
Towards Improving Merging Heuristics for
Binary Decision Diagrams

Nikolaus Frohner and Günther R. Raidl

Institute of Logic and Computation, TU Wien, Vienna, Austria
{nfrohner|raidl}@ac.tuwien.ac.at

Abstract. Over the last years, binary decision diagrams (BDDs) have
become a powerful tool in the field of combinatorial optimization. They
are directed acyclic multigraphs and represent the solution space of bi-
nary optimization problems in a recursive way. During their construction,
merging of nodes in this multigraph is applied to keep the size within
polynomial bounds resulting in a discrete relaxation of the original prob-
lem. The longest path length through this diagram corresponds then to
an upper bound of the optimal objective value. The algorithm decid-
ing which nodes to merge is called a merging heuristic. A commonly
used heuristic for layer-wise construction is minimum longest path length
(minLP) which sorts the nodes in a layer descending by the currently
longest path length to them and subsequently merges the worst ranked
nodes to reduce the width of a layer. A shortcoming of this approach is
that it neglects the (dis-)similarity between states it merges, which we
assume to have negative impact on the quality of the finally obtained
bound. By means of a simple tie breaking procedure, we show a way
to incorporate the similarity of states into minLP using different dis-
tance functions to improve dual bounds for the maximum independent
set problem (MISP) and the set cover problem (SCP), providing empiri-
cal evidence for our assumption. Furthermore, we extend this procedure
by applying similarity-based node merging also to nodes with close but
not necessarily identical longest path values. This turns out to be ben-
eficial for weighted problems where ties are substantially less likely to
occur. We evaluate the method on the weighted MISP and tune param-
eters that control as to when to apply similarity-based node merging.

Keywords: Binary Decision Diagrams · Top-down Construction ·Merg-
ing Heuristic · State Similarity · Tie Breaking

1 Introduction

In the last decade, decision diagrams (DDs) have emerged as a new tool in
the field of combinatorial optimization. Originally, they were conceived by Lee
[10] in circuit design as a compact representation for binary functions. In the
optimization context, they were introduced by Hadzic and Hooker [7] as a tool for
post-optimality analysis. Since then, DDs have been used to obtain strong dual
bounds by means of a new form of discrete relaxation [6], as constraint stores for

2 Nikolaus Frohner and Günther R. Raidl

advanced constraint propagation in constraint programming [7], for obtaining
promising heuristic solutions [4], and for a new branching scheme leading to a
general purpose branch-and-bound framework [3]. For a comprehensive book on
DDs for optimization, see [2].

A DD for a given problem is a directed acyclic graph G = (V,A) with node
set V and arc set A containing dedicated root and target nodes r, t ∈ V . An
exact DD represents all feasible solutions of the underlying problem in the sense
that there is a one-to-one correspondence between r–t paths and feasible solu-
tions. Therefore exact DDs for hard problems typically have exponential size. In
the layer-wise, top-down construction of relaxed DDs, one restricts the size by
merging nodes whenever a layer would exceed a specified width. Merging is done
in such a way that no feasible solution is lost, but new paths, corresponding to
infeasible solutions, may emerge. Assuming maximization, a longest path from
the root to the terminal node represents a solution that is usually infeasible for
the original problem but yields a dual bound. The tightness of this bound is
determined by the maximum width of the layers, the ordering of the decision
variables [1] and the merging heuristic, i.e., the selection of the nodes that are
merged. Algorithms building on a DD can strongly benefit from a stronger bound
or a more compact DD that yields the same bound. The latter holds in partic-
ular when the once constructed DD is then traversed many times as in bound
strengthening schemes like the value enumeration method [6] that incrementally
strengthens integral bounds when there is no path with the current bound that
corresponds to a feasible solution.

In this paper, we show how to improve the commonly used merging heuris-
tic minimum longest path (minLP) for two benchmark problems, namely the
maximum independent set (MISP) and the set cover problem (SCP). Section
2 reviews related work. In Section 3, we formally introduce binary decision di-
agrams (BDDs) based on dynamic programming formulations and provide the
concrete modeling of the MISP and SCP. In Section 4, we introduce a state
similarity-based tie breaking procedure for the minLP merging heuristic with
the aim to improve the quality of obtained dual bounds. The approach is specifi-
cally instantiated for MISP and SCP. We then generalize the method by applying
the similarity-based merging not just in case of ties but already when longest
path values of nodes are sufficiently close. This turns out to be particularly
meaningful in case of the weighted MISP, since there ties are substantially less
likely to occur. More generally, for other problems we also provide suggestions
on how to construct meaningful merging distance functions. In 5 we present our
computational study, where the effectiveness of our tie breaking approach on
compact BDDs with small widths for the MISP, weighted MISP, and SCP is
demonstrated. We conclude in Section 6.

