
A Beam Search Approach to the
Traveling Tournament Problem

Nikolaus Frohner, Bernhard Neumann, and Günther R. Raidl

Institute of Logic and Computation, TU Wien, Vienna, Austria
{nfrohner|raidl}@ac.tuwien.ac.at, e1634034@student.tuwien.ac.at

Abstract. The well-known traveling tournament problem is a hard op-
timization problem in which a double round robin sports league schedule
has to be constructed while minimizing the total travel distance over all
teams. The teams start and end their tours at their home venues, are
only allowed to play a certain maximum number of games in a row at
home or away, and must not play against each other in two consecutive
rounds. The latter aspects introduce also a difficult feasibility aspect.
In this work, we study a beam search approach based on a recursive
state space formulation. We compare different state ordering heuristics
for the beam search based on lower bounds derived by means of decision
diagrams. Furthermore, we introduce a randomized beam search variant
that adds Gaussian noise to the heuristic value of a node for diversifying
the search in order to enable a simple yet effective parallelization. In our
computational study, we use randomly generated instances to compare
and tune algorithmic parameters and present final results on the classi-
cal National League and circular benchmark instances. Results show that
this purely construction-based method provides mostly better solutions
than existing ant-colony optimization and tabu search algorithms and it
comes close to the leading simulated annealing based approaches without
using any local search. For two circular benchmark instances we found
new best solutions for which the last improvement was twelve years ago.
The presented state space formulation and lower bound techniques could
also be beneficial for exact methods like A∗ or DFS∗ and may be used
to guide the randomized construction in ACO or GRASP approaches.

Keywords: Traveling Tournament Problem · Beam Search · Decision
Diagrams

1 Introduction

In 2001, Easton, Nemhauser, and Trick [4] introduced the traveling tournament
problem (TTP). It concerns the construction of a double round robin schedule
for a sports league, where the sum of the travel distances over all teams shall be
minimized. Teams start and end at their respective home venues and are assumed
to always travel directly from their current position to their next designated game
venue, which is either at home or away. They are only allowed to play a certain
maximum number of games away or at home consecutively, and two teams must

2 Nikolaus Frohner, Bernhard Neumann, and Günther R. Raidl

not play against each other in two subsequent rounds. These aspects make even
finding any feasible schedule in general difficult. At the time of writing, proven
optimal solutions have been found for classical benchmarks instances with up
to ten teams, but not for twelve and more teams, as stated on Michael Trick’s
TTP web page1.

Due to the problem’s complexity, many different metaheuristics have already
been suggested to solve larger instances approximately. Neighborhood search
based approaches as tabu search [3] or simulated annealing [1,14] provide par-
ticularly strong results. In this contribution, we present a beam search based on
a new recursive state space formulation of the problem. We compare different
lower bound heuristics to order the nodes in a layer of the state graph, which
is traversed in breadth-first-search manner. Competitive results can be achieved
with a randomized variant of the beam search in which we add noise to the
heuristic estimates. This randomization enables a simple yet effective execution
of multiple diversified beam search runs in parallel.

In Section 2 we summarize the work on which our new approach is based,
specifically worth mentioning are the papers of Uthus, Riddle, and Gues-
gen [11,12,13], which broadly fall into the class of tree search based techniques.
In particular, we build upon their bound pre-calculation method. We formally
introduce the TTP in Section 3 and give an associated state space formulation
in Section 4, which differs from integer programming or constraint programming
formulations primarily used so far. A state may be reached by different partial
schedules and determines the feasible completions to a complete schedule, which
allows to detect and break symmetries on the go. Section 5 is concerned with the
schedule construction algorithm on the state graph using beam search driven by
lower bounds that are derived from the states. These lower bounds are calcu-
lated by solving either an associated traveling salesperson problem (TSP) or a
capacitated vehicle routing problem (CVRP) independently for each team; the
latter corresponds to the well-known independent lower bound (ILB) introduced
by Easton et al [4].

We introduce a method to pre-calculate lower bounds for all states by means
of decision diagrams. Moreover, we show in Section 6 how these bounds can be
further tightened using the minimum number of trips (MNT) bound introduced
by Urrutia et al. [10]. Section 7 presents computational results. We tune algo-
rithmic parameters and compare the performance of different algorithm variants
on randomly generated instances on a two-dimensional grid, and conduct final
tests on the classical benchmark instances derived from teams of the US Major
League Baseball (NL) and the circular instances (CIRC) [4]. We observe that
our purely constructive approach, which does not make use of any local search,
delivers competitive results. In particular, we could find new best solutions for
two circular instances. Finally, we conclude in Section 8 and make suggestions
for further research.

1 https://mat.tepper.cmu.edu/TOURN/

https://mat.tepper.cmu.edu/TOURN/

A Beam Search Approach to the TTP 3

745

665

929

60
5

521

80

337

1090

315

380

1020

25
7

13
80

408

1010

0

1

2

3

4

5

5 −3 2 6 −1 −4
−3 6 1 5 −4 −2
−2 1 −4 3 −6 5
−5 3 −2 −6 1 4

4 −5 6 −1 2 −3
2 −1 4 −3 6 −5
6 −4 5 2 −3 −1
−4 5 −6 1 −2 3
−6 4 −5 −2 3 1

3 −6 −1 −5 4 2

Fig. 1. Left: The NL6 problem instance from [4] shown as complete undirected graph.
Right: A feasible double round robin tournament schedule represented by a (2n−2)×n
matrix, where the value j of entry (r, i) corresponds to the game i→r |j|, if j is negative,
otherwise to the game j →r i.

