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Kurzfassung

Diese Arbeit untersucht den Einsatz von Graph Neural Networks (GNNs) in einer
Metaheuristik für kantenbasierte Relaxationen des Maximum Clique Problems (MCP),
dem Maximum Quasi-Clique Problem (MQCP) und dem Maximum Defective Clique
Problem (MDCP). Das Ziel des MCPs ist es, eine Knotenmenge maximaler Kardinalität zu
finden, sodass alle Knoten miteinander durch eine Kante verbunden sind. Das Problem ist
ein fundamentales NP-schweres kombinatorisches Optimierungsproblem mit zahlreichen
Anwendungen, z.B. in der Bioinformatik oder der Analyse von sozialen Netzwerken. In
manchen Anwendungen ist es notwendig, dass nicht nach vollständigen, sondern sehr
dichten Subgraphen gesucht wird, weswegen das MQCP und das MDCP eingeführt
wurden.

Im Rahmen dieser Arbeit orientieren wir uns an den führenden heuristischen Methoden für
die genannten Probleme und entwickeln eine Metaheuristik, LSBM, die auf lokaler Suche
basiert und ein GNN verwendet, um die Nachbarschaft des derzeitigen Lösungskandidaten
auf Knoten einzuschränken, die am ehesten zu einer Verbesserung der Lösung führen. In
diesem Zusammenhang präsentieren wir auch einen Trainingsalgorithmus LSBM-T, der
verwendet wird, um das GNN zu trainieren, eine Nachbarschaftssuche zu imitieren. Wir
untersuchen unterschiedliche Ansätze, die Knoten im GNN zu initialisieren und verwenden
eine Encoder-Decoder Architekur für das GNN, die auf dem Attention-Mechanismus
aufbaut.

Die Ergebnisse unser Evaluierung zeigen, dass unser Ansatz auf Benchmark-Instanzen der
Größe |V | ≤ 300 mit den führenden Methoden, die algorithmisch komplexer aufgebaut
sind, in Bezug auf Lösungsqualität mithalten kann, auf größeren Instanzen jedoch nocht
nicht. Darüber hinaus zeigen wir, dass unser Trainingsalgorithmus LSBM-T das GNN
erfolgreich trainiert, und der Einsatz des GNNs in LSBM zu deutlich besseren Ergebnis
führt als eine andere häufig verwendete Knotenbewertungsfunktion.
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Abstract

This thesis investigates the utilization of Graph Neural Networks (GNNs) in a local search-
based metaheuristic for edge-based relaxations of the Maximum Clique Problem (MCP),
namely, the Maximum Quasi-Clique Problem (MQCP) and the Maximum Defective Clique
Problem (MDCP). The MCP is the problem of finding fully connected subsets of vertices
of maximum size in a graph. It is a well-studied, fundamental NP-hard combinatorial
optimization problem and has numerous applications in, e.g., bioinformatics and social
network analysis. Some real-world applications however require relaxations of the clique
model. Thus, researchers have come up with the MQCP and MDCP as a theoretical
model for such applications.

Due to the computational complexity of the considered problems, real-world instances
are often infeasible to solve in practice using exact methods. Therefore, we develop a
heuristic solution approach that is centered around local search, like most state-of-the-art
algorithms for the MQCP and MDCP. We study and review the relevant literature and
build upon the leading (meta)heuristic algorithms for the MQCP.

The first main contribution of this thesis is a local search-based metaheuristic named
LSBM that can utilize a GNN as a scoring function for restricting the neighborhoods
during the local search procedure to the most promising vertices. Secondly, we propose
a training algorithm LSBM-T that trains the GNN-based scoring function offline on
randomly generated representative instances in an imitation learning setting. The expert
strategy being imitated is an exhaustive search of a user-defined neighborhood structure.
The GNN is thus trained to predict, which vertices in a neighborhood will most likely
lead to an improved solution. We investigate different centrality-based and learning-
based feature initialization methods, as the input graphs of the considered problems
are non-attributed. Furthermore, we present an attention-based Encoder-Decoder GNN
architecture built upon similar applications of GNNs in combinatorial optimization.

