
Merging Quality Estimation for Binary Decision
Diagrams with Binary Classifiers

Nikolaus Frohner and Günther R. Raidl

Institute of Logic and Computation, TU Wien, Vienna, Austria
{nfrohner|raidl}@ac.tuwien.ac.at

Abstract. Relaxed binary decision diagrams (BDDs) are used in com-
binatorial optimization as a compact representation of a relaxed solution
space. They are directed acyclic multigraphs which are derived from the
state space of a recursive dynamic programming formulation of the con-
sidered optimization problem. The compactness of a relaxed BDD is
achieved by superimposing states, which corresponds to merging BDD
nodes in the classical layer-wise top-down BDD construction. Selecting
which nodes to merge crucially determines the quality of the resulting
BDD and is the task of a merging heuristic, for which the minimum
longest path value (minLP) heuristic has turned out to be highly effec-
tive for a number of problems. This heuristic sorts the nodes in a layer by
decreasing current longest path value and merges the necessary number
of worst ranked nodes into one. There are, however, also other merging
heuristics available and usually it is not easy to decide which one is more
promising to use in which situation. In this work we propose a predic-
tion mechanism to evaluate a set of different merging mechanisms at each
layer during the construction of a relaxed BDD, in order to always select
and apply the most promising heuristic. This prediction is implemented
by either a perfect or by a k-layers lookahead construction of the BDD,
gathering feature vectors for two competing merging heuristics which are
then fed into a binary classifier. Models based on statistical tests and a
feed-forward neural network are considered for the classifier. We study
this approach for the maximum weighted independent set problem and
in conjunction with a parameterized merging heuristic that takes also
the similarity between states into account. We train and validate the bi-
nary classifiers on random graphs and finally test on weighted DIMACS
instances. Results indicate that relaxed BDDs can be obtained whose
upper bounds are on average up to ≈16% better than those of BDDs
constructed with the sole use of minLP.

Keywords: Binary decision diagrams · merging heuristics · lookahead
construction · binary classifiers

1 Introduction

Binary decision diagrams (BDDs) were introduced in the 1950s by Lee [7] as
a compact representation for boolean functions. In the last decade, they have



2 Nikolaus Frohner and Günther R. Raidl

gained increasing popularity in the field of combinatorial optimization, where
BDDs are used as a graphical representation of the solution space of a given
optimization problem, constructed from a dynamic-programming-like recursive
formulation of the solution space. Formally, a BDD is a directed acyclic multi-
graph B = (U,A) with node set U and arc set A. Each u ∈ U is associated
with a state s(u) of the respective recursive formulation. Paths from a root node
r through the BDD correspond to (partial) solutions and carry a length, cor-
responding to the solution costs; a longest path to a designated target node t
then corresponds to an optimal solution for a maximization problem1. For a
thorough introduction, we recommend the book by Bergman, Cire, van Hoeve,
and Hooker [3].

Throughout this paper, we focus specifically on relaxed limited-width BDDs,
which are constructed layer-by-layer in a breadth-first-search fashion. While ex-
act BDDs model the solution space exactly but typically have exponential size
for hard combinatorial optimization problems, relaxed BDDs represent a discrete
relaxation and are kept compact by limiting the width, i.e., the number of nodes,
at each layer. This width limitation is achieved by layer-wise merging of nodes:
Whenever a layer is about to become too large, nodes are selected and merged,
which means that their states are superimposed in a way that guarantees not to
lose any feasible solutions. These merging operations, however, in general intro-
duce new paths that do not represent feasible solutions. Therefore, the relaxed
BDD represents a discrete relaxation of the original problem and the length of
the longest path corresponds to an upper bound of the optimal solution value.

The method to select the nodes to be merged, called merging heuristic, is
crucial for the quality of the resulting bound. We propose a method to evaluate
multiple available merging heuristics at a given layer and to choose the believed-
to-be locally best one.

