
Casual Employee Scheduling with Constraint
Programming and Metaheuristics

Nikolaus Frohner, Stephan Teuschl, and Günther R. Raidl

Institute of Logic and Computation, TU Wien, Austria
{nfrohner|raidl}@ac.tuwien.ac.at, e0608934@student.tuwien.ac.at

Abstract. We consider an employee scheduling problem where many ca-
sual employees have to be assigned to shifts defined by the requirement of
different work locations. For a given planning horizon, locations specify
these requirements by stating the number of employees needed at specific
times. Employees place offers for shifts at locations they are willing to
serve. The goal is to find an assignment of employees to the locations’
shifts that satisfies certain hard constraints and minimizes an objective
function defined as weighted sum of soft constraint violations. The soft
constraints consider ideal numbers of employees assigned to shifts, dis-
tribution fairness, and preferences of the employees. The specific prob-
lem originates in a real-world application at an Austrian association. In
this paper, we propose a Constraint Programming (CP) model which we
implemented using MiniZinc and tested with different backend solvers.
As the application of this exact approach is feasible only for small to
medium sized instances, we further consider a hybrid CP/metaheuristic
approach where we create an initial feasible solution using a CP solver
and then further optimize by means of an ant colony optimization and
a variable neighborhood descent. This allows us to create high-quality
solutions which are finally tuned by a manual planner.

Keywords: Employee Scheduling · Constraint Programming ·Ant Colony
Optimization · Multi-Objective Optimization · Variable Neighborhood
Descent

1 Introduction

We consider an employee scheduling problem that arises as a real-world problem
in an Austrian association. It deals with assigning employees to shifts at work
locations within a given planning horizon so that certain hard constraints are
fulfilled and the violation of soft constraints regarding demand satisfaction of the
locations, fairness, and preferences of the employees is minimized. The problem
falls into the broad class of personnel scheduling [1] with strong ties to the nurse
rostering problem [2] but has some distinguishing features. One is the substantial
fluctuation of employees and the high variance of their availabilities over different
planning horizons and within each; therefore employees are coined “casual”.
Another specialty is that employees specify individual maximum numbers of



2 Nikolaus Frohner, Stephan Teuschl, and Günther R. Raidl

0 5 10 15 20 25 30
day

0

10

20

30

40

50
av

ai
la

bi
lit

ie
s/

re
qu

ire
m

en
ts

avail
req

0 1 2 3 4 5 6 7
desired number of shifts

0

10

20

30

40

nu
m

be
r o

f e
m

pl
oy

ee
s

Fig. 1. (a) Availabilities of employees to serve a shift vs. requirements of locations over
an exemplary month. (b) Distribution of maximum number of shifts employees offer to
serve in the considered month.

shifts they desire to work. The variance of the ratio of actual shifts assigned
divided by the desired shifts should be minimized to balance the fulfillment of the
employees’ desires. Likewise, the fulfillment ratio of the locations’ requirements
shall be balanced as well. Figure 1a shows the availabilities of employees to
serve shifts on given days over a month compared with the requirements by
the locations. This exemplary month starts with a weekend where a lack of
employees is evident, whereas on other days there is substantial overcapacity. A
hard constraint is that employees cannot be assigned every day they are available
since they offer a desired number of shifts for a month which also acts as a hard
upper limit. The corresponding distribution can be seen in Fig. 1b. Typically,
in our application there is always a shortage of workers which makes it highly
desirable to distribute this shortage evenly over the shifts.

In the following Section 2, we will formally define the optimization problem
including its hard and soft constraints. This formulation gives rise to an exact
approach by means of Constraint Programming (CP) which we will describe in
Section 3. In Section 4, we introduce a hybrid algorithm that makes use of this
CP-model, Ant Colony Optimization, and Variable Neighborhood Descent to be
able to tackle large problem instances. In Section 5 we conduct a computational
study for both approaches on artificially generated data and real data provided
by an Austrian association, after which we conclude in Section 6.

2 Problem Formulation

Given locations L and a planning horizon D consisting of days d ∈ D, the tuples
(d, l) =: s ⊂ D × L constitute shifts. Each shift s has a requirement Rs ∈ Z+

of employees that should ideally serve it. Each employee w ∈W chooses certain
shifts Sw ⊂ S which he could potentially serve and a desired number of shifts
Nw, which also acts as upper limit of the shifts w will be assigned to. The
locations are comprised of houses H that have shifts on a more regular basis and
events E whose shifts are more sparsely distributed over the planning horizon



Casual Employee Scheduling with CP and Metaheuristics 3

but possibly with higher requirement peaks. Furthermore, there are two special
locations: standby, denoted by b, which is used in case someone becomes sick, and
floating, denoted by f , for employees that are assigned dynamically to a house on
the very day of the shift. Only employees whose numbers of shifts Nw is above a
given threshold are eligible for standby and floating shifts. If an employee selects
a shifts (d, l) where l ∈ H, then all the other houses are selected automatically
for that day as well, so that there is enough flexibility for the planners. However,
the employees provide a nonempty preference list of houses Hw ⊂ H. Events on
the other hand can be selected separately.