2 Related Work

Our work builds upon the classic top-down construction method of BDDs as
described by Bergman et al. in [5] and [6], whose results we also use as a baseline

Towards Improving Merging Heuristics for Binary Decision Diagrams 3

for the MISP and SCP in our computational study. In limited-width BDDs,
nodes are merged to achieve a discrete relaxation of the solution space; the
selection of which nodes to merge is called merging heuristic, see Section 4). The
pairwise minLP merging heuristic was introduced in [6], in its bulk form in [5].
The size of a BDD is crucially determined by the order in which the decision
variables are processed as elaborated on in [1]. The minState variable ordering
heuristic selects in each layer dynamically the next decision variable for which
the least successor nodes can be derived to aim for keeping the BDD small in a
greedy way. Together, the minState variable ordering heuristic and the minLP
merging heuristic provide strong bounds for the MISP on random and DIMACS
graphs, as presented in [5]. The possible impact of state (dis-)similarity is already
addressed and a minimum distance pairwise merging heuristic is suggested in [6],
on which we focus in this paper in Section 4. In [9], a clustering algorithm is
used to partition DD nodes into approximate equivalence classes for solving a
multi-dimensional bin packing problem.

3 Binary Decision Diagrams (BDDs)

We consider a combinatorial optimization problem (COP) C = 〈S, f〉, where S
is the finite search space and f : S → R the objective function to be maximized.
Every element x ∈ S is represented by an assignment of values to n binary
decision variables xi ∈ {0, 1}, i = 1, . . . , n. Hence, S ⊂ {0, 1}n and f : {0, 1}n →
R. The goal is to find an optimal solution x∗, i.e., for which the objective value
z∗ = f(x∗) ≥ f(x′) ∀x′ ∈ S:

z∗ = max
x∈S

f(x) (1)

We restrict f to be a separable function of the decision variables f(x) =∑n
i=1 fi(xi) which allows us to state the COP in a recursive formulation. For

a well-defined ordering in a recursion, a variable ordering π : {1, . . . , n} →
{1, . . . , n}, with π being bijective, is assumed. A partial assignment of the de-
cision variables of length k, under the ordering π is then defined by an ordered
tuple (dπ1

, . . . , dπk
) ∈ {0, 1}k, k ∈ {0, . . . , n}, where k = 0 corresponds to an

empty assignment.

Definition 1 (State). A state si ∈ S is a mapping from an i-partial assign-
ment. It determines the subset Fsi ⊆ {0, 1}n−i of feasible decisions for remaining
variables xπ(i+1), . . . , xπ(n), the feasible completions of the current partial as-
signment. If two partial assignments have the same state, they have the same
feasible completions.

The representation of a state needs to be concretely defined for the problem at
hand, for example by means of sets or reals. This admits a recursive enumeration
of the state space Sn+1 3 (s0, . . . , sn) corresponding to the search space S by
defining a state transition function:

τ : {0, 1} × S → S (2)

(d, si) 7→ τ(d, si) = si+1 (3)

4 Nikolaus Frohner and Günther R. Raidl

We can now formulate our maximization problem recursively over the states via
Bellman equations ∀i ∈ {0, . . . , n− 1}:

z∗(si) = max
d∈{0,1}

{fπi
(d) + z∗(τ(d, si)) | d∃c ∈ Fsi : c = (d, . . .)} (4)

z∗(sn) = 0 (5)

If for a given si there exists a feasible completion c ∈ Fsi for which we can set
the next decision variable xπi+1

to d, i.e., ∃c ∈ Fsi : c = (d, . . .), we say that the
state admits a d-transition. The root state s0 corresponds to an empty partial
assignment, s1 to when the first variable xπ1 has been assigned, and so forth.
Clearly, Fs0 = S and Fsn = ∅.

A binary decision diagram (BDD) in our context is a directed acyclic lay-
ered multigraph with layers L, |L| = n + 1 and represents this state space enu-
meration graphically. Layer 0 contains only the root node r representing the
root state s(r) = s0 and layer n the terminal node t representing the terminal
state s(t) = sn. Each node u in layer l is thus associated with a state s(u). If
s(u) = s(u′) for nodes u, u′ in a given layer, they admit by definition the same
feasible completions and can therefore be superimposed to reduce the size of the
BDD. Except for the terminal node, each node u has a d-labeled outgoing arc
a = (u, v) for each d admissible by Fs(u), representing the possible decisions at
state s(u). source(a) = u is called the source (node) of the arc and target(a) = v
the target (node) respectively. The arcs point downwards, the layer of the target
must always be greater than the one of the source.

Every arc receives a label d(a) ∈ {0, 1} to encode a binary decision. If a
path starts at the root node and finally leads to some node v, which we denote
by prv, this corresponds to a k-partial assignment (d((r, u1)), . . . , d((uk−1, v))),
where d((u, v)) is the aforementioned label of arc (u, v). Every arc is assigned
a weight fπi

(d), contributing to the length of paths going trough the decision
diagram, for instance fπ(i)(d) = cπi

d when we are given constant objective func-
tion contributions cπi

for each decision variables xπ(i) set to one. In exact BDDs,
there is by construction a one-to-one mapping between paths prt and feasible
solutions S. For maximization problems, paths of longest length correspond to
its optimal solutions. In general, the exact decision diagrams grow exponential in
size in the number of decision variables. The focus in this paper lies on limited-
width, relaxed DDs, where layers have a maximum number β of nodes to keep
the DD size bounded by β|L| nodes. The contained paths represent a superset
of the search space S and, thus, a discrete relaxation of the original problem.
This is achieved by also superimposing nodes that have different states, which
is called merging.

