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Abstract We are facing a purely dynamic and stochastic vehicle routing prob-
lem with delivery deadlines motivated by a real-world application where orders
arrive at an online store dynamically over a day to be delivered within short
time. Pure dynamism is given since we do not know any orders in advance,
whereas the stochastic aspect comes into play by having estimates for the
hourly numbers of orders. The goal is to satisfy the daily demand by con-
structing closed routes from a single depot to the customers given a set of
drivers with a predefined shift plan and the hourly demand estimates as input
while first minimizing due time violations and then labor and travel costs.
Labor costs are subject to optimization since the end times of shifts have a
certain amount of flexibility and a decision has to made whether to send home
a driver earlier than planned or to extend the shift.

In this work, we present a novel double-horizon approach based on the shifts
and the hourly demand estimation. Within the shorter horizon we optimize
the routes for the orders currently available whereas within the longer horizon
we extrapolate until the end of the day to determine target shift end times
for the drivers. Furthermore, we devise a route departure time strategy that
balances between route quality and risking due time violations. The routing
is performed by a classical adaptive large neighborhood search. We consider
artifical instances and compare the results for the online problem with those for
the offline scenario where all orders are known from the beginning. We observe
superior performance of our approach as compared to fixed route departure
time and driver send home strategies.
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approach · adaptive large neighborhood search
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1 Introduction

Motivated by a real-world application where customers place orders at an
online store to be delivered within a few hours, we introduce a specific vehicle
routing problem (VRP) variant called Purely Dynamic and Stochastic Vehicle
Routing Problem with Delivery Deadlines and Shift Flexibility. Orders arrive
dynamically over the day, and each order is due only a couple of hours after
arrival, where the specific due times vary and depend on the orders’ types.
These orders are picked at a single depot and are subsequently available for
delivery to the customers by drivers with predefined shifts.

The goal is to assign the orders to the drivers and perform the routing in a
way to avoid or minimize due time violations. Drivers perform multiple routes
over the day and for each route a decision has to be made when to start it.
This is crucial since after the departure of a driver, the corresponding route
cannot be changed anymore. As secondary objective, the labor costs, which
are determined by the actual shift end times, and the travel times, determined
by the performed delivery routes, are to be minimized. The shift end times are
subject to some flexibility and may be ended earlier or extended to account
for the uncertainty of the actual load.

In particular, we need to account for the strong dynamism of the problem
by making use of the stochastic information known in advance. As such, an
estimation of the demand for each hour over the day is available upfront.
To link this information to the shifts, the time-dependent average number
of orders drivers can handle per hour—the driver performance—needs to be
estimated. In this work, we combine well-known adaptive large neighborhood
search for vehicle routing [10,13] with a double horizon approach [8] to handle
dynamism and stochasticity. In the short horizon planning, we present a driver
performance dependent route departure time strategy—more efficient routes
are started earlier than inefficient routes, where improvement is still expected.
To avoid sending drivers home too early, we look ahead until the end of the
day—the large horizon—by solving a simplified assignment problem on the
expected orders without concrete routing to predict target shift end times for
the drivers.

In Section 2 we discuss related work. The formalization of the different
problem variants (offline, point in time, online), the solution representation,
and the objective function is presented in Section 3. Short horizon routes
construction is done by adaptive large neighborhood search using classical in-
sertion and regret heuristics and a diverse set of destroy operators as briefly
discussed in Section 4. We present the details of our driver performance esti-
mation in Section 5 which is crucial for our departure time strategy (Sect. 6)
and our double horizon approach (Sect. 7). The latter is also used to enable
informed shift ending strategies as described in Section 8. In the computa-
tional study (Sect. 9), we compare the double-horizon approach with fixed,
less sophisticated strategies, on artificial instances with different load patterns
(business day vs. weekend) and shift plans (generous vs. tight vs. shortage).
We observe strong advantages of the former. We conclude in Section 10.
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2 Related Work

For general overviews on methods to solve dynamic and stochastic VRPs, see
the surveys by Ritzinger and Puchinger [12], Pillac et al. [9], and Psarafitis et
al. [11]. Many existing approaches apply periodic or continuous re-optimization
of the problem for the current time and essentially ignore information on ex-
pected orders. In our context such an approach would not work well as guar-
anteed delivery times are rather short and started routes cannot be adapted
anymore (with respect to the orders they fulfill). Thus, adequately exploiting
the estimations of expected orders is of crucial importance.

To handle these uncertainties existing approaches typically fall into one of
two categories: those based on sampling and those based on stochastic mod-
eling [9]. As their name suggests, sampling strategies incorporate stochastic
knowledge by generating scenarios based on realizations drawn from suitable
random variable distributions. Each scenario is optimized by solving the im-
plied static and deterministic (i.e., offline) problem variant. Then a consensus
solution is typically derived from all scenario solutions, which is actually ap-
plied in the next time step, until a re-optimization takes place. The advantage
of sampling is its relative simplicity and flexibility on distributional assump-
tions, while its drawback is the massive generation and required solving of
scenarios to accurately reflect reality. On the other hand, approaches based on
stochastic modeling integrate stochastic knowledge analytically. They try to
formally capture the stochastic nature of the problem and are usually highly
technical in their formulations and require to efficiently compute possibly com-
plex expected values. Typically, only strong abstractions from the real world
allow for stochastic modeling. Applied methods to solve such stochastic mod-
els include Markov models and stochastic dynamic programming. In the case
of our problem, precise and flexible enough analytical models unfortunately
appear to be out of reach.

In the following we review the most relevant existing works we have found
in conjunction with our specific VRP.