The results on benchmark instances from the literature indicate that our approach
can match the solution quality of the algorithmically more complex state-of-the-art
methods for most instances with |V | ≤ 300, but is not competitive yet for larger instances.
However, it can clearly be seen that our training algorithm LSBM-T successfully trains
the GNN-based scoring function to effectively guide the search, and LSBM with the
trained GNN-based scoring function yields substantially better solutions than LSBM
with a so far most often used scoring function.
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CHAPTER 1
Introduction

This thesis investigates the utilization of Graph Neural Networks (GNNs) in the context
of a local search-based metaheuristic for solving edge-based relaxations of a well-known
combinatorial optimization problem (COP), the Maximum Clique Problem (MCP). The
motivation of this work is presented in Section 1.1, as well as the relevance and applications
of the considered problems. A brief overview of the contributions of this work is provided
in Section 1.2. Lastly, we outline the structure of this thesis in Section 1.3.

1.1 Motivation

In many COPs, problem instances exhibit clearly defined internal structures that can be
expressed as graphs. Here, a graph is a tuple G = (V, E), where V is the set of vertices
and the set of edges E ⊆ V × V defines the relationships among vertices. While there
are other methods to deal with inputs of variable size (Fully Convolutional Networks,
Recurrent Neural Networks), GNNs are Neural Networks tailored specifically to learn
from structured input in the form of graphs, making them a valuable tool for Machine
Learning (ML) tasks on data with graph-like structure.

In recent years, GNNs have gained popularity in their application in the context of
COPs. However, current end-to-end ML approaches are in most cases not competitive to
state-of-the-art (meta-)heuristic solution approaches, and their application is limited to
small instances, where effective exact algorithms are available. Nonetheless, GNNs show
promise in their use in COPs, and there have been many successful applications over
the last years, e.g. [ORRH22], where a Large Neighborhood Search is enhanced by a
GNN that guides a destroy-operator, or [DHM21], where a GNN is used to find maximal
independent sets by imitating a time-expensive Monte-Carlo Tree Search, producing
solutions that reach a solution quality of 99.5% while being three orders of magnitude
faster.
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1. Introduction

The main motivation of this thesis is to further study the application of GNNs in the
context of metaheuristics for COPs defined on graphs. We address the problems of
current end-to-end approaches by using a GNN only as a component of a metaheuristic
search procedure that shall provide additional heuristic guidance. More specifically, we
consider relaxations of a well-studied COP, the MCP.

The MCP is the problem of finding a fully connected subgraph – a clique – of maximum
size in a given graph. It is a fundamental problem in computer science, as its decision
variant is one of Karp’s 21 NP-complete problems [Kar72]. The MCP has several practi-
cal applications, e.g., in bioinformatics [MAY10] and social network analysis [PYB13].
However, for some real-world applications that require identifying dense subgraphs, the
MCP is too strict a model. This leads to the introduction of several clique relaxations
such as – among others – the Maximum Quasi-Clique Problem (MQCP) (introduced
in [ARS02], Definition 2.3.1), and the Maximum k-defective Clique Problem (MDCP)
(introduced in [YPTG06], Definition 2.4.1).

As all of these problems are NP-hard optimization problems, it is practically often
infeasible to obtain exact solutions for large instances. However, many real-world
applications often require solutions for large graphs. Therefore, efficient heuristic methods
are needed that produce high-quality solutions in an acceptable amount of time. While
the MCP has been studied extensively over the last decades, heuristic methods for the
MQCP and the MDCP are less abundant. It is therefore another motivation of this
thesis to enrich the arsenal of heuristic methods for these relaxations of the MCP and to
provide a foundation for future research including the application of GNNs in the context
of MCP relaxations.

1.2 Methodological Approach
The goal of this thesis is to build upon well-established metaheuristic approaches for
MCP relaxations and evaluate, how and where GNNs can be utilized in the context
of such algorithms to provide additional information. Studying the relevant literature
(e.g., [DHB19], [ZBW20], [CCP+21], [PWWW21]), we found that the most effective
metaheuristic approaches for MCP relaxations are based on metaheuristics centered
around local search, where neighboring solutions can be reached by swapping a vertex
inside the current candidate solution with a vertex outside the candidate solution. In
order to evaluate efficiently which vertices seem promising for swapping, a scoring function
is used that assigns scores to the vertices in the graph in each iteration of the local search.
Using these scores, the neighborhood can be restricted to only promising vertices. Building
upon these approaches, we aim at utilizing a GNN to extract structural information
from input graphs that can be used to enhance such a scoring function. One of the main
contributions of this thesis is therefore the algorithmic design of a local search-based
metaheuristic named LSBM, which can use a GNN-based scoring function.