Definition 2 (Merging of nodes). When nodes u, v are merged into a node
w, all incoming arcs of u, v are redirected to the new node w and the states
s(u), s(v) are merged into s(w) in a way that no feasible paths, i.e., solutions in
the search space are lost. Therefore, Fs(w) ⊃ Fs(u) ∪ Fs(v).

The length of a longest path in a relaxed BDD is an upper bound on the
optimal objective value to the original problem. Our first specific problem we

Towards Improving Merging Heuristics for Binary Decision Diagrams 5

{2, 3, 4}

{3, 4}

0/2

{}

1/2

{0, 1, 2, 3, 4}

{1, 2, 3, 4}

0/0

1/01/10/1

1/3{4}

0/3

0/41/4

{2, 3, 4}

{3, 4}

0/2

{}

1/2

{2, 4}

1/2

{4}

0/2

{0, 1, 2, 3, 4}

{1, 2, 3, 4}

0/0

1/0 0/11/1

1/3

0/3

0/41/4

0

1 2

3

4

Fig. 1. Two relaxed BDDs for a simple graph instance on the right. Left with maximum
width β = 1, in the center with β = 2, both having the same longest path length of 2
with optimal solutions of zero-indexed vertices {{0, 3}, {0, 4}, {1, 2}, {1, 4}}.

consider is the maximum independent set problem (MISP). It is defined on an
undirected simple graph G = (V,E) as finding a maximum subset of nodes
I ⊂ V , s.t. no pair of nodes in I are adjacent. A proper state si is the subset of
the vertices for which no decision has been yet made and for which no neighbor
has been selected so far. The transition function is

τ : {0, 1} × 2V → 2V (6)

(0, si) 7→ si+1 = τ(0, si) = si − {πi} (7)

(1, si) 7→ si+1 = τ(1, si) = si − {πi} −N(πi) (8)

where N(πi) ⊂ V is the neighborhood of the i-th considered vertex πi. The root
state s0 is V , the terminal state ∅. A natural merging operator ⊕ of k states is
given by the set union:

⊕ ({u1, . . . , uk}) 7→ w : s(w) =

k⋃
j=1

s(uj) (9)

Two examplary BDDs for a simple MISP instance of width β = 1 and β = 2
are depicted in Fig. 1. For each arc the weight and the corresponding decision
variable is shown. The label is indicated by a dotted arc for a 0-transition and a
solid arc for a 1-transition. When reducing the maximum width from 2 to 1, we
see that a merging is applied in the second layer of states {2, 4} and {2, 3, 4}.

As a second fundamental problem, we consider the classical set cover problem
(SCP). Given a universe U and a set of sets S with S 3 S ⊂ U and

⋃
S∈S S = U ,

we seek to find a S∗ ⊂ S with minimum cardinality so that
⋃
S∈S∗ S = U , i.e., a

minimum set covering. A proper state si is the set of elements that still have to

6 Nikolaus Frohner and Günther R. Raidl

1 X ← {1, . . . , n}, P ← {r};
2 for l← 1 to n do
3 πl ← next-decision-variable(l, P,X);
4 X ← X − πl;
5 Ll ← P ′ ⊂ P for which xπl can bet set to 1;
6 while |Ll| > β do
7 Ll ← merge-nodes(Ll, l);
8 end
9 foreach u ∈ Ll do

10 foreach d ∈ {0, 1} do
11 if s(u) admits d-transition then
12 create vd;
13 s(vd) = τ(d, s(u));
14 create arc (u, vd) with label d and weight fπ(l)(d);

15 end

16 end

17 end

18 end

Algorithm 1: Relaxed limited-width layered binary decision diagram con-
struction algorithm, adapted from [3, p. 12].

be covered. To ensure that all paths are feasible, a set j has to be selected (i.e.,
its decision variable set to 1) if there exists an element in si that can only be
covered by selecting j, since all other possible decision variables have been set
to 0. A natural merging operator ⊕ of k states is given by the set intersection:

⊕ ({u1, . . . , uk}) 7→ w : s(w) =

k⋂
j=1

s(uj) (10)

Throughout this paper, we focus on the top-down layer-wise construction
algorithm [5] for relaxed binary decision diagrams with maximum width β as
described in Algorithm 1.

It facilitates zero-suppressing long arcs, a dynamic variable ordering by the
function next-decision-variable and merging of nodes by the function merge-
nodes. As concrete variable ordering heuristic, we consider here minState [5]
which selects as next decision variable the one that yields the least number of
one-transitions from the current nodes for the next layer. A simple, yet effective
and commonly used merging heuristic is minLP [5], which sorts the nodes u in a
layer by the longest path lengths from the root node to them, denoted by zlp(u),
in decreasing order and merges the tail into one node so that the resulting layer
is of maximum width β, see Algorithm 2. In the minLP approaches described in
the literature so far, to the best of our knowledge, no tie breaking mechanism
for the sorting is explicitly specified which gives rise to the next section.

