouts baseline on 100 games for each pair of ndet = 900 and niter.
For the first benchmark, we used the minimal information set key-state BS (Figure 7.3) and
for a second benchmark, the biggest information set key-state BS, HC, and UC (Figure 7.4).

Figure 7.3: Win rate of the IsMctsRollouts agent (900 playouts, BS) against the
CheatingMctsRollouts agent (900 playouts) in a benchmark of 100 games. The
trend lines are polynomial with a degree of 3.

The win rate of the IsMctsRollouts agent with BS only against the baseline (Fig-
ure 7.3) mostly varies between 40% and 50%, with the best performance of 52% occurring
between 3 and 5 determinizations per turn.

For the IsMctsRollouts agent with BS, HC, and UC (Figure 7.4), the win rate de-
creases noticeably with an increasing number of determinizations. This is most likely due
to the decreased exploration depth as the number of playouts on each determinization
decreases. For example, the agent with only one determinization performs 900 play-
outs on a single determinization in each turn. However, the determinization is still
different in each turn, as the known game state changes with each turn. The agent
with 450 determinizations performs only two playouts per determinization in each turn.
This results in an exploration depth of at most 2 turns. It should be noted that the
CheatingMctsRollouts baseline with 900 playouts per turn does lose in 33% and 41%
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Figure 7.4: Win rate of the IsMctsRollouts agent (900 playouts, BS, HC, and UC)
against the CheatingMctsRollouts agent (900 playouts) in a benchmark of 100 games.
The trend lines are polynomial with a degree of 3.

of the games against the SO-ISMCTS with at most 2 turns look-ahead. We hypothesise
that this can be attributed to the combined effects of the following factors:

• Due to the high number of determinizations, the true state (and thus the opponent’s
follow-up turn) is more likely to be explored.

• Due to the branching factor, even 900 playouts of the CheatingMctsRollouts
baseline do not lead to a significantly higher exploration depth.

• The high impact of randomness in J4F still prevents a clearly superior but not
perfect player from winning all or almost all the games, as indicated by the
benchmark of the CheatingMctsRollouts agent against the RandomPlayer
in Subsection 7.1.2.

The best performance for the IsMctsRollouts agent with BS, HC, and UC, with a
win rate of 48%, was observed with only one determinization per turn.
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Fast self-play games for training For training, to generate enough samples without
taking a long time in each training iteration, we reduced the number of MCTS-iterations
to numbers between 75 and 150. To find good values for the number of determinizations,
we repeated the benchmarks described above with 150 playouts on 200 games. Figure 7.5
shows the performance for different determinizations using the minimal information set
key-state BS and Figure 7.6 the performance for the largest information set key-state BS,
HC, and UC.

Figure 7.5: Win rate of the IsMctsRollouts agent (150 playouts, BS) against the
CheatingMctsRollouts agent (150 playouts) in a benchmark of 200 games. The
trend lines are polynomial with a degree of 3.

In the benchmark of the IsMctsRollouts agent with BS and 150 playouts per turn
against a CheatingMctsRollouts with equal number of playouts, the performance
mostly varies between 45% and 50%. Even though the best performance of 55% was
observed with 6 determinizations, the most consistent range appears to be between 6
and 15 determinizations.

Similarly to the benchmark with 900 playouts, the performance of the IsMctsRollouts
agent with BS, HC, and UC generally decreases with an increasing number of playouts.
The range with the highest, most consistent performance of 47% to 54% also appears
to be in the lower range between 1 and 4 determinizations. There is a slight peak at
8 determinizations which might be an outlier.

In summary, the best performance was observed with a very low number of determiniza-
tions, and conversely, a high number of playouts per determinization.

The full experiment configuration is displayed in Table C.7.
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Figure 7.6: Win rate of the IsMctsRollouts agent (150 playouts, BS, HC, and UC)
against the CheatingMctsRollouts agent (150 playouts) in a benchmark of 200 games.
The trend lines are polynomial with a degree of 3.

For future work, it would be interesting to investigate the impact of guidance of the DNN
on the performance for different numbers of determinizations. As the performance varies
considerably throughout the tested range of determinizations, more benchmark games
might be beneficial to determine the optimal range.

7.4 Training on Imperfect Information

The initial assumption was that training on perfect information will produce higher
quality training samples right from the start and thus accelerate the training process. To
verify this hypothesis, we compare the training process of the FieldNet architecture on
perfect information and on imperfect information.

Interestingly, this is not the case. A comparison of the training progress of the FieldNet
(FNet) architecture over 70 iterations shows that the training benchmark performance
when self-play is performed on perfect information increases noticeably slower against the
baselines than when also self-play is performed on imperfect information. The training
benchmarks, of the NetworkOnly against the RandomPlayer and the Cheating-
MctsRollouts, are depicted in Figure 7.7a and Figure 7.7b. In each iteration, a total
of 600 games was played against the RandomPlayer, while CheatingMctsRollouts
with 50 playouts engaged in 60 games.

While in the perfect information case, the network reaches a win rate of about 40% against
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CheatingMctsRollouts between iterations 30 and 40, in the imperfect information
case, the network’s win rate is already close to 60%.

The significant impact on the branching factor introduced by the cards, i.e. the ran-
domness, might be beneficial to the learning process of the network. We suspect
this is especially the case for FNet architecture, as it has no direct access to the
known public cards-state.

Future work could investigate the peak performance achieved after any number of training
iterations, and how quickly this performance is reached in both cases.

The configuration for both agents are in Tables C.8 and C.9.
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(a) Self-play with perfect information.
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(b) Self-play with imperfect information.

Figure 7.7: Win rate of the NetworkOnly agent against CheatingMctsRollouts
agent, with 50 playouts (based on 60 games) and the RandomPlayer (based on
600 games), after each network update. The randomly initialised network was used in
training iteration 0.
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7.5 Custom Convolutional Filter Kernel Initialisation

We evaluated the effect of using custom, non-random values for a subset of the
convolutional kernels of the initial convolution (CKI) of the networks’ board trunk.
Our hypothesis is that the training process can be shortened by initialising them with
basic patterns.

In our experiments, we use reasonably good hyperparameters for the agent, s.t. its
performance against the random baseline (on 800 random games) as well as a simple
cheating Monte Carlo Tree Search baseline (on 80 random games) still increases with
training. The cheating Monte Carlo Tree Search was configured to do 50 random playouts,
which equates to an approximately 90% win rate against the random baseline. Keeping
the number of MCTS-iterations per turn fairly low allowed us to get the results in a
reasonable amount of time. They were used for two training sessions, one session with
randomly initialised and one with CKI.

We chose kernels for detection of horizontal, vertical and diagonal lines. Each kernel k is
quadratic with dimension 3×3 and the values sums up to zero, i.e. ∑3

i=1
∑3

j=1 CFk,ij = 0.
CF1 for vertical patterns, CF2 for horizontal patterns and CF3 and CF4 for diagonal
patterns. They are visualised in Equation (7.1):

CF1 =

−1 2 −1
−1 2 −1
−1 2 −1

 , CF2 =

−1 −1 −1
2 2 2

−1 −1 −1

 ,

CF3 =

−1 −1 2
−1 2 −1
2 −1 −1

 , CF4 =

 2 −1 −1
−1 2 −1
−1 −1 2


(7.1)

In addition, we trained the FieldNet architecture one time with a minimal set of input
features and one time with all the input features we described in Section 5.3. For the
training with fewer network inputs, we used the player stones plane Istones (one for the
player and one for the opponent), the empty fields plane Iempty, the field values plane
F, the field availability plane Ifa, the field probability plane Ifp and the field reachability
plane Ifr. For the training with more network input feature planes, we used the Istones
(for both players), Iempty, Iminority, Imajority, Isecured (for both players), F, Ifa, Ifp
and Ifr.

The results indicate that learning improves significantly in some configurations, i.e. the
agent performance increases more quickly when CKI was used.

The win rate against the RandomPlayer after the 80th training iteration increased by
4.75% when trained with CKI. Even though the network reached only a win rate of 59.75%
(with CKI) against the RandomPlayer, the performance curve was not saturated after
80 training iterations. The big difference is that the win rate of about 60% was reached
after only 40 iterations with CKI, while without CKI, the win rate was only at 40%.
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In the benchmark against CheatingMctsRollouts, the win rate even increased by
16.25% when trained with CKI, but only reached 43.75%. The significantly faster
performance increase is also reflected in the win rate curve. While the network without
CKI reached a win rate of 20% against CheatingMctsRollouts after 40 iterations,
the network trained with CKI reached the same win rate after only 18 iterations.

When all feature planes were used as network inputs, both networks reached a significantly
higher win rate. CKI did not change the overall win rate of 89% against the Random-
Player, but resulted in a slight increase in wins by points. Against CheatingMcts-
Rollouts, the win-rate even decreased by 7.5% from 75% to 67.5%. When all feature
planes were used, with CKI, the network win rate of 40% against CheatingMcts-
Rollouts was reached after 20 iterations while without CKI it took 30 training iterations.
The benchmark performance against the baselines is summarised in Table 7.4 (Random-
Player) and Table 7.5 (CheatingMctsRollouts).

Brief experiments showed that freezing the kernel values, i.e. excluding them from
updates, with our custom initialisation led to slightly lower performance.

The complete agent configuration is displayed in Table C.5.

NetworkOnly vs. RandomPlayer (min)

CKI by pattern by points by max field total win rate
No 395 45 0 55.00%
Yes 434 (+9.87%) 43 (-4.44%) 1 59.75% (+4.75%)

(a) In 800 games, using minimal input features, the performance in the last iteration against the
RandomPlayer did increase when CKI was used.

NetworkOnly vs. RandomPlayer (full)

CKI by pattern by points by max field total win rate
No 687 28 0 89.38%
Yes 671 (-2.33%) 41 (+46.43%) 1 89.13% (-0.25%)

(b) In 800 games, using all input features, the overall performance against RandomPlayer did
not change when CKI was used. The number of wins by points increased significantly.

Table 7.4: Benchmark performance of NetworkOnly against the RandomPlayer, with
and without CKI, once with minimal network input feature planes (a) and once with all
feature planes (b).
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NetworkOnly vs. CheatingMctsRollouts (min)

CKI by pattern by points by max field total win rate
No 21 1 0 27.50%
Yes 34 (+61.90%) 1 0 43.75% (+16.25%)

(a) In 80 games, using minimal input features, the performance in the last iteration against the
CheatingMctsRollouts did increase when CKI was used.