2 Previous Work

The TTP itself, together with the NL and CIRC benchmark instances, and the
ILB were introduced by Easton et al. [4]. The MNT lower bound was proposed
by Urrutia et al. [10] including an algorithm to calculate it. Uthus et al. [13] sug-
gested an exact iterative deepening A∗ search, which allowed them to solve the
NL instance with ten teams to proven optimality. Their approach features spe-
cial symmetry breaking techniques, memoization, and was performed in parallel
on 120 processors for a wall time of roughly 67 hours.

From this work, we adopt the method to pre-calculate independent lower
bounds for states to occur during the state space traversal. We aim at solving
larger instances approximately and compare our beam search results therefore
to the results of today’s state-of-the-art metaheuristic approaches, which are the
simulated annealing from [1], the tabu search from [3], the ant colony optimiza-
tion from [11], and the population-based simulated annealing from [14], where
the latter found the so far best solutions for the larger NL and CIRC instances
using a cluster consisting of 60 nodes.

For beam search in general, see, e.g., [6]. For a thorough introduction to
decision diagrams in combinatorial optimization, we recommend the book by
Bergman et al. [2].

3 Problem Formalization

We are given a set V = {1, . . . , n} of n teams, where n is even, and a distance
matrix d where d(i, j) is the traveling distance from team i’s home venue to team
j’s home venue, i, j ∈ V . The goal is to find a double round robin tournament
schedule, where every team plays at most U games subsequently at home or
on the road (at-most), respectively, teams must not play against each other in
subsequent rounds (no-repeat), and the total travel distance over all teams is to
be minimized. Each team starts and ends at its home venue.

4 Nikolaus Frohner, Bernhard Neumann, and Günther R. Raidl

Adopting the formulation of [8], we see the teams V as vertices of a complete
weighted directed graph G = (V,A), where the weights are given by the distance
matrix d. A double round robin schedule T is an ordered 1-factorization T =
(G1 = (V,A1), . . . , G2n−2 = (V,A2n−2)) of G, which is an ordered partitioning of
the arcs into 2n−2 perfect matchings (1-factors). An arc (i, j) (or i→r j) denotes
that team i plays against team j at j’s venue in round r, r = 1, . . . , 2n− 2. The
location of team i in round r is denoted pri ∈ V and determined by the single arc
in Ar incident to team i. The objective value of a schedule T is the total travel
distance given by

z(T) =

n∑
i=1

(
d(i, p1i) +

2n−2∑
r=2

d(pr−1i , pri) + d(p2n−2i , i)

)
. (1)

Throughout this paper and as in most previous work, we only consider U = 3,
for which Thielen and Westphal [9] have shown strong NP-completeness in the
corresponding decision variant of the problem.

Figure 1 shows on the left an example instance with n = 6 teams depicted
as an undirected complete graph (distances are here assumed to be symmetric).
A corresponding feasible TTP schedule is shown on the right, represented as a
(2n− 2) = 10 rounds by six teams matrix, denoting the opponent and venue for
each round and team.

4 State Space Formulation

We model the solution space, i.e., the set of feasible schedules of a TTP instance
(V, d), by a state graph. This is a rooted directed acyclic graph representing
the feasible schedules by corresponding paths from a root state to a dedicated
terminal state. The states (nodes) are organized into n2 − n + 2 layers, where
layer 0 only contains the root state sr, layer n2 − n+ 1 only the terminal state
st, and layers l = 1, . . . , n2 − n contain states representing the situations after
the l-th played game.

Each state is a tuple (Ms,ys, rs,xs,hs,os), where Ms = (Ms
i,j)i,j∈V ∈

{0, 1}n×n is an incidence matrix that indicates the games left to be scheduled
and vectors ys = (ysi)i∈V , rs = (rsi)i∈V , xs = (xsi)i∈V , hs = (hsi)i∈V , and
os = (osi)i∈V represent for each team i the currently forbidden opponent ysi , the
current round rsi , its location xsi , and the number of still possible home or away
games left to play in a row hsi and osi , respectively. The forbidden opponents ys

are used to implement the no-repeat constraint and hs and os to take care of
the at-most constraints. Moreover, this information contained in a state implies
for each team i ∈ V the set P si of the games that can be played next without
violating the TTP constraints.