Towards Improving Merging Heuristics for Binary Decision Diagrams 7

1 Function merge-nodes(Ll, l)

2 T ← sorted nodes of Ll in decreasing order of zlp(u);
3 T ′ ← T without first β − 1 nodes of T ;
4 Ll = Ll \ T ′;
5 w ← ⊕T ;
6 if ∃w′ ∈ Ll|s(w) = s(w′) then
7 w′ ← w′ ⊕ w;
8 else
9 Ll = Ll ∪ {w};

10 end

Algorithm 2: minLP merging heuristic in the bulk variant where all nodes
to be merged are merged within one step into one single node.

4 State Similarity

We consider two different merging heuristic patterns: pairwise merging and bulk
merging. Both face a layer l with a set of nodes Ll where |Ll| exceeds the
maximum width β. Pairwise merging is a form of iterative merging where pairs
of nodes are selected and merged until the desired layer width has been reached.
In contrast, bulk merging selects and merges the necessary number of nodes in
a single iteration. The bulk minLP merging heuristic as introduced in the last
section in Algorithm 2 sorts the nodes in a layer according to the longest path
length to them and merges the last |Ll| − β + 1 nodes into one. It generalizes
to rank based merging, which sorts nodes in a layer according to some criterion
and merges the required number of tail nodes. If the criterion can be calculated
easily, a clear benefit is the O(|Ll| log |Ll|) runtime complexity, whereas pairwise
mergings needs in general at least O(|Ll|2) time.

The rationale behind minLP is to consider nodes with smaller zlp(u) less
promising to be part of an overall longest path in the completed DD and therefore
less critical when merged in order to finally obtain a tight upper bound. This
strategy is supported by the minState variable ordering heuristic, which keeps
the size of the layers before merging as small as possible, therefore reducing the
number of nodes that need to be merged.

A shortcoming of this approach is that it neglects information that could be
obtained from the states of the nodes themselves, in particular the similarity
between states. Intuitively, merging similar states will usually lead to less new
paths corresponding to infeasible solutions than merging very different states.
If two states are comparable, for instance by the subset relation for sets or
the total order for reals, we denote s(u1) � s(u2) when s(u1) is greater than
s(u2). If s(u1) � s(u2), then Fs(u1) ⊇ Fs(u2). One way merging of nodes u, v
introduces infeasible solutions is by increasing the size of feasible completions
Fs(w) ⊃ Fs(u) ∪ Fs(v), which gives rise to a definition for a meaningful distance
function:

Definition 3 (Merging distance between two nodes). A merging distance
between two nodes u, v is a non-negative function d : Ll × Ll → R+

0 . For any

8 Nikolaus Frohner and Günther R. Raidl

1 Function merge-nodes(Ll, l)

2 T ← pairs of nodes (u, v), u, v ∈ Ll for which (zlp(u), zlp(v)) is minimal;
3 T ′ ← pairs of nodes (u, v) ∈ Ll for which d(u, v) is minimal;
4 select (u, v) ∈ T ′ randomly;
5 Ll = Ll \ {u, v};
6 w ← u⊕ v;
7 if ∃w′ ∈ Ll|s(w) = s(w′) then
8 w′ ← w′ ⊕ w;
9 else

10 Ll = Ll ∪ {w};
11 end

Algorithm 3: Iterative minLP merging function with similarity-based tie
breaking.

triple of nodes u1, u2, v ∈ Ll, we demand that if Fs(u1⊕v) ⊃ Fs(u2⊕v), d(u1, v) ≥
d(u2, v) should hold.

The goal is to find a distance function for a specific problem such that greater
distance means a higher probability of introducing new paths and thus new
represented solutions in the decision diagram, even if the states of the nodes are
uncomparable. To consider a merging distance in the current state-of-the-art
merging heuristics, we first look at an iterative minLP variant, where we find
the use of the state similarity as a straightforward extension in form of a tie
breaking mechanism. This becomes relevant when there are two pairs of nodes
(u1, v), (u2, v), s(u1) 6= s(u2) for which (zlp(u1), zlp(v)) = (zlp(u2), zlp(v))—then
we simply take the pair with minimal distance according to d, see Algorithm 3.
In the case of bulk minLP, a tie breaking is necessary when multiple nodes with
the same rank go through the merging boundary, see Fig. 2, which separates the
nodes to be merged from those to be kept as they are. Since the iterative minLP
merging always takes pairs of nodes with currently smallest ranks with respect
to zlp, an alternative implementation is to first do a bulk merge of the nodes that
have rank less than the one causing the need for tie breaking and then switch to
merging nodes pairwise:

1. For a given layer l with nodes Ll, sort the nodes according to their current
longest path length zlp(u) in decreasing order.

2. If the rank r of the β − 1-th node equals the rank of the β-th node, then we
select all nodes with that rank r into a tie breaking set T ⊂ Ll; otherwise
we do a simple minLP bulk merging.

