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Abstract. We consider the parameterized problems of whether a given
set of clauses can be refuted within k resolution steps, and whether a
given set of clauses contains an unsatisfiable subset of size at most k. We
show that both problems are complete for the class W[1], the first level
of the W-hierarchy of fixed-parameter intractable problems. Our results
remain true if restricted to 3-SAT formulas and/or to various restricted
versions of resolution including tree-like resolution, input resolution, and
read-once resolution.
Applying a metatheorem of Frick and Grohe, we show that restricted to
classes of locally bounded treewidth the considered problems are fixed-
parameter tractable. Hence, the problems are fixed-parameter tractable
for planar CNF formulas and CNF formulas of bounded genus, k-SAT
formulas with bounded number of occurrences per variable, and CNF
formulas of bounded treewidth.

1 Introduction

Resolution is a fundamental method for establishing the unsatisfiability of a given
formula in Conjunctive Normal Form (CNF) using one single rule of inference,
the resolution rule. This rule allows to infer the clause C∪D from clauses C∪{x}
and D ∪ {¬x}. A CNF formula is unsatisfiable if and only if the empty clause
can be derived by repeated application of the resolution rule. Resolution is easy
to implement and provides the basis for many Automated Reasoning systems.

It is well known that certain unsatisfiable CNF formulas require an expo-
nential number of resolution steps in order to be refuted [11]. Iwama [12] shows
that, given a CNF formula F together with an integer k, deciding whether F

has a resolution refutation with at most k steps is NP-complete. This result
is strengthened by Alekhnovich et al. [2] by showing that the minimum num-
ber of resolution steps cannot be approximated within a constant factor, unless
P = NP (this result also holds for stronger proof systems like Frege systems).
A closely related question is the “automatizability” of resolution: is there an
algorithm that finds a shortest resolution refutation R in polynomial time w.r.t.

? Research has been partially supported by the Australian Research Council.



the number of steps in R? Alekhnovich and Razborov [3] show that resolution is
not automatizable, assuming a parameterized intractability hypothesis regard-
ing W[P]. For a survey of further results on the complexity of resolution, see,
e.g., Beame and Pitassi [4] or Clote and Kranakis [6].

Parameterizing by the number of steps of a resolution refutation is of rele-
vance if one has to deal with large CNF formulas which contain local inconsis-
tencies. Evidently, one can use exhaustive search for finding a k-step resolution
refutation of a CNF formula with n variables, yielding a time complexity of
nO(k). However, even if k is a small integer, say k = 10, exhaustive search be-
comes impractical for large n. The question rises whether one can find resolution
refutations with a fixed number of steps significantly more efficient than by ex-
haustive search. The framework of parameterized complexity [8] offers a means
for addressing this question. Here, problems are considered in two dimensions:
one dimension is the usual size n of the instance, the second dimension is the
parameter (usually a positive integer k). A parameterized problem is called fixed-
parameter tractable (or fpt, for short) if it can be solved in time f(k) · nO(1) for
some computable function f of the parameter. The parameterized complexity
classes W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] contain problems which are believed to be not
fpt (see [8]); since all inclusions are believed to be proper, the hierarchy provides
a means for determining the degree of parameterized intractability. A parame-
terized problem P fpt reduces to a parameterized problem Q if we can transform
an instance (x, k) of P into an instance (x′, g(k)) of Q in time f(k) · |x|O(1) (f, g

are arbitrary computable functions), such that (x, k) is a yes-instance of P if
and only if (x′, g(k)) is a yes-instance of Q.

As a main result of this paper, we show that short resolution refuta-

tion, that is, refutability within k resolution steps, is complete for the class
W[1]. We also show that this result holds true for several resolution refinements
including tree-like resolution, regular resolution, and input-resolution. We es-
tablish the hardness part of the result by an fpt-reduction of the parameterized
clique problem. As it appears to be difficult to establish W[1]-membership by
reducing the problem to the canonical W[1]-complete problem on circuit satisfi-
ability, we use results from descriptive parameterized complexity theory.