Bent et al. [3] were one of the first describing an event based model to solve
a dynamic VRP. In their multi plan approach (MPA) a set of possible rout-
ing plans is maintained at any time and updated at certain events. There is
one distinguished “best” plan which is determined by an appropriate selection
function. The events are new customer requests, vehicle departures according
to a current distinguished plan, the availability of newly generated plans, and
the timeout of plans. The authors further extend the MPA by sampling to a
multiple scenario approach (MSA) in order to obtain more robust solutions
concerning the stochastic aspects. A number of scenarios is created by adding
randomly sampled artificial orders, these scenarios are solved, and then a con-
sensus solution is derived for the original online problem at a certain time.
A tabu search is used for actually solving the occurring subproblems. We es-
sentially also follow the fundamental concept of the event based model of the
MPA, although with just one current solution.
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Hvattum et al. [7] propose another sampling scenario-based approach in
conjunction with a rather simple hedging heuristic.

Gendreau et al. [6] describe a tabu search with adaptive memory for a
dynamic vehicle routing problem. Essentially, an MPA-like event model is
used in conjunction with tabu search and the problem is re-solved whenever
new information is available. Stochastic aspects are not considered here, but
a focus lies on an effective parallelization.

Ropke and Pisinger [13] and Pisinger and Ropke [10] proposed Adaptive
Large Neighborhood Search (ALNS) for more general vehicle routing problems,
which is nowadays widely used as framework for a large variety of optimization
problems. ALNS is appreciated for its practical efficiency as well as robust-
ness on many occasions. The main idea of ALNS is to repetitively destroy a
current candidate solution partially and repair it in a sensible way. Both are
done by using sets of different basic operators, which are typically randomized.
Improved solutions are always accepted as new current ones, while worse so-
lutions are only accepted according to a Metropolis criterion. The application
probability of the individual destroy and repair operators are adapted over
the iterations based on their successes in previous iterations. ALNS is today
among the most often applied metaheuristics for VRPs in general, and we
find it also most useful as core optimization technique for solving our routing
problem, see Section 4.

Azi et al. [1] consider a VRP with a particular focus on multiple routes
per vehicle, as we also have to do. A major difference to our problem is that
here the focus is on deciding upon the acceptance of requests. The solution
approach is an ALNS that is in several aspects similar to those from Ropke and
Pisinger. Azi et al. [1] extend this work towards the dynamic problem variant.
Stochastic sampling is applied to account for unknown expected orders.

Schilde et al. [14] describe a variable neighborhood search metaheuristic for
a dynamic dial-a-ride problem. The authors also apply sampling for dealing
with the stochastic aspects. In their variable neighborhood search the shaking
moves bear some similarities with the destroy and repair operations of ALNS.

Mitrović-Minić et al. [8] describe a double horizon approach for solving
a dynamic pickup and delivery problem. A large horizon is considered for
maintaining routes in a state to be able to easily respond to future dynamically
appearing requests, while a short horizon is considered for the actual goal
to minimize the route lengths based on the so far known requests. While
the considered problem is quite different to ours, we adopt the basic idea of
considering two planning horizons in our double horizon approach in Section 7.

3 Problem Formalization

We distinguish between three problem variants: the offline problem with full
knowledge of the day in advance (OFF), the dynamic problem at a specific
time t̃ (DYN-t̃), and the full dynamic problem for a whole day (DYN-DAY).
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Fig. 1 Visualization of order-related times of an example route r = {0, v2, v3, v1, 0}. tavlv ≤
trelv ≤ tduev holds for all orders: first it is placed by the customer (tavlv ), then it is picked from
the warehouse (trelv ) and ready for delivery by a driver, and then due (tduev ). Note that orders
that are placed later may be due earlier. The earliest route departure time is bound from
below by the latest release time of the corresponding orders. For this particular example
τr ≥ trelv3

must hold.

3.1 Full-Knowledge Offline Problem (OFF)

Here all orders of the day are known in advance together with their release
times, i.e., the times the orders have been picked in the warehouse and are
ready for delivery by the drivers. Although this problem variant is not what
we are confronted with in reality, it is nevertheless interesting as its (optimal)
solution provides a baseline of what might ideally be achieved in the online
problem. We denote the set of all orders by V , with n = |V |, and the cor-
responding release times by trelv , ∀v ∈ V . Moreover, we are given due times
tduev , ∀v ∈ V , which are related to a promised maximum delivery duration
starting from the time tavlv the order v was placed by the customer. Fig. 1 vi-
sualizes the order-related times of an example route consisting of three orders.

Furthermore, for all relevant vehicles u ∈ U , with m = |U |, planned shift
time intervals [qstartu , qendu ] and earliest shift ends q0u ∈ [qstartu , qendu ] are provided.
Lastly, expected travel times δ(v, v′) from location v to location v′, where
v, v′ ∈ V ∪ {0} with 0 representing the warehouse, are given. These travel
times include average stop times at the customers, average times for loading
a vehicle at the warehouse, and postprocessing times when returning to the
warehouse. We further assume that the triangle inequality holds w.r.t. the
travel times and that they are constant throughout the day.

Solution Representation. We have to plan the drivers’ routes, the route de-
parture times, and the drivers’ flexible shift end times. Hence, a candidate
solution is a tuple 〈R, τ, q〉 where

– R = (Ru)u∈U denotes the ordered sequence of routes Ru = {ru,1, . . . , ru,`u}
to be performed by each vehicle u ∈ U , and each route r ∈ Ru is an ordered
sequence r = {vr0 = 0, vr1, . . . , v

r
lr
, vrlr+1 = 0} with vri ∈ V, i = 1, . . . , lr,

being the i-th order to be delivered and 0 representing the warehouse at
which each tour starts and ends,

– τ = (τr)r∈Ru,u∈U are the (planned) departure times of the routes, and
– q = (qu)u∈U are the shift end times of the vehicles.

The time at which the i-th order vri of route r, i = 1, . . . , lr, is delivered is

a(r, i) = τr +

i−1∑
j=0

δ(vrj , v
r
j+1). (1)
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Fig. 2 Visualization of a solution for an artificial instance with 22 vehicles. The x-axis
denotes the time and the discrete y-axis the drivers’ shifts. The whole bar indicates the
actual shift duration. The green triangle indicates the earliest shift end time for each driver,
where excess labor time contributes to our considered costs. The red triangle depicts the
planned shift ending, after which no route can be started, but the last route may end
arbitrarily late. The distinct green bars stand for routes and contribute to the travel time
part of our objective function. If the latter is shaded light green, the route contains at least
one tardy order, which can be observed around hour 15. The remaining orange of the shift
bars denote waiting time of the driver at the depot. The blue stars denote the target end
shift times as determined by the large horizon planning in the beginning of the day.