3. Let B be the set of nodes that have a rank < r. We merge them yielding a
node w with state s(w) that is either still at the end of the ordered list or
is absorbed by another node, if there already exists a node w′ with s(w) =
s(w′).

4. Finally, we iteratively merge pairs of nodes out of T ∪ {w} (or T if w has
been absorbed) until the desired width β is reached. In each iteration, we
choose the pair u, v that currently has minimal distance d(u, v).

Towards Improving Merging Heuristics for Binary Decision Diagrams 9

rank(u) 1 2 3 4 5 6 7 7 7 7 7 12 13 14 15

zlp(u) 9 9 8 7 7 7 6 6 6 6 6 5 4 3 1

T B

Fig. 2. Example layer with |Ll| = 15 nodes sorted by longest path length zlp(u), which
is shown in the nodes. Let the maximum width be β = 10. All nodes with longest path
value 6 (bold) are now subject to tie breaking.

When considering weighted problems, ties are in general substantially less
likely to occur than in unweighted counterparts—still, we want to take the state
similarity into account when differences in the longest path lengths are small.
For that purpose, we introduce a parameterized hybrid merging algorithm, which
is based on the minLP ordering but artificially introduces a region of nodes of
similar longest path value around the merging boundary with which we deal
as with the tie breaking region above. This region is determined by parameters
δl, δr. To have meaningful parameters tunable between 0 and 1, regardless of the
absolute values of the longest path lengths, we first normalize those according
to the following transformation:

z̃lp(u) =
zlp(u)−minv∈Ll

zlp(v)

maxv∈Ll
zlp(v)−minv∈Ll

zlp(v)
(11)

The reference value is obtained by taking the normalized path value z̃lpref of
the node immediately right to the merging boundary, i.e., the node with the
largest value to be merged, if regular minLP would be applied. Now, two regions
(contiguous sets of nodes in the ordered view of the layer) are defined:

1. bulk merging region B := {u ∈ Ll | z̃lp(u) ∈ (z̃lpref − δr, 0.]}
2. pairwise merging region T := {u ∈ Ll | z̃lp(u) ∈ [z̃lpref + δl, z̃

lp
ref − δr]}

Let w ← ⊕B be the node resulting from the bulk merging of B, and Ll−T−B
are the nodes that are kept as they are. The pairwise merging is now performed
iteratively by always selecting a node pair with minimum distance d from T ∪w
and replacing the two nodes by the merged node until the desired layer width is
reached. Setting δl = 0.0, δr = 0.0 yields the bulk-iterative hybrid as described
before that only considers pairwise merging for real ties, whereas δl = 1.0, δr =
1.0 would completely ignore the longest path information and only focus on
iteratively finding two minimum distance nodes to merge. For the choice of the
pairwise merging region T in an example layer, see Fig. 3.

As mentioned before, it is crucial to conceive a meaningful distance function
for a concrete problem. Notice that each node u in a layer has a maximum
remaining path length maxe∈Fsi=s(u)

f(e), where f(e = (dπi+1
, . . . , dπn

)) is the
length of the feasible completion (see Definition 1), which is clearly not known
to us during the construction of the DD at layer l. Still, a possible construction

10 Nikolaus Frohner and Günther R. Raidl

rank(u) 1 2 3 4 5 6 7 7 7 7 7 12 13 14 15

z̃lp(u) 1. 1. .875 .75 .75 .75 .625 .625 .625 .625 .625 .5 0.375 .25 0.

T B
Fig. 3. Example layer with |Ll| = 15 nodes sorted by normalized longest path length
z̃lp(u), which is also shown in the nodes. Let the maximum width be β = 10, δl = δr =
.125. All nodes with normalized longest path value .625± .125 (bold) are now subject
to pairwise merging.

1 Function merge-nodes(Ll, l)

2 z̃lp(u)← zlp(u)−minv∈Ll
zlp(v)

maxv∈Ll
zlp(v)−minv∈Ll

zlp(v)
∀u ∈ Ll;

3 B ← {u ∈ Ll|z̃lp(u) ∈ (z̃lpref − δr, 0.]};
4 T ← {u ∈ Ll|z̃lp(u) ∈ [z̃lpref + δl, z̃

lp
ref − δr]};

5 Ll = Ll \B;
6 w ← ⊕B;
7 include-node-into-layer(w, Ll, l);
8 while |Ll| > β do
9 T ′ ← pairs of nodes (u, v) ∈ T for which d(u, v) is minimal;

10 select (u, v) ∈ T ′ for which max{zlp(u), zlp(v)} is minimal;
11 Ll = Ll \ {u, v};
12 T = T \ {u, v};
13 w ← u⊕ v;
14 include-node-into-layer(w, Ll, l);

15 end

16 Function include-node-into-layer(w, Ll, l)
17 if ∃w′ ∈ Ll|s(w) = s(w′) then
18 w′ ← w′ ⊕ w;
19 else
20 Ll = Ll ∪ {w};
21 end

Algorithm 4: Bulk-iterative minLP-state similarity-based hybrid merging al-
gorithm with parameters δl, δr.