We show that refutability within k resolution steps can be expressed as a
statement in positive (i.e., negation-free and ∀-free) first-order logic. This yields
W[1]-membership as it was shown by Papadimitriou and Yannakakis [16] in the
context of query evaluation over databases, that the evaluation of statements in
positive first-order logic over finite structures is W[1]-complete.

Along these lines, we also show W[1]-completeness of small unsatisfiable

subset, that is, the problem of whether at most k clauses of a given CNF for-
mula form an unsatisfiable formula. Furthermore, we pinpoint that all our W[1]-
completeness results remain valid if the inputs are confined to 3-CNF formulas.

The notion of bounded local treewidth for classes of graphs (see Frick and
Grohe [10]) generalizes several graph classes, like planar graphs, graphs of
bounded treewidth, or graphs of bounded degree. By means of incidence graphs
(see Section 2.1) we can apply this notion to classes of CNF formulas. Special
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cases are planar CNF formulas (CNF formulas with planar incidence graphs)
and of (k, s)-CNF formulas (CNF formulas with k literals per clause and at
most s occurrences per variable). Frick and Grohe [10] show that the evaluation
of first-order statements over classes of graphs with locally bounded treewidth
is fixed-parameter tractable (the result holds also for finite structures whose
Gaifman graphs have locally bounded treewidth). Applying this powerful result,
we obtain fixed-parameter tractability of short resolution refutation and
small unsatisfiable subset restricted to classes of CNF formulas with locally
bounded treewidth. Thus the problems are tractable for planar CNF formulas
and for (k, s)-CNF formulas.

Note that satisfiability is NP-complete for planar CNF formulas (Lichten-
stein [15]) and (3, 4)-CNF formulas (Tovey [18]), and even for the intersection of
these two classes (Kratatochv́ıl [13]). However, satisfiability of CNF formulas of
(globally) bounded treewidth is fixed-parameter tractable (Courcelle et al. [7],
see also Szeider [17]).

2 Preliminaries and Notation

2.1 CNF Formulas

A literal is a propositional variable x or a negated variable ¬x; we also write x1 =
x and x0 = ¬x. A clause is a finite set of literals not containing a complementary
pair x,¬x. A formula in conjunctive normal form (or CNF formula, for short)
F is a finite set of clauses. F is a k-CNF formula if the size of its clauses is at
most k; F is a (k, s)-CNF formula if, additionally, every variable occurs in at
most s clauses. The length of a CNF formula F is defined as

∑

C∈F |C|. For a
CNF formula F , var(F ) denotes the set of variables x such that some clause of F

contains x or ¬x. A literal xε is a pure literal of F if some clauses of F contain
xε but no clause contains x1−ε. F is satisfiable if there exists an assignment
τ : var(F ) → {0, 1} such that every clause of F contains some variable x with
τ(x) = 1 or some negated variable ¬x with τ(x) = 0; otherwise, F is called
unsatisfiable. F is called minimal unsatisfiable if F is unsatisfiable and every
proper subset of F is satisfiable. Note that minimal unsatisfiable CNF formulas
have no pure literals. A proof of the following lemma can be found in Aharoni
and Linial [1], attributed there to Tarsi.

Lemma 1 A minimal unsatisfiable CNF formula has more clauses than vari-
ables.

The incidence graph I(F ) of a CNF formula F is a bipartite graph; variables
and clauses form the vertices of I(F ), a clause C and variable x are joined by
an edge if and only if x ∈ C or ¬x ∈ C (see Fig. 1 for an example). A planar
CNF formula is a CNF formula with a planar incidence graph.
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Fig. 1. The incidence graph I(G) of the planar (3, 4)-CNF formula F =
{C1, . . . , C5} with C1 = {x}, C2 = {¬x, y, z}, C3 = {¬x, y,¬z}, C4 = {¬y, z},
C5 = {¬y,¬z}.