The goal is to find an assignment of employees to shifts, which we denote
by the sets of shifts Aw ⊂ Sw each worker w ∈ W is assigned to, that satis-
fies a number of hard constraints and minimizes violations of a number of soft
constraints. The most relevant hard constraints are that employees have to be
assigned at least once, at most in accordance to their desired/maximum number
of shifts, and at each day at most once; each shift has a time duration and the
total duration for each worker must stay within legal bounds. Furthermore, the
standby and floating shifts must be fully covered, otherwise their purpose of
being a backup would be defeated.

We are thus facing a multi-objective optimization problem where soft con-
straint violations are modeled as different objectives with different priorities.
Since shifts provide service to paying customers, the fulfillment of the corre-
sponding requirements is by far the most important objective. Given an assign-
ment A, each shift has a relative shortage us = 1− |{Aw ∈ A | s ∩Aw 6= ∅}|/Rs
that should be kept small and balanced over all shifts, which we implement by
minimizing the mean squared error of the vector u = (us)s∈S with respect to the
desired optimum u∗ = 0. Next priority is to distribute the shifts over employees
as fair as possible, taking their numbers of desired shifts into account. To achieve
this, we minimize the variance of the sum of the assigned shift durations divided
by the number of desired shifts multiplied by the maximum shift duration over
the employees. The shift duration is denoted as ∆s. The fractions of floating
shift hours over the assigned hours should also be distributed evenly among all
workers. Last but not least, we aim at keeping the ratios workers are assigned
to non-preferred houses small and balanced over all workers, for which again
minimizing the corresponding mean squared error is deemed suitable. Putting
everything together yields the vector-valued objective function f : A → [0, 1]4:

f(A) := (gu(A), gf (A), gff (A), gnp(A))T (1)

gu(A) :=
1

|S|
∑
s∈S

(
1− |{Aw|s ∩Aw 6= ∅}|

Rs

)2

(2)

gf (A) := Var

[ ∑
s∈Aw

∆s

Nw maxs∈S ∆s

]
, gff (A) := Var

[∑
s∈Aw∧l(s)=f ∆s∑

s∈Aw
∆s

]
(3)

gnp(A) :=
1

|W |
∑
w∈W

(
|{s ∈ Aw|l(s) ∈ H \Hw}|

|Aw|

)2

(4)
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3 Exact Solution Approach

We model the problem as a constraint program using MiniZinc [5]. We consider
different formulations. The first one is based on a set formulation and the sec-
ond one on binary decision variables. In the set formulation, the main decision
variable is a two-dimensional array of size |L| · |D| containing sets of integers
representing an assignment A(l,d) ⊂ W, ∀(d, l) ∈ S of specific employees to
shifts. Table 1 shows a simplified assignment example of three employees, being
assigned to three houses with different requirements over three days where every
employee is assigned the desired number of shifts.

Table 1. Small example of a assignment with three houses, three days and three
employees.

w Nw Hw

0 3 {2}
1 2 {1, 2, 3}
2 1 {0}

R(l,d) 0 1 2

0 1 1 1

1 0 1 1

2 2 1 0

A(l,d) 0 1 2

0 {0} {2} {1}
1 {} {1} {0}
2 {} {0} {}

For the minimization of the soft constraint violations we choose the weighted
sum approach, where the vector-valued objective function is condensed to a real-
valued function:

f(A) := λugu(A) + λf · gf (A) + λff · gff (A) + λnp · gnp(A) (5)

We designed the soft constraint violations to yield values between zero and one,
therefore no special re-scaling is necessary. To put more weight on the unassigned
shifts objective and keep the others equally weighted, we use the weights λu = 10
and λf = λff = λnp = 1. Since we make use of floating point variables, we solve
the MiniZinc models by two different, float-capable solver backends, namely
Gecode and JaCoP.

In the approach where we greedily extend a small initial solution as described
in the next section, an alternative CP model is used to only satisfy the hard
constraints. It is based on |L| · |D| · |W | binary decision variables, stating whether
an employee w is assigned to a shift (d, l). It does not consider the soft constraints
and is thus only used for pure hard constraint satisfaction. This model can then
also be solved by the solvers Chuffed and Gurobi that as of the time of writing
neither support sets nor floats in combination with MiniZinc.