scheme to formulate a distance between u and v is to consider the maximum
increase of the maximum remaining path lengths that u and v experience by
being merged to w = u⊕ v:

d(u, v) = max{ max
e∈Fs(w)

f(e)− max
e∈Fs(u)

f(e), max
e∈Fs(w)

f(e)− max
e∈Fs(v)

f(e)} (12)

This is can be made use of by approximating the maxima by an upper bound
function zub(u):

dub(u, v) = max{zub(w)− zub(u), zub(w)− zub(v)} (13)

Towards Improving Merging Heuristics for Binary Decision Diagrams 11

For the MISP a first coarse upper bound to consider is given by the cardinality
of the state |s(u)|, which is only reasonably tight for sparse graphs, but might
still be meaningful since we are only interested in the maximum increase:

dMISP
coarse(u, v) = max{|s(u) ∪ s(v)| − |s(u)|, |s(u) ∪ s(v)| − |s(v)|} (14)

In the weighted MISP (MWISP) case, we sum over the vertex weights of the
remaining vertices defined by the state, zubMWISP(u) =

∑
j∈s(u) fj(xj = 1) to get

a coarse upped bound. With SCP, we are facing a minimization problem; there
the distance can be defined as maximum lower bound change:

dlb(u, v) = max{zlb(u)− zlb(w), zlb(v)− zlb(w)} (15)

In this case, the calculation of a bound on the maximum remaining path length
takes a little more work: We go over the remaining elements to be covered and
if at the i-th, we increase a counter by one, if none of its covering sets was also
a covering set for some j < i. The resulting counter value is a lower bound for
the number of sets to cover the universe.

Another construction method is to take only the maximum remaining path
length after merging w = u⊕ v:

d̃(u, v) = max
e∈Fs(w)

f(e) (16)

The rationale is that it should be less likely to merge nodes that have high upper
bounds even if they are similar with respect to d(u, v), to balance the resulting
upper bounds over the layer:

d̃ub(u, v) = zub(w) (17)

As a baseline, we suggest to also include the weighted Hamming distance dH . It
sums the weights of elements that are part of state s(u) but not s(v) or vice versa;
for the unweighted case this amounts simply the cardinality of the symmetric
set difference.

To summarize, the main idea of these construction methods was to greedily
impede the estimated growth in bound by the remaining layers of the decision
diagram induced by merging. One subtlety is that a problem specific upper
bound does not take future merging operations into account but considers the
case when we would continue constructing the BDD without merging.

5 Computational Study

We tested the relaxed DD construction applying the minLP merging heuristic
with simple tie breaking based on the natural node order as done in [3] (i.e.,
the classic minLP) and minLP with our new similarity-based tie breaking using
different distance functions for the MISP on random graphs from [5] with n = 200
and densities from {0.1, 0.2 . . . , 0.9} (20 instances per combination) and on the

12 Nikolaus Frohner and Günther R. Raidl

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
density

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
re

l.
bo

un
d

Relaxed BDD Bounds minLP with Tie Breaking
minLP
Hamming
UB increase
UB

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
A: minLP

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

B:
 m

in
LP

, w
/ U

B
di

st
an

ce
 ti

e
br

ea
ki

ng

MedA = 2.03
MedB = 1.76
Med = 0.36
Wilcoxon p-val = 0.000

Relative Upper Bound Comparison of DIMACS instances

Fig. 4. Comparison of relative bounds of relaxed BDDs with β = 10 obtained with the
classic minLP merging heuristic and with minLP with similarity-based tie breaking
using different distance functions. Left: plotted over densities with means and error
bars of 1σ; right: scatter plot for classic minLP vs. minLP with d̃ub based tie breaking.

DIMACS [8] max clique set instances1. For the SCP, we created random instances
with n = 500 elements that are covered by exactly k = 20 sets each following
the creation procedure for structured random instances from [6]. The constraint
matrices describing which sets cover which elements follow a specific staircase like
structure with limited bandwidths from {21, . . . , 27}, and there are 20 instances
per bandwidth. For the weighted MISP, we used 64 extended DIMACS graphs
that we could solve to optimality in which vertex i ∈ {1, . . . , n} has weight
i mod 200 + 12. All tests were conducted on an Intel Xeon E5-2640 processor
with 2.40 GHz in single-threaded mode and a memory limit of 8GB.

On the left side of Fig. 4 we see the performance of the different tie breaking
distance functions from Section 4 in comparison to the classic minLP approach
in terms of the obtained relative bounds (i.e., obtained bounds divided by known
optimal objective values) on the MISP random graph instances when compiling
relaxed BDDs of maximum width β = 10. The tie breaking that seeks for pairs
for which merging yields the smallest trivial upper bound (cardinality of state
set), gives the strongest results. Differences among the approaches are generally
larger for sparser graphs and start to vanish for denser graphs. This is plausible
since the trivial upper bound is tighter for sparser graphs. The difference reaches
a maximum for density 0.3 of about 40%. On its right side Fig. 4 shows a scatter
plot with the relative bounds obtained for the DIMACS graph instances for
classic minLP and our minLP with similarity-based tie breaking with the upper
bound distance function. The median of the pairwise difference is 36% in favor of
our tie breaking. A Wilcoxon signed rank sum test indicated that this difference
is significant with an error probability of less than one percent.