As the considered MCP relaxations are defined on non-attributed graphs, one of the goals
of this thesis is to evaluate, which feature initialization methods can be used to effectively
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1.3. Outline of the Thesis

extract information from input graphs. Thus, we investigate several centrality-based and
learning-based methods within the context of our proposed algorithm that can be found
in the literature.

Furthermore, we propose a new algorithm that is used to generate training data in order
to train the GNN to make high-quality predictions. A training sample consists of the
input graph, a candidate solution, and target values obtained by a look-ahead search
that searches a neighborhood structure for a neighboring solution with a higher objective
value. Using this data, the GNN is trained to predict, which vertices are likely to be
in a swap that leads to an improved solution. In order to compute target labels for
the vertices in the input graph, we present different methods to search neighborhood
structures relative to the candidate solution in a training sample.

Finally, we conduct computational experiments to evaluate our approach on graphs of
different sizes and densities and discuss future work that can be done to improve our
method.

1.3 Outline of the Thesis
Firstly, we define the notation of graph-related terms used throughout this thesis and
show formal definitions of the considered problems in Chapter 2. Afterward, we review
and discuss related work and methodology, namely GNNs, node representation learning,
the use of ML in combinatorial optimization, and the state-of-the-art for both exact
and heuristic solution approaches for the considered MCP relaxations in Chapter 3.
Then, in Chapter 4 we propose our algorithm LSBM and its components in detail. The
main contribution of our work is contained in Chapter 5, as we present, how a GNN
can be incorporated into the previously presented LSBM and how it can be trained
using our training algorithm LSBM-T. Thereafter, we show the results of computational
experiments and the evaluation of our proposed methods in Chapter 6. Finally, we
summarize our findings, offer concluding remarks, and outline promising future work in
Chapter 7.

3





CHAPTER 2
Considered Problems and

Definitions

In this Chapter, we provide all necessary definitions and notations used throughout this
thesis. We list commonly used graph theoretic notations and definitions in Section 2.1.
Afterward, Sections 2.2 – 2.4 show definitions for the problems considered in this thesis,
starting with the Maximum Clique Problem, from which all considered problems are
derived. Additionally, we list notable properties of the considered problems that are
relevant for developing well-performing algorithms for these problems.

2.1 Notation

Throughout this thesis, we use standard graph theory notation. We consider G = (V, E)
to be an undirected, simple graph with vertex set V and edge set E ⊆ {{u, v} | u, v ∈ V }.
We use the terms vertex, vertices when denoting elements of V in a graph G, and we
use the terms node, nodes when denoting elements of a search graph or search tree
corresponding to a search algorithm, e.g. in beam search, or nodes in a GNN. This
distinction helps to keep formulations precise when for instance an algorithm that uses an
internal graph structure is applied to a graph input, or to distinguish between the vertices
of a graph and the corresponding nodes of a GNN. If not stated otherwise, n = |V |
denotes the number of vertices in G, whereas m = |E| denotes the number of edges. For
a graph G we also use V (G), E(G) to denote its vertex set and edge set, respectively.

A graph G is simple if it contains no self-loops (e.g., {v, v} ∈ E) or multiple edges
between two vertices. In this thesis, we only consider unweighted, undirected, simple
graphs, as all the considered problems are defined on such graphs. A graph G′ = (V ′, E′)
is a subgraph of G = (V, E) iff V ′ ⊆ V , E′ ⊆ E, and {u, v} ∈ E′ : u, v ∈ V ′. Let S ⊆ V
be a set of vertices in G. The subgraph induced by S in G, denoted as G[S], is a graph

5



2. Considered Problems and Definitions

with vertex set S and edge set E(S) = {{u, v} | {u, v} ∈ E, u, v ∈ S}. The diameter of a
graph G is the length of the longest shortest path between any two vertices in G.

A clique is a set of vertices S ⊆ V such that G[S] is fully connected, i.e., |E(S)| = |S|·(|S|−1)
2 .

A fully connected graph on n vertices is denoted as Kn. A clique of size k is denoted
as a k-clique, and this convention is also applied to clique relaxation models: A γ-quasi
clique of size k is denoted as a k-γ-quasi clique, an s-defective clique of size k is denoted
as a k-s-defective clique, etc.