NetworkOnly vs. CheatingMctsRollouts (full)

CKI by pattern by points by max field total win rate
No 59 1 0 75.00%
Yes 53 (-10.17%) 1 0 67.50% (-7.50%)

(b) In 80 games, using all input features, the performance against CheatingMctsRollouts
even decreased when CKI was used.

Table 7.5: Benchmark performance of NetworkOnly against the CheatingMcts-
Rollouts, with and without CKI, once with minimal network input feature planes (a)
and once with all feature planes (b).

7.6 Agent Performance

In this section, we present the results of the AlphaJust4Fun agent’s performance evalua-
tion. First, we briefly investigate the test performance of the IsMctsRollouts agent on
the test sets. We then analyse the AlphaJust4Fun agent’s test performance, supporting
the assumption that the DNN indeed improves the tree search. Next, we present a full
benchmark of all agents, followed by a performance comparison against human players
on Yucata.

7.6.1 Test performance

IsMctsRollouts Agent Similar to the configuration of the
CheatingMctsRollouts agent (Subsection 7.1.2, Paragraph: Test performance), we
also used 900 playouts per turn. Those were evenly distributed over 4 determinizations.
The agent used BS, HC, and UC as information set key-state. The entire configurations
of both agents are listed in Tables C.2a and C.2b.

The IsMctsRollouts player’s average median cross-entropy values are generally very
similar to the CheatingMctsRollouts player’s performance. They are close to zero
on the win-pattern, prefer-win-pattern, win-pattern-ms, win-points-ms,
and win-max-field-ms test sets. On the double-pattern, triangle-pattern,
and prevent-loss-pattern-ms test sets, the average median values are similarly
bad or slightly worse. The only exception is the prevent-loss-pattern, where
the CheatingMctsRollouts player achieves a notably lower average median cross-
entropy of 3.24 compared to the IsMctsRollouts agent with 5.27. The IsMcts-
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Rollouts agent’s performance on the prevent-loss-pattern-ms test set, which
has more diverse action sequences leading to the prevent-loss situations, is closer to
the CheatingMctsRollouts agent’s performance. The similarity suggests that the
IsMctsRollouts agent might have slightly better adaptability to a wide range of
prevent-loss situations. However, the fact that the average median cross-entropy on both
prevent-loss test sets is still worse than the one the RandomPlayer, suggests that the
weakness is likely rooted in the exploration/exploitation/determinization configuration
of the Monte Carlo Tree Search-based agents and the low probability of the opponent
actually having a winning hand (as we described in Section 6.4). The average median
cross-entropy values are compared visually in Figure 7.9.
The average mean cross-entropy for the CheatingMctsRollouts player is better
than that of the IsMctsRollouts agent on most test sets. Only on the win-max-
field-ms test set, the IsMctsRollouts agent performs slightly better than the
CheatingMctsRollouts agent. Table 7.6 shows the average mean values and average
standard deviations of the cross-entropy on each test set for the IsMctsRollouts player
(highlighted in gray) and the baselines. The values that represent either the best
performance or an improvement over either of the baselines are emphasised in bold.
In summary, even with the disadvantage of not knowing the stack of cards and opponent’s
hands, the IsMctsRollouts agent performs surprisingly similarly to the Cheating-
MctsRollouts agent.

Test set

CheatingMcts-
Rollouts

IsMctsRollouts RandomPlayer

CEmcts CEmcts CErand

win-pattern 0.65 ± 4.16 1.57 ± 7.12 2.81 ± 0.98
prevent-loss-pattern 3.21 ± 2.84 3.80 ± 2.85 2.09 ± 0.84
prefer-win-pattern 0.45 ± 3.40 1.02 ± 5.76 2.76 ± 0.98
double-pattern 5.92 ± 2.19 5.96 ± 2.34 2.74 ± 0.96
triangle-pattern 5.44 ± 2.21 5.49 ± 2.17 2.50 ± 0.91
win-pattern-ms 0.69 ± 4.54 1.60 ± 7.16 2.73 ± 0.98
prevent-loss-pattern-ms 4.06 ± 2.98 4.63 ± 2.87 2.49 ± 0.94
win-points-ms 0.70 ± 2.91 1.39 ± 5.29 0.93 ± 0.75
win-max-field-ms 3.26 ± 7.76 2.95 ± 7.05 2.48 ± 0.89

Table 7.6: Comparison of the mean values and standard deviations of the cross-entropy
for the IsMctsRollouts player (MCTS policy; 900 MCTS-iterations on 4 determiniza-
tions in each turn; 60 repetitions), the CheatingMctsRollouts agent (MCTS policy;
900 MCTS-iterations in each turn; 60 repetitions) and the RandomPlayer (120 repeti-
tions), averaged (µ ± σ) over multiple repetitions of each test set.

FieldNet-based AlphaJust4Fun Agent We evaluated an FieldNet-based
AlphaJust4Fun agent that uses, and also has used during training, BS, HC, and UC
as information set key-state. It also performed 900 playouts, but distributed over
3 determinizations. The entire configurations of the cheating MCTS agent and the
FNet-based AZJ4F agent are in Tables C.2a and C.13b.
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Similar to the other MCTS-based agents, it is typically capable of recognising actions
that immediately result in a win, which are represented by the win-pattern, prefer-
win-pattern, win-pattern-ms, win-points-ms, and win-max-field-ms test
sets. This is indicated by average median cross-entropy values of zero. On the prevent-
loss-pattern, prevent-loss-pattern-ms, and double-pattern test sets, it’s
MCTS-based policies outperform the baselines with average median cross-entropy values
of 0.91, 1.53, and 0.36, respectively. On the triangle-pattern test set, the MCTS-
based policies achieve a significantly better average median cross-entropy than the two
MCTS-only agents, but it is still slightly worse than the random baseline. As a result, it
is not clear whether it can exploit this strategy. The average median cross-entropys of the
network-based policies is generally higher than those of the MCTS-based policies, except
for the triangle-pattern, where it is slightly lower. On the win-pattern, prefer-
win-pattern, and win-pattern-ms test sets, it is comparable to the MCTS-based
values, close to zero. Figure 7.9 visualises the average median cross-entropy.

The average mean values and average standard deviations of the cross-entropy, calculated
from MCTS-policies, show improvement over the baselines on most test sets. On the
triangle-pattern it’s performance is in a similar range as the random baseline.
However, in some instances of the win-max-field-ms test set, suboptimal policies
are generated, which is reflected in the relatively high average mean value and average
standard deviation of 5.25 ± 11.52. AlphaJust4FunZeroPlayer’s network-based
average mean values and average standard deviations are mostly in a similar range or
better than the baselines. On the triangle-pattern test set, it is even slightly better
than the agent’s MCTS-based values. Table 7.7 shows the average mean values and the
average standard deviations on each test set for the FNet-based AlphaJust4FunZero-
Player (BS, HC, and UC) and the baselines. The values that represent an improvement
over the baselines and, for the network-based cross-entropy, the values that represent an
improvement over the MCTS-based cross-entropy, are highlighted in bold.

In summary, the FNet-based AlphaJust4Fun agent only showed notable deficiencies on
the triangle-pattern and win-max-field-ms test sets, with suboptimal average
median values on both and a particularly high average standard deviation on the win-
max-field-ms test set. These results clearly show that the DNN substantially enhances
the tree search policy over the baselines and the IsMctsRollouts agent.
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Test set

AlphaJust4FunZero-
Player (FNet)

CheatingMcts-
Rollouts

RandomPlayer

CEmcts CEmcts CErand

win-pattern 0.02 ± 0.20 0.65 ± 4.16 2.81 ± 0.98
prevent-loss-pattern 1.13 ± 1.09 3.21 ± 2.84 2.09 ± 0.84
prefer-win-pattern 0.01 ± 0.10 0.45 ± 3.40 2.76 ± 0.98
double-pattern 1.11 ± 1.76 5.92 ± 2.19 2.74 ± 0.96
triangle-pattern 2.81 ± 1.65 5.44 ± 2.21 2.50 ± 0.91
win-pattern-ms 0.02 ± 0.26 0.69 ± 4.54 2.73 ± 0.98
prevent-loss-pattern-ms 1.73 ± 1.71 4.06 ± 2.98 2.49 ± 0.94
win-points-ms 0.80 ± 3.29 0.70 ± 2.91 0.93 ± 0.75
win-max-field-ms 5.25 ± 11.52 3.26 ± 7.76 2.48 ± 0.89

(a) Cross-entropy of the MCTS policy, averaged (µ ± σ) over multiple repetitions of each test set.

Test set
AlphaJust4FunZeroPlayer (FNet)

CEnet CEpre
net

win-pattern 0.18 ± 0.40 0.18 ± 0.40
prevent-loss-pattern 2.21 ± 1.03 2.21 ± 1.03
prefer-win-pattern 0.17 ± 0.36 0.17 ± 0.36
double-pattern 1.99 ± 0.98 1.99 ± 0.98
triangle-pattern 2.42 ± 0.99 2.42 ± 0.99
win-pattern-ms 0.21 ± 0.41 0.21 ± 0.41
prevent-loss-pattern-ms 2.43 ± 1.02 2.43 ± 1.02
win-points-ms 1.07 ± 1.11 1.07 ± 1.12
win-max-field-ms 2.70 ± 2.01 2.70 ± 2.01

(b) Cross-entropy of the network policy, averaged (µ ± σ) over multiple repetitions of each test
set.

Table 7.7: Comparison of the cross-entropy metrics for the FNet-based AlphaJust4Fun
agent (MCTS policy (a) and network policy (b); 900 MCTS-iterations over 3 determiniza-
tions in each turn; using BS, HC, and UC; 60 repetitions), the CheatingMctsRollouts
(MCTS policy; 900 MCTS-iterations in each turn; 60 repetitions) and the RandomPlayer
(120 repetitions).

UCT-value and Pnet quality After investigating the deficiencies mentioned before,
we found the network’s policies to be the primary cause. This becomes apparent in our
rating of cPnet-values, where a high fraction of the values were rated unsuccessful, and
small fractions acceptable and successful. Most of the cPnet-values rated successful were
in situations where a pattern-win is imminent. We suspect that overfitting might be one
issue, which is supported by the surprising fact that the cross-entropy metrics of the
network policies, before and after masking, were the same. The action values Qnet,scaled
are not included in this work, but were reasonably good, with most of the values rated
successful and only very little rated unsuccessful. However, the network’s value output
turned out to be less sensitive to state changes than expected during real game play.
This is also reflected by our rating of the Vnet-values. For each test set, all the values fall
into the same rating category. Figure 7.8 shows our rating of UCTscaled and cPnet, and
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Figure 7.10c shows the rating of Vnet for all test sets.