A state transition from a state s at layer l to a state s′ at layer l + 1,
l = 0, . . . , n2 − n, corresponds to a specific game i →r j being played by teams
i and j at j’s venue in round r. Each state transition is weighted by the sum

A Beam Search Approach to the TTP 5

Partial schedule

5 −3 2 6 −1 −4
−3 6 1 5 −4 −2
−2 1 −4 3 −6 5
− − − − − −
− − − − − −
− − − − − −
− − − − − −
− − − − − −
− − − − − −
− − − − − −

Ms =

0 0 0 1 1 1
1 0 0 1 1 1
1 1 0 0 1 1
1 1 1 0 1 1
0 1 1 0 0 1
1 0 1 0 1 0

→ Ms′ =

0 0 0 1 1 1
1 0 0 1 1 1
1 1 0 0 1 1
1 1 1 0 1 1
0 1 1 0 0 0
1 0 1 0 1 0

xs =

1
1
3
3
3
1

→ xs′ =

1
1
3
3
5
5

 os =

1
3
2
3
1
1

→ os′ =

1
3
2
3
0
3

 hs =

3
1
3
0
3
3

→ hs′ =

3
1
3
0
3
2

Fig. 2. Left: Exemplary partial schedule for an instance with six teams before ending
the third round, for which the teams six and five (in bold) are selected to play the next
game. Right: Corresponding state updates where in the matrix of the games left the
currently forbidden games implied by ys,os,hs are grayed out. We omitted rs and ys

for space reasons.

of the distances both teams have to travel from their previous locations to play
the game

∆z(s, s′) = d(xsi , x
s′

i) + d(xsj , x
s′

j). (2)

Teams for the game are selected in a way that the partial schedule grows round
by round in ascending order where each round is completed before the next
one starts. All paths starting from the root state and leading to the terminal
state correspond to feasible solutions. Paths that end before the terminal state
at a state without further transitions represent partial schedules that cannot be
feasibly continued. A shortest path from the root to the terminal state therefore
corresponds to an optimal feasible solution for a given problem instance.

We introduce two special rounds r = 0 and r = 2n−1 where every team is at
its home location. Let Msr be the matrix with non-diagonal ones and diagonal
zeros, corresponding to all games to be played, and matrix Mst be the all-zeros
matrix. If there is no forbidden opponent for a team i ∈ V in state s, then
ysi is set to −1. The root state is then sr = (Msr ,ysr = (−1, . . . ,−1), rsr =
(0, . . . , 0),xsr = (1, . . . , n),hsr = (U, . . . , U),osr = (U, . . . , U)) and the ter-
minal state st = (Mst ,yst = (−1, . . . ,−1), rst = (2n − 1, . . . , 2n − 1),xst =
(1, . . . , n),hst = (0, . . . , 0),ost = (0, . . . , 0)). Transitions to the terminal state
are special in the sense that they do not correspond to played games but just to
going back to the teams’ home venues.

Transitions from a state s at some layer l to a subsequent state s′ at layer
l + 1 are done by selecting a game (i, j) ∈ P si (or (j, i)) where we impose the
condition ri = rj = mini∈V ri. This ensures that the teams are in the same
round and games are assigned to teams round by round. If there exists a dead
team i with P si = ∅, our current state has no feasible completion. Since there is
no meaning in which order we select the teams in a specific round r, we break

6 Nikolaus Frohner, Bernhard Neumann, and Günther R. Raidl

this symmetry by defining a specific team permutation π : V → V . At each state
of layer l, a game from P sπi

has to be played for which i and rπi
are minimal. A

trivial ordering is the lexicographic ordering of the teams.
Selecting the game (i, j) yields state s′ with Ms′ being a copy of Ms except

that Ms′

i,j = 0, which implicitly removes this game from P s
′

i and P s
′

j as well.
The position, round, and streak related information of i and j is updated from s
to s′ accordingly. To respect the no-repeat constraints, the forbidden opponent
vector ys is copied to ys

′
except that ys

′

i = j and ys
′

j = i, if Ms
j,i = 1; otherwise

these values are set to −1. For every other team k ∈ V \ {i, j}, ys′k = −1 is set

if ysk ∈ {i, j}. The at-most constraints are already implied by the updates in os′

and hs′ . If os
′

i = 0, then away games are not allowed in the next round for team

i; analogously, a continuation of j’s home stand is not allowed, if hs
′

j = 0.
An exemplary state transition is shown in Fig. 2 for an instance with six

teams before and after ending the third round with the game (5, 6). We see that
team five hits its away streak limit and all its away games are not available for
the next round and that the game (6, 5) is forbidden.

5 Beam Search

We perform a layer-by-layer breadth-first-search traversal of the state graph,
where for each state all permitted games for a selected team are played by per-
forming the respective transitions to corresponding successor states. The current
shortest path value and the corresponding partial schedule are cached for each
state during construction and updated if a shorter path to an already visited
state is discovered.

Due to the complexity of the problem, only instances with four teams ad-
mit a complete construction of the state graph, providing a guaranteed optimal
solution. We therefore restrict the search to an incomplete beam search where
at each layer at most β states are kept for further consideration; parameter β
is hereby called the beam width. In this way the total number of expanded
states is polynomially bounded by O(n2β). The shortest path through such a
restricted state graph then corresponds to a feasible heuristic solution. To guide
the search, in each layer the β most promising states are kept according to some
state ranking heuristic, in the hope that the finally shortest path corresponds to
an optimal or close-to-optimal solution. Classical beam search sorts the states
by an f -value known from A∗ search that combines the length of the currently
shortest path g(s) to the state s with a lower bound b(s) (or heuristic estimate)
for the further continuation to the terminal state:

f(s) = g(s) + b(s) (3)

In our beam search implementation, we only keep the current layer in a queue
and the successive layer in a priority queue sorted according to f that contains at
most the β best successor states so far. The latter is implemented by a maximum
heap combined with a hash map to access arbitrary states in expected constant

A Beam Search Approach to the TTP 7

time. Before creating a successor state, we check in case of a full beam by means
of incremental evaluation whether the potential new state’s f -value is worse
than the worst f -value in the heap. If this is the case, we do not need to consider
the state further. Otherwise we create the successor state and check whether it
already exists in the maximum heap, in which case we conditionally update its
shortest path value and current best partial schedule. If the state was not yet
contained in the heap, we replace its so far worst state by the newly created
successor state. This approach gives us a smaller memory footprint than storing
all created states until termination, allowing us to test higher beam widths. The
current partial schedule is cached along each state in a growing vector.