The density dens(G) of a graph G = (V, E) is defined as the ratio of the number of edges
|E| to the number of edges in a fully-connected graph with |V | vertices

(|V |
2

)
. The density

of a graph is therefore a rational number between zero and one.

The open neighborhood of a vertex v in a graph G = (V, E), denoted as NG(v) = {w |
v ∈ V, {v, w} ∈ E} is the set of vertices that are adjacent to v, whereas the closed
neighborhood of v, denoted as NG[v] = NG(v)∪{v} is the set of vertices that are adjacent
to v, and v itself. If the graph G is clear from context, we use N(v) or N [v] to denote the
open and closed neighborhoods of v, respectively. The neighborhood of a set of vertices
is defined similarly: For S ⊆ V , let NG(S) = ⋃

v∈S NG(v) \ S be the open neighborhood
of S in G, and let NG[S] = NG(S) ∪ S be the closed neighborhood of S in G.

The degree of a vertex v in a simple graph G = (V, E) is defined as deg(v) = |NG(v)|,
which is the number of adjacent vertices for a vertex v ∈ V . Generalizing the concept
of vertex degrees, for S ⊆ V , let dS(v) = |{w | {v, w} ∈ E, w ∈ S}| be the number of
vertices in S that are adjacent to v ∈ V . As can be seen, deg(v) = dV (v) for all v ∈ V .

The EgoNet of distance d of a vertex in v in a graph G is defined as follows: Given a
vertex v ∈ V , let N(v, d) be the set of vertices reachable from v by a path of length at
most d. The induced subgraph G[N(v, d)] is the d-hop-EgoNet of vertex v. Note that for
d = 1, N(v, d) is the closed neighborhood of v in G.

2.2 The Maximum Clique Problem

The MCP is a fundamental problem in graph theory and computer science. Its decision
variant was one of the first problems that were shown to be NP-Complete [Kar72],
from which NP-hardness can be derived for the maximization variant. The MCP is a
well-studied problem and has many real-world applications, e.g., in network analysis
[For09], [PDFV05], bioinformatics [DKR+13], [BW06], circuit design [LMA89], and
telecommunication [DSAA14]. Figure 2.1 depicts a maximum clique in a graph.

Definition 2.2.1 (Maximum Clique Problem) Given a graph G = (V, E), the MCP
is the problem of finding a clique of maximum size in G.

6



2.2. The Maximum Clique Problem

Figure 2.1: A maximum clique of size four.

2.2.1 Relaxations of the MCP

For some real-world applications, the MCP is too strict a model, as some applications
require identifying large, dense subgraphs, but not necessarily fully connected subgraphs.
Furthermore, it might be the case that acquiring real-world data is an error-prone process,
thus requiring relaxations of the clique model tailored to the specific application. For
these reasons, several relaxations of the maximum clique problem have been introduced:
The Maximum γ-Quasi-Clique Problem [ARS02] and the Maximum s-Defective Clique
Problem [YPTG06] are density-based and edge-based relaxations, respectively, where a
solution S is a set of vertices with a given minimum density γ, or has at most a given
number of s edges missing in G[S]. The Maximum s-plex Problem is a degree-based
relaxation [SF78], where each vertex in a solution S is required to have at least |S| − s
neighbors in S, and the Maximum s-club Problem [Mok79] is a path-based relaxation,
where the induced subgraph G[S] must have a diameter of at most s. Other relaxations
include s-blocks, s-bundles and s-cores [GIFC15], among others.

2.2.2 Properties of the MCP

In graph theory, a property P of a graph G is hereditary if P also holds for all induced
subgraphs of G [PVBB13]. It is easy to see that the property of a graph being a clique is
hereditary, as each subset of a clique is a clique itself. Heredity is an important concept
in the context of graph theory, as it allows the development of algorithms that exploit
the structure of solutions exhibited by heredity, e.g. [TBBB13] and [GIP18].

There exist negative results about the hardness of approximating the maximum clique in
a graph in polynomial time: In [Hås99] and [Zuc06] the authors show that there exists no
fully polynomial time approximation scheme for the MCP, unless P = NP, meaning that
for a real number ε > 0 there exists no polynomial time algorithm that approximates the
maximum clique in a graph with a factor of at least O(n1−ε), where n is the number of
vertices in the input graph. More importantly, these hardness results are trivially also
valid for relaxations of the MCP. Considering the hardness of approximability of the
MCP and its relaxations, it is evident that heuristic approaches are of great importance
when tackling large real-world instances that cannot be solved optimally in practice.