We also evaluated a FieldNet-based AlphaJust4Fun agent that uses BS as information
set key-state. However, the MCTS-based cross-entropy values are not displayed, but were
mostly in ranges similar to the agent that uses BS, HC, and UC. On the triangle-
pattern and the prevent-loss-pattern-ms test sets, the BS-version performed
only slightly better, but on the double-pattern test set, it performed significantly
worse. In the remainder of this work, we will exclusively refer to the FieldNet-based
AlphaJust4Fun agent that uses BS, HC, and UC as information set key-state.
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(a) UCTscaled

(b) cPnet

Figure 7.8: Percentage of values for the expected actions, calculated by the FNet-based
AlphaJust4Fun agent (with 900 MCTS-iterations over 3 determinizations in each turn,
using BS, HC, and UC), per rating category for each test set (based on 60 repetitions of
each test set).
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CardFieldNet-based AlphaJust4Fun Agent Our final AlphaJust4Fun agent is
based on the CardFieldNet and uses, and also has used during training, BS, HC, and
UC as information set key-state. It performs 900 playouts per turn, like the other tested
agents, distributed over only 3 determinizations. The entire configurations of the cheating
MCTS agent and the CFNet-based AZJ4F agent are in Tables C.2a and C.11b.

The average median cross-entropy of its MCTS-policies outperforms all other agents in
almost all test sets. The most significant difference can be observed on the test sets,
where the terminal reward for a win was further from the tested state, i.e. the prevent-
loss-pattern, prevent-loss-pattern-ms, double-pattern, and triangle-
pattern. Despite having a lower average median cross-entropy of 2.34 than the other
MCTS-based agents, it is still not quite lower than the RandomPlayer baseline with 2.27
on the triangle-pattern test set. In contrast to the FNet-based agent, the average
mean cross-entropy of the network-based policies of the CFNet, before and after masking,
are different on all test sets. We therefore conclude that overfitting is much less of an issue
for this network and training configuration. In fact, the average cross-entropy metrics of
the network policy before masking is lower than the one of the policy after masking in
all test sets. On the triangle-pattern, the network-based policies have the lowest
average median cross-entropy, as well as the lowest average mean value and the average
standard deviation, among all tested agents. Also on the double-pattern test set, at
least the average mean value and the average standard deviation of the cross-entropy
of the network-based policies, before masking, are also among the lowest of all agents
and close to those of the MCTS-based policies. On the win-pattern, prefer-win-
pattern, win-pattern-ms, win-points-ms, and win-max-field-ms test sets,
where a win can be achieved with the next action, the average median cross-entropy
values of the network-based policies are high in comparison to the other agents. This
hints that the network might have better captured strategies that are more successful
in longer games. Figure 7.9 visualises the performance, based on the averaged median
cross-entropy, of every tested agent on every test set.

The average mean values and the average standard deviations of the cross-entropy values
of the MCTS-based policies are generally lower than the other agents’ MCTS-based
cross-entropy. Only on the prefer-win-pattern test set, FNet-based agent’s average
mean cross-entropy is the lowest. While the average median cross-entropy is 0 on the win-
max-field-ms test set, the average mean and average standard deviation of between
3.95 and 10.03 are still slightly higher than those of the CheatingMctsRollouts
agent. Table 7.8 shows the average cross-entropy metrics on each test set for the CFNet-
based AlphaJust4FunZeroPlayer and the baselines. The values that represent an
improvement over the baselines and, for the network-based cross-entropy, the values that
represent an improvement over the MCTS-based cross-entropy, are highlighted in bold.

In summary, the CFNet-based AlphaJust4Fun agent only shows notable deficiencies on
the triangle-pattern tests, with the median values still only at the same cross-
entropy as the RandomPlayer. On all other test sets, this agent shows lower median
values and also mostly lower means and standard deviations of the cross-entropy than the
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Test set

AlphaJust4FunZero-
Player (CFNet)

CheatingMcts-
Rollouts

RandomPlayer

CEmcts CEmcts CErand

win-pattern 0.08 ± 0.80 0.65 ± 4.16 2.81 ± 0.98
prevent-loss-pattern 1.04 ± 1.52 3.21 ± 2.84 2.09 ± 0.84
prefer-win-pattern 0.72 ± 4.85 0.45 ± 3.40 2.76 ± 0.98
double-pattern 1.04 ± 1.99 5.92 ± 2.19 2.74 ± 0.96
triangle-pattern 2.59 ± 2.63 5.44 ± 2.21 2.50 ± 0.91
win-pattern-ms 1.03 ± 5.88 0.69 ± 4.54 2.73 ± 0.98
prevent-loss-pattern-ms 2.29 ± 4.87 4.06 ± 2.98 2.49 ± 0.94
win-points-ms 0.51 ± 2.06 0.70 ± 2.91 0.93 ± 0.75
win-max-field-ms 3.92 ± 10.12 3.26 ± 7.76 2.48 ± 0.89

(a) Cross-entropy of the MCTS policy, averaged (µ ± σ) over multiple repetitions of each test set.

Test set
AlphaJust4FunZeroPlayer (CFNet)

CEnet CEpre
net

win-pattern 1.47 ± 1.24 1.02 ± 1.09
prevent-loss-pattern 1.56 ± 0.77 1.47 ± 1.09
prefer-win-pattern 1.98 ± 1.37 1.45 ± 1.25
double-pattern 1.63 ± 1.15 1.18 ± 1.08
triangle-pattern 1.90 ± 0.73 1.56 ± 0.95
win-pattern-ms 1.71 ± 1.20 1.20 ± 1.12
prevent-loss-pattern-ms 2.11 ± 0.98 1.69 ± 1.16
win-points-ms 1.01 ± 0.58 0.94 ± 0.92
win-max-field-ms 3.30 ± 0.61 2.24 ± 0.72

(b) Cross-entropy of the network policy, averaged (µ ± σ) over multiple repetitions of each test
set.

Table 7.8: Comparison of the cross-entropy metrics for the CFNet-based AlphaJust4Fun
agent (MCTS policy (a) and network policy (b); 900 MCTS-iterations over 3 determiniza-
tions in each turn; using BS, HC, and UC; 60 repetitions), the CheatingMctsRollouts
player (MCTS policy; 900 MCTS-iterations in each turn; 60 repetitions) and the Random-
Player (120 repetitions).

baselines. The results indicate that the DNN significantly improves the tree search policy
and even outperforms the baselines on its own on some test sets. The general superiority
over the baselines is displayed more clearly in the benchmark in Subsection 7.6.3.
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Figure 7.9: Median cross-entropy of agent policies, averaged per test set over of all
repetitions of the test set. 101
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UCT-value quality On the prevent-loss-pattern and triangle-pattern
test sets, the CFNet-based agent performs is notably better than the FNet-based agent.
On the test sets that require the agent to find an action that results in a win by pattern,
the FNet-based agent performs slightly better. On the win-max-field-ms test set,
the CFNet-based agent preforms slightly better, but our rating on the win-points-ms
test set is, with 23% rated unsuccessful, 72% acceptable, and only 5% successful, notably
worse for the CFNet-based agent. The FNet-based agent did significantly better, with
only 8% unsuccessful, 28% acceptable and 63% successful. According to this metric, the
win-points-ms test set is the most challenging for the AZJ4F agents. This indicates
general difficulties in estimating the value of those rather trivial situations appropriately.
The reason is that in those game states, there are usually several possible actions that make
the agent lose the game. In combination with an overly exploratory agent configuration,
this can result in lower than expected action values. Figure 7.10a show the rating of
UCTscaled on the test sets.

Pnet quality The ratings of the network-policy values follow a similar trend as
UCTscaled. However, the performance on the prevent-loss-pattern, triangle-
pattern, but also the prevent-loss-pattern-ms and double-pattern test sets,
show improvements over the FNet-based agent. The performance on the win-pattern,
prefer-win-pattern, and win-pattern-ms has worsened notably.

On the prevent-loss-pattern test set, the CFNet-based agent’s values were rated
unsuccessful in 76% of the test cases, whereas the FNet-based agent’s were rated un-
successful in 95% of the test cases. On the prevent-loss-pattern-ms test set,
CFNet’s values were rated unsuccessful in 83%, and FNet’s values in 99% of the test
cases. On the double-pattern and triangle-pattern test sets, the differences
are more significant with only 35% and 38% rated unsuccessful for CFNet, and 74%
and 76% unsuccessful test cases for FNet. In game states that are closer to a win,
i.e., win-pattern, prefer-win-pattern, and win-pattern-ms, the FNet-based
agent performed significantly better. A reason for the advantage of the FNet-based agent
on the pattern-win test sets might be the training duration or the number of parameters.
However, it might have come at the cost of overfitting in the situations mentioned above, at
the end of the section describing the FNet-based agent. The FieldNet (26,143 parameters)
was trained for 223 MCTS-iterations, whereas the CardFieldNet (64,445 parameters)
for 128. We ended the training after 128 MCTS-iterations as the performance in the
training benchmark (against CheatingMctsRollouts with 50 MCTS-iterations) did
not increase anymore. Furthermore, the number of games that ended in a win by points
did not increase in the self-play games nor the training benchmark. Figure 7.10b shows
the ratings of the network-policy values.
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(a) UCTscaled

(b) cPnet

Figure 7.10: Percentage of values for the expected actions, calculated by the CFNet-
based AlphaJust4Fun agent (with 900 MCTS-iterations over 3 determinizations in
each turn, using BS, HC, and UC), per rating category for each test set (based on
60 repetitions of each test set).
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Vnet-value quality From our ratings of the network’s value estimations Vnet, it is
clear that the CardFieldNet is overall able to differentiate better between game state
values compared to the FieldNet. We also observed this major issue of FNet during
interactive game simulations, where Vnet appeared to be almost constant for most of the
states. Figure 7.10 shows the rating of the network-values.
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(c) FieldNet

(d) CardFieldNet

Figure 7.10: Percentage of Vnet-values for the expected actions, calculated by the
AlphaJust4Fun agent (with 900 MCTS-iterations over 3 determinizations in each turn,
using BS, HC, and UC), per rating category for each test set (based on 60 repetitions).
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7.6.2 Training

It was very challenging to find a working hyperparameter combination for the CFNet
architecture. Only after experimenting with different activation functions, weight initial-
isation functions, gradient clipping, dropout, batch normalisation, and employing the
network aspects described in Section 6.4, we were able to make the training work. We
mainly attribute this success to the mix of convolutional and dense networks and the
structures that combine both of them into a single dense network.