The total duration of a route r ∈ Ru of a vehicle u ∈ U is

d(r) =

lr∑
i=0

δ(vri , v
r
i+1), (2)

and the route therefore is supposed to end at time τr + d(r).
Let τmin(r) = maxi=1,...,lr t

rel
vri

be the earliest feasible starting time of a
route r, which corresponds to the maximum release time of the orders served
in the route. Furthermore, let τmax(r) be the latest starting time without
violating any due time, i.e.,

τmax(r) = min
i=1,...,lr

tduevri
−

i−1∑
j=0

δ(vrj , v
r
j+1)

 . (3)

Feasibility. A solution is feasible when

– each order v ∈ V appears exactly once in all the routes in
⋃
u∈U Ru,

– each route r ∈ Ru, u ∈ U , is started in the planned shift time of the
assigned vehicle, i.e., τr ∈ [qstartu , qendu ],

– and not started before all corresponding orders are released, i.e., τr ≥
τmin(r),

– the routes in each Ru, u ∈ U start at increasing times and do not overlap,
i.e., τru,i

+ d(ru,i) ≤ τru,i+1
, i = 1, . . . , |Ru| − 1,
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– and the actual shift end time is not smaller than the finishing time of
the last route (if there is one) and the minimum shift time, i.e., qu ≥
max(q0u, supr∈Ru

(τr + d(r))), u ∈ U .

Objective. The primary goal is to avoid tardiness or distribute it evenly among
the customers. The secondary goal is reduce labor and travel costs. This leads
to the following objective function to be minimized

f(〈R, τ, q〉) = L

( ∑
r∈Ru,u∈U

lr∑
i=1

max(0, a(r, i)− tduevr
i

)2, γ ·
∑
u∈U

(qu − q0u) +
∑

r∈Ru,u∈U

d(r)

)
.

(4)

L denotes the lexicographic combination of two terms, which are a quadratic
penalty for the tardiness of deliveries and a linear combination of the sum of
labor and travel costs. More precisely, the latter is calculated as the sum of
the actual shift durations above the minimum shift times q0u weighted by a
factor γ and the sum of travel times.

In a real-world comparison of results, it is also worthwhile to view it as
a multi-objective optimization problem. A small increase in tardiness may be
acceptable, if it comes with a substantial reduction of costs.

3.2 Dynamic Problem at a Specific Time t̃ (DYN-t̃)

This problem variant is actually the one that needs to be iteratively solved
during the whole day, for increasing current time t̃. It extends OFF by having
as additional input the current time t̃ and the expected number of orders ω̂(t)
that become available in the time intervals [t, t+ 1h) for all relevant business
hours. Moreover we assume to have knowledge about the distribution of order
types w.r.t. the promised delivery durations. The set of all orders V is reduced
to those which are already available at time t̃ and whose delivery has not yet
started. The set of vehicles U is reduced to those whose shift has not been
finished, and shift start times are updated to expected return times of vehicles
that are currently on a tour. The route construction must now additionally
consider these unknown future orders in an appropriate way. The ultimate
goal is to lead to an optimal solution w.r.t. the full dynamic problem below.

3.3 Full Dynamic Problem (DYN-DAY)

This is the actual problem to be solved from the point-of-view of the whole
day. Time is considered to continuously increase over the whole relevant time
horizon, expected numbers of future orders are known as above, but each
concrete order becomes available only at the availability time tavlv , ∀v ∈ V .
The decision on each route r ∈ R must be fixed with only the knowledge
available up to the routes respective departure time τr. An example solution
of a DYN-DAY instance with 22 vehicles is depicted in Fig. 2 as a bar chart
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displaying the waiting times (orange), routes (green), and routes with tardy
orders (light green) of the drivers. Stars show the target shift end times derived
from our initial large horizon planning (Sect. 7).

More specifically, we solve the successive DYN-t̃ instances every time an
order is released:

t̃ ∈
{
t | ∃v ∈ V : t = trelv

}
(5)

Having obtained a solution for a time t̃, we extract any routes that start
before the next value for t̃ in the above sequence, adopt these routes for the
final solution of DYN-DAY, and remove all the orders served in these routes
from any further consideration.

4 Routes Construction and Optimization

To be suitable for a real-time application, an important property that an
optimization method must exhibit is a good anytime behavior : a somehow
reasonable heuristic solution must be found very soon (within seconds), and
over time the solution should continuously be improved up to (or close to)
optimality. In other words, the optimization can be interrupted almost at any
time and a reasonable solution with respect to the invested time is available.
We achieve this by using a carefully designed Adaptive Large Neighborhood
Search (ALNS) [9,13].

ALNS heuristics. As construction heuristics to insert orders into either an
empty solution or to repair a partial solution in the ALNS, we use the well-
known insertion and regret-k heuristics as described in [10]. We distinguish
between the zero-tardiness and tardiness regimes. In a two-stage approach, we
first seek to insert an order without introducing additional tardiness, which can
be checked in constant time with caching of suitable slack values for existing
orders and routes. If this is not possible, we search for an order position with
the smallest sum of squares increase of tardiness, which is computationally
more demanding by a factor of O(n).

Our destruction heuristics are mostly adopted from Pisinger and
Ropke [10], Ropke and Pisinger [13], Shaw [15], and Azi et al. [1] and suitably
adapted to our problem. There are two kinds of destruction heuristics, those
that remove a certain number of orders from routes and those that remove
a certain number of whole routes. More specifically, we use random order,
random route, related order, related route, worst order, and worst and related
order removal.