7



2. Considered Problems and Definitions

2.3 The Maximum Quasi-Clique Problem
The MQCP is a density-based relaxation of the MCP, which was first introduced by
Abello et al. [ARS02]. Pattillo et al. show that for any γ with 0 < γ < 1, the problem is
NP-complete in its decision variant [PVBB13].

Definition 2.3.1 (Maximum Quasi-Clique Problem) Given a graph G = (V, E)
and γ ∈ (0, 1], the MQCP is the problem of finding a subset of vertices S ⊆ V of
maximum size such that the induced subgraph G[S] has an edge density of at least γ, or,
in other words, G[S] contains at least γ

(|S|
2

)
edges.

2.3.1 Properties of the MQCP

In contrast to cliques, the property of being a quasi-clique is not hereditary. Algorithms
that build upon heredity can therefore not easily be adapted to the MQCP. However, as
noted in [PVBB13], quasi-cliques display a property that the authors call quasi-heredity.
A property P of a graph G = (V, E) is quasi-hereditary, if there exists some v ∈ V such
that G[V \ {v}] also has property P . Furthermore, the authors show that quasi-cliques
are quasi-hereditary. Therefore, for a γ-quasi-clique of size k there exists a series of
γ-quasi cliques of size 1, 2, . . . , k such that each γ-quasi clique is a strict subset of the next
one. Most of the leading heuristic algorithms for the MQCP (e.g., [DHB19], [ZBW20],
[CCP+21]) build upon this important property by searching for a sequence of γ-quasi
cliques of increasing size in order to approximate the maximum γ-quasi clique in a graph.

2.3.2 Preprocessing of MQCP Instances

In [ARS02], the authors introduce the notion of γk-peelable vertices in the context of
preprocessing. A vertex v is γk-peelable if v and all its neighbors have degrees smaller than
γk. If a lower bound k for the size of a maximum γ-quasi clique is known, the authors
propose to remove all edges incident to γk-peelable vertices from G in preprocessing. This
preprocessing rule might be used to speed up the search process by sparsifying the graph,
but we note that this preprocessing rule does not necessarily preserve the existence of
optimal solutions. We prove this claim by giving a counterexample in Figure 2.2, where
the optimal solution cannot be obtained after applying said preprocessing rule.

2.4 The Maximum Defective Clique Problem
The MDCP was first introduced in [YPTG06] in the context of predicting protein-protein
interactions.

Definition 2.4.1 (Maximum s-defective-Clique Problem) Given a graph
G = (V, E) and integer s, the Maximum s-defective Clique Problem (MDCP) is the
problem of finding a subset of vertices S ⊆ V of maximum size such that the induced
subgraph G[S] contains at least

(|S|
2

)
− s edges.

8



2.4. The Maximum Defective Clique Problem

(a) The original graph instance. (b) The graph instance after preprocessing.

Figure 2.2: Consider the graph G given in Subfigure 2.2a. The considered MQCP instance
is defined by G consisting of a K3 and a K7 connected by an edge and γ = 0.5. Since G
has a density dens(G) = 25

45 ≈ 0.56, the maximum 0.5-quasi clique in G is V . Assume
a lower bound of k = 6 is known, therefore the two vertices on the left are kγ-peelable
and preprocessing would remove all edges incident to these vertices, as can be seen in
Subfigure 2.2b. Therefore, the density of this preprocessed graph would be reduced to
22
45 ≈ 0.49 and the optimal solution V would not be preserved.

2.4.1 Properties of the MDCP

Although the MQCP and the MDCP are similar relaxations of the MCP, there are some
key differences between the problems. It can easily be seen that the property of being an
s-defective clique is hereditary: If S is an s-defective clique with at most s edges missing in
G[S], the removal of a vertex v ∈ S cannot “introduce” any new missing edges. However,
for a fixed size k, the two problems become interreducible: Finding a k-s-defective clique
is equivalent to finding a k-γ-quasi clique with γ = (k

2)−s

(k
2)

, and finding a k-γ-quasi clique is

equivalent to finding a k-s-defective clique, where s =
(k

2
)
− ⌈γ

(k
2
)
⌉. When approximating

the maximum s-defective clique in a graph G by a series of s-defective cliques of increasing
size, the problem can therefore be reduced to finding a series of γ-quasi cliques and
vice-versa.
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CHAPTER 3
Related Work