The FNet architecture, on the other hand, is less sensitive to the hyperparameter
configuration and also more stable during the first 50 training iterations.

The discount factor γ appears to be vital to the training process, as it emphasises the
uncertainty towards the beginning of the game. We suspect that it aids the FNet-based
agent more than the CFNet-based agent, as the latter already receives direct information
about the cards state as an input.

7.6.3 Benchmark performance

In this section, we present the results of the extensive benchmark among all agents and
the baselines. The win rate in each agent match-up per game end reason is visualised
in Figure 7.11, Table 7.9a shows the number of games for each agent match-up, and
Table 7.9b the key hyperparameters for each agent. Since the starting player was selected
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AlphaJust4FunZeroPlayer 100 200 100
IsMctsRollouts

NetworkOnly 900 200
RandomPlayer

(a) The number of benchmark games for each agent match-up.

Agent MCTS-iterations Information set size Determinizations
AlphaJust4FunZeroPlayer 900 BS, HC, and UC 3

IsMctsRollouts 900 BS, HC, and UC 3
NetworkOnly n/a

CheatingMctsRollouts 900 n/a
RandomPlayer n/a

(b) Key hyperparameters for the agents in the benchmark.

Table 7.9: Settings of the FieldNet and CardFieldNet benchmarks.
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randomly, the number of starts each player had, was not always equal. Figure 7.12 shows
the number of times each agent was the first one to act.

We performed a similar benchmark for the FieldNet with information set key-state being
BS only, but its performance was slightly worse than the one with BS, HC, and UC.

AlphaJust4FunZeroPlayer vs. CheatingMctsRollouts Both, the FieldNet-
and the CardFieldNet-based AlphaJust4Fun agents performed solidly against the cheating
MCTS agent with an equal number of MCTS-iterations.

The CardFieldNet-based agent performed especially well with a win rate of 94%. The
FieldNet-based agent won at least in 74% of the games.

The FieldNet-based agent lost in 22% of the games by pattern, whereas CardFieldNet-
based agent lost only 3% by pattern. The lesser ability of the FieldNet-based agent to
prevent opponent wins by pattern, compared to the CardFieldNet-based, is also reflected
in their performance on the prevent-loss-pattern and prevent-loss-pattern-
ms test sets shown in Figure 7.9.

AlphaJust4FunZeroPlayer vs. IsMctsRollouts From this confrontation, it is
clear that the DNN significantly enhances the performance of the SO-ISMCTS. The
CardFieldNet-based agent won 92% and the FieldNet-based agent won 89% of the games.
The main difference between the two agents was that the CardFieldNet-based agent won
more games by pattern.

AlphaJust4FunZeroPlayer vs. NetworkOnly This confrontation illustrates that
the DNN without the SO-ISMCTS is considerably weaker than the combined system.
The FieldNet agent won 12% of the games, and the CardFieldNet agent won only 5%.

IsMctsRollouts vs. CheatingMctsRollouts The isolated performance of the
SO-ISMCTS against the baseline is not nearly as good as the combination with a DNN.
The IsMctsRollouts agent won 45.5% of the games.

NetworkOnly vs. CheatingMctsRollouts Also, the isolated performance of the
DNN against the baseline is not as good as the combination. The FieldNet agent won
46% of the games and the CardFieldNet agent won at least 59% of the games. This also
shows the superiority of the CardFieldNet architecture and its learning success.

RandomPlayer vs. CheatingMctsRollouts In the Just 4 Fun game setting, with
the constraints imposed by the cards, even a random policy can win in 9.25% of the
games against a cheating MCTS agent. Interestingly, half of those games were even
won by pattern. Conversely, in line with expectations, the primary cause of losses was a
pattern win by the cheating MCTS agent.
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Figure 7.11: Benchmarks of all agents. The agents performed 900 MCTS-iterations
(MCTS and SO-ISMCTS) and 3 determinizations (SO-ISMCTS only) per turn and BS,
HC, and UC as information set key-state (SO-ISMCTS only). The percentages are for
the agent named first in the match-up.
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Figure 7.12: Percentage of the randomly initialised games in which each agent was the
first player to act. The left bar represents the agent named first in the match-up.

109
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Impact of the number of playouts in the RandomPlayer vs. CheatingMcts-
Rollouts match-up To determine the number of MCTS-iterations a cheating MCTS
agent needs to achieve a 100% win rate against the RandomPlayer, we ran benchmarks
with various numbers of iterations. Besides the complete benchmark with 900 MCTS-
iterations presented at the beginning of this section, we also ran benchmarks using 50,
1500, 3000, and 8000 MCTS-iterations, testing only the CheatingMctsRollouts agent
and the RandomPlayer.

The cheating MCTS agent reached a win rate of above 96% only after performing 8, 000
MCTS-iterations per turn. This is still worse than the AlphaJust4Fun agent with either
network. The high number of MCTS-iterations, the cheating MCTS agent required to
achieve a very high win rate against the RandomPlayer might partly due to suboptimal
exploitation behaviour. The number of iterations and the overall win rate is shown in
Table 7.10.

MCTS-iterations
per turn Win rate Games Percentage of games in which

the RandomPlayer started
50 79.17% 600 51.67%
900 90.75% 400 49.50%

1,500 91.00% 200 51.00%
3,000 93.33% 120 53.33%
8,000 96.67% 120 55.00%

Table 7.10: Results of the benchmarks of a CheatingMctsRollouts agent with
different numbers of MCTS-iterations against the RandomPlayer.

Impact of being the starting player for different agent match-ups Being the
starting player gave the cheating MCTS agent an advantage in most match-ups. The
number of wins by points decreased in all match-ups when the cheating MCTS agent
was the player who started.

Being the starting player had the least impact on the match-up against the CFNet-based
AlphaJust4Fun agent. Interestingly, when not being the starting player, its win rate even
increased by 2.59%. However, this might be a coincidence and a result of the limited
number of games in this match-up. The FNet-based AlphaJust4Fun agent’s win rate was
20% less when the cheating MCTS agent started. The most significant reduction in win
rate of 28.49%, when being the follow-up player, was observed in the IsMctsRollouts
match-up. In the match-up against the CardFieldNet alone, the win rate decreased by
only 11.12%. The FieldNet agent’s win rate decreased by about 17%.

The win rates for the agent named first in the match-up, depending on when they started
or were the follow-up player, are visualised in Figure 7.13. The training configuration of
the FieldNet-based AlphaJust4Fun agent is listed in Table C.12 and the configuration
used in the benchmark is listed in Table C.13b. The training configuration of the
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CardFieldNet-based AlphaJust4Fun agent is listed in Table C.10 and the configuration
used in the benchmark is listed in Table C.11b. The configuration of the cheating
MCTS agent and the SO-ISMCTS agent that were used for the benchmark are listed in
Tables C.4a and C.4b.

(a)

(b)

Figure 7.13: Win rate based on 100 randomly initialised games for the agent named first
in each match-up, depending on whether it started (a) the game or was the follow-up
player, i.e. the opponent started (b).
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7.6.4 Performance against human players

We set up public games with the required configuration options on Yucata. The opponents,
except for one player, were not selected by us, but chose by themselves to join our games.
Any player at any skill level was free to join the games. To speed up the benchmark, a
colleague of the author played a few games. He is an experienced chess player, but was
new to Just 4 Fun. He won 5 out of 5 games against the FNet-based agent and 4 out of
9 games against the CFNet-based agent (Player G in Table 7.11).

FieldNet-based AlphaJust4Fun Agent For play against humans, using the FieldNet-
based AlphaJust4Fun agent, the account AlphaJ4FZeroFNet3 was used. The agent
has been configured with 8,000 MCTS-iterations, 700 determinizations and to utilise BS,
HC, and UC in the tree search. This means that 11 MCTS-iterations per determinization
were performed, which results in 7,700 overall MCTS-iterations per turn.

The agent can beat human players, but the policy was often objectively bad. It is not
good enough to compete with skilled human players. This agent configuration uses more
determinizations relative to the number of MCTS-iterations, compared to the configuration
used in the benchmark of agents. This might also contribute to a weaker performance, as
it results in more exploration.

The agent won 4 out of 15 games, i.e. the win rate was 26.67%. The performance in terms
of wins/losses and TrueSkill-change is displayed in Figure 7.14a. The agent configuration
is listed in Table C.13a.

CardFieldNet-based AlphaJust4Fun Agent For play against humans, using the
CardFieldNet-based AlphaJust4Fun agent, the account AlphaJust4Fun4 was used.
Since the 8,000 MCTS-iterations of the FieldNet-based agent did not appear to be
enough to outperform experienced players, we configured CardFieldNet-based agent to
perform 16,000 MCTS-iterations on 50 determinizations. This resulted in 320 MCTS-
iterations per determinization. The information set key-state has been BS, HC, and
UC.

While exchanging the state between the local Just 4 Fun instance running a AZJ4F agent
and the game on Yucata via their web interface, we observed overall, from our experience,
solid policies in most of the situations. The only aspect that remained unclear from our
observations was the behaviour near a win by points or loss for that matter. Despite
that, the agent performed well even against skilled human players. Table 7.11 shows the
human opponents that AlphaJust4Fun competed with.

The agent won 9 out of 15 games, i.e. the win rate was 60%. The performance in terms
of wins/losses and TrueSkill-change is displayed in Figure 7.14b. The agent configuration
is listed in Table C.11a.

3https://www.yucata.de/en/User/AlphaJ4FZeroFNet (account required to view)
4https://www.yucata.de/en/User/AlphaJust4Fun (account required to view)
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7.6. Agent Performance

Human player A B C D E F G

On Yucata Win rate 47.63% 44.20% 61.30% 32.51% 60.52% 43.75% 68.75%
#Games 359 2663 491 3273 3181 16 16
TrueSkill 1,049 1,059 1,122 911 1,161 636 1,063

Vs. AZJ4F Wins 1 1 1 1 1 1 4
#Games 1 1 1 1 1 1 9

Table 7.11: The players on Yucata, AlphaJust4Fun (CFNet) played against. TrueSkill,
win rate and number of games were recorded at the time of the last game AZJ4F played
against the particular player.
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(a) Game results and TrueSkill progression of AlphaJust4FunZeroPlayer
(FNet, 8,000 MCTS-iterations, 700 determinizations) against human players
resulted in 4 wins and 11 losses. This equates to a win rate of 26.67%. All
games ended in a win win by pattern.