Mean values of relative upper bounds and corresponding standard deviations
for the different densities and algorithm variants are listed in Table 1 for β = 10
and β = 100. For selected DIMACS instances relative upper bound values are

1
http://www.andrew.cmu.edu/user/vanhoeve/mdd/code/opt_bounds_bdd-instances.tar.gz

2
https://github.com/jamestrimble/max-weight-clique-instances/tree/master/DIMACS

http://www.andrew.cmu.edu/user/vanhoeve/mdd/code/opt_bounds_bdd-instances.tar.gz
https://github.com/jamestrimble/max-weight-clique-instances/tree/master/DIMACS

Towards Improving Merging Heuristics for Binary Decision Diagrams 13

Table 1. Mean relative upper bounds ūrel and standard deviations of relaxed BDDs
over the 20 random graphs per density p obtained by the different merging heuristics
for DD widths β ∈ {10, 100}.

β = 10 β = 100

minLP dH dub d̃ub minLP dH dub d̃ub
p ūrel σub ūrel σub ūrel σub ūrel σub ūrel σub ūrel σub ūrel σub ūrel σub

0.10 1.90 0.03 1.83 0.04 1.79 0.04 1.61 0.04 1.63 0.03 1.57 0.04 1.56 0.04 1.49 0.03
0.20 2.21 0.07 2.09 0.07 2.02 0.06 1.82 0.06 1.80 0.06 1.70 0.04 1.67 0.05 1.62 0.06
0.30 2.38 0.10 2.15 0.08 2.09 0.07 1.92 0.08 1.80 0.08 1.63 0.04 1.63 0.06 1.63 0.07
0.40 2.37 0.09 2.01 0.08 2.00 0.09 1.85 0.09 1.69 0.07 1.51 0.07 1.54 0.06 1.50 0.07
0.50 2.26 0.09 1.88 0.07 1.85 0.07 1.80 0.08 1.54 0.08 1.38 0.06 1.39 0.05 1.40 0.06
0.60 2.07 0.09 1.70 0.06 1.69 0.07 1.63 0.08 1.35 0.05 1.21 0.05 1.24 0.04 1.22 0.04
0.70 1.91 0.11 1.52 0.08 1.50 0.11 1.50 0.08 1.22 0.07 1.12 0.05 1.11 0.06 1.11 0.07
0.80 1.55 0.16 1.24 0.11 1.26 0.12 1.22 0.11 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.90 1.26 0.15 1.16 0.12 1.19 0.11 1.16 0.12 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

minLP C1 C2 C3 C4
minLP vs raced configurations

1

2

3

4

5

Re
la

tiv
e

up
pe

r b
ou

nd

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
A: minLP

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
B:

 m
in

LP
, w

/ U
B

di
st

an
ce

 ti
e

br
ea

ki
ng

MedA = 1.77
MedB = 1.67
Med = 0.05
Wilcoxon p-val = 0.000

Relative Upper Bound Comparison of Weighted DIMACS Instances

Fig. 5. Comparison of relative bounds of relaxed BDDs with β = 10 for weighted
DIMACS instances for classical minLP vs. minLP with similarity-based merging in
configuration C3 with distance function d̃ub.

shown likewise in Table 2. For the weighted DIMACS graph instances, where
real ties are virtually non-existent, we tuned the left and right threshold pa-
rameters δl and δr for the region to which similarity-based merging is applied
with irace [11] and test on a different set of weighted DIMACS graphs where
the vertices have been randomly permuted. Here, we always used the superior
upper bound distance function. On the left side of Fig. 5 we see boxplots com-
paring the raced parameter configurations with the classical minLP approach.
The right side of Fig. 5 shows the comparison of the DDs’ relative bounds when
using the most promising configuration C3 = (0.185, 0.043). We observe that oc-
casionally worse bounds are obtained but still in the clear majority of the cases
the state similarity-based merging yields tighter bounds, which is also confirmed
by a Wilcoxon signed rank sum test with an error probability of less than one
percent. The median of the pairwise differences is 0.05.

In Fig. 6, we see the results for analogous comparisons for the set cover
problem. As this is a minimization problem, we seek high lower bound values.

14 Nikolaus Frohner and Günther R. Raidl

Table 2. Relative upper bounds of relaxed BDDs obtained with different merging
heuristics and widths β ∈ {10, 100} for selected DIMACS instances.