Utilizing ML techniques in combinatorial optimization has been a research field of
growing interest in recent years, and especially the application of GNNs in the context
of combinatorial optimization is spreading in popularity. In this Chapter, we provide
a concise review of methods and work related to the topics of this thesis, namely ML
methods and GNNs in combinatorial optimization, and also work related to the considered
problems, the MCP, the MQCP, and the MDCP. Section 3.1 provides an introduction
to the necessary concepts related to GNNs that are applied in this work. Afterward,
we review the application of ML techniques that are relevant or related to this work in
Section 3.2. We present methods to generate node features in feature-less graphs, which
we apply in our algorithm in Chapter 5, in Section 3.3. Furthermore, we provide an
overview of existing heuristic and exact solution approaches for the MQCP in Section 3.4
and for the MDCP in Section 3.5.

3.1 Graph Neural Networks

Problems that are defined on graphs, e.g. the Traveling Salesperson Problem (TSP),
pose new challenges in utilizing machine learning effectively: Utilized methods should be
able to effectively capture and exploit the structure of input graphs while taking into
account that graphs do not have a unique representation and no fixed order of vertices,
i.e., they should be order invariant. Furthermore, graphs of all sizes should be considered
as input, therefore utilized methods need to be scale invariant. Ideally, the results of the
training should generalize on unseen instances that might also be of a different size than
the instances seen during training. In order to address these challenges, researchers have
come up with machine learning architectures known as GNNs.

The authors of [SS97] were the first to research the application of neural networks
on graphs. Since then, many researchers have advanced the field by developing new
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architectures and methods. A comprehensive overview of the taxonomy of GNNs and a
review of applications and methods can be found in [WPC+19] and [ZCH+20].

In [WPC+19], GNNs are classified into four main categories: Recurrent GNNs, Convo-
lutional GNNs (ConvGNNs), Graph autoencoders, and Spatial-temporal graph neural
networks. In the following, we conform to the authors’ definitions of GNN-related con-
cepts. ConvGNNs can further be categorized as spectral-based and spatial-based GNNs.
Spectral-based GNNs are based on signal processing theory, and a graph is in this context
thus seen as a signal which is transformed to a spectral domain by a graph Fourier
transform. The convolution operation is then conducted in the spectral domain, and
afterward, the graph signal is transformed back using the inverse graph Fourier transform.
In contrast, spatial-based ConvGNNs apply convolution operations directly on the input
graph based on its topology. In the context of our work, spatial-based ConvGNNs are
the most relevant.

The Message Passing Neural Network (MPNN) [GSR+17] is a framework of spatial-based
ConvGNNs, which captures several different concrete realizations due to its generality.
Here, information corresponding to vertex v in a graph is represented by a feature vector
xv, and convolution operations are defined to aggregate information of the neighboring
vertices by passing messages over the edges of the graph. A convolutional layer then
aggregates the features of neighboring vertices for all vertices in the graph. The general
idea of this convolution operation is sketched in Figure 3.1, where the updated value for
vertex v0 is computed by aggregating the messages passed from its neighbors. MPNN
uses a fixed number of layers to compute the final node embeddings. More precisely,
to update the representation h

(k)
v of a node v in layer k, the following message passing

function is applied:

h(k)
v = Uk(h(k−1)

v ,
∑

u∈NG(v)
Mk(h(k−1)

v , h(k−1)
u , xe

vu))

Here, Uk(·), Mk(·) are functions with learnable parameters, h
(0)
v = xv, and xe

vu is the
feature vector of the (directed) edge from v to u. Note that edge features are however
not required, as also our work in this thesis utilizes spatial-based ConvGNNs on graphs
that only contain information about vertices, but not about edges. The functions Uk, Mk

can be realized by any learnable function and thus cover many concrete realizations of
the concept, for example, Mk can be a Multi-Layer Perceptron (MLP) that takes the
concatenation of (h(k−1)

v , h
(k−1)
u , xe

vu) as inputs to compute its message, and Uk is often
realized by a ReLU activation function, followed by a batch-normalization [IS15] layer
with learnable parameters.