The next section recaps the well-known minimum longest path value (minLP)
merging heuristic and the parameterized state-similarity based merging heuris-
tic we introduced in [5]. In Section 3, we introduce a method to estimate the
quality relative to minLP of any merging heuristic applied at a given layer by
conducting either a perfect or a k-layers lookahead and predicting the resulting
bound at the final layer. This allows us to select different merging heuristics at
each layer and gracefully deviate from the minLP merging heuristic. We always
compare merging heuristics pairwise using a binary classifier, either based on a
simple feature comparison test, linear regression, a Wilcoxon signed rank sum
test or an artificial neural network, see Section 4, which gives us a probabilistic
estimate whether one is better than the other. We present the data preparation
for our binary classifier training and validation together with our computational
study in Section 5, where we consider the maximum weighted independent set
problem (MWISP) with training on random weighted graphs and final tests on

1 We consider only maximization throughout this paper. The methods are, however,
equally applicable to minimization by changing the sign of the objective function.



Merging Quality Estimation for BDDs with Binary Classifiers 3

weighted DIMACS2 instances. We conclude and give indications for future work
in Section 6.

In the MWISP, we are given a graph G = (V,E) and costs cj ∈ R for each
node j ∈ V . We seek to find a set of nodes S ⊂ V with maximum costs

∑
j∈S cj

for which no two nodes are adjacent in G. In a recursive formulation, we assign
to each node of the graph a binary decision variable xi and impose an ordering
πi on these. A state is the set of nodes that can still be added to the current
independent set. When at step i of the recursion, we decide either to add the
node πi = j to the independent set, setting xi = 1, which removes the node
and its neighborhood N(j) from the set, or to leave it, setting xi = 0, which
only removes the node itself; this is encoded by a corresponding state transition
function τ :

τ : {0, 1} × 2V → 2V (1)

(0, si) 7→ si+1 = τ(0, si) = si − {j} (2)

(1, si) 7→ si+1 = τ(1, si) = si − {j} −N(j) (3)

We denote with Dsi the admissible values for xi in state si, which is {0, 1} when
j ∈ si, otherwise {0}. The maximization problem is then given by the following
Bellman equations:

z∗(si) = max
d∈Dsi

{cjd+ z∗(τ(d, si))} (4)

z∗(sn) = 0 (5)

z∗(s0), where the initial state is given by s0 = V , yields the cost of a maximum
weighted independent set.

2 Related Work

For the layer-wise construction of limited-width BDDs for MWISP instances,
we follow the algorithm described by Bergman et al. [2], which employs zero-
suppressing long-arcs, the minimal state (minState) variable ordering heuris-
tic, and the minimum longest path length (minLP) merging heuristic. For the
MWISP, the state s(u) associated with a node u of the BDD is the set of nodes
that can still be included in the independent set. Successors of a state are ob-
tained by setting a still open variable to either one or zero, representing the
decision that the corresponding node is either included or excluded, respectively.
Arc lengths correspond to the gains in the objective function, i.e., the weight of
the respective node if included or zero otherwise. The used minState variable or-
dering heuristic selects at each layer always a variable that appears in the fewest
number of states associated with the BDD nodes that were generated by previ-
ous layers and still need to be placed on a layer. The minLP merging heuristic
sorts the nodes u at a current layer in decreasing order of their currently longest

2
https://github.com/jamestrimble/max-weight-clique-instances/tree/master/DIMACS

https://github.com/jamestrimble/max-weight-clique-instances/tree/master/DIMACS


4 Nikolaus Frohner and Günther R. Raidl

path length zlp(u) from the root to them and merges the necessary number of
nodes from the back into one node, so that the maximum width is kept. Merging
is done by applying the set union over all affected states.