Shift End Times. The actual shift end times qu for the vehicles are set to
max(q0u, supr∈Ru

(τr+d(r))), i.e., for each vehicle u to the end of the last route
or the earliest possible shift end time, whichever comes later. In Section 7, we
introduce the large horizon planning, where we estimate desired shift ends for
the vehicles in advance so that we can satisfy the expected workload. Since in
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the objective function we penalize labor time after the earliest possible shift
end times q0, we grant vehicles that are below their desired shift end time
q̃u > q0u a labor time bonus that equalizes the incurred labor time costs up
until q̃u—otherwise, the insertion heuristic would avoid assigning orders to
vehicles after their earliest possible shift end q0u, in case there is no tardiness
yet and other vehicles not close to their shift end are available. The labor time
bonus is implemented by using the augmented objective function

f̃(〈R, τ, q〉)) = f(〈R, τ, q〉)− γ ·
∑
u∈U

min(qu − q0u, q̃u − q0u). (6)

During the optimization, the route departure time is always set to the earliest
possible time. Afterwards, we are free to postpone the routes up to the latest
time within the departure time slacks of the routes so that the objective value
is neither increased by tardiness nor by labor costs.

5 Driver Performance Estimation

For both an informed route departure time strategy and our large horizon
approach, we need to estimate the driver performance of a given hour. It is
the average time needed to serve an order. It is strongly related to the expected
duration of all routes involved to serve the customers at the considered time
interval divided by the number of customers. We introduce this as a function
φ : R→ R, depending on the load λ. We define the load λ to be the expected
number of orders due in a given hour.

A classical result by Beardwood et al. [2] shows that the expected length
of an optimal traveling salesperson tour with n randomly sampled cities given
some geometry with area A grows with k

√
An. k is an empirical constant

depending on the spatial distribution and the metric. This result is extended
to capacitated vehicle routing problems by Daganzo [4] and refined by Figliozzi
[5], from which we adapt the following model to explain φ(λ)

φ(λ; km, kl) ≈ km +
kl√
λ+ 1

. (7)

km corresponds to constant costs occurring for each customer like the stop time
at the customer. kl relates to the empirical k from [2] and accounts together
with (λ+ 1)−1/2 for the expected travel time to a customer. We shift the load
by one to avoid divergence at zero load. As we can see, it is a function that
decreases with the square root of the load. As a more flexible model, we further
suggest the following inverse power law

φ(λ; km, kl, α) ≈ km +
kl

(λ+ 1)α
. (8)

To check the validity of these models in our setting and tune the parameters, we
create ten artificial instances each for loads starting from 0.5 up to 20 in steps
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Fig. 3 Mean order delivery times φ in minutes with standard errors over ten instances for
each load value λ ∈ {0.5, 1.0, . . . , 20, 21, . . . , 60} with fitted curves for the two and three-
parameter models. The three-parameter model seems to explain the region of little load
λ ≤ 10 better than the two-parameter model.

of 0.5 and further in steps of 1 up to 60, i.e., to one order due per minute. The
geometry is the unit disk with a central depot, Euclidean metric, and vehicles
driving a constant pace of 20 minutes per unit distance. Furthermore, constant
stop times at the customers, loading times when leaving the warehouse, and
postprocessing times when returning to the warehouse are added. Orders arrive
randomly throughout a whole day at a given constant rate λ sampled from a
Poisson process following a uniform spatial distribution. Optimization at each
DYN-t̃ is done for 60 seconds using ALNS. Sufficient drivers are available so
that no tardiness occurs, and the drivers wait to start their routes as long as
possible. For each instance, we average over all routes the time needed to serve
a customer.

In Fig. 3 we see a scatter plot of the mean order delivery times including
standard errors (N = 10) over the different loads. Weighted least squares fits
of the models are displayed. Both models explain the data starting from load
λ ≥ 10 similarly well with weighted R2 values of 0.97 and 0.99. For low-load
regions λ ≤ 10, the model with the inverse power as an arbitrary parameter
lies closer to the means.

6 Departure Time Strategies

In the dynamic problem, at every time t̃ we construct and optimize the routes
for the drivers. After that, we have to decide when these should be started.
A departure time window [τ earliestr , τ latestr ] is attributed to each route, within
which the departure time τr of the route may be set while maintaining a
feasible solution and not increasing the objective value. Setting τr < τ earliestr

or τr > τ latestr makes the solution either infeasible or increases tardiness, labor,
or travel costs. This decision is crucial since routes cannot be adapted anymore
after they have been started.
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Two naive strategies can immediately be devised by either always starting
the route at τ earliest or at τ latest. τ latest seems favorable in most situations since
not yet started routes may later still be adapted in order to more efficiently
include newly emerged orders as opposed to the earliest strategy where in the
extreme case a route is immediately started with just one order. However,
experiments have shown that the start-latest strategy is not always the better
strategy, since we may run into tardiness at a later time when working at or
shortly before critical utilization and letting vehicles wait instead of delivering
orders.

A more sophisticated approach takes into account the current performance
of a route, measured by its number of minutes per order dOr , i.e., the route
duration divided by the number of orders served. The main idea is: the better
the performance of a route, the closer we can set its departure time τr towards
τ earliestr , the worse, the closer towards τ latestr , so that there is a performance-
dependent time for improvement by further incoming orders. As we have seen
in detail in Section 5, the performance depends on the load by an inverse power
law.

We assume a Gaussian distribution of dOr ∼ N (φ(λ), σ2
φ(λ)) and set the

departure time of a route to

τr(d
O
r , λ) = τ earliestr + (τ latestr − τ earliestr ) · Φ

(
dOr − φ(λ)

σφ(λ)

)
, (9)

where Φ is the cumulative normal distribution function. For example, when dOr
corresponds exactly to the expected mean order delivery time φ(λ) in the given
load situation, the departure time of r will be set to (τ earliestr + τ latestr )/2, the
middle of the route departure time slack. We estimate σφ(λ) by calculating
sample standard deviations from our experiments described in the previous
section.

We will refer to the three different strategies as τ -earliest, τ -latest, and
τ -route.