(b) Game results and TrueSkill progression of the AlphaJust4Fun agent
(CFNet, 16,000 MCTS-iterations, 50 determinizations) against human players
resulted in 9 wins and 6 losses. This equates to a win rate of 60%. All games
ended in a win win by pattern.

Figure 7.14: Results when competing against human players on Yucata.
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CHAPTER 8
Conclusions and Future Work

This last chapter concludes this thesis with a summary of the key findings. We highlight
the importance, in relation to other research, and several limitations. At the end, we
give a perspective on what future works might tackle.

8.1 Summary and Key Findings

AlphaZero combines Monte Carlo Tree Search with a deep neural network that estimates
prior probabilities and state values. It has found great success in the deterministic perfect
information games Go, shogi and chess. In this thesis, we described a modification
of the AlphaZero framework, termed AlphaJust4Fun, to handle environments with
imperfect information and non-determinism. As a benchmark problem, we used the game
Just 4 Fun, which has a board with stones that is visible to all players and cards, of
which each player only has knowledge of their own hand.

We replaced the Monte Carlo Tree Search algorithm that is being used in AlphaZero
by the Single-Observer Information Set MCTS. Single-Observer Information Set MCTS
performs search on concrete environment states, where the hidden information is deter-
minized randomly. AlphaZero uses a ResNet-based neural network architecture which
relies on input based on the visible geometric board state. It features a single trunk and
two heads, one for value output and one for policy output. The cards in Just 4 Fun do not
fit naturally as network inputs. For that reason, we propose a second network architecture,
the CardFieldNet, which features two trunks and two heads. A residual network trunk
takes the board state as an input, and a dense network trunk takes the visible part of
the cards state as an input. A dense network combines both trunks into one common
trunk. The output of this common trunk is the input for the value head and the policy
head, which are both dense networks as well.
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We evaluated AlphaJust4Fun in a set of game scenarios and in a benchmark. The main
baseline in this benchmark is a MCTS algorithm, similar to the one used in AlphaZero,
that is performing search in full knowledge of the hidden part of the game state.

The results indicate that AlphaJust4Fun successfully handles hidden information and
non-determinism in Just 4 Fun. It outperforms the baseline and can also compete with
experienced human players.

In our experiments, we investigate the ResNet-based architecture, using the board state
and inputs that are derived from the cards and mapped to the board. The resulting
agent was stable regarding the hyperparameters and outperformed the baseline.

A second agent, that uses the CardFieldNet architecture, significantly outperformed
the baseline, reaching an even higher win rate than the agent with the ResNet-based
architecture. We found the hyperparameter search for the CardFieldNet to be very
challenging, as the training was very sensitive to various parameters.

Also in the artificial test scenarios, the CardFieldNet AlphaJust4Fun agent outperformed
the baseline and the FieldNet AlphaJust4Fun agent.

Our experiments strongly suggest that the AlphaJust4Fun agents benefit from the DNN
compared to a vanilla SO-ISMCTS agent. The network’s policy alone performed at least
similar to the baseline.

Similar to other research on ISMCTS, we find the determinization/MCTS-iteration
balance to be less important, the range of reasonable ratios appears particularly wide for
Just 4 Fun.

Combining the statistics of information set nodes worked well for Just 4 Fun. Increasing
the information set size by omitting even the known cards state did also lead to reasonably
good performance, which might be caused by the resulting greater exploration depth.

In summary, we were able to successfully apply our modification of the AlphaZero frame-
work to the non-deterministic game Just 4 Fun. Replacing its Monte Carlo Tree Search
algorithm with the Single-Observer Information Set MCTS turned out to handle the
uncertainty in Just 4 Fun well.

8.2 Comparison with Previous Research

Not until recently, there were no general frameworks for non-deterministic environments
with imperfect information that were able to achieve superhuman performance. Two
prominent approaches, MuZero and Stochastic MuZero, have been very successful but
add multiple neural networks, making training far more resource-intensive. Our approach
may be slightly more computationally expensive during play, but requires a lot less
resources for neural network training. With a default residual network, our approach
only adds the number of determinizations to AlphaZero’s hyperparameters, which we
found to have a minor impact, at least in Just 4 Fun.
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8.3. Limitations

This makes AlphaJust4Fun almost as easy to configure as, e.g. AlphaZero, while still
being able to handle a wider range of problems.

While we apply minor modifications to the MCTS algorithm that is used in AlphaZero,
to turn it into a SO-ISMCTS, other researchers [56, 32, 5, 6, 7] report success by applying
CFR-based tree search in this domain.

8.3 Limitations
Even though the residual network-based architecture was not nearly as good as the
CardFieldNet in our benchmark, we think there might still be a margin for improve-
ment, especially with more effort put into hyperparameter optimisation and addressing
overfitting.

Surprisingly, the determinization/MCTS-iteration ratio had so little influence, with a
total of 900 MCTS-iterations. We suspect that, with a much higher number of iterations,
the number of determinizations might also have more impact on the performance.

The two-trunk network architecture is a valid approach for inputs of different types.
However, the fact that it was such a challenge to find hyperparameters leading to
reasonably good learning success makes it less appealing than architectures closer to
ResNet.

Even our most capable agent, which also competed against human players, still shows
some weaknesses when dealing with points-wins and max-field-wins.

AlphaJust4Fun significantly outperformed our baseline. However, we spent less time on
tuning the baseline agent. Instead, we used sensible defaults for most other parameters
and only increased the number of playouts. With more tuning, the baseline performance
might still improve.

While the capabilities of our final agent were evident in the limited sample of games
against human players, a substantially larger number of games would be necessary for a
conclusive comparison.

8.4 Future Work
For future research, we want to make AlphaJust4Fun able to handle scenarios with more
than two agents. Just 4 Fun is still a good benchmark problem, as it supports up to four
players.

The cards-based inputs used in this work are still very basic. The four cards in hand
could also be encoded as four binary sequences, each indicating the position of a card in
the vector of all cards.

It would also be interesting to experiment with additional cards-based features. For
example, features could express the general rarity of cards, the rarity relative to already
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used cards, or the probability of the opponent being in possession of certain cards. Further
input features for the board-based trunk, such as the probability of reaching specific fields
when replacing 1, 2, 3, or 4 cards, or the probability of the opponent reaching certain
fields based on the unknown cards, could augment the neural network’s capabilities.

While the field reachability (probability distribution) and the most easy to achieve
patterns, were determined empirically based on a large amount of data, it would be
interesting to calculate the exact conditional probabilities.

Another interesting characteristic of Just 4 Fun, that is worth further investigation, is
the change of the branching factor over the duration of a game. The possible reshuffles
during a game might have effects that could be exploited by further enhancements of the
MCTS-algorithm.

The output of our neural network architecture was the fields on the board. However, since
multiple card combinations can often reach the same field, another interesting approach
would be to output the exact card combination from the player’s hand. This could also
be implemented as the output of another network head.

Another interesting approach, though not generally applicable, would be to implement
heuristics for card selection. For example, this could involve prioritizing combinations
with lower-value cards, or choosing the combination with the largest or smallest number
of cards.

In all our evaluations, we reset the agent’s search tree after every game. In future work,
it would be interesting to investigate the impact of not resetting the tree, particularly
how performance would scale, and how it would comparison to our baseline.

It would be interesting to implement the multiple-observer information set MCTS (MO-
ISMCTS) [12], which uses a different search tree for each player and should reduce the
problem of strategy fusion.

Given the success of CFR-based algorithms, it would also be interesting to replace MCTS
with CFR.
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APPENDIX A
Yucata.de & Just 4 Fun

Yucata.de [55] implements the game Just 4 Fun with slight modifications to the original
rules. A digital copy of the original rules can be downloaded on spielen.de [27]. One
modification is the fact that, when played with more than two players, the played cards are
not shown. In two player-mode, the cards that have been used in the most recent action
are displayed. Intuitively, with the game progressing, with every turn more information
about the hidden stack of cards becomes available (e.g. information about the card that
is necessary to complete a pattern, likely still being available or not). Conversely, the
used cards not being visible, makes the game more difficult. Even more so with 4 players,
the used cards not being visible can have a bigger impact.

Apart from the original field-value distribution, there is also an ordered-distribution
A.1 (in row-wise ascending order) and a random distribution (the values of 1-36 are
distributed in random order).
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A. Yucata.de & Just 4 Fun

Figure A.1: Just 4 Fun board with the ordered field-value distribution [55].
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Figure A.2: Approximate field (field value is in bold) reachability (probability in percent
below the field value) calculated by sampling 106 times 4 cards from the deck at random,
drawn on the game board with ordered field-value distribution as heat-map.
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B. AlphaJust4Fun

Algorithm B.1: Detailed description of AlphaJust4Fun’s MCTS algorithm
Input: s0 - the a root node of a game subtree, composed of nodes sw and arcs (sx, ay),

where some player z is about to play and which corresponds to the root
information set Ii

0 of that subtree
niter - the number of MCTS-iterations
ndet - the number of determinizations
C - the exploration-constant function

1 for niter iterations do
2 if First iteration OR every niter

ndet
-th iteration then

3 Select determinization dj from D(Hi
0) at random

4 end
5 Start from the root node by assigning sk = s0

6 repeat // Selection
7 Descend the subtree by selecting arcs (sk, al) with al ∈ Adj (sk), that are

available from sk under determinization dj , and maximise the upper confidence
bound Q(sk, al) + C(s0) · P (sk, al) ·

√
Na(sk,al)

1+N(sk,al) , and updating sk to the
selected child node sk = sl

8 until an arcs (sk, al) is reached, that leads to a node (corresponding to an
information set), which is not in the tree yet or until arc (sk, al) leads to a
terminal node

9 if arc (sk, al) leads to a node, which is not in the tree yet then
10 Add the child node sl to sk’s arc (sk, al), that is corresponding to the

information set Ii
sl

11 end
12 if sl is a terminal node under dj then // Simulation
13 Initialise sl’s value using the terminal reward: V (sl) = rdj (sl)
14 else
15 Initialise sl and its arcs (sl, am) with am ∈ A(sl) using the estimation of the

current DNN checkpoint fθc :
V (sl) = vl with (vl, pl) = fθc(sl)
P (sl, am) = pl,am

W (sl, am) = 0

Na(sl, am) =
{

1 for (sl, am) ∈ Adj (sl)
0 for (sl, am) /∈ Adj (sl)

N(sl, am) = 0

16 end
17 for each arc (sk, al) visited during this iteration do // Backpropagation
18 Update (sk, al)’s visit count N(sk, al) and total action value W (sk, al)
19 for each sibling (sk, am) with (sk, am) ∈ Adj (sk), that was available for selection

when (sk, al) was selected, including itself do
20 Increment (sk, am)’s availability count Na(sk, am)
21 end
22 end
23 end
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APPENDIX C
Experiment Setup

RandomPlayer

Random seeds (120) 123, 124, . . . , 242

Table C.1: Randomness seeds used for the randomly acting agent RandomPlayer on
the tests.