In recent years, researchers have developed attention-based spatial ConvGNNs (e.g.,
[VCC+18], [ZSX+18], [BAY21]) in order to translate the popular attention mecha-
nism, which was originally introduced in the context of sequence-based tasks ([BCB15],
[VSP+17]), to graph-based tasks. In contrast to the basic spatial-based convolution
operator discussed before, attention-based convolution operators assign different weights
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v1

v2

v3

v1

v2

v3

v0 v0

agg(v1, v2, v3)

layer k layer k + 1

Figure 3.1: Visual representation of the convolution operation for a vertex in a graph.
Information of adjacent vertices is aggregated to compute the updated representation.

for different neighbors in an attempt to filter noise and focus the “attention” only on
the most relevant information. Most prominently, the graph attention network (GAT)
proposed in [VCC+18] computes the state of a node v by the following update function:

h(k)
v = ρ

( ∑
u∈NG[v]

αvuW (k)h(k−1)
u

)
,

αvu = exp(LeakyReLU(aT [W (k)h
(k−1)
v ||W (k)h

(k−1)
u ]))∑

w∈NG[v] exp(LeakyReLU(aT [W (k)h
(k−1)
v ||W (k)h

(k−1)
w ]))

,

where W is a weight matrix of learnable parameters, a is the weight vector of a single-layer
perceptron, and ρ is a non-linear function. In [BAY21], the authors present another
variant named GATv2, in which they slightly change the update function of a layer by
changing the attention coefficients:

αvu = 1
zv

exp(aT LeakyReLU(W(k)h(k−1)
v ||Wh(k−1)

u )),

where zv is the normalization factor for node v. According to the authors, this simple
modification makes a significant difference, and they validate their claim by showing that
there exist problems, where GATv2 greatly outperforms the previous GAT layers. Another
important property of the GAT architecture is the utilization of multi-head attention
proposed in [VSP+17]. Here, a fixed number K of multiple independent attention heads
are applied and then their outputs are either concatenated or the element-wise mean is
computed.

GNNs can be used for different tasks such as node-level tasks, e.g. the classification of
nodes in a graph, edge-level tasks, e.g. edge classification or link prediction, or graph-level
tasks, e.g. graph classification, both in supervised and unsupervised learning settings.

13



3. Related Work

3.2 Machine Learning in Combinatorial Optimization

In many exact and heuristic algorithms for COPs, ML techniques are a determining
factor in the effectiveness of said algorithms. There a many ways ML can be applied: It
can be used in an end-to-end fashion to directly produce a solution, to replace or enhance
key components of existing algorithms, e.g., by obtaining quick approximations for
otherwise computationally heavy parts of an algorithm, to provide additional information
to heuristics or metaheuristic, or to make decisions within an algorithm, e.g. variable
selection in branch-and-bound algorithms. A driving motivation in utilizing ML in
COPs thus is to (partially) automate the process of hand-crafting heuristic algorithm
components.

Most of the current ML-based approaches are based on supervised learning, as stated
in [CCK+21]. This often requires labeled training data in the form of optimal solutions
to computationally hard problems, which is a great restriction. The two most common
approaches to tackle this challenge are to either limit the training data to only incorporate
labeled data of small instances that can be solved optimally within reasonable time or
to use high-quality approximations, and thus decrease the solution quality. The former
approach additionally poses the challenge to develop methods that translate well to
unseen and possibly larger real-world instances that are relevant in practice. A prominent
example of this application is [LCK18], where a GNN is trained to predict whether a
vertex in the graph is in an optimal solution. A tree search algorithm is then executed that
uses the information provided by the GNN. The approach generalizes well to instances
that are much larger than those seen during training, and the authors apply it to multiple
different COPs.

Other approaches are based on unsupervised reinforcement learning and do not require
labeled training data. In [DKZ+17], the authors propose an end-to-end reinforcement
learning framework, S2V-DQN, which generalizes well to a wide range of problems. Fur-
thermore, recent advances in this field have also been made by researchers of combinatorial
games. Especially AlphaGo Zero is a prominent example, which was used to train models
that excel in the board games Chess and Go via repeated self-play. AlphaGo Zero was
later adapted in [AXSS19] and applied to several combinatorial optimization problems,
including Minimum Vertex Cover and Maximum Cut. In [KvHW19] and [JCRL21],
the authors present end-to-end ML approaches by utilizing GNNs for routing problems
including the Euclidean TSP. While their work shows promise, the proposed methods
are only available for relatively small graphs, where exact approaches are available. In
[HLMP21], the authors present a guided local search approach, where a GNN is used to
provide additional information to enhance the metaheuristic search, leading to improved
results when applied to the TSP. Again, only relatively small instances are considered. We
refer to [CCK+21] for a comprehensive overview of GNNs in the context of combinatorial
optimization for both heuristic and exact algorithms.