2.2 Resolution

Let C1, C2 be clauses with x ∈ C1, ¬x ∈ C2, and var(C1) ∩ var(C2) = {x}. The
clause C = (C1 ∪C2) \ {x,¬x} is called the resolvent of C1 and C2. We also say
that C is obtained by resolving on x, and we call C1, C2 parent clauses of C.

Recall that a vertex of a directed graph is called a sink if it has no successors,
and it is called a source if it has no predecessors. A resolution refutation R is a
directed acyclic graph whose vertices are labeled with clauses, such that

1. every non-source of R has exactly two predecessors and is labeled with the
resolvent of the clauses labeling its predecessors;

2. R contains exactly one sink; the sink is labeled with the empty clause.

We call a non-source vertex of R a step. A clause labeling a source of R is called
an axiom of R. R is a resolution refutation of a CNF formula F if all axioms of
R are contained in F . It is well known that a CNF formula is unsatisfiable if and
only if it has a resolution refutation (resolution is “refutationally complete”).

In the sequel we will measure the size of resolution refutations in terms of
the number of steps1.

We refer to any decidable property of a resolution refutation as a resolution
refinement. In particular, we will consider the following refinements:

– Tree-like resolution: The directed acyclic graph is a tree.
– Regular resolution: On any path from a source vertex to the sink, any variable

is resolved at most once.
– P-resolution: at each resolution step, at least one of the parent clauses is a

positive clause (i.e., a clause without negated variables);
– Input resolution: every vertex is either a source or has a predecessor which

is a source.
– Literal-once resolution: distinct resolution steps resolve on distinct variables.
– Read-once resolution: distinct sources are labeled by distinct clauses.

1 Another possible measure is the length of a refutation, defined as the total number of
vertices (i.e., steps + source vertices). It is easy to verify that a resolution refutation
with k steps has at most k+1 sources, and so its length is at most 2k+1. Therefore,
our results carry over if we bound the length instead of the number of steps.
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Note that the first three refinements are refutationally complete, but the last
three refinements are not. Note also that every literal-once resolution refutation
is tree-like, read-once, and regular. Every input resolution refutation is tree-like.

2.3 Locally Bounded Treewidth

Treewidth, a popular parameter for graphs, was introduced by Robertson and
Seymour in their series of papers on graph minors; see, e.g., Bodlaender’s survey
article [5] for definitions and references.

Let v be a vertex of a simple graph G and let r be some positive integer.
Nr

G(v) denotes the r-neighborhood of v, i.e., the set of vertices of G which can be
reached from v by a path of length at most r. A class of graphs is said to have
locally bounded treewidth if there exists a function f such that for all r ≥ 1 and
all vertices v of a graph G of that class, the treewidth of the subgraph included
by Nr

G(v) is at most f(k). (Intuitively, the treewidth of the subgraph induced
by an r-neighborhood of a vertex is a function of r and so less than the total
number of vertices of G.) We give some examples of classes of graphs with locally
bounded treewidth (see Frick and Grohe [10] for references).

– By trivial reasons, the class of graphs of treewidth ≤ t has locally bounded
treewidth (f(r) = t).

– The class of planar graphs has locally bounded treewidth (f(r) = 3r); more
generally, the class of graphs with genus ≤ g has locally bounded treewidth
(f(r) = O(gr)).

– The class of graphs with maximum degree ≤ d has locally bounded treewidth
(f(r) = d(d − 1)r−1).

3 Statement of Main Results

Consider the following two parameterized problems.

short resolution refutation

Input: A CNF formula F .
Parameter: A positive integer k.
Question: Can F be refuted by at most k resolution steps? (i.e., can
the empty clause be inferred from F by k applications of the resolution
rule?).

small unsatisfiable subset

Input: A CNF formula F .
Parameter: A positive integer k.
Question: Does F contain an unsatisfiable subset F ′ with at most k

clauses?

Our main results are as follows.
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Theorem 1 short resolution refutation is W[1]-complete.
The problem remains W[1]-complete for the following resolution refinements:

tree-like resolution, regular resolution, P-resolution, input resolution, read-once
resolution, and literal-once resolution.