In [5], we identified the similarity between states as worth considering for the
merging decision and introduced a parameterized merging algorithm that also
begins by bulk merging nodes with smallest longest path value into one node
but not enough to reach the maximum width. Instead, the method then applies
pairwise merging of the remaining nodes that have longest path values below
some threshold by iteratively selecting two nodes with minimal dissimilarity.
This dissimilarity between two nodes u, v ∈ U can be defined in different ways
but in [5] we found that considering an upper bound on the costs-to-go from the
state s(w) we would obtain when merging the two nodes into one new node w
is particularly useful. In case of the MWISP, we choose the weighted sum over
the remaining graph vertices that can still be selected after merging u and v:

dub(u, v) = zubMWISP(w) =
∑

j∈s(w)

cj (6)

The merging boundary is a contiguous set of nodes in a layer that have the
same rank when sorted by the longest path length to them and that could
participate in the classical minLP merging. The parameters that control which
nodes take part in the iterative pairwise similarity based merging are (δl, δr) ∈
[0, 1]2. They define as a relative measure depending on the longest path values
of the nodes how many nodes left (determined by δl) and how many nodes right
(determined by δr) of the merging boundary should be taken, see Fig. 1 for
the conceptual differences between the merging heuristics. The extreme cases
are (1.0, 1.0), where all nodes are potential merging candidates, and (0.0, 0.0),
which corresponds to minLP with an additional tie breaking when nodes at the
merging boundary have the same longest path value and the pure rank-based
merging would not be unique—for them the similarity based merging is applied.

Lookahead approaches [9] are very common in deterministic games, where
different possible moves are compared by conducting a limited playout and eval-
uating the resulting configurations by an approximating evaluation function. The
idea of a k-layers lookahead approach for BDDs has been presented by Bergman
et al.[1] in the context of a dynamic variable ordering for the maximum inde-
pendent set problem.

3 Merging Quality Estimation

So far, when constructing a limited-width BDD layer-wise, a predefined merging
heuristic is repeatedly applied at every layer that would exceed the maximum
width. We aim at higher flexibility by having a set of merging heuristics H at our
disposal, and hope that a careful application of different heuristics improves the
resulting quality of the BDD. At a current layer l of the BDD construction, the
central question then is which heuristic to select to conduct the actual merging.
Unfortunately, a reliable free-standing way of judging the potential of each of



Merging Quality Estimation for BDDs with Binary Classifiers 5

r1

{5, 6} {4} {4, 5} {5} {6, 7} {7, 8}

r2

{5, 6} {4} {4, 5} {5} {6, 7} {7, 8}

r1

{5, 6} {4} {4, 5} {5, 6, 7, 8}

r2

{5, 6} {4, 5} {5} {6, 7, 8}

Fig. 1. An exemplary layer with set-based states where merging has to take place to
reduce the width to 4. Left: the classical minLP merging heuristic which bulk-merges
the necessary number of nodes with currently shortest path length (dark), potentially
leading to large states; right: the merging heuristic from [5] which combines bulk-
merging nodes with currently shortest path length (dark) with pairwise merging of
nodes under consideration of their similarity (bright), distributing the state sizes more
evenly.

the heuristics in dependence of the current situation is not obvious. We therefore
suggest a different, amenable approach that always keeps the established minLP
heuristic in H and uses it as a baseline to define a relative quality measure for
each of the considered merging heuristics.

Definition 1 (Merging Quality). Given are a set of merging heuristics H,
where minLP ∈ H and a BDD in construction facing a layer l to be merged.
For each H ∈ H we create a shallow copy of the BDD, conduct the merging
determined by H and finish the construction of the BDD afterwards by only ap-
plying minLP. The resulting upper bounds on the objective value act as measure
of quality for H at layer l: We write H ≺ H ′ when H yields a strictly tighter
bound than H ′, and H is then considered the locally better choice than H ′.

Overall, after evaluating each merging heuristic in the described way, we
actually select and apply a dominating one and continue at the next layer in
the same way; ties are broken randomly. Clearly, this complete lookahead for
each considered merging heuristic at each level is computationally expensive, but
what we obtain is the possibility to measure the impact of the different heuristics
and finally we can also study how often each method has been applied in the
construction of BDDs. Thus, we can see whether this combination of multiple
merging heuristics may in principle improve the bounds of the resulting BDDs
for our given problem instances. A pseudo-code for this lookahead algorithm is
shown in 1.