MCTS Parameters
Reward discount (γ) 1
Exploration constant 1
MCTS-iterations per
turn

900

Temperature
schedule

1 (constant)

Prior temp. 1
Dirichlet noise ϵ 0.25
Dirichlet noise α 0.666667
Reset search tree Yes
Randomness seeds
(60)

123, 124, . . . , 182

(a) Configuration of CheatingMcts-
Rollouts agent used for the tests.

MCTS Parameters
Determinizations per
turn

4

Reward discount (γ) 1.0
Exploration constant 0.5
MCTS-iterations per
turn

900

Temperature
schedule

1 (constant)

Prior temp. 1
Dirichlet noise ϵ 0.25
Dirichlet noise α 0.4
Reset search tree After each game
Information set
key-state

player’s stones,
opponent’s stones,
player’s hand, used

cards
Randomness seeds
(60)

123, 124, . . . , 182

(b) IsMctsRollouts agent

Table C.2: MCTS configuration that was used in the benchmark against the other agents.
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C. Experiment Setup

MCTS Parameters
Reward discount (γ) 1
Exploration constant 1
MCTS-iterations per
turn

8,000

Temperature
Schedule

1 (constant)

Prior temp. 1
Dirichlet noise ϵ 0.25
Dirichlet noise α 0.666667
Reset search tree After each game
Randomness seed 1,234

(a) Configuration of the cheating MCTS agent
that was used to play against the human base-
line.

MCTS & Benchmark Parameters
Reward discount (γ) 1
Exploration constant 1
MCTS-iterations per
turn

2, 50, 8,000

Temperature
schedule

1 (constant)

Prior temp. 1
Dirichlet noise ϵ 0.25
Dirichlet noise α 0.666667
Reset search tree Yes
Randomness seed 1,234
Games 50

(b) Configuration of the cheating MCTS that
was used for the benchmark against the
RandomPlayer.

Benchmark Parameters
Randomness seed 4,321
Games 50,000

(c) Configuration of the random against random
benchmark.

Table C.3: Evaluation configurations of baseline benchmarks.

MCTS Parameters
Reward discount (γ) 1.0
Exploration constant 1.0
MCTS-iterations per
turn

900, 150

Temperature
schedule

1 (constant)

Prior temp. 1
Dirichlet noise ϵ 0.25
Dirichlet noise α 0.666667
Reset search tree After each game

(a) CheatingMctsRollouts agent

MCTS Parameters
Determinizations per
turn

3

Reward discount (γ) 1.0
Exploration constant 0.5
MCTS-iterations per
turn

900

Temperature
schedule

1 (constant)

Prior temp. 1
Dirichlet noise ϵ 0.25
Dirichlet noise α 0.4
Reset search tree After each game
Information set
key-state

player’s stones,
opponent’s stones,
player’s hand, used

cards

(b) IsMctsRollouts agent

Table C.4: MCTS configuration that was used in the benchmark against the other agents.
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Self-play Parameters
Determinizations per
turn

20

Information set
key-state

player’s stones,
opponent’s stones,

player’s hand
Reward discount (γ) 0.95
Exploration constant 0.7
MCTS-iterations per
turn

100

Temperature
schedule

1 (constant)

Prior temp. 1
Dirichlet noise ϵ 0.25
Dirichlet noise α 0.666667
Games per iter. 70
Fill batches Yes
Reset search tree After each iteration

Learning Parameters
Position averaging Yes
Sample weighing
policy

Logarithmic

Sample merging
policy

stones, hand (player),
used cards

Adam learning rate 7 × 10−5

L2 regularisation 0.0001
Non-validity penalty 0.7
Batch size 64
Maximum # batch
updates per iter.

6250

Training Parameters
Training iterations 80
Ternary game
outcome

Yes

Linear replay buffer
size schedule

Iter. 1: 10,000,
Iter. 14: 20,000,
Iter. 34: 60,000,
Iter. 80: 120,000

Randomness seed 11232

(a) Configuration of reinforcement learning.

NetworkOnly Benchmark
Games against
CheatingMcts
Rollouts

80

Games against
RandomPlayer

800

MCTS Parameters (CheatingMctsRollouts)
Reward discount (γ) 1.0
Exploration constant 1.0
MCTS-iterations per
turn

50

Temperature
schedule

1 (constant)

Prior temp. 1
Dirichlet noise ϵ 0.25
Dirichlet noise α 0.666667
Reset search tree After each game

(b) Configuration of the benchmark against the
random and the cheating MCTS baseline.

Network Parameters
Custom kernel init.
(CKI only)

See Equation (7.1)

Custom kernels
frozen (CKI only)

No

Trunk kernel size 3 × 3
Dropout No
# trunk blocks 2
# trunk filters 16
# policy head filters 6
# value head filters 8
Batch norm.
momentum

0.8

Input feature planes
(full)

empty, stones (player),
stones (opponent),
minority (player),
majority (player),

secured (player), secured
(opponent), field values,

field availability, field
probability, field

reachability
Input feature planes
(min)

empty, stones (player),
stones (opponent), field
values, field availability,
field probability, field

reachability

(c) Configuration of the neural networks.

Table C.5: Configuration of the experiments for the evaluation of the benefit of custom
convolutional kernel initialization over random initialization.
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Common IsMctsRollouts Parameters
MCTS-iterations per
turn

900 and 8,000

Determinizations per
turn (900
MCTS-iterations per
turn)

120

Determinizations per
turn (8,000
MCTS-iterations per
turn)

700

Reward discount (γ) 0.88
Exploration constant 1.0
Temperature
schedule

1 (constant)

Prior temp. 1
Dirichlet noise ϵ 0.25
Dirichlet noise α 0.4
Reset search tree After each game

(a) The common parameters used for the
IsMctsRollouts agent.

Benchmark Parameters
Games against
CheatingMcts
Rollouts

100

MCTS Parameters (CheatingMctsRollouts)
MCTS-iterations per
turn

900 and 8,000

Reward discount (γ) 1.0
Exploration constant 1.0
Temperature
schedule

1 (constant)

Prior temp. 1
Dirichlet noise ϵ 0.25
Dirichlet noise α 0.666667
Reset search tree After each game

IsMctsRollouts (BS)
Information set key
state

player’s stones,
opponent’s stones

Common
IsMctsRollouts
Parameters

See Table C.6a

IsMctsRollouts (BS and HC)
Information set key
state

player’s stones,
opponent’s stones,

player’s hand
Common
IsMctsRollouts
Parameters

See Table C.6a

IsMctsRollouts (BS, HC, and UC)
Information set key
state

player’s stones,
opponent’s stones,
player’s hand, used

cards
Common
IsMctsRollouts
Parameters

See Table C.6a

(b) Benchmark settings for the agents to be
tested and the baseline.

Table C.6: Configuration of the experiments for the evaluation of the effect of different
information set key-states.

128



Common IsMctsRollouts Parameters
MCTS-iterations per
turn

150 and 900

Reward discount (γ) 1.0
Exploration constant 1.0
Temperature
schedule

1 (constant)

Prior temp. 1
Dirichlet noise ϵ 0.25
Dirichlet noise α 0.666667
Reset search tree After each game
Information set
key-state (BS)

player’s stones,
opponent’s stones

Information set
key-state (BS, HC,
and UC)

player’s stones,
opponent’s stones,
player’s hand, used

cards
Randomness seed 14

(a) The common parameters used for the
IsMctsRollouts agent.

Benchmark Parameters
Games against
CheatingMcts
Rollouts (900
MCTS-iterations per
turn)

100

Games against
CheatingMcts
Rollouts (150
MCTS-iterations per
turn)

200

MCTS Parameters (CheatingMctsRollouts)
MCTS-iterations per
turn

150 and 900

Reward discount (γ) 1.0
Exploration constant 1.0
Temperature
schedule

1 (constant)

Prior temp. 1
Dirichlet noise ϵ 0.25
Dirichlet noise α 0.666667
Reset search tree After each game

IsMctsRollouts
Determinizations per
turn

1, 2, 3, 4, 5, 6, 8, 10, 15,
20, 26, 32, 40, 50, 60, 70,

80, 90
Common
IsMctsRollouts
Parameters

See Table C.7a

(b) Agent configuration used for the benchmark.

Table C.7: Configuration of the experiments for the evaluation of the effect of different
ratios of MCTS-iterations to determinizations.
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Self-play Parameters
Reward discount (γ) 0.88
MCTS-iterations per
turn

100

Temperature
schedule

1 (constant)

Prior temp. 1
Dirichlet noise ϵ 0.25
Dirichlet noise α 0.666667
Games per training
iteration

70

Fill batches Yes
Reset search tree After each training

iteration
Learning Parameters

Position averaging Yes
Sample weighing
policy

Logarithmic

Sample merging
policy

stones, hand (player),
used cards

L2 regularisation 0.0001
Non-validity penalty 0.7
Batch size 64
Maximum # batch
updates per iter.

6,250

Training Parameters
# iterations 70/71
Ternary game
outcome

Yes

Linear replay buffer
size schedule

Iter. 1: 10,000,
Iter. 14: 20,000,
Iter. 34: 60,000,

Iter. 99: 90,000
Randomness seed Iter. 0-22: 11,232,

Iter. 23-70/71: 132

(a) The reinforcement learning configuration.