β = 10 β = 100

inst minLP dH dub d̃ub minLP dH dub d̃ub
brock200 1 2.29 2.14 2.14 1.90 1.81 1.62 1.67 1.67

C500.9 3.05 3.00 2.81 2.47 2.61 2.46 2.40 2.28
gen400 p0.9 55 2.25 2.13 2.04 1.82 1.91 1.82 1.80 1.73

keller4 1.91 1.55 1.64 1.55 1.45 1.18 1.18 1.18
MANN a45 1.34 1.34 1.21 1.30 1.08 1.32 1.27 1.19
p hat300-3 2.19 2.11 2.08 1.86 1.86 1.75 1.81 1.69
p hat700-2 2.59 2.45 2.32 2.18 2.14 1.98 1.95 1.93

21 22 23 24 25 26 27
bandwidth

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

re
l.

bo
un

d

Relaxed BDD Bounds minLP without/with Tie Breaking
minLP
Hamming
LB decrease
LB

0.0 0.2 0.4 0.6 0.8 1.0
A: minLP

0.0

0.2

0.4

0.6

0.8

1.0

B:
 m

in
LP

, w
/ L

B
di

st
an

ce
 ti

e
br

ea
ki

ng

MedA = 0.76
MedB = 0.83
Med = 0.08
Wilcoxon p-val = 0.000

Relative Lower Bound Comparison of Staircase-like SCP Instances

Fig. 6. Comparison of relative bounds of relaxed BDDs with β = 10 for staircase-like
set cover problem instances with n = 500 elements to cover with varying bandwidths
bw ∈ {21, . . . , 27} obtained with the classic minLP merging heuristic and with minLP
with similarity-based tie breaking using different distance functions. Left: plotted over
different bandwidths with error bars for 1σ; right: scatter plot for classic minLP vs.
minLP with tie-breaking based on d̃ub.

Again, the lower bound distance turns out to be the most promising and gives
statistically significant improvements with a median increase in the lower bound
value of 0.08.

6 Conclusion and Future Work

We presented a possibility to improve the minLP merging heuristic in the layer-
wise construction of a relaxed BDD. This extension turns in case of ties to a
pairwise merging strategy that considers the state similarities for deciding which
nodes to merge next. For unweighted problems, ties occur naturally and we ob-
tain significant improvements for MISP random graphs, DIMACS instances, and
for the set cover problem with random staircase-like instances. In the weighted
case, due to too few real ties, we generalized the method by considering a range
of nodes with close longest path lengths for our similarity-based merging. We
see a small but significant improvement for weighted DIMACS instances, after

Towards Improving Merging Heuristics for Binary Decision Diagrams 15

having tuned the corresponding parameters. The computational overhead intro-
duced by our approach depends on the number of ties or the parameters δl and
δr in the generalized variant as well as the applied distance function. However,
since minLP still is the dominant criterion for deciding which nodes to merge,
the set of nodes to be processed by the pairwise similarity-based merging is typ-
ically quite restricted. Our focus was on obtaining relaxed DDs of small width
that provide stronger bounds. Such DDs are particularly important when they
are used in some further algorithm many times, as frequently is the case in prac-
tical applications. Then, an overhead in the DD’s construction will quickly pay
off. Our ongoing research is concerned with achieving more effect on weighted
instances, testing on further problem classes and reducing the time complexity
so that state similarity-based approaches become also more effective for larger
decision diagram width.

References

1. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Variable ordering for the
application of BDDs to the maximum independent set problem. In: International
Conference on Integration of AI and OR Techniques in Constraint Programming.
LNCS, vol. 7298, pp. 34–49. Springer (2012)

2. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Decision Diagrams for Op-
timization. Artificial Intelligence: Foundations, Theory, and Algorithms, Springer
(2016)

3. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization
with decision diagrams. INFORMS Journal on Computing 28(1), 47–66 (2016)

4. Bergman, D., Cire, A.A., van Hoeve, W.J., Yunes, T.: BDD-based heuristics for
binary optimization. Journal of Heuristics 20(2), 211–234 (2014)

5. Bergman, D., Cire, A.A., Hoeve, W.J.v., Hooker, J.N.: Optimization bounds from
binary decision diagrams. INFORMS Journal on Computing 26(2), 253–268 (2013)

6. Bergman, D., van Hoeve, W.J., Hooker, J.N.: Manipulating MDD relaxations for
combinatorial optimization. In: International Conference on AI and OR Techniques
in Constriant Programming for Combinatorial Optimization Problems. LNCS,
vol. 6697, pp. 20–35. Springer (2011)

7. Hadzic, T., Hooker, J.: Postoptimality analysis for integer programming using bi-
nary decision diagrams. In: GICOLAG Workshop (Global Optimization: Integrat-
ing Convexity, Optimization, Logic Programming, and Computational Algebraic
Geometry), Vienna. Technical report, Carnegie Mellon University (2006)

8. Johnson, D.S., Trick, M.A.: Cliques, coloring, and satisfiability: second DIMACS
implementation challenge, October 11-13, 1993, vol. 26. American Mathematical
Soc. (1996)

9. Kell, B., van Hoeve, W.J.: An MDD approach to multidimensional bin packing. In:
International Conference on AI and OR Techniques in Constriant Programming
for Combinatorial Optimization Problems. LNCS, vol. 7874, pp. 128–143. Springer
(2013)

10. Lee, C.Y.: Representation of switching circuits by binary-decision programs. The
Bell System Technical Journal 38(4), 985–999 (1959)

11. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The
irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives 3, 43–58 (2016)

	Towards Improving Merging Heuristics for Binary Decision Diagrams