The approach also allows to generate the ground truth for a corresponding
classification problem: given heuristics H and H ′, let f be a binary function re-
turning 1, iff H ≺ H ′, i.e., H provides a tighter bound than H ′, and 0 otherwise.
To make the approach viable in practice, we move from the evaluation by per-
fect lookahead to a statistically estimated variant that only considers the next k



6 Nikolaus Frohner and Günther R. Raidl

Input: BDD B under construction, current layer l, maximum layer lmax, set of
competing merging heuristics H including minLP

Output: Winning merging heuristic H ∈ H

1 Function perfect-lookahead(B, l, lmax, H)
2 for H ∈ H do
3 B′ ← shallow copy of B;
4 apply H to B′ at layer l;
5 continue B′ with minLP until reaching final layer lmax;

6 zlpH ← zlp(t) in B′;

7 end

8 H∗ ← argminH∈H zlpH ;
9 return H∗;

Algorithm 1: Perfect lookahead algorithm for deciding which merging heuris-
tic H ∈ H to use at layer l.

layers, i.e., a k-layers lookahead. During construction with alternative heuristics,
when at layer l, we apply H and continue the construction of a shallow copy of
the BDD for k−1 more layers using minLP, yielding a feature matrix YH ∈ Rp×k
for the looked-ahead layers {l, . . . , l+ k− 1}, where p is the number of features.
The distinguished baseline feature matrix is YminLP, when only minLP was
applied for the layers {l, . . . , l+ k− 1} in a shallow copy of the BDD. The learn-
ing goal now is to find a classifier function h : Rp×k × Rp×k → {0, 1} for which
wrong classifications in the sense of h(YH,YH′) 6= f(YH,YH′) are unlikely.
Every layer provides a fixed number of features, for which we have to aggregate
information from the variable number of nodes per layer. By taking the maxi-
mum, mean value, and minimum of the longest path values zlp(u) over all nodes
u at the layer and likewise of the upper bound values zubMWISP(u), we identified
six natural options to be used as features per layer. In the following sections, we
consider different types of binary classifiers for the statistical lookahead problem
based on a linear regression model, on the Wilcoxon signed rank sum test, and
on training an artificial neural network on random weighted graphs.

4 Binary Classifiers

We consider parameterized binary classifiers hα ∈ B that are constructed by
taking a function h̃ that provides an estimation of the probability that H ≺ H ′
and apply a threshold α ∈ (0, 1):

h̃ : Rp×k × Rp×k → [0, 1]. (7)

h(Y,Y′) =

{
0, h̃(Y,Y′) < α

1, h̃(Y,Y′) ≥ α
(8)

Equipped with an h̃, we can formulate the k-layers-lookahead merging heuristic
selection algorithm as listed in Algorithm 2. It compares every merging heuristic



Merging Quality Estimation for BDDs with Binary Classifiers 7

Input: BDD under construction B, current layer l, number of layers to look
ahead k, maximum layer lmax, acceptance threshold α, set of merging
heuristics to test H, probabilistic binary classifier h̃

Output: Winning merging heuristic H ∈ H

1 Function k-layers-lookahead(B, l, lmax, H, h̃, α)
2 if l + k ≥ lmax then
3 return perfect-lookahead(B, l, lmax,H);
4 end

5 apply minLP to shallow copy B′ at layer l, continue for k − 1 layers with
minLP;

6 YminLP ← feature vectors for layers {l, . . . , l + k − 1};
7 for H ∈ H \ {minLP} do
8 apply H to shallow copy B′ at layer l, continue for k − 1 layers with

minLP;
9 YH ← feature vectors for layers {l, . . . , l + k − 1};

10 pH ← h̃(YH ,YminLP);

11 end

12 H∗ ← argmaxH∈H\{minLP} pH ;

13 if pH∗ ≥ α then
14 return H∗;
15 return minLP;

Algorithm 2: k-layers lookahead algorithm for deciding which merging heuris-
tic H ∈ H to use at layer l by means of a probabilistic binary classifier h̃
parameterized by threshold α.