Common Network Parameters
Trunk kernel size 3 × 3
Dropout No
# trunk blocks 2
# trunk filters 16
# policy head filters 6
# value head filters 8
Batch norm.
momentum

0.8

Input feature planes empty, stones (player),
stones (opponent),
minority (player),
majority (player),

secured (player), secured
(opponent), field values,

field availability, field
probability, field

reachability
Imperfect Info. Specific Parameters

Adam learning rate Iter. 1-22: 0.00007,
Iter. 23-199: 0.0006

Determinizations per
turn

2

Exploration constant 0.7
Information set
key-state

player’s stones,
opponent’s stones,
player’s hand, used

cards
Perfect Info. Specific Parameters

Adam learning rate Iter. 1-22: 0.0003,
Iter. 23-199: 0.0006

Exploration constant 1
Information set
key-state

player’s stones,
opponent’s stones,

player’s hand,
opponent’s hand, stack

cards, used cards

(b) The common neural network configuration
and specific parameters.

Table C.8: Configuration of the FieldNet-based AlphaJust4Fun agents used to compare
training with perfect information and with imperfect information.
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Training Benchmark of NetworkOnly
Games against
RandomPlayer

600

Games against
CheatingMcts
Rollouts

60

MCTS Parameters (CheatingMctsRollouts)
Reward discount (γ) 1.0
Exploration constant 1.0
MCTS-iterations per
turn

50

Temperature
schedule

1 (constant)

Prior temp. 1
Dirichlet noise ϵ 0.25
Dirichlet noise α 0.666667
Reset search tree After each game

(a) Configuration of the baseline agents in the
benchmark after each training iteration.

Table C.9: Configuration of the FieldNet-based AlphaJust4Fun agent benchmark, used
to compare training with perfect information and with imperfect information.
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C. Experiment Setup

Self-play Parameters
Determinizations
per turn

2

Information set
key-state

player’s stones,
opponent’s stones,
player’s hand, used

cards
Reward discount
schedule (γ)

Iter. 0-33: 0.93,
Iter. 34-129: 0.89

Exploration
constant

2

MCTS-iterations
per turn

150

Temperature
schedule

1 (constant)

Prior temp. 1
Dirichlet noise ϵ 0.25
Dirichlet noise α Iter. 0-4: 0.7,

Iter. 5-21: 0.7,
Iter. 22-33: 0.35,
Iter. 34-63: 0.5,
Iter. 64-129: 0.4

Games per
training iteration

75

Fill batches Yes
Reset search tree After each training

iteration
Learning Parameters

Position averaging Yes
Sample weighing
policy

Logarithmic

Sample merging
policy

stones, hand (player)

Adam learning rate Iter. 0-4: 0.00005,
Iter. 5-21: 0.0001,
Iter. 22-33: 0.0005,
Iter. 34-63: 0.0008,
Iter. 64-88: 0.0005,
Iter. 89-129: 0.0001

L2 regularisation 0.0003
Non-validity
penalty

Iter. 0-4: 0.5,
Iter. 5-129: 0.3

Batch size Iter. 0-4: 64,
Iter. 5-129: 128

Maximum # batch
updates per iter.

Iter. 0-4: 4,000,
Iter. 5-21: 6,250,

Iter. 22-63: 12,500,
Iter. 64-129: 6,250

Training Parameters
Training iterations 129
Ternary game outcome Yes
Linear replay buffer
size schedule

Iter. 1: 10,000,
Iter. 5: 20,000,
Iter. 20: 40,000,
Iter. 99: 80,000,
Iter. 199: 90,000,
Iter. 300: 170,000

Randomness seed Iter. 0-5: 29,
Iter. 6-22: 20,
Iter. 23-34: 35,
Iter. 35-64: 65,
Iter. 65-129: 99

Network Parameters
Custom kernel init. -
Trunk kernel size 3 × 3
Dropout 20%
# trunk blocks 3
# trunk filters 16
# board trunk neurons 16
# cards trunk layers 2
# cards trunk neurons 32
Cards Trunk Batch
norm. momentum

0.8

# common trunk
layers

3

# common trunk
neurons

48

Common Trunk Batch
norm. momentum

0.98

# Policy head layers 3
# Policy head neurons 32
Policy head Batch
norm. momentum

0.8

# Value head layers 4
# Value head neurons 16
Value head Batch
norm. momentum

0.98

Board Trunk Batch
norm. momentum

0.8

Board Input feature
planes

empty, stones (player),
stones (opponent),
minority (player), majority
(player), secured (player),
secured (opponent), field
values, field availability,
field probability, field
reachability

Cards Input feature
vectors

player’s hand, used cards

Table C.10: Configuration of the CardFieldNet-based AlphaJust4Fun agent used in tests,
the benchmark and in play against humans.
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MCTS Parameters
Determinizations per
turn

50

Reward discount (γ) 1
Exploration constant 0.5
MCTS-iterations per
turn

16,000

Temperature
Schedule

1 (constant)

Prior temp. 1
Dirichlet noise ϵ 0.25
Dirichlet noise α 0.6
Reset search tree After each game
Information set
key-state

player’s stones,
opponent’s stones,
player’s hand, used

cards
Randomness seed 1,234

(a) MCTS configuration used for play against
humans.

MCTS Parameters
Determinizations per
turn

3

Reward discount (γ) 1
Exploration constant 1 for benchmarks, 0.5

for tests
MCTS-iterations per
turn

900

Temperature
schedule

1 (constant)

Prior temp. 1
Dirichlet noise ϵ 0.25
Dirichlet noise α 0.4
Reset search tree Yes
Information set
key-state

player’s stones,
opponent’s stones,
player’s hand, used

cards
Randomness seed
(benchmark)

1,234

Randomness seeds
(tests; 60)

123, 124, . . . , 182

(b) MCTS configuration used for the tests and
the agent benchmark.

Table C.11: Evaluation configurations of the CardFieldNet-based AlphaJust4Fun agent
used in tests, benchmarks and play against humans.
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C. Experiment Setup

Self-play Parameters
Determinizations per
turn

20

Information set
key-state

player’s stones,
opponent’s stones,
player’s hand, used

cards
Reward discount (γ) 0.88
Exploration constant 0.7
MCTS-iterations per
turn

150

Temperature
schedule

1 (constant)

Prior temp. 1
Dirichlet noise ϵ 0.25
Dirichlet noise α 0.666667
Games per training
iteration

75

Fill batches Yes
Reset search tree After each training

iteration
Learning Parameters

Position averaging Yes
Sample weighing
policy

Logarithmic

Sample merging
policy

stones, hand (player),
used cards

Adam learning rate Iter. 1-22: 0.00007,
Iter. 23-199: 0.0006,
Iter. 200-300: 0.0001

L2 regularisation 0.0001
Non-validity penalty 0.7
Batch size 64
Maximum # batch
updates per iter.

6,250

Training Parameters
Training iterations 80
Ternary game
outcome

Yes

Linear replay buffer
size schedule

Iter. 1: 10,000,
Iter. 14: 20,000,
Iter. 34: 60,000,
Iter. 99: 90,000,

Iter. 199: 180,000,
Iter. 300: 280,000

Randomness seed Iter. 0-22: 11,232,
Iter. 23-199: 132,

Iter. 200-300: 13

(a) The reinforcement learning configuration.

Network Parameters
Custom kernel init. See Equation (7.1)
Custom kernels
frozen

No

Trunk kernel size 3 × 3
Dropout No
# trunk blocks 3
# trunk filters 16
# policy head filters 6
# value head filters 8
Batch norm.
momentum

0.8

Input feature planes empty, stones (player),
stones (opponent),
minority (player),
majority (player),

secured (player), secured
(opponent), field values,

field availability, field
probability, field

reachability

(b) The neural network configuration.

Table C.12: Configuration of the FieldNet-based AlphaJust4Fun agent used in the
benchmark and in play against humans.
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MCTS Parameters
Determinizations per
turn

700

Reward discount (γ) 0.95
Exploration constant 0.7
MCTS-iterations per
turn

8,000

Linear temperature
schedule

Turn 1: 0.9,
Turn 10: 0.8,
Turn 20: 0.6,
Turn 34: 0.4,

Turn 40 0.01
Prior temp. 1
Dirichlet noise ϵ 0.25
Dirichlet noise α 0.6
Reset search tree After each game
Information set
key-state

player’s stones,
opponent’s stones,
player’s hand, used

cards
Randomness seed 1,234

(a) MCTS configuration used for play against
humans.

MCTS Parameters
Determinizations per
turn

3

Reward discount (γ) 1.0
Exploration constant 0.5
MCTS-iterations per
turn

900

Temperature
schedule

1 (constant)

Prior temp. 1
Dirichlet noise ϵ 0.25
Dirichlet noise α 0.4
Reset search tree After each game
Information set
key-state

player’s stones,
opponent’s stones,
player’s hand, used

cards
Randomness seed
(benchmark)

1,234

Randomness seeds
(tests; 60)

123, 124, . . . , 182

(b) MCTS configuration used for the tests and
the agent benchmark.

Table C.13: Evaluation configurations of the FieldNet-based AlphaJust4Fun agent used
in tests, benchmarks and play against humans.
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141, 142, 145, 146

full game-state Contains the board-state and the full cards-state. Pages: 42, 73,
146

public cards-state Contains the pile of used cards, visible to all players. Pages:
42, 50, 53, 82, 89, 145

board-state Contains the number of stones of each player on each field. Pages:
42, 46, 50, 82, 145

BS This combines the statistics of all games states that share the same board-state.
It is the smallest information set key-states and combines all permutations of the
full cards-state. Pages: 82, 83, 85, 87, 97, 107, 128, 129, 139