Theorem 2 small unsatisfiable subset is W[1]-complete.

Both theorems remain valid if inputs are confined to 3-CNF formulas.
We show fixed-parameter tractability for classes of CNF formulas whose in-

cidence graphs have locally bounded treewidth:

Theorem 3 For CNF formulas of locally bounded treewidth, the problems
short resolution refutation and small unsatisfiable subset are fixed-
parameter tractable.

Tractable cases include: planar CNF formulas, CNF formulas of bounded genus,
and (k, s)-CNF formulas (k-CNF formulas with at most s occurrences per vari-
able).

4 Proof of W[1]-hardness

We are going to reduce the following well-known W[1]-complete problem.

clique

Input: A graph G.
Parameter: A positive integer k.
Question: Is there a set V ′ ⊆ V (G) of k vertices that induces a complete
subgraph of G (i.e., a clique of size k)?

Given a simple graph G = (V, E), |V | = n, and a positive integer k. We take
distinct variables: xi for 1 ≤ i ≤ k, yi,j for 1 ≤ i < j ≤ k, and zv,i for v ∈ V and
1 ≤ i ≤ k. We construct a CNF formula

FG = {Cstart} ∪ Fedges ∪ Fvertices ∪ Fclean-up

where

Cstart = {x1, . . . , xk} ∪ { yi,j : 1 ≤ i < j ≤ k },

Fedges = { {¬yi,j , zu,i, zv,j} : 1 ≤ i ≤ k, uv ∈ E },

Fvertices = { {¬xi, zv,i} : 1 ≤ i ≤ k, v ∈ V },

Fclean-up = { {¬zv,i} : 1 ≤ i ≤ k, v ∈ V }.

We put

k′ =

(

k

2

)

+ 2k.

Lemma 2 The following statements are equivalent.
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1. FG has an unsatisfiable subset F ′ with at most k′ + 1 clauses;
2. G contains a clique on k vertices;
3. FG has a resolution refutation with at most k′ steps which complies with the

resolution refinements mentioned in Theorem 1;
4. FG has a resolution refutation with at most k′ steps.

Proof. 1⇒2. We assume that FG is unsatisfiable and choose a minimal unsatis-
fiable subset F ′ ⊆ FG. First we show that

Cstart ∈ F ′. (1)

Assume the contrary. Since F ′ has no pure literals, and since the variables xi and
yi,j occur positively only in Cstart, we conclude that Fvertices∩F ′ = Fedges∩F ′ =
∅. Hence, in turn, Fclean-up ∩ F ′ = ∅, thus F ′ = ∅. However, the empty formula
is satisfiable, a contradiction. Thus Cstart is indeed in F ′. Since every clause in
Fedges ∪ Fvertices contains the complement of exactly one variable of Cstart, it
follows that

|Fedges ∩ F ′| ≥

(

k

2

)

, (2)

|Fvertices ∩ F ′| ≥ k. (3)

It also follows that for every i ∈ {1, . . . , k} there is some v ∈ V such that
zv,i ∈ var(Fvertices ∩ F ′). The latter implies

|Fclean-up ∩ F ′| ≥ k. (4)

Since |F ′| ≤ k + 1 by assumption, (1) and the estimations (2)–(4) yield |F ′| =
k′+1. Hence the estimations (2)–(4) must be tight. Consequently, strengthening
the above observation, we conclude that for every i ∈ {1, . . . , k}, there is exactly
one vertex v ∈ V such that zv,i ∈ var(Fvertices ∩ F ′). Let ϕ : {1, . . . , k} → V be
the map defined by

ϕ(i) = v if and only if zv,i ∈ var(Fvertices ∩ F ′).

In view of the tightness of the above estimations, we conclude that

var(F ′) = Cstart ∪ { zϕ(i),i : 1 ≤ i ≤ k }. (5)

Consequently,

Fedges ∩ F ′ = { {¬yi,j , zϕ(i),i, zϕ(j),j} : 1 ≤ i < j ≤ k, ϕ(i)ϕ(j) ∈ E }.