As will be discussed in detail in Section 6, the lower bound values are also
cached along the state for each team, together with the number of home and
away games left for each team. The latter allow to quickly check whether there
are not enough home games in relation to away games or vice versa to make a
feasible completion.

To allow a simple parallelization of the beam search by independent diversi-
fied runs, we further introduce a randomized variant of the beam search. To this
end we add a normally distributed random offset with standard deviation σ to
each state’s original f -value:

f̃(s) = f(s) +N (0, σ). (4)

The motivation is that states which would be pruned when just considering
their deterministic f -value get a chance to survive, and they may possibly lead
to superior solutions. Initially promising states can also get cut off early by
drawing a too high random offset. Crucial is the standard deviation σ for which
we make the following parameterized ansatz:

σ = σrel · b(sr) (5)

Parameter σrel thus determines the fraction of the lower bound of the root state
to be used as σ, so that the order of magnitude of the expected solution length
of a given instance is respected. Tuning results for this parameter are presented
in the computational study in Section 7.

Algorithm 1 shows our beam search in pseudo-code. next-team(l, s) selects
the team to consider for a given layer l and state s. Trivial options are to take
the lexicographically smallest team that is in a minimal round or to initially fix
a random permutation of the teams.

Procedure feasibility-and-optimality-check(H,β, s, b, ε, (i, j)) incrementally
checks whether the transition would lead to a state for which we know for sure
that it does not have a feasible completion. This is the case when not enough
home or away games are available for a specific team to not violate the at-most
constraint or because one team has an empty possible games set in this round.
The optimality check is done by considering the increase in the f -value by the
move and whether it is worse than the maximal f -value in a full, i.e., containing
β states, maximum heap H—then the transition for game (i, j) does not need

8 Nikolaus Frohner, Bernhard Neumann, and Günther R. Raidl

Input: number of teams n, distance matrix d, root state sr, terminal state st,
noise parameter σrel, state lower bound function b, beam width β

Output: feasible schedule T

1 queue Q← {sr};
2 for l← 1 to n2 − n do
3 H ← empty maximum heap;
4 while Q 6= ∅ do
5 s← Q.pop;
6 t← next-team(l, s);
7 foreach (i, j) ∈ {(i′, j′) ∈ P s

t |rsi′ = rsj′} do
8 ε← N (0, σrel · b(sr));
9 if feasibility-and-optimality-check(H,β, s, b, ε, (i, j)) then

10 s′ ← copy s and make transition by playing (i, j) and updating
state along with cached data accordingly;

11 s′.current schedule← s′.current schedule ∪ (i, j);
12 f(s′)← g(s′) + b(s′) + ε;
13 include s′ into H respecting f(s′);
14 if H.size > β then
15 remove worst element of H;
16 end

17 end

18 end

19 end
20 Q←sorted-by-f-value(H);

21 end
22 if Q 6= ∅ then
23 create going home transitions for all states Q to st;
24 return st.current schedule;

25 else
26 return ∅;

Algorithm 1: Beam search for the TTP.

to be considered and state s′ is not created, which saves a costly state expansion
operation that would require to copy the whole current state and cache variables.

After all successor states have been checked and potentially included into the
heap H, its states are transferred to queue Q, sorted according to state priorities,
and thus these nodes become the new current layer. The sorting is done to fill
the beam earlier with likely better states to increase the odds for rejecting the
creation of successor states during incremental evaluation.

In the next section, we study in detail the crucial part of devising and effi-
ciently calculating a lower bound b for determining the state’s f -value.

A Beam Search Approach to the TTP 9

6 Lower Bounds Calculation

The main idea for obtaining lower bounds is to relax the problem by considering
the tours of all teams independently. Easton et al. [4] already suggested the
independent lower bound (ILB) that applies this principle. This bound neglects
the no-repeat constraints and considers only the away teams for a given team
i ∈ V with only the away at-most constraints. This amounts to a capacitated
vehicle routing problem (CVRP), where the depot is at i’s home venue, the
customers are the away teams with unit demand, and the capacity for the trucks
is U = 3. The CVRP itself is strongly NP-hard but for few customers tractable
in practice.

Given an arbitrary state s and team i, we have to consider the remaining
away teams Asi for i, the position xsi , and the remaining away streak osi . If xsi 6=
i∧osi = 0, then we consider an artificial state in which the team is assumed to have
returned home (this is the only option it has at that moment), osi = min(Asi , U),
and add d(xsi , i) to the resulting bound. Let the optimal total length for this
problem for team i be bCVRP

i (s). Then the sum of the optimal values over all
teams is a lower bound for the optimal value of the corresponding TTP-feasible
completion of s

bCVRP(s) =

n∑
i=1

bCVRP
i (s). (6)

A natural further relaxation is to drop even the away at-most constraints,
which yields a traveling salesperson problem based lower bound bTSP. In this
case, we do not have to consider the current away streak of team i in state s.