0 25 50 75 100 125 150 175 200
layer

0

1000

2000

3000

4000

5000

m
ax

 lp

brock200_1.clq, = 10, r2 = 0.9953

0 200 400 600 800 1000
layer

0

500

1000

1500

2000

2500

3000

m
ea

n 
lp

san1000.clq, = 10, r2 = 0.9973

Fig. 2. Evolution of the maximum and mean longest path lengths over the layers with
a linear regression line for different weighted DIMACS instances with maximum layer
width β = 10.

with minLP by feeding their feature matrices to the probabilistic binary classifier
and saves for each H the resulting probability estimate pH . If the largest pH is
greater than or equal to the acceptance threshold α, the corresponding winning
heuristic H∗ is returned, otherwise minLP.

We now consider different possibilities for the probabilistic binary classifier
h̃. In some preliminary experiments we observed that as a first approximation
a linear dependence between layers and the maximum and mean longest path
values is reasonable to assume, see Fig. 2. Considering minLP as default merging



8 Nikolaus Frohner and Günther R. Raidl

0 10 20 30 40 50
looked ahead layer

200

100

0

100

200

300

m
ax

 L
P 

di
ffe

re
nc

e

p-val=1.000
r2=0.631

max LP differences over looked ahead layers for minLP vs H

0 10 20 30 40 50
looked ahead layer

150

100

50

0

50

100

150

200

m
ax

 L
P 

di
ffe

re
nc

e

p-val=0.823
r2=0.194

max LP differences over looked ahead layers for minLP vs H

Fig. 3. Examples for a k = 50 layers lookahead with minLP versus a competing heuris-
tic H, regressing the differences of the maximum longest path length (maxLP) values
on the layers. Left: a true positive case (minLP worse than H), right: a true negative
case (minLP not worse than H).

strategy, we want to test whether the growth trend for another merging heuris-
tic H is significantly smaller, i.e., H ≺ minLP. To do so, we restrict ourselves to
one feature, for example the maximum longest path length for a layer (maxLP),
calculate ∆YH = YminLP − YH , where ∆YH ∈ R1×k, and solve the linear
regression (LR) model

∆ŶH(l; θ, d) = θ l + d. (9)

A subsequent student t-test for the significance of θ̂ 6= 0 yields a corresponding
p-value, which can be transformed to a belief in [0, 1] that minLP grows towards
a worse upper bound than H. We denote this linear regression based classifier
as h̃LR. For examples of a true positive and a true negative case for a lookahead
length of k = 50, see Fig. 3. Since the linear regression based classifier considers
only the slope, a non-parametric alternative is to use the p-value of a Wilcoxon
signed rank sum test over the ∆YH , the layer-wise differences of the features.

As a more powerful alternative to the linear regression based classifier, we
consider a feed-forward neural network (NN) h̃NN(YH ,YminLP) that yields a
score in [0, 1] which we interpret as probability for H ≺ H ′. As features for
the k layers created by the two different merging heuristics applied at layer l,
we consider two from the possibilities namely the differences of the maximum
longest path values and the difference of the maxima of the upper bounds over
the given nodes by layer. Furthermore, we provide the graph density and the
layer progress l/lmax as input, resulting in an input layer of the NN consisting
of 2(k + 1) neurons. These differences are normalized by dividing them by their
maximum absolute value to feed values from [−1, 1] into the network in order
to facilitate the training. Two hidden layers with twice the neurons of the input
layer, i.e., 4(k + 1), follow with a single neuron in the output layer. Each non-
final neuron is configured with a reLU activation function, the final one with
a sigmoid activation function to obtain a value in [0, 1]. We use binary cross-
entropy loss and train with minibatch gradient descent with a batch size of 64.
We start with a learning rate of 10−3 and decrease by factors of 10 after reaching
a plateau. To prevent overfitting, we use a weight decay factor of 10−3 and use
early stopping by monitoring the accuracy on a validation set consisting of 20%