We conclude that the vertices ϕ(1), . . . , ϕ(k) are mutually distinct; thus
ϕ(1), . . . , ϕ(k) induce a clique of size k in G.

2⇒3. Assume that G contains a clique on k vertices. Consequently, there is an
injective map ϕ : {1, . . . , k} → V such that ϕ(i)ϕ(j) ∈ E for all 1 ≤ i < j ≤ k.
We devise an input resolution refutation R of FG, proceeding in three phases:
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1. For 1 ≤ i < j ≤ k we resolve Cstart with the clauses {¬yi,j , zϕ(i),i, zϕ(j),j} ∈
Fedges. We end up with the clause C ′ = {xi, zϕ(i),i : i = 1, . . . , k }.

2. For 1 ≤ i ≤ k we resolve C ′ with the clauses {¬xi, zϕ(i),i} ∈ Fvertices. We
end up with the clause C ′′ = { zϕ(i),i : i = 1, . . . , k }.

3. For 1 ≤ i ≤ k we resolve C ′′ with the clauses {¬zϕ(i),i} ∈ Fclean-up. We end
up with the empty clause.

By construction, R complies with the resolution refinements as claimed. More-
over, R contains

(

k
2

)

+ k + k = k′ resolution steps.
3⇒4. Trivial.
4⇒1. Assume that FG has a resolution refutation R with at most k′ steps.

Let F ′ denote the set of axioms of R. Note that F ′ is necessarily unsatisfiable,
and since R has at most k′ + 1 sources, |F ′| ≤ k′ + 1 follows. ut

The construction of FG from F can be carried out in time f(k)|E|O(1) for
some function f . Thus Lemma 2 yields an fpt-reduction from clique to short

resolution refutation with respect to the resolution refinements mentioned
in Theorem 1, and an fpt-reduction from clique to small unsatisfiable sub-

set. Since clique is well-know to be W[1]-complete [8], we have established the
hardness parts of Theorems 1 and 2.

4.1 3-CNF Formulas

Using a slight modification of the above construction, we can show that that
the above hardness results hold for 3-CNF formulas. By means of a variant of
Tseitin Extension [19], we transform a CNF formula F with clauses of size ≥ 2
into a 3-SAT formula t(F ), applying the following operations.

– Replace a clause {w1, . . . , wn} of size n > 3 by the clauses {w1, w2, u1},
{¬un−3, wn−1, wn}, and {¬ui, wi+2, ui+1} for i = 1, . . . , n − 4 where ui are
new variables.

– Replace a clause {w1, w2} by the clauses {w1, w2, u}, {¬u, w1, w2}, u is a
new variable.

– Replace a clause {w} by the four clauses {w, u1, u2}, {w, u1,¬u2},
{w,¬u1, u3}, {w,¬u1,¬u3}, ui are new variables.

It is straightforward that F is satisfiable if and only if t(F ) is satisfiable. More-
over, if F is minimal unsatisfiable, then so is t(F ), and the difference between
the number of clauses and the number of variables remains the same for F and
t(F ).

In view of the first part of the proof of Lemma 2 it follows that a minimal
unsatisfiable subset F ′′ of t(FG) contains all

(

k
2

)

+ k − 2 clauses of t({Cstart}),
(

k
2

)

clauses of t(Fedges), 2k clauses of t(Fvertices), and 4k clauses of t(Fclean-up).
In summary, the number of clauses in F ′′ is exactly

k′′ = 2

(

k

2

)

+ 7k − 2.

The proof of Lemma 2 carries over to t(FG) using k′′ instead of k′.
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5 Membership in W[1] and FPT Results

Let S denote a finite relational structure and ϕ a first-order (FO) formula (we
quietly assume that the vocabularies of ϕ and S are compatible). S is a model
of ϕ (in symbols S |= ϕ) if ϕ is true in S in the usual sense (see, e.g., [9,14] for
further model theoretic definitions). Model-checking, the problem of deciding
whether S |= ϕ, can be parameterized in different ways; in the sequel we will
refer to the following setting.

fo model checking

Input: A finite structure S, a FO formula ϕ.