To provide better guidance for the beam search, we are more interested
in tighter lower bounds, while keeping their computational costs in mind. A
first natural strengthening is to consider also the home at-most constraints. Let
hlefti = |Hsi | be the number of home games left for team i in state s. Then
we need at least h̃min

i = d(hleft + h̄i)/Ue home stands to accommodate for the
home games, where h̄i is the length of the current home stand. Translated to
the CVRP, this amounts to the constraint that we need to perform at least h̃
non-trivial tours. Analogously, every away streak needs at least one home game
from where it came, minus one if the team is currently at home. This gives us
a maximum to the home stands h̃max

i we can realize from a given state. We
can therefore define a home stand constrained lower bound bCVRPC

i (s, h̃) and
tighten the CVRP bound by finding the minimum within the range of allowed
home stands, summed over all teams resulting in the CVRP with home stands
bound (CVRPH)

bCVRPH(s) =

n∑
i=1

min
h̃∈{h̃min

i ,...,h̃max
i }

bCVRPC
i (s, h̃). (7)

To speed up our beam search, we pre-calculate the lower bounds for the states
that can occur for a given TTP instance, similarly as done by Uthus et al. [13].

10 Nikolaus Frohner, Bernhard Neumann, and Günther R. Raidl

We do this by representing the whole space of feasible solutions to the given
CVRP instance for each team i with an exact multi-valued decision diagram
(DD) [2] and finally store the lower bounds for the states that occurred in a
lookup table. Each node in this DD is associated with a state q consisting of the
away games left to play Aq (represented by the subset of other teams against
which team i still has to play), the team i’s position xq and the current number
of consecutive away games, the away streak ōq. The root state for a given team
i is therefore qr = ({1, . . . , i − 1, i + 1, . . . , n}, i, 0). Transitions are made until
the terminal state qt = ({}, i, 0) is reached, where in every layer, all available
transitions are performed. Hereby we distinguish between three possibilities:

– Select any away team left j ∈ Aq to visit next, if there are such, and go
home afterwards, where costs d(xq, j) + d(j, i) accrue. The state is updated
accordingly to (Aq \ {j}, i, 0).

– If ōq is less than U − 1, then select any away team left j ∈ Aq to visit next,
if there are such, and stay at j afterwards, where costs d(xq, j) accrue. The
state is updated to (Aq \ {j}, j, ōq + 1).

– If Aq is empty, go home if not already at home, where costs d(xq, i) accrue.
The state is updated to the terminal state qt.

Paths from the root to the terminal node in the DD then correspond to the
feasible solutions of the CVRP, and with the costs associated with the transitions
(i.e., arcs in the DD), the lengths of such paths correspond to solution lengths.
For each node in the CVRP decision diagram the shortest path to the terminal
node is calculated and saved in the lookup table, serving as a lower bound
for a team with given away teams to play, being at a position either at home
or at some away team and its current away streak. Being a layered directed
acyclic multigraph, the shortest paths for each node in the decision diagram
can be calculated efficiently by doing a breadth-first-search backwards from the
terminal to the root node.

The TSP based bound values can also be pre-calculated by these method by
simply ignoring the away streak and allowing always a direct transition to a next
away team without going home first.

Furthermore, for the CVRPH bound, we consider constrained shortest path
lengths zsp(q, h̃) from any node to the terminal node, with the constraint
that exactly h̃ home stands occur. This means that at most h̃U − h̄i home
games can be played from a given node, where h̄i is the length of the cur-
rent home stand for team i. At the terminal node zsp(qt, 1) = 0 and ∞ for
each other node. In the backward sweep from q′ to q with arc costs cq,q′ , if

xq 6= i, then we set zsp(q, h̃) = min{zsp(q′, h̃) + cq,q′ , z
sp(q, h̃)}. If on the other

hand xq = i, i.e., a new home stand has occurred, we set zsp(q, h̃ + 1) =
min{zsp(q′, h̃)+cq,q′ , z

sp(q, h̃+1)}. For each state we now have all the constrained

lower bound values available that correspond to bCVRPC
i (s, h̃). Additionally, we

define bCVRPC,≥
i (s, h̃) = minh̃′∈{h̃,...,h̃max

i } b
CVRPC
i (s, h̃′) ∀h̃ ∈ {h̃min

i , . . . , h̃max
i },

which gives us the lower bounds when using at least h̃ home stands.

A Beam Search Approach to the TTP 11

Table 1. Memory demand for different lower bound lookup tables over the number of
teams in GB assuming two bytes per bound value.

n TSP CVRP CVRPH

14 0.003 0.009 0.127

16 0.016 0.047 0.75

18 0.079 0.237 4.27

20 0.390 1.172 23.43

Table 2. Runtimes in minutes for CVRPH bound calculations for NL14 to NL16 and
CIRC14 to CIRC18.