4 Hybrid Approach

First tests with MiniZinc using real-world instances indicate that our problem
instances are too big to be solved to optimality within reasonable time. This
gives rise to a hybrid approach, where we use CP to create an initial solution
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that satisfies the hard constraints and which is then fed into a metaheuristic for
further improvement. We propose two different combinations of CP and meta-
heuristics, where both our CP-models, the one with soft constraint optimization
and the one with hard-constraints only, come into play:

1. The MiniZinc optimization model, which also considers the soft constraints,
is solved until a first feasible solution is obtained in order to obtain a rather
“complete” solution from CP, which is then passed to a variable neighbor-
hood descent (VND) for possible further improvement.

2. The MiniZinc hard constraint satisfaction model is used to create a small
feasible solution. This solution typically has a high objective value and can
be substantially improved by assigning further employees. This is done by
a successively applying an Ant Colony Optimization (ACO) [3, 4] with a
min/max pheromone model [6]. Each ant starts from the initial solution and
iteratively extends it according to the ACO’s usual probabilistic principles
in combination with certain greedy criteria. The so far best solution is used
for pheromone update. After we hit a time limit, we take the best solution
and try to improve it further by the variable neighborhood descent (VND),
either up to local optimality or until an overall time limit is hit.

In the first variant, the CP solver is used in optimization mode to create
a rather complete (many assignments), initial solution, whereas in the second
variant the binary decision variable model is used in satisfaction mode to create a
rather small (few assignments) solution. The latter is realized by using the value
choice heuristic indomain min which prefers to set decision variables to zero.

For the VND, we use neighborhood structures induced by the following op-
erations, in the given order: MoveEmployeeInDay : For a given employee w and a
day d, change the location of his assignment, AssignEmployee: Assign a shift with
shortage to an employee, ReassignShift : Unassign the shift from an employee and
assign it to a different employee, ReassignEmployee: Unassign an employee from
a shift and assign the employee to a different shift, and SwapShifts: Swap shifts
of two employees. All these neighborhoods are searched in a first improvement
fashion.

Each operator has impact on a different set of soft constraints. For exam-
ple, swapping the assignment of two employees keeps the distribution fairness
among locations unchanged but may improve the preference satisfaction of the
employees.

For the ACO we use a min/max pheromone update system as described in [6],
which bounds the pheromone values to lie within the interval [τmin, τmax]. The
pheromone matrix elements τs,w encode a bias for assigning shift s to employee w.
Given an ant’s current assignment A and Su(A) 3 s be the shifts with shortage
and employees Ws 3 ws that are available for this shift and fulfill all the hard
constraints, then we add the assignment s ↔ ws as extension to A resulting in
A′ with a probability depending on this bias and an attractiveness depending
on the decrease in the objective value ∆f(A,A′) = f(A)− f(A′):

ps,ws ∼ ταs,ws
· (1 +∆f(A,A′))β
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Fig. 2. Comparisons of CP solvers for 30 artificial test instances with a one hour time
limit. Left: Feasibility statistics, where we see the stronger performance of Chuffed and
Gurobi. Right: Boxplots for the times until a feasible solution was found for satisfied
instances.

We start with a high objective value since many shifts are unassigned and are
rewarded for assigning those. This is done until no more extensions are possible.
∆f(A,A′) might also be slightly negative (increase in objective value) due to
the fairness constraints, therefore we shift this difference by one. After each
iteration when all ants have constructed their solutions, pheromone evaporation
is performed, controlled by the parameter ρ, and the so-fast-best solution Abs is
used to increase the respective pheromones by ∆τ = 1

f(Abs)
.

5 Computational Study

We created 30 random artificial instances for a CP-solver benchmark and test the
whole exact and hybrid approach on four real-world instances. For the artificial
instances, we sampled the numbers of houses from {6, . . . , 8}, the numbers of
events from {2, . . . , 11}, and the number of employees from {170, . . . , 249}. We
considered a planning horizon of 30 days and created shift requirements following
different load patterns (peaky, steady, weekend-only, etc.) and randomly sampled
employees’ desired shifts and availabilities following observations from the real-
world instances. 23 of the artificial instances are satisfiable, seven not; all of the
real-world instances are satisfiable.

All tests were conducted on an Intel Xeon E5-2640 processor with 2.40 GHz
in single-threaded mode and a memory limit of 32GB. We used Python 3.6 for
the implementation of the ACO, Java 11 for the implementation of the VND,
and MiniZinc 2.2.3 with the backends Chuffed 0.10.3, Gecode 6.1.0, Gurobi 8.1.0,
and JaCoP 4.6.