Parameter: The length of ϕ.

Question: Is S a model of ϕ?

Recall that a FO formula ϕ is positive if it does not contain negations or the
universal quantifier ∀. We will use the following result of Papadimitriou and
Yannakakis [16].

Theorem 4 fo model checking for positive formulas is W[1]-complete.

In [16] it is also shown that without the restriction to positive formulas, fo

model checking is W[t]-hard for all t.

We associate to a relational structure S its Gaifman graph G(S), whose
vertices are the elements of the universe of S, and where two distinct vertices
are joined by an edge if and only if they occur in the same tuple of some relation
of S. By means of Gaifman graphs, one can speak of the treewidth of a relational
structure and of classes of structures with locally bounded treewidth.

We shall use the following strong result of Frick and Grohe [10].

Theorem 5 fo model checking for structures with locally bounded treewidth
is fixed-parameter tractable.

In the subsequent discussions, ρ denotes any of the resolution refinements
mentioned in Theorem 1.

Let y1, y2, . . . be an infinite supply of variables. For k ≥ 1 we define the
following classes of CNF formulas.

– Fk denotes the set of CNF formulas F with var(F ) = {y1, . . . , yk′} for some
k′ ≤ k.

– Mk denotes the set of minimal unsatisfiable formulas in Fk with at most
k + 1 clauses.

– Rk denotes the set of CNF formulas F ∈ Fk such that F is the set of axioms
of some resolution refutation with at most k steps; Rk

ρ is Rk restricted to ρ-
resolution.

Lemma 3 Every formula F ∈ Rk has at most k + 1 clauses.
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Proof. We proceed by induction on k. If k ≤ 1 then the lemma holds trivially,
since either F = {∅} or F = {{y1}, {¬y1}}. Assume that k ≥ 2 and F ∈
Rk \Rk−1. Consequently, there is a resolution refutation R with exactly k steps
such that F is the set of axioms of R. We observe that R must contain a step
v0 where both predecessors v1, v2 of v0 are sources. Let Ci denote the clause
which labels vi, 0 ≤ i ≤ 2. We remove v1 and v2 from R and obtain a resolution
refutation R′ with k − 1 steps. The vertex v0 is now a source of R′. Let a and
a′ denote the number of axioms of R and R′, respectively. Observe that a′ is
minimal if (1) C0 is an axiom of R and (2) C1, C2 are not axioms of R′. Thus
a′ ≥ a− 2+ 1. Since the set of axioms of R′ belongs to Rk−1, we have a′ ≤ k by
induction hypothesis, hence |F | = a ≤ k + 1 follows. ut

Since there are less than 3k clauses over the variables {y1, . . . , yk} (a vari-
able appears positively, appears negatively, or does not appear in a clause), we
conclude the following.

Lemma 4 The sets Mk and Rk
ρ are finite and computable.

We represent a CNF formula F by a relational structure SF = (P, N, V ) as
follows. For every variable x of F and every clause C of F , the universe of SF

contains distinct elements ax and aC , respectively. The relations of SF are

P = { (ax, aC) : x ∈ var(F ), C ∈ F, x ∈ C } (positive occurrence),

N = { (ax, aC) : x ∈ var(F ), C ∈ F, ¬x ∈ C } (negative occurrence),

V = { ax : x ∈ var(F ) } (being a variable).

For example, the formula of Fig. 1 is represented by the structure SF = (P, N, V )
with P = {(ax, aC1

), (ay, aC2
), (ay, aC3

), (az, aC2
), (z, aC4

)}, N = {(ax, aC2
),

(ax, aC3
), (ay, aC4

), (ay, aC5
), (az , aC3

), (az , aC5
)} and V = {ax, ay, az}.

In order to express that two variables are distinct without using negation,
we also consider the structure S+

F = (P, N, V, D) with the additional relation

D = { (ax, ax′) : x, x′ ∈ var(F ), x 6= x′ } (distinctness).