14 16 18

NLn 25 169 -

CIRCn 25 173 903

In Table 1, we see the memory demand for the three different lower bound
lookup tables in GB assuming 2 bytes per bound value. Up to 16 teams, they all
have reasonable size and our experiments have shown that the 16 teams instance
bounds can be pre-calculated within three hours in a prototypic Python 3.7
implementation on an Intel Xeon E5-2640 processor with 2.40 GHz in single-
threaded mode, see Table 2. 18 teams instances are also within reach with the
strong CVRPH bound taking already 15 hours—we suppose that an order of
magnitude in time can be saved using a compiled language. For larger instances,
these numbers and the computation times increase dramatically, since the num-
ber of bounds grows for the CVRPH bound with O(n32n)—already the TSP
bound, being the weakest, needs 42 GB for 26 teams.

For even a further tightening of the CVRPH bound, we make use of the
minimum number of trips (MNT) bound by Urrutia et al. [10]. It does not
assume strong independence between the teams anymore. Instead, the relaxed
CONSTANT variant of the problem, where all distances are set to one is solved
to optimality (or taking a lower bound), yielding a minimum number of trips all
teams together have to perform in a feasible solution of the problem. A trip in
this case is an atomic movement of a team from one venue to another. Given a
state s, let us call τ =

∑n
i=1 ti the number of trips performed so far by all teams

in the shortest path from sr to s. By the CVRPC bound, each team has an
optimal number h̃opti of home stands from s to st. This translates to an optimal

number of trips topti = |Asi | + h̃opt − 1xi=i. Let τ lb be the lower bound for the
minimum number of trips. If τ lb ≤ τ +

∑
i t

opt
i , then we cannot tighten the

CVRPH bound further. Otherwise, we can add the constraint that the teams

12 Nikolaus Frohner, Bernhard Neumann, and Günther R. Raidl

have to perform ∆τ = τ lb − τ −
∑
i t

opt
i extra trips, yielding the MNT bound

bMNT(s) = min

n∑
i=1

bCVRPC,≥
i (s, h̃i) (8)

s.t. h̃i ∈ {h̃min
i , . . . , h̃max

i } ∀i ∈ 1, . . . , n (9)

τ +

n∑
i=1

|Asi |︸ ︷︷ ︸
|P s|

+h̃i − 1xi=i ≥ τ lb (10)

This bound can be calculated by solving a corresponding integer linear program

using binary decision variables yh̃i with costs derived from the CVRPC lower

bound function ch̃i and counting values dh̃i ∈ {h̃min
i , . . . , h̃max

i }:

bMNT(s) = min

n∑
i=1

ch̃i y
h̃
i (11)

s.t.
∑
h̃

yh̃i = 1 ∀i ∈ 1, . . . , n (12)

∑
i,h̃

yh̃i d
h̃
i ≥ τ lb − |P s| − τ +

n∑
i=1

1xi=i (13)

We take the τ lb values from [7], where Rasmussen and Trick present a Benders
decomposition approach to solve the CONSTANT instances for up to 16 teams
each within at most five minutes.

7 Computational Study

We conducted all our experiments on Intel Xeon E5-2640 processors with
2.40 GHz in single-threaded mode and a memory limit of 32GB. We implemented
our approach as a prototype in Python 3.7, being aware that an implementation
in a compiled language would likely be substantially faster and have a smaller
memory footprint. To solve the integer linear programs for the MNT bound, we
used Gurobi 12.8.

In Table 3, we present a comparison of the results obtained by the deter-
ministic beam search with beam widths 1000 and 10000 for the instance sets
NL and CIRC2 [4] over the different lower bounds used in the state ordering.
We see that the weak TSP bound does not provide good guidance and even
misguides the search for larger instances, where using no bound (b(s) = 0) and
sorting the nodes only by the currently shortest path length to them (SHORT)
provides better results. Much better guidance can be observed for the CVRP
based bounds, where we see similar improvements over all instances.

2 https://mat.tepper.cmu.edu/TOURN/

https://mat.tepper.cmu.edu/TOURN/

A Beam Search Approach to the TTP 13

Table 3. Final solution lengths of deterministic beam search with different state order-
ing heuristics and beam widths with lexicographic team orderings. Sorting the states
by currently shortest path length to them (SHORT) does not use any lower bound; for
a description of the TSP, CVRP, CVRPH, MNT lower bounds refer to Section 6. For
circ16 with MNT we did not achieve a final result due to excessive runtime.