Merging Quality Estimation for BDDs with Binary Classifiers 9

of the original training samples. We trained the neural network using Keras3

2.0.8 with TensorFlow 1.2.1 backend.
To evaluate the performance of the binary classifiers, we calculate precision-

recall curves by varying the acceptance threshold α of the binary classifier and
gather the corresponding precision-recall data points. The precision is the num-
ber of true positives divided by the number of classified as positives and the
recall the number of true positives divided by the overall positives. This allows
to tune the classifier to the required behavior. Furthermore, a single area-under-
curve (AUC) value can be calculated from this curve and compared for different
classifiers. As a simple baseline classifier that is not based on a probability score,
given one-dimensional feature vectors for both merging heuristics, we compare
the maxima of the feature vectors and return 1 if max YH < max YH′ and oth-
erwise zero. Its performance is then evaluated by a single precision-recall point.
When we use the maxLP values as features, we call this max-maxLP, since we
compare the maxima of the maxima.

5 Computational Study

For training and validation data, we created 1000 G(n, p) random weighted
graphs with parameters n ∈ [100, 2000] and p ∈ [0.05, 0.95] drawn uniformly
at random. Weights are assigned from {1, . . . , 200} in dependence of the index
of a vertex j via j mod 200+1. For each graph Gi, i = 1, . . . , 1000, we construct
a binary decision diagram with maximum width β = 10 and merging parameters
δl = δr = 0 (i.e., minLP with tie breaking according to [5]) and save the result-
ing upper bound ui and the features by layer Yi

minLP. Furthermore, we sample
a layer l′ ∈ {1, . . . , ni} uniformly at random, construct the corresponding binary
decision diagram up to layer l′ in the same fashion as before. If no merging is
needed, we restart; otherwise we sample merging parameters δl, δr uniformly at
random and likely apply a different merging. After this, we continue the con-
struction as before with δl = δr = 0 and save the resulting upper bounds ũmi
and feature vectors by layer Yi

m from l′ to the last layer, where m ∈ {1, . . . , 20},
resulting into 20 training samples per graph. This creates the ground truth for
f(Yi

m,Y
i
minLP) which is one if the resulting upper bound ũmi of the alternative

merging is strictly smaller than the pure minLP upper bound ui, otherwise zero.
When we train or test our binary classifiers, we set the fixed lookahead length
k and extract only the corresponding subpart of the saved feature matrices in a
preprocessing step.

We conducted the final tests on a weighted DIMACS graph set4, from which
we consider N = 64 instances IWDIMACS that we could solve to optimality. This
allows us to calculate for each graph instance I ∈ IWDIMACS a relative bound urelI
from the absolute bound urelI = uI/z

∗
I derived from the construction of a relaxed

BDD with one of the described approaches. As figures of merit when comparing
two approaches, we consider the median and the mean of the pairwise differences

3
https://keras.io

4
https://github.com/jamestrimble/max-weight-clique-instances/tree/master/DIMACS

https://keras.io
https://github.com/jamestrimble/max-weight-clique-instances/tree/master/DIMACS


10 Nikolaus Frohner and Günther R. Raidl

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
A: minLP

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

B:
 5

0-
la

ye
rs

 lo
ok

ah
ea

d 
W

ilc
ox

on

MedA = 1.77
MedB = 1.61
Med = 0.12
Wilcoxon p-val = 0.000

Relative Upper Bound Comparison per weighted DIMACS instance

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
A: minLP with state similarity (0.185, 0.043)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

B:
 5

0-
la

ye
rs

 lo
ok

ah
ea

d 
W

ilc
ox

on

MedA = 1.67
MedB = 1.61
Med = 0.05
Wilcoxon p-val = 0.000

Relative Upper Bound Comparison per weighted DIMACS instance

Fig. 4. Comparison of pure minLP (left) vs. minLP with state similarity and raced
parameters (right) vs a combination of both on weighted DIMACS instances with
statistical lookahead of 50 layers, using the Wilcoxon test classifier and an acceptance
threshold of α = 0.95.