BS, HC, and UC This effectively combines the statistics of all game states,
collected during the MCTS-iterations, that share the same board-state, player-
cards-state, and public cards-state. This is the largest information set key-states.
It combines the least number of (full) game states. Pages: 82, 83, 85, 86, 87, 88, 93,
94, 95, 96, 97, 98, 99, 100, 103, 105, 106, 107, 108, 112, 128, 129, 139, 140, 141, 142

determinization A determinization of a state (determinization for short) in
context of imperfect information games is the full game state, with the unknown
portion of a state being sampled from some distribution. Pages: 19, 36, 37, 38, 39,
41, 43, 44, 47, 64, 74, 75, 77, 82, 83, 84, 85, 86, 87, 88, 93, 94, 96, 98, 99, 100, 103,
105, 106, 108, 112, 114, 116, 117, 124, 125, 126, 127, 128, 129, 130, 132, 133, 134,
135, 139, 140, 141, 142

end in draw The extremely rare case in which all players put all their stones on
the same fields and thus did not hold a majority on any field. Page: 24
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full cards-state Contains the player’s own cards, the pile of used cards, the
(hidden) stack of cards and the (hidden) opponent’s cards. Pages: 42, 82, 145

information set key-state The part of the full game-state that is common to
all possible full game-states within an Information Set. Pages: 42, 73, 77, 82, 83,
84, 85, 87, 93, 94, 97, 99, 107, 108, 112, 125, 126, 127, 128, 129, 130, 132, 133, 134,
135, 139, 140, 142, 145

non-locality During search, only a particular subtree is used to evaluate the
payoff of a strategy. This subtree, however, might not be relevant, as the subtree
from the actual state is in a different part of the game tree and has a different set
of payoffs. Page: 37

player-cards-state Contains the player’s own cards which are only visible to the
player they belong to. Pages: 42, 82, 145

playout In the literature, the terms simulation, playout and rollout are often used
interchangeably. In this thesis we will use the term MCTS-iteration for a single
iteration of a MCTS algorithm as described in Subsection 2.1.2, i.e. the combination
of selection, expansion, simulation and backpropagation. The value estimation in
the simulation phase, can be an evaluation in the case of AlphaZero, where the
neural network estimates the value, or a playout in the case of vanilla MCTS,
where the games are continued according to some policy until they terminate.
Pages: 2, 16, 28, 39, 64, 65, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94,
99, 110, 117, 139, 145, 146

rollout See playout. Pages: 13, 16

strategy fusion An agent erroneously assumes, it can decide on the right strategy
in different states within an information set. This leads to incorrect decisions,
as the states within an information set cannot be distinguished from each other.
Pages: 37, 45, 118

win by max field None of the players were able to construct a pattern and all
players even had the same number of points. However, one player held the majority
on a field with a higher value than all the fields of the other players. Pages: 24, 66

win by points None of the players were able to construct a pattern, but either
player had more points than the other players and won the game that way. Pages:
24, 66, 83, 112

win by pattern Either of the players won by constructing a pattern. Pages: 24,
65, 66, 82, 83, 102, 114
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board A 6 × 6 grid of 36 fields. The field-value distribution is predefined. The
board, as generated by the Yucata.de-implementation, is depicted in Figure 3.1.
They also provide an ordered (Yucata.de & Just 4 Fun, Figure A.1) and a random
field-value distribution. Pages: 21, 24, 33, 47, 54, 57, 59, 66, 120, 140, 147

card A card is represented by a value between 1 and 19. An example is depicted
in Figure 3.2. Pages: 21, 22, 24, 25, 41, 42, 46, 47, 59, 64, 67, 146, 147, 148

deck The set of all cards. The cards with values 1-12 are contained 4 times each
and the ones with values 13-19 once. Pages: 21, 24, 25, 42, 49, 57, 58, 138

field A field is represented by a position – the x and y coordinates on the board
and a board-wide unique value. The value can be any integer between 1 and 36.
The fields contain the number of stones of all players. Pages: 21, 22, 23, 24, 25, 27,
42, 46, 49, 50, 52, 57, 58, 59, 64, 65, 66, 73, 119, 120, 138, 140, 145, 146, 147, 148

hand A set of 4 cards in a player’s possession. Pages: 22, 24, 25, 41, 52, 58, 59,
60, 73, 74, 94, 138, 147

majority A player has majority on a field if they have at least one stone more
than every other player on this field. See also Figure 3.3. Pages: 22, 23, 24, 145,
146, 147

pattern A pattern in the context of J4F is the alignment of stones on the board.
A player wins, if they have the majority on at least 4 fields aligned in a horizontal,
vertical or diagonal line. An example for a winning pattern in a diagonal is depicted
in Figure 3.3. Pages: 22, 24, 25, 46, 146

redraw action Putting down all four cards and drawing four new ones from the
stack of cards, without placing a stone. This action has to be played and can only
be played, in case no regular action is possible according to the rules (i.e. on every
field reachable with the particular hand, there is a player who has a majority).
Page: 22

regular action Putting down between 1 and 4 cards of the player’s hand and
putting a stone on the field with the number equal to the sum of the played card
values. An example for a regular action is depicted in Figure 3.2. Page: 21

stack of cards The stack of cards a player is drawing from to refilling their hand
after an action. Pages: 22, 41, 42, 82, 94, 146, 147, 148
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stone A unit to be placed on (linked to) a field. Each player starts with 20 stones.
Pages: 21, 22, 23, 24, 42, 46, 57, 58, 64, 65, 66, 145, 147

used cards Cards that have been played and are not available until the stack of
cards is empty. In that case, the used cards are shuffled and become the new stack
of cards. Pages: 22, 41, 42, 146
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Acronyms

Qmcts,scaled Mean of the scaled action values. Pages: 69, 72

Qnet,scaled Mean of the scaled action value estimations of the DNN. Pages: 68,
69, 72, 96

UCTscaled Mean of the scaled UCT values. Pages: 69, 72, 80, 81, 96, 98, 102, 103

cPpre
net Combined policy estimation of the DNN. Pages: 69, 72

cPmcts Combined MCTS policy. Pages: 69, 72, 80, 81

cPnet Combined policy estimation of the DNN after masking. Pages: 69, 72, 96,
98, 103

CE cross-entropy. Pages: 66, 67, 69, 70, 71, 74, 78, 79, 80, 93, 94, 95, 96, 97, 99,
100, 101, 139, 141, 142

Vnet Value estimation of the DNN. Pages: 68, 72, 96, 97, 104, 105, 140

AG AlphaGo. Pages: 2, 16, 28

AGZ AlphaGo Zero. Pages: 2, 16, 28, 65

AI artificial intelligence. Pages: xiii, 1, 2, 4, 5, 7, 15, 17

AZ AlphaZero. Pages: xi, xii, xiii, 2, 3, 4, 5, 15, 16, 17, 18, 19, 21, 28, 29, 31, 35,
41, 43, 45, 46, 47, 49, 50, 63, 64, 69, 73, 115, 116, 117, 146

AZ.jl AlphaZero.jl. Pages: 63, 72, 73

AZJ4F AlphaJust4Fun. Pages: xi, xii, xiii, xvi, 5, 19, 21, 41, 43, 45, 46, 47, 64,
65, 73, 77, 79, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 105, 107, 110, 111, 112, 113,
114, 115, 116, 117, 123, 124, 130, 131, 132, 133, 134, 135, 139, 140, 141, 142, 143

AZJ4F.jl AlphaZeroJust4Fun.jl. Pages: 64, 72, 73
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CFNet CardFieldNet. Pages: xv, 49, 53, 54, 55, 56, 57, 58, 59, 60, 61, 64, 65, 75,
99, 100, 102, 103, 104, 105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 132,
133, 138, 139, 140, 142

CFR Counterfactual Regret Minimization. Pages: 3, 14, 15, 17, 19, 117, 118

chess chess. Pages: xiii, 1, 2, 8, 9, 15, 16, 18, 28, 29, 31, 34, 35, 46, 112, 115

CKI custom kernel initialisation. Pages: 91, 92, 93, 141

DNN deep neural network. Pages: xi, xiii, 2, 4, 15, 16, 28, 30, 32, 33, 38, 43, 45,
46, 64, 65, 83, 88, 93, 95, 100, 107, 115, 116, 124, 149

Dou dizhu Dou dizhu. Pages: 3, 43

FNet FieldNet. Pages: xv, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 64, 65, 88, 89,
91, 94, 95, 96, 97, 98, 99, 102, 104, 105, 106, 107, 110, 112, 114, 116, 130, 131, 134,
135, 138, 139, 141, 142

HULHE heads-up limit Texas hold’em poker. Page: 14

HUNL heads-up no-limit Texas hold’em poker. Pages: 3, 17

ISMCTS Information Set Monte Carlo Tree Search. Pages: 5, 10, 14, 21, 37, 38,
41, 116

J4F Just 4 Fun. Pages: xi, xiii, xvi, 3, 4, 5, 9, 11, 15, 16, 21, 37, 41, 46, 49, 55,
57, 64, 65, 67, 86, 107, 112, 115, 116, 117, 118, 119, 120, 147

J4F.jl Just4Fun.jl. Page: 63

LB Libratus. Pages: 3, 17

LOTR:C Lord of the Rings: The Confrontation. Page: 43

m,n,k m,n,k. Page: 11

MCCFR Monte Carlo Counterfactual Regret Minimisation. Pages: 3, 14

MCTS Monte Carlo Tree Search. Pages: xi, xiii, 2, 4, 10, 12, 14, 15, 16, 17, 18,
28, 29, 31, 35, 37, 43, 47, 64, 65, 69, 70, 73, 77, 79, 80, 82, 83, 91, 94, 95, 96, 97,
99, 100, 107, 108, 110, 111, 115, 116, 117, 118, 124, 125, 126, 127, 128, 129, 131,
133, 135, 140, 141, 142, 143, 145, 146, 149

MZ MuZero. Pages: xv, 3, 17, 18, 19, 116

PB Pluribus. Pages: 3, 17
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PUCB Predictor + UCB. Pages: 14, 28

ReBeL Recursive Belief-based Learning. Pages: xv, 17, 19

ResNet residual network. Pages: 15, 33, 115, 116, 117

RL reinforcement learning. Pages: xi, xiii, 2, 3, 15, 16, 17, 18, 28, 31, 127, 130,
134

shogi shogi. Pages: xi, xiii, 2, 16, 18, 34, 46, 115

SMZ Stochastic MuZero. Pages: xv, 3, 18, 19, 116

SO-ISMCTS Single-Observer Information Set MCTS. Pages: xi, xiii, 19, 38, 41,
43, 64, 69, 77, 82, 84, 86, 107, 108, 111, 115, 116, 117, 139, 140

SP self-play. Pages: xi, xiii, 2, 3, 14, 15, 16, 17, 28, 29, 31, 32, 36, 38, 45, 47, 73,
74, 87, 88, 90, 102, 127, 130, 132, 134

TS TrueSkill. Pages: 15, 16, 65, 112, 113, 114, 142

TTT Tic-Tac-Toe. Pages: 1, 8, 11, 64

UCB1 Upper confidence bound 1 policy by Auer et al.[2]. Pages: 12, 13, 38

UCT UCB1 applied to trees. Pages: 13, 37, 38, 69, 96, 102, 149

Yucata Yucata. Pages: 21, 65, 73, 93, 112, 113, 114, 140, 142
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