β = 1000 β = 10000

inst SHORT TSP CVRP CVRPH MNT SHORT TSP CVRP CVRPH MNT

nl6 24876 24759 23954 23916 23916 24876 23978 23916 23916 23916

nl8 42308 41977 40687 40687 40687 40970 41762 39776 39776 39776

nl10 67094 66469 62329 60713 62400 66087 64700 61129 60757 60554

nl12 131046 129209 116976 114499 114499 127238 119271 113294 114475 114824

nl14 217763 233765 211643 211116 211116 224537 219708 203519 203279 203279

nl16 309227 - 283985 285326 286085 301989 322567 276599 275562 271251

circ6 66 64 64 64 64 64 64 64 64 64

circ8 144 146 134 134 134 136 142 134 134 134

circ10 280 284 264 262 266 268 276 246 246 250

circ12 452 502 428 430 430 444 468 418 418 418

circ14 734 774 674 672 672 710 760 668 656 656

circ16 - - 1012 1000 990 1012 1114 956 966 n/a

Since the number of classic benchmark instances is limited and to further
validate the guidance quality of the different bounds, we created two different
types of random instances. First, the set IL1 , where we sample 30 instances
for team numbers 8, 10, and 12 each on an integer grid of size 1000 × 1000
using Manhattan distances to compute the resulting distance matrices; second,
the set IL2 , using the same sampling procedure but using the rounded to the
nearest even integer Euclidean distances. This yields in total 180 additional test
instances. We exclude the TSP bound from our further experiments since it
did not show promising results for the tests on the NL and CIRC instances. In
Table 4, we see mean values of final solution lengths and corresponding standard
deviations when performing the deterministic beam search with the different
state ordering heuristics on the randomly generated instances. The gap between
SHORT and CVRP is well observed especially with 10 and 12 teams. The gap
between CVRP and CVRPH is closer, a Wilcoxon signed rank sum test shows
that we can reject the assumption that CVRP is better than CVRPH with a
significance level of α = 1%. The difference between CVRPH and MNT is for the
L1 distance instances inconclusive, and for the L2 instances slightly in favor of
MNT, but at the cost of substantially higher runtime due to the linear programs
that need to be solved for every state. For further experiments we therefore limit
ourselves to the CVRP/CVRPH bounds.

Finally, Table 5 compares our randomized beam search variant with either
lexicographic or random team ordering performed in parallel and independently
on 30 cores with several state-of-the-art approaches on three difficult NL and
CIRC instances. Each beam search run was conducted with beam width β = 105

14 Nikolaus Frohner, Bernhard Neumann, and Günther R. Raidl

Table 4. Comparison of our beam search algorithm with β = 1000 over different state
ordering heuristics on 180 randomly generated test instances with 8, 10, and 12 teams,
using Manhattan and Euclidean distances, evenly split. Mean values of final solution
lengths and standard deviations over 30 test instances are shown.

β = 1000

class SHORT CVRP CVRPH MNT

I8
L1 42532± 5384 40530± 5214 40405± 5030 40405± 5030

I10
L1 70049± 7280 65483± 6886 64760± 6689 64964± 6922

I12
L1 99086± 7991 92838± 8089 91728± 7726 91465± 7694

I8
L2 34412± 5088 33034± 5109 32965± 5071 32965± 5071

I10
L2 55019± 5872 51723± 5988 51269± 5808 51057± 5829

I12
L2 79699± 7293 74231± 6933 73700± 6456 73524± 6403

and randomization parameter σrel = 0.001 resulting in equally gentle noise ap-
plied to the f -values of the states in every layer. The noise parameter was de-
termined using irace [5] on the randomly generated instances. The table shows
minimum and mean values for solution lengths of finally best solutions. We ob-
serve that we can compete well with the other mainly constructive approach
“ant colony optimization with forward checking and conflict-directed backjump-
ing” (AFC-TTP) from [11] and the composite-neighborhood tabu search (CNTS)
from [3] on the NL instances and obtain better results than these for the CIRC
instances, without hybridizing with a final local search. For CIRC instances we
can also obtain similar results to population-based simulated annealing from
scratch (PBSAFS) from [14], which uses parallel simulated annealing. For the
circular instances with 14 and 16 teams, we found new best feasible solutions, as
of the time of writing according to Michael Trick’s TTP web page. The strongest
results overall for NL and CIRC are provided by simulated annealing (TTSA)
from [1] and its parallel variant PBSA from [14].

Runtimes of our approach are shown in Fig. 3 measured for deterministic
beam search on the NL instances up to 16 teams for β ∈ {103, 104, 105}. For
example, a run on an instance with 12 teams and a beam width of 105 takes
roughly 10 hours. We believe it is possible to improve this further by an order
of magnitude using a compiled language.

8 Conclusion and Future Work

We investigated a beam search approach for the well-known traveling tourna-
ment problem. To this end, we proposed a recursive state space formulation,
which is searched by a restricted breadth-first-search. This beam search is im-
plemented in a memory efficient variant allowing for high beam widths to be
tested. For guiding the search, we studied different lower bounds derivable from
a state. Furthermore, we introduced a randomized beam search variant which
applies parameterized Gaussian noise to the state ordering heuristic in order to
diversify the search when performing multiple runs in parallel. We contribute

A Beam Search Approach to the TTP 15

Table 5. Comparison of the final solution lengths of parallel randomized beam search
using either lexicographic team ordering or random team ordering (RTO) with 30
independent runs each, parameters σrel = 0.001, β = 105, and the CVRPH lower bound
function (RBS-CVRPH) with the reported solution lengths of ant-colony optimization
(AFC-TTP) [11], composite-neighborhood tabu search (CNTS) [3], simulated annealing
(TTSA) [1], and population-based simulated annealing (PBSA) [14], where the latter
is either used from scratch (PBSAFS) or starting from an already high quality solution
(PBSAHQ) provided by a TTSA run. †New best feasible solutions.