7 Double Horizon Approach

This approach adopts from Mitrović-Minić et al. [8] the idea of considering in
the optimization two planning horizons simultaneously, a short horizon and a
large horizon. In the Large Horizon Planning (LHP), which we always perform
as first step, we consider a strongly simplified approximate problem variant of
DYN-t̃ where, in addition to all available requests, also all the expected future
requests for either the whole day or at least several hours into the future. The
primary goal is to make a rough plan on the utilization of the vehicles and
recognize times where we might exceed the available capacity or have enough
time to finish vehicle shifts earlier. A detailed routing is not done in the LHP.
The short horizon problem corresponds to our definition of DYN-t̃ so far but
utilizes an adapted objective function that includes additional terms defined
by the LHP’s results in order to meet the long-term goals as closely as possible.
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In our case decisions on the labor time to be used beyond the minimum q0u for
each vehicle are most critical in the long-term in order to avoid later deliveries
becoming tardy due to insufficient driving resources for the given workload.

We therefore define and solve the following LHP subproblem at time t̃ in
order to derive target shift end times q̃u for each vehicle u ∈ U . We consider
as V all currently relevant orders of the current DYN-t̃ plus expected orders
V exp for the remaining day. These expected orders are artificially created ac-
cording to the estimated numbers of orders becoming available per hour ω̂(t),
equidistantly spaced over each hour. For each of these orders we further derive
a due time randomly based on the distribution of expected order types and
their promised maximum delivery times.

Let z : R+ → R+ be a function that estimates the average shift duration
needed to serve one order v ∈ V ∪V exp within the current hour of t̃ and a few
subsequent hours, assuming a reasonable routing and an average number of
available orders. The basis for z is the mean order delivery time φ(λ) derived
from the routes with latest departure time strategy as presented in Section
5. To account for a slight increase due to waiting times in the depot and an
intermediate departure time strategy, we introduce an additional factor ζ ' 1.
With Λ(t) being the load at hour t, we then calculate a weighted average to
estimate the average shift duration

z(t̃) = ζ ·
∑t̃+ρ

t′=t̃
Λ(t′) · φ(Λ(t′))∑t̃+ρ

t′=t̃
Λ(t′)

, (10)

with ρ corresponding to three hours in our implementation. We make the
strongly simplifying assumption that any order v can be independently served
by any available vehicle within time z(t̃) from trelv onward. Each vehicle’s shift
is split into successive time slots of duration z(t̃), and in each of these time
slots one order can be served. This implies that we do not allow arbitrary
start times to serve orders but only times that are multiples of z(t̃) away from
a vehicles’ shift start time (or t̃). We do not have a strict last slot, i.e., in
principle further orders to be served might always be appended to a vehicles
shift. An instructive visualization of the LHP’s view on an example DYN-t̃
instance is provided in Figure 4.

A solution to our LHP is a complete assignment of all the orders V ∪V exp to
vehicle slots. As actual delivery time of an order we consider the respective time
slot’s middle point, i.e., the time slot’s start time plus z(t̃)/2. The objective
function corresponds to our main objective function (4), but as we do not
consider routing the last travel time term is omitted.

This LHP is heuristically solved by a greedy assignment procedure, in
which orders are assigned in increasing due-time always to the earliest feasible
time slot of a vehicle that increases the objective the least. In case of ties,
a vehicle u ∈ U whose end of the shift exceeds q0u the least, i.e., where the
vehicle’s excess labor time is smallest, is chosen. This aspect automatically
balances the deviations from the planned shift times among the vehicles if
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t̃ q0

q̃
t

u

Fig. 4 View on an example DYN-t̃ problem instance as seen by the large horizon planning.
The x-axis represents the time, discretized by time slots of the average expected shift time
needed to deliver an order z(t̃). The drivers that are still available at or after t̃ are stacked on
the y-axis. Blue rectangles indicate orders that have already been delivered or are en route.
Brown rectangles represent greedily assigned orders, either real (available at the moment)
or expected up until the end of the planning horizon. The maximum of the earliest shift end
time q0u and the latest assigned order define for each driver the target shift end time q̃u. For
the last four drivers q0 is exceeded, since otherwise tardiness would have arisen. Note that
unassigned slots may occur if no more orders are ready for delivery at that time.

there are no particular other reasons such as avoiding tardy orders. Further
ties are resolved randomly by a random processing order of the vehicles.

The obtained shift end times of this solution, i.e., the end times of the last
used time slots of each vehicle, are finally used as target shift end times q̃u,
for all u ∈ U in the short horizon optimization, i.e., the ALNS from Section 4.

This is achieved by augmenting objective function (4) to

f̃(〈R, τ, q〉)) = f(〈R, τ, q〉) + γ ·
∑
u∈U

Qu (11)

with

Qu = −min(qu − q0u, q̃u − q0u). (12)

This non-positive term can be seen as bonus that exactly compensates any
arising labor time costs above q0u up to the target time q̃u for each vehicle
u ∈ U . Thus, the time up to q̃u can be used “for free”. Note that the factor
γ by which the bonus is multiplied is the same as by which the labor time is
weighted in (4).

8 Shift Ending Strategies

In the online problem, we also have to decide if a shift should be ended by
sending a driver (vehicle) u ∈ U home, providing this is allowed, i.e., t̃ ≥ q0u,
u is in the depot, and no more routes are planned for u, or if the driver has to
wait at the depot to possibly receive further orders. Again, two naive strategies
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are immediately available: The first option is to send a vehicle u home as early
as possible, i.e., after its last so far planned route or at q0u, whichever comes
later. This is also the default of the insertion heuristic. The other extreme is
the latest strategy that waits until qendu in any case, even if the last route ends
before qendu . The earliest strategy seems to be an attractive choice, since we can
save labor costs and during peak hours, it is likely that a vehicle has already
a next route planned during its current route, therefore it is not sent home
prematurely when arriving at the depot, if there is still enough work to do.

A more sophisticated approach makes use of the estimated shift end times
q̃ provided by the LHP. The earliest shift end time is then modified to be
q̃u − d̃, where d̃ is a threshold duration of an efficient route. The rationale is
that if a vehicle cannot start a somewhat efficient route that ends before its
target shift end q̃u, it is better to send it home.