∆̃ := MedI∈IWDIMACS [∆urelI ], ∆ of the relative upper bounds. First, we applied
the perfect lookahead approach with the parameterized similarity based merging
heuristic as introduced in [5]. The baseline merging heuristic is minLP with tie
breaking, corresponding to parameters δl = δr = 0 and four further competing
parameter sets (δl, δr) ∈ {(0.185, 0.043), (0.2, 0.2), (0.3, 0.3), (0.4, 0.4)}. The com-
peting merging heuristics are used in only 4% of the layers with merging, still
resulting in a median relative bound improvement of 0.16 over using only minLP
alone. In [5], we tuned the parameter set (0.185, 0.043) using irace [8], which gave
a median improvement of 0.05, when applied alone. For the k-layers lookahead,
we evaluate the linear regression, the Wilcoxon signed rank sum based variant,
the NN, and the simple max-maxLP binary classifiers on the validation set of
the random weighted graph instances described in Section 5. The NN classifier
outperforms the other classifiers beginning from a lookahead length of k = 30 as
can be seen in the precision-recall plot in Fig. 5 for k = 50 and for the precision-
recall area-under-curve values calculated for k ∈ {10, 20, . . . , 90}. For example,
when we tune to a modest recall of 0.1, we get only 0.58 precision for the LR
and Wilcoxon classifier but approximately 0.68 for the NN, which is not surpris-
ing since the latter considers more features, including upper bound information
and graph density, whereas the former only relies on the maximum longest path
values as feature. In general, the precision of the classifiers is relatively weak
indicating a difficult classification problem.

The final test is conducted on the weighted DIMACS instances, and the
median and mean of differences of relative upper bounds are used again as fig-
ures of merit and summarized in Table 1 for three different lookahead-lengths
{30, 50, 70}. We compare with the pure application of minLP and pure applica-
tion of minLP with state similarity merging parameterized by (0.185, 0.043). We
see that the naive, completely parameter-less max-maxLP classifier that consid-
ers one heuristic to be worse than the other when the maximum of the maximum
longest path values over the looked ahead layers is strictly greater yields results
comparable to using the linear regression with a median relative bound improve-
ment between 0.09 and 0.10. The also rather simple Wilcoxon test performed
second best in our final test, yielding figures between 0.09 and 0.12 (see Fig. 4),
slightly worse than the NN classifier with figures between 0.11 and 0.16.



Merging Quality Estimation for BDDs with Binary Classifiers 11

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
recall

0.40

0.45

0.50

0.55

0.60

0.65

0.70

pr
ec

isi
on

Precision-recall curve for classifiers for k=50
LR
WC
NN
max

10 20 30 40 50 60 70 80 90
look-ahead layer length k

0.40

0.45

0.50

0.55

0.60

0.65

0.70

pr
ec

isi
on

-re
ca

ll 
AU

C

Precision-recall AUC over look ahead layers for classifiers
max
LR
WC
NN

Fig. 5. Left: precision-recall curves for different classifiers with k-layers lookahead with
k = 50 on random weighted graph instances; right: corresponding precision-recall AUC
over lookahead length k ∈ {10, . . . , 90}.
Table 1. Median ∆̃ and mean ∆ of pairwise differences of relative bounds for perfect
lookahead and {30, 50, 70}-layers lookahead with different classifiers vs pure minLP and
vs minLP with state similarity based merging with parameters δl = 0.185, δr = 0.043,
on weighted DIMACS instances. (PLA = perfect lookahead, max = max-maxLP, LR
= linear regression, WC = Wilcoxon, NN = neural network).