inst RBS-CVRPH RBS-CVRPH-RTO AFC-TTP CNTS TTSA PBSAFS PBSAHQ

min mean min mean min mean min mean min mean min mean min mean

nl12 112680 113594.6 112791 113581.5 112521 114427.4 113729 114880.6 112800 113853.0 110729 112064.0 n/a n/a

nl14 192625 198912.6 196507 199894.8 195627 197656.6 194807 197284.2 190368 192931.9 188728 190704.6 188728 188728.0

nl16 266736 271367.1 265800 270925.9 280211 283637.4 275296 279465.8 267194 275015.9 261687 265482.1 262343 264516.4

circ12 410 415.7 410 414.6 430 436.0 438 440.4 n/a n/a 404 418.2 408 414.8

circ14 632 641.0 630† 640.7 674 692.8 686 694.4 n/a n/a 640 654.8 632 645.2

circ16 918 933.8 910† 931.6 1034 1039.6 1016 1030.0 n/a n/a 958 971.8 916 917.8

circ18 1300 1322.0 1296 1320.4 1486 1494.8 1426 1440.8 n/a n/a 1350 1371.6 1294 1307.0

4 6 8 10 12 14 16
number of teams n

10 3

10 2

10 1

100

101

ho
ur

s

= 103

= 104

= 105

Fig. 3. Runtimes in hours for deterministic beam search runs on NL instances with
β ∈ {103, 104, 105}.

.

a method based on decision diagrams to pre-calculate the existing capacitated
vehicle routing problem and minimum number of trips bounds for instances up
to 18 teams and how these bounds can be effectively used for any given state.
To compare different lower bounds and tune algorithmic parameters, we created
artificial instances. This allowed us to ultimately achieve better results on diffi-
cult NL and CIRC benchmark instances than the also mainly constructive ant-
colony optimization approach AFC-TTP and the composite-neighborhood tabu
search CNTS. For the circular instances with 14 and 16 teams we could find
new best feasible solutions. Overall, the simulated annealing based approaches
TTSA/PBSA still remain dominant.

We have implemented our approach as a prototype in Python 3.7. A re-
implementation in a compiled language is desirable as much better runtimes
and smaller memory footprints can be expected, which would allow to tackle

16 Nikolaus Frohner, Bernhard Neumann, and Günther R. Raidl

even higher beam widths. So far we did not consider any local search, but a
natural extension would be to try to further improve a number of best solutions
provided by our beam search by local search. Furthermore, the provided state
space formulation and lower bound methods might also be incorporated into
GRASP or ACO algorithms, as well as into exact techniques such as A∗ variants.

To tackle instances with more than 18 teams with lower bound guidance, an
interesting direction could be to use relaxed decision diagram for the bound pre-
calulcations, in order to keep the memory and computational demand reasonably
bounded.

References

1. Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated
annealing approach to the traveling tournament problem. Journal of Scheduling
9(2), 177–193 (2006)

2. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Decision Diagrams for Op-
timization. Artificial Intelligence: Foundations, Theory, and Algorithms, Springer
(2016)

3. Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to
the traveling tournament problem. Journal of Heuristics 13(2), 189–207 (2007)

4. Easton, K., Nemhauser, G., Trick, M.: The traveling tournament problem descrip-
tion and benchmarks. In: International Conference on Principles and Practice of
Constraint Programming. LNCS, vol. 2239, pp. 580–584. Springer (2001)

5. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The
irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives 3, 43–58 (2016)

6. Ow, P.S., Morton, T.E.: Filtered beam search in scheduling. International Journal
of Production Research 26(1), 35–62 (1988)

7. Rasmussen, R.V., Trick, M.A.: A benders approach for the constrained minimum
break problem. European Journal of Operational Research 177(1), 198–213 (2007)

8. Ribeiro, C.C., Urrutia, S.: Heuristics for the mirrored traveling tournament prob-
lem. European Journal of Operational Research 179(3), 775–787 (2007)

9. Thielen, C., Westphal, S.: Complexity of the traveling tournament problem. The-
oretical Computer Science 412(4-5), 345–351 (2011)

10. Urrutia, S., Ribeiro, C.C., Melo, R.A.: A new lower bound to the traveling tour-
nament problem. In: 2007 IEEE Symposium on Computational Intelligence in
Scheduling. pp. 15–18. IEEE (2007)

11. Uthus, D.C., Riddle, P.J., Guesgen, H.W.: An ant colony optimization approach to
the traveling tournament problem. In: Proceedings of the 11th Annual conference
on Genetic and evolutionary computation. pp. 81–88. ACM (2009)

12. Uthus, D.C., Riddle, P.J., Guesgen, H.W.: DFS* and the traveling tournament
problem. In: International Conference on AI and OR Techniques in Constriant
Programming for Combinatorial Optimization Problems. LNCS, vol. 5547, pp. 279–
293. Springer (2009)

13. Uthus, D.C., Riddle, P.J., Guesgen, H.W.: Solving the traveling tournament prob-
lem with iterative-deepening A*. Journal of Scheduling 15(5), 601–614 (2012)

14. Van Hentenryck, P., Vergados, Y.: Population-based simulated annealing for trav-
eling tournaments. In: Proceedings of the 22nd National Conference on Artificial
Intelligence. pp. 267–262. No. 1, MIT Press (2007)

	A Beam Search Approach to the Traveling Tournament Problem