We will refer to the three different strategies as q-earliest, q-latest, and
q-LHP.

9 Computational Study

We conducted all our experiments on Intel Xeon E5-2640 processors with
2.40 GHz in single-threaded mode and a memory limit of 8 GB. We imple-
mented our approach as a prototype in Python 3.7, being aware that an im-
plementation in a compiled language would be substantially faster and have a
smaller memory footprint. We consider six different instance classes, each with
20 instances: Artificial instances1 on the Euclidean unit disk as described in
Section 5 using either a business day (BD) or a weekend (WE) load profile with
generous (GE), tight shift planning (TI), and with a shortage (SH) of drivers.
The idea is to observe the transition from a more generous shift planning to a
tighter one and simulating a driver being absent on short notice where in the
latter cases more tardiness is expected to occur. Furthermore, in the generous
case, dynamically ending shifts earlier is expected to have more impact where
in the tight case shifts are more likely to be extended by starting long routes
shortly before the ending.

We aim at comparing the performance of the naive earliest and latest
strategies with the more sophisticated LHP and driver performance based
route departure strategy on those DYN problem instances. In each case, we
apply the ALNS with a limit of 1000 non-improving iterations and addition-
ally a 60 seconds time limit for route optimization at each arriving order. This
should be consistent with a real-time setting, where orders may arrive every
minute during peak-time or on weekends and routes already including them
should occasionally be started within a minute. Without LHP and driver per-
formance estimation, we are restricted to naive earliest and latest strategies
regarding the departure time of a route and the early shift termination. LHP
extrapolates until the end of the horizon to set desired shift ending times for

1 https://github.com/nfrohner/pdsvrpddsf
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Algorithm 1: Simulated DYN Problem Solver with ALNS and LHP.

Input: Orders V , drivers U , shift starts qstart, earliest shift ends q0, planned shift
ends qend, hourly expected number of orders ω̂, travel time matrix δ, mean
order delivery time φ, efficient route threshold duration d̃.

Output: Solution 〈R, τ, q〉 with routes R, route departure times τ , and actual shift
end times q for the whole day.

1 V deliv ← {};
2 Uhome ← {};
3 R′ ← ()u∈U , τ

′ ← ()r∈R′ , t̃′ ← 0, q̃ ← qend;

4 〈R, τ, q〉 ←
〈
R′, τ ′, q0

〉
;

5 foreach t̃ ∈
{
t | ∃v ∈ V : t = trelv

}
∪ {∞} do

6 foreach (u, r) ∈ R′ : t̃′ ≤ τ ′r < t̃ do
7 V deliv ← V deliv ∪ {vr1 , . . . , vrlr};
8 〈R, τ, q〉 ← 〈R, τ, q〉 ⊕ (r, τ ′r);

9 qstartu ← u’s return time at depot after t̃;

10 end

11 Uhome, q ← SENDHOME(t̃, t̃′, Uhome, U \ Uhome, qstart, q0, qend, q̃, d̃);

12 V avl ← {v ∈ V \ V deliv : tavlv ≤ t̃};
13 q̃ ← LHP(t̃, V avl, U \ Uhome, ω̂, φ, qstart, q0, qend);

14 〈R′, τ ′, q〉 ← ALNS(t̃, V avl, U \ Uhome, qstart, q0, qend, q̃, δ);
15 τ ′ ← DEPART(R′, φ);

16 t̃′ ← t̃;

17 end
18 return 〈R, τ, q〉;

each driver, using an estimation of the average driver performance in the win-
dow of the current and the upcoming three hours. The target shift ending
times may be before the planned shift ends to send drivers home early or after
them so that extending shifts is favored via the augmented objective function.

In Algorithm 1 we list a high-level pseudo-code of the simulated DYN
problem solver, combining the previously explained approaches based on the
LHP and route performance. The main loop goes over all times t̃ where an
order is released, where the first inner loop checks whether routes have been
started between the last and the current t̃. If so, they are added to the current
solution, the corresponding orders are removed, and the drivers’ shift starts
are set to their return times at the depot. Afterwards, drivers are sent home,
if their target shift end time reduced by the efficient route threshold q̃ − d̃
passed and they have no further routes planned. Then the route construction
and optimization begins with the large horizon planning to update the q̃. It
further continues with the ALNS—the optimization workhorse—that creates
routes for the currently available and not yet delivered orders. Finally, the
departure time of the planned routes is set according to the route performance
strategy (more efficient routes are planned to start earlier).

In Table 1, we present the main results of our computational study. We
compare for the different combinations of our approaches means and standard
deviations of the number of tardy orders ntardy, the root mean squared error
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Fig. 5 Comparison of the root mean square error of the tardiness in minutes, the travel
time duration, and the excess labor time of different solution strategies (without offline
solution) on six different instances classes with 20 instances each. We observe that the more
sophisticated strategies based on LHP and the route performance decreases the tardiness
at the cost of carefully introducing additional travel time (regarding which τ -latest is best)
and labor time (where q-earliest is best).

(RMSE) of the tardiness in minutes, the total travel time in hours, the labor
time exceeding q0u in hours, the average route duration d̄, and the average route
performance (labor time to serve an order without waiting time) in minutes
dOr . The offline (full knowledge of the day) results (OFF) where we applied
ALNS to convergence with a limit of 1000 non-improving iterations without
additional time limit provide a performance baseline. All the other results
are for the DYN-DAY problem variant and we see that the offline baseline is
somewhat out of reach, which is not too surprising due to the substantially
restricted knowledge that can be exploited in the online variant. Despite hav-
ing used a lexicographic optimization approach, where distributing tardiness
evenly and reducing it was the single most important objective, we analyze the
results in the sense of a multi-objective optimization problem. Small amounts
of tardiness for a few customers may in practice be acceptable when real costs
may be substantially reduced. In Figure 5, we visualize the results by box-
plots of the tardiness, travel time, and labor time, for the different solution
strategies (excluding the offline problem) on the six different instance classes.