In Fig. 2 we see a comparison of the four different CP solvers we tested on
the artificial instances. Chuffed and Gurobi using the binary formulation gave
superior results in terms of number of instances they could satisfy or prove
unsatisfiable within a CPU time limit of one hour, and the CPU time needed
to satisfy an instance. We chose Gurobi as basis for the hybrid algorithm with
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Table 2. Comparisons of exact and hybrid algorithms on four different real-world
instances with resulting weighted objective values after a time limit of one hour.

instance |W |
∑

s Rs |D| tf [s] Exact CSP VND ACO ACO+VND

Sep 2018 184 928 30 123 1.290 7.206 0.418 0.530 0.407

Oct 2018 253 1079 31 238 - 6.901 - 0.553 0.501

Feb 2019 172 685 28 56 0.243 6.634 0.093 0.239 0.141

Apr 2019 170 947 30 124 2.547 7.218 1.018 0.849 0.716

the ACO, since it could satisfy every satisfiable instance within a couple of
minutes. In the other variant, where we start from a complete solution provided
by the CP-solver, we use JaCoP which performed better than Gecode in our
experiments.

In Table 2, the main results of our real-world instances are described. Every
algorithm is given a time limit of one hour. We compare the exact approach using
our constraint optimization model in the set formulation with JaCoP as backend
solver with the hybrid variants. In ACO and ACO+VND we start from a small
basic feasible solution provided by Gurobi, extended it by an ACO and possibly
further improve it with the VND. Values tf denote the times needed until a
feasible solution was provided, the rest of the time is then used either by ACO
or shared evenly among ACO and VND. In the other variant, we take the first
feasible solution from JaCoP in optimization mode which is rather complete and
feed it directly into the VND. We conducted the tests with six ants per iterations
and ACO parameters α = β = 1 and τmin = 1.0, τmax = 10.0, and ρ = 0.9. For
the Feb 2019 instance, the CP+VND only approach gave the best objective
value after one hour, for the others, CP+ACO+VND gave better results. For
the Oct 2019 instance JaCoP could not find a feasible solution within the allowed
time limit.

In Table 3, we take for each real-world instance the best solution and show
the shift coverage compared to a theoretical upper bound and the unweighted
soft constraints. In the February instance there is high availability of workers
which allows for a high shift coverage, in the September and October instance,
we get close to the theoretical upper bounds. Since the VND always hits the
time limit, further improvements are expected to be possible; a corresponding
analysis of converged solutions will be provided in the master thesis of Stephan
Teuschl [7].

6 Conclusion

We introduced a casual employee scheduling problem arising in an Austrian as-
sociation, where employees have to be assigned to shifts to satisfy demands at
locations for a given planning horizon where a number of hard constraints has
to be met and violations of fairness and preference soft constraints shall be min-
imized. We created two different MiniZinc constraint programming models for
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Table 3. Shift coverage and unweighted soft constraint objective values for best so-
lutions of real-world instances, where u is the number of unassigned shifts, c the shift
coverage, and uc the upper bound of the shift coverage, calculated by the sum of the
number of shifts of the employees divided by the total requirements.

instance best f c uc u gu gf gff gnp

Sep 2018 0.407 0.873 0.888 117 0.1532 0.2432 0.1722 0.2922

Oct 2018 0.501 0.868 0.918 142 0.1742 0.3192 0.1302 0.2812

Feb 2019 0.093 0.988 1.168 8 0.0222 0.2622 0.0922 0.1072

Apr 2019 0.716 0.767 0.817 221 0.2272 0.3032 0.1612 0.2912

this problem. The first model is used only for satisfying the hard constraints
by assigning a small number of employees to shifts, which is then the basis for
further extensions by an ant colony optimization algorithm together with a vari-
able neighborhood descent. We compared four different backend solvers on 30
artificial benchmark instances for our problem, and Chuffed and Gurobi turned
out to be the best choices. In the second model, the float-capable backend solvers
JaCoP and Gecode are used to solve the optimization model considering the soft
constraints up to the first feasible solution, which is then passed to the VND
for further improvement. We compared the exact and the hybrid algorithms on
four real-world instances with a CPU time limit of one hour and found that the
hybrid approaches provided superior results. Further research is to be conducted
to make use and measure the impact of different initial solutions, different or-
derings of neighborhoods in the VND, and parameter tuning of the ACO. An
in-depth study of the presented casual employee scheduling problem and its so-
lution methods will be given in the master thesis of Stephan Teuschl [7].
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