comparing approach PLA k max LR WC NN

∆̃ ∆ ∆̃ ∆ ∆̃ ∆ ∆̃ ∆ ∆̃ ∆

pure minLP 0.16 0.17
30

0.09 0.11 0.07 0.08 0.09 0.11 0.11 0.11

minLP with state similarity 0.09 0.11 0.04 0.06 0.02 0.03 0.04 0.06 0.04 0.06

pure minLP 0.16 0.17
50

0.09 0.11 0.09 0.11 0.12 0.13 0.12 0.13

minLP with state similarity 0.09 0.11 0.03 0.06 0.03 0.06 0.05 0.08 0.08 0.08

pure minLP 0.16 0.17
70

0.10 0.12 0.10 0.12 0.12 0.14 0.15 0.16

minLP with state similarity 0.09 0.11 0.04 0.06 0.03 0.07 0.05 0.09 0.08 0.11

To do a runtime comparison, we conducted all experiments on an Intel Xeon
E5-2640 processor with 2.40 GHz in single-threaded mode and a memory limit
of 8GB using Python3.6. We measured runtimes when constructing the BDDs
with 30-, 50-, and 70-layers-lookahead for two competing merging heuristics and
relative to plain minLP, which gave us a median factor of ≈2k×, for example
for a 30-layers-lookahead with the NN classifier ≈70×. This is what we expected
given this computationally demanding approach. Still, if the resulting decision
diagram is more compact than another one with the same bound and is traversed
many times afterwards, then this initial construction overhead may pay off. See
for instance [6], where arcs in an already constructed relaxed decision diagram
are repeatedly filtered to remove infeasible paths. An idea under investigation
for further runtime reduction is to conduct the lookahead with a smaller width.

6 Conclusion and Future Work

In this paper, we have shown a method to locally evaluate the quality of merging
heuristics in small-width binary decision diagrams by conducting a lookahead us-
ing the simple yet strong minimum longest path merging heuristic. We used this
method to devise algorithms that allow different merging heuristics to compete



12 Nikolaus Frohner and Günther R. Raidl

against each other on a layer where merging is needed and subsequently apply the
winning heuristic. The evaluation is either done by a computationally intensive
perfect lookahead or by a k-layers lookahead where we try to approximate the
perfect lookahead by means of binary classifiers based on either statistical tests
or a neural network classifier. We trained, validated, and tuned the classifiers
on random weighted graph instances and finally tested on a weighted DIMACS
graph set where we could show significant bound improvements by combining
minLP and our parameterized state-similarity based merging heuristic over only
using either one alone.

Further research is needed to validate this lookahead approach on other prob-
lems, compare with other classification approaches such as logistic regression or
support vector machines, and to possibly find computationally less demanding
local quality estimation methods. In the context of branching heuristics of mixed-
integer programming solvers, the “Dynamic approach for switching heuristics”
[4] creates clusters of sub-problems in a feature space during an off-line training
phase where a different heuristic works best for each cluster and then dynami-
cally switches between these heuristics during traversal of the branch-and-bound
tree. This could potentially also be an interesting approach for selecting different
merging heuristics during the construction of a BDD.

References

1. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Variable ordering for the
application of BDDs to the maximum independent set problem. In: International
Conference on Integration of AI and OR Techniques in Constraint Programming.
LNCS, vol. 7298, pp. 34–49. Springer (2012)

2. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Optimization bounds from
binary decision diagrams. INFORMS Journal on Computing 26(2), 253–268 (2013)

3. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Decision Diagrams for
Optimization. Artificial Intelligence: Foundations, Theory, and Algorithms, Springer
(2016)

4. Di Liberto, G., Kadioglu, S., Leo, K., Malitsky, Y.: Dash: Dynamic approach for
switching heuristics. European Journal of Operational Research 248(3), 943–953
(2016)

5. Frohner, N., Raidl, G.R.: Towards improving merging heuristics for binary decision
diagrams. In: Proceedings of LION 13 – 13th International Conference on Learning
and Intelligent Optimization. Lecture Notes in Computer Science, Springer (2019),
to appear

6. Horn, M., Raidl, G.R.: Decision diagram based limited discrepancy search for a
job sequencing problem. In: Computer Aided Systems Theory – EUROCAST 2019.
Lecture Notes in Computer Science, Springer (2019), to appear

7. Lee, C.Y.: Representation of switching circuits by binary-decision programs. The
Bell System Technical Journal 38(4), 985–999 (1959)

8. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The
irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives 3, 43–58 (2016)

9. Pearl, J.: Heuristics: intelligent search strategies for computer problem solving.
Addison-Wesley Pub. Co., Inc., Reading, MA (1984)


	Merging Quality Estimation for Binary Decision Diagrams with Binary Classifiers