We observe that the τ -latest strategy provides the best route performances
and therefore smallest travel costs but sometimes runs into troubles regarding
tardiness, where a τ -earliest strategy would have been beneficial. Similarly, the
q-latest strategy provides the most shift time resources allowing to reduce tar-
diness, as opposed to the q-earliest strategy. The goal of τ -route is to balance
between the extremes of the τ determination strategies considering the load de-
velopment of the day. Likewise, the q-LHP strategy should provide additional
shift resources regarding the flexibility of shift endings times only when neces-
sary. We observe that the τ -route strategy sacrifices a slight amount of route
quality in exchange for substantially less tardiness. Likewise, the LHP care-
fully provides additional labor time to be used to reduce tardiness. Combining
both strategies results in a reasonable trade-off over all the instances classes,
where a decision maker may also select a suitable combination of strategies
given the load and shift structure of the day.
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Table 1 Offline problem performance (OFF) and different solution strategies applied to
20 artificial instances for each configuration using either a business day (BD) or a weekend
(WE) load profile with either generous, tight, or shift planning with a driver shortage.

ntardy RMSE [min] dur [h] lab [h] d̄ [min] dOr [min]

mean std mean std mean std mean std mean std mean std

load shift solving strategy

BD generous τ -earliest, q-earliest 4.500 4.536 0.680 0.798 98.134 3.580 1.491 1.069 56.425 4.315 18.386 0.692

τ -earliest, q-latest 3.850 4.771 0.592 0.795 98.087 3.984 11.940 0.698 55.930 3.707 18.372 0.631

τ -latest, q-LHP 6.250 6.257 1.107 1.208 88.221 4.447 2.685 1.199 74.935 2.832 16.512 0.426

τ -latest, q-earliest 7.600 6.065 1.157 1.091 87.716 4.443 1.673 0.889 74.745 2.818 16.420 0.479

τ -latest, q-latest 5.900 5.937 1.028 1.237 87.980 5.210 11.974 0.722 75.460 2.792 16.463 0.574

τ -route, q-LHP 4.400 4.604 0.841 1.134 89.369 4.568 2.197 1.560 71.340 2.113 16.728 0.483

τ -route, q-latest 4.350 4.782 0.757 1.082 89.956 4.241 12.036 0.797 70.060 2.398 16.839 0.379

OFF 0.550 1.572 0.056 0.174 78.897 4.763 0.377 0.479 64.170 2.039 14.760 0.384

shortage τ -earliest, q-earliest 19.950 16.804 3.991 4.966 91.863 4.294 8.334 3.843 63.415 4.985 17.259 0.468

τ -earliest, q-latest 19.100 13.726 3.381 2.568 92.763 4.305 14.775 2.426 62.930 4.941 17.430 0.533

τ -latest, q-LHP 14.800 10.928 2.705 2.915 88.099 4.742 12.262 3.854 74.640 3.749 16.544 0.350

τ -latest, q-earliest 26.200 14.207 4.179 2.747 87.507 5.044 9.946 4.296 74.355 4.007 16.430 0.370

τ -latest, q-latest 22.737 16.562 3.551 2.820 87.524 5.038 15.406 2.073 72.126 3.019 16.505 0.426

τ -route, q-LHP 15.450 11.019 2.546 2.525 89.483 4.717 11.454 4.103 71.270 3.763 16.806 0.388

τ -route, q-latest 18.150 11.864 2.988 2.338 89.992 4.691 16.304 2.145 70.045 3.622 16.903 0.375

OFF 2.050 5.826 0.255 0.721 81.655 4.358 4.671 3.230 57.595 1.676 15.336 0.400

tight τ -earliest, q-earliest 14.158 10.673 2.720 2.928 93.582 3.530 6.319 2.803 62.416 4.261 17.507 0.746

τ -earliest, q-latest 10.950 8.003 2.847 4.480 94.496 3.263 14.236 1.601 61.630 3.886 17.670 0.725

τ -latest, q-LHP 14.300 11.855 2.139 1.923 89.265 5.296 9.496 3.458 73.180 2.846 16.667 0.477

τ -latest, q-earliest 17.150 9.544 2.959 2.341 88.868 5.074 7.920 2.934 72.865 2.211 16.593 0.457

τ -latest, q-latest 13.900 9.754 2.466 2.179 88.732 4.822 14.810 1.636 70.945 2.330 16.571 0.514

τ -route, q-LHP 8.950 6.117 1.843 2.098 90.030 4.238 8.883 2.960 70.370 2.580 16.818 0.452

τ -route, q-latest 10.105 7.880 2.028 2.542 90.265 4.403 14.728 1.231 68.816 1.937 16.870 0.509

OFF 0.700 2.904 0.115 0.512 82.371 5.380 3.273 2.645 58.400 2.307 15.374 0.420

WE generous τ -earliest, q-earliest 2.400 3.267 0.420 0.539 145.071 3.794 1.213 1.660 62.140 3.102 17.008 0.504

τ -earliest, q-latest 1.750 2.900 0.273 0.435 145.130 3.561 15.889 0.853 61.985 3.286 17.021 0.634

τ -latest, q-LHP 2.850 2.661 0.701 1.056 132.071 4.851 2.024 1.885 76.835 2.059 15.477 0.343

τ -latest, q-earliest 2.850 2.978 0.745 1.112 132.159 5.094 1.715 1.753 76.580 2.008 15.486 0.334

τ -latest, q-latest 1.600 2.137 0.358 0.531 132.161 4.962 16.099 0.859 76.015 1.727 15.488 0.335

τ -route, q-LHP 2.450 2.837 0.455 0.551 134.841 4.713 1.820 1.657 73.420 2.295 15.800 0.329

τ -route, q-latest 1.650 2.641 0.271 0.411 134.682 4.460 16.286 1.248 73.945 1.934 15.787 0.435

OFF 0.000 0.000 0.000 0.000 118.698 5.720 0.197 0.407 67.455 2.253 13.902 0.291

shortage τ -earliest, q-earliest 12.950 9.801 1.743 1.817 139.469 3.321 9.636 2.564 67.160 3.392 16.167 0.597