The next lemma is a direct consequence of the definitions (cf. Fig. 1).

Lemma 5 The incidence graph I(F ) and the Gaifman graph G(SF ) are iso-
morphic for every CNF formula F .

Let k ≥ 1 and take two sequences of distinct FO variables ~v = v1, . . . , vk

and ~w = w1, . . . , wk+1. For a CNF formula F ∈ Fk with F = {C1, . . . , Ck′′},
k′′ ≤ k + 1, and |var(F )| = k′ ≤ k we define the quantifier-free formula

ϕ[F ] =
∧

1≤i<j≤k′

¬vi = vj ∧
k′′

∧

j=1





∧

yi∈Cj

P (vi, wj) ∧
∧

¬yi∈Cj

N(vi, wj)



 .

Furthermore, for X k ∈ {Mk,Rk
ρ} we define

ϕ[X k ] = ∃~v ∃~w





k
∧

i=1

V (vi) ∧
∨

F∈Xk

ϕ[F ]



 .
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Similarly we define positive formulas ϕ+[F ] using “D(vi, vj)” instead of “¬vi =
vj” and ϕ+[X k ] using ϕ+[F ] instead of ϕ[F ].

Lemma 6 For every CNF formula F the following holds true.

1. F has a ρ-resolution refutation with at most k steps if and only if SF |= ϕ[Rk
ρ ]

(i.e., S+
F |= ϕ+[Rk

ρ ]).
2. F contains an unsatisfiable subset of size at most k + 1 if and only if SF |=

ϕ[Mk] (i.e., S+
F |= ϕ+[Mk]).

Proof. Let R be a ρ-resolution refutation of F with at most k steps, and let
F ′ denote the set of axioms of R. Since all variables occurring in axioms of R

are resolved in some of the resolution steps, |var(F ′)| ≤ k follows. We put k′ =
|var(F ′)| and pick arbitrarily a bijection r : var(F ′) → {y1, . . . , yk′}. Renaming
the variables in F ′ according to r yields a formula r(F ′) which belongs to Rk′

ρ ⊆

Rk
ρ . It follows now from the definition of ϕ[Rk

ρ ] that SF |= ϕ[Rk
ρ ] (equivalently,

that S+
F |= ϕ+[Rk

ρ ]).
Now assume that F contains an unsatisfiable subset F ′ with at most k + 1

clauses; we may assume that F ′ is minimal unsatisfiable. By Lemma 1 it follows
that |var(F ′)| ≤ k. Consequently, as in the previous case, we obtain from F ′ by
renaming a formula r(F ′) ∈ Mk, establishing SF |= ϕ[Mk] and S+

F |= ϕ+[Mk].
The converse directions follow directly from the respective definitions of Rk

ρ

and Mk. ut
To complete the proofs of Theorems 1, 2, and 3, it only remains to join

together the above results: In view of Theorem 4, Lemma 6 implies directly
the W[1]-membership part of Theorems 1 and 2. Whence Theorems 1 and 2
are shown true. Furthermore, Theorem 3 follows directly from Theorem 5 by
Lemmas 5 and 6.

6 Concluding Remarks

Numerous parameterized problems have been identified as being W[1]-complete,
for example, the Halting Problem for nondeterministic Turing machines, parame-
terized by the number of computation steps. Our Theorem 1 links parameterized
complexity with the length of resolution refutations, another fundamental con-
cept of Logic and Computer Science; thus our result provides additional evidence
for the significance of the class W[1].

Our positive results, the fp-tractability of short resolution refuta-

tion and small unsatisfiable subset for classes of CNF formulas of locally
bounded tree-width, are obtained by application of Frick and Grohe’s metathe-
orem which does not provide practicable algorithms. However, the results show
that fp-tractability can be achieved in principle, and so that further efforts for
finding more practicable algorithms based on the particular combinatorics of the
problems are encouraged. We think that the classes of planar CNF formulas and
(k, s)-CNF formulas are good candidates for such an approach.
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