τ -earliest, q-latest 7.400 5.623 1.475 2.305 139.888 3.335 19.844 1.440 66.135 2.164 16.215 0.571

τ -latest, q-LHP 9.900 7.440 1.077 0.923 132.993 3.421 12.833 2.534 77.185 1.991 15.411 0.350

τ -latest, q-earliest 14.250 9.107 1.527 1.578 132.510 3.574 11.427 2.400 75.295 1.975 15.354 0.380

τ -latest, q-latest 11.700 9.985 1.632 1.878 132.087 3.426 20.397 1.485 75.850 2.883 15.305 0.320

τ -route, q-LHP 8.100 8.534 0.924 1.048 135.573 3.432 12.724 3.585 74.550 1.673 15.711 0.413

τ -route, q-latest 7.400 8.068 1.042 0.898 136.989 3.011 22.970 1.615 73.765 1.808 15.875 0.371

OFF 0.350 0.988 0.032 0.130 123.384 3.617 4.860 2.077 61.880 1.426 14.296 0.330

tight τ -earliest, q-earliest 12.200 16.938 2.372 3.017 141.820 3.805 8.029 3.336 64.295 3.578 16.608 0.526

τ -earliest, q-latest 8.350 7.707 1.558 1.924 142.144 4.282 19.164 1.851 64.055 3.246 16.643 0.528

τ -latest, q-LHP 7.050 8.587 1.121 1.442 133.109 5.952 11.178 4.118 76.335 2.057 15.575 0.261

τ -latest, q-earliest 10.850 10.246 2.109 2.531 132.394 5.840 9.369 3.762 75.115 1.923 15.490 0.285

τ -latest, q-latest 8.500 8.237 1.955 2.667 132.156 5.971 19.720 1.794 73.955 2.546 15.462 0.311

τ -route, q-LHP 6.050 6.739 1.113 1.610 135.414 5.522 10.216 4.080 73.805 1.910 15.848 0.365

τ -route, q-latest 5.050 6.700 1.021 1.536 136.518 4.566 21.582 1.895 73.285 2.089 15.980 0.347

OFF 0.800 2.118 0.079 0.189 122.279 6.193 3.716 2.530 62.540 1.653 14.303 0.285

For τ -latest, q-LHP we use ζ = 1.2 to convert the route performance values
to the average time to serve an order as described in Section 7, and for τ -route,
q-LHP ζ = 1.15. This is only a naive transformation rule. Further research
is needed regarding the driver performance estimation, especially since the
waiting time, the route departure strategy, and the driver performance have
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an immanent cyclic dependency. The parameters used for the three-parameter
inverse power law model to estimate the route performance φ(λ) given the
load λ are tuned by means of least squares optimization to kl = 23.144, km =
3.951, α = 0.174, with a 25% estimated constant relative standard deviation.
For the driver send home strategy, d̃ is set to 55 minutes.

10 Conclusions

We considered a purely dynamic and stochastic vehicle routing problem with
delivery deadlines and shift flexibility arising from a real-world application.
Orders arrive at an online store throughout the day, regarding which we have
stochastic knowledge by means of hourly estimates. They have to be delivered
within only a few hours by drivers deployed at a single depot. The goal is to
reduce or evenly spread tardiness if not avoidable among the customers and to
minimize travel and labor costs. Drivers may be sent home early or have their
shifts extended to some degree to account for the uncertainty of the load.

Our proposed double-horizon approach is able to effectively address the
dynamism and stochasticity of the problem. The large horizon planning with
its simplified order-to-drivers assignment is able to derive meaningful target
shift end times. These are exploited in the short horizon planning—the actual
routing performed by ALNS—by augmenting its objective function, releasing
additional shift resources in an informed way.

Another important aspect is to determine the route departure times, where
neither the naive earliest nor the latest strategy suffices. We devised a more
balanced strategy that estimates the expected route performance (average
time per order in a route) depending on the current load and start routes
earlier that are already close to the desired performance and later when the
performance is worse.

The combination of both approaches leads to superior performance over
the naive strategies or allows for trade-offs regarding substantially reduced
travel and labor time versus a slight amount of more tardiness on artificially
created instances for different load profiles (business day vs weekend) and shift
plans (generous vs tight vs shortage).

Further research is needed to improve the estimation of the driver perfor-
mance over the day, especially for real delivery areas in a city, also studying the
impact of traffic. This is also a basis for the accuracy of the LHP. A difficulty
lies in the cyclic dependency between the driver performance estimation and
the route departure strategy, where we used a bootstrapping mechanism by
fitting a function on idealized randomized instances, incorporating the driver
waiting times by a constant factor over the whole day to pragmatically resolve
this in a first step.

Acknowledgements We thank Daniel Obszelka for numerous fruitful discussions and the
implementation and tuning of the destroy operators. We thank the anonymous reviewers for
their valuable feedback resulting in several improvements of this work.



A Double-Horizon Approach to a Purely Dynamic Stochastic VRP 19

References

1. Azi, N., Gendreau, M., Potvin, J.Y.: An adaptive large neighborhood search for a vehicle
routing problem with multiple routes. Computers and Operations Research 41(1), 167–
173 (2014)

2. Beardwood, J., Halton, J.H., Hammersley, J.M.: The shortest path through many points.
In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 55, pp. 299–
327. Cambridge University Press (1959)

3. Bent, R.W., Van Hentenryck, P.: Scenario-based planning for partially dynamic vehicle
routing with stochastic customers. Operations Research 52(6), 977–987 (2004)

4. Daganzo, C.F.: The distance traveled to visit n points with a maximum of c stops per
vehicle: An analytic model and an application. Transportation science 18(4), 331–350
(1984)

5. Figliozzi, M.A.: Planning approximations to the average length of vehicle routing prob-
lems with varying customer demands and routing constraints. Transportation Research
Record 2089(1), 1–8 (2008)

6. Gendreau, M., Guertin, F., Potvin, J.Y., Taillard, É.: Parallel tabu search for real-time
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