In the context of the MCP, several ML-based approaches have been made. In [RGR+22],
the authors build upon an exact branch-and-bound algorithm for the MCP, that uses
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an empirically determined algorithm parameter that greatly affects the algorithm’s
performance. The authors thus enhance the algorithm by training a GNN model to
predict suitable parameter settings for each input graph. In [SLE21], ML is applied to
reduce MCP instances by training models to predict, whether a vertex is in an optimal
solution or not. The input graph is then reduced, and an exact algorithm is applied to
the reduced instance. Furthermore, in [JDHB22], the authors propose a metaheuristic
breakout local search for the Maximum k-plex Problem (a degree-based MCP relaxation)
that uses reinforcement learning in the diversification stage of the algorithm to predict
good parameter settings for the diversification. Finally, a Pointer-Network based deep
learning algorithm for the MCP is presented in [GY20]. To the best of our knowledge,
there are no ML-based or GNN-based approaches to the MQCP or the MDCP.

3.3 Node Representation Learning
As with other ML methods, the choice of input features can affect the performance
greatly when utilizing GNNs. Some problems like the 2D Euclidean TSP are defined on
graphs, where each vertex of the input graph is embedded in a 2D plane. It is therefore
natural to use the 2D coordinates of each vertex as input features in any GNN-based
task related to this problem. However, many problems and tasks utilizing GNNs are
defined on inherently featureless, or non-attributed input graphs. To tackle this challenge,
researchers have come up with two different approaches regarding feature initialization.
The first approach is to use centrality-based input features that can be derived directly
from the graph, e.g. the degree of a vertex in the graph. Secondly, researchers have come
up with learning-based approaches that try to extract input features directly from the
graph structure. In [DHD+19] the authors investigate both centrality-based and learning-
based feature initialization methods and evaluate the quality of the produced feature
embeddings in a node-level classification task on several well-established benchmark sets.
The results of the authors’ experiments show that learning-based approaches outperform
centrality-based feature initialization methods.
One of the most popular approaches in node representation learning is based on ideas
from natural language processing (NLP) and word representation learning. In [MCCD13],
the authors propose their method word2vec, which was developed to embed words into
an embedding space such that words with a similar meaning are mapped closer together.
While in other NLP tasks it is common to predict the next word in a sequence from a
context, word2vec turns the problem on its head and tries to predict the context from a
word, where the context is defined as the words that appear at a certain distance before
and after a word. In [PAS14], the authors present DeepWalk, which translates this idea
to node representation learning by sampling random walks of a fixed length from a graph
and by considering the vertices of the graph as a vocabulary and the random walks as
sentences over this vocabulary. Here, a random walk starts at some vertex, and at each
step of the random walk, a random neighbor that can be reached from the current vertex
is chosen as the successor, and all neighbors of a node are equally likely to be chosen.
Multiple random walks are sampled, starting from each vertex of the graph. The node
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embeddings are initialized randomly. Each random walk is then used as a sentence to
update the embeddings using the SkipGram language model, as in word2vec. This is done
by maximizing for each vertex appearing in a random walk the probability of predicting
the vertices that appear at a fixed distance before and after said vertex. The authors use
stochastic gradient descent to maximize the said probability and show the success of their
proposed method by evaluating the learned representations in a multi-label classification
task.
Node2Vec [GL16] builds upon DeepWalk and introduces another method to sample
random walks from graphs, which the authors call second-order random walks. Here, two
hyperparameters p, q are introduced to provide additional control over the exploration of
the graph during random walks. Assuming a random walk just traversed an edge (t, v),
a successor is then chosen among the neighbors of v by assigning each neighbor x of v an
unnormalized transition probability πvx = αpq(t, x) · wvx, defined as

αpq(t, x) =


1
p if dtx = 0
1 if dtx = 1
1
q if dtx = 2

,

where wvx is the edge weight of edge (v, x) and dtx is the distance of the shortest path
between t and x (a small example is depicted in Figure 3.2). The next vertex in the
random walk is chosen by selecting a vertex from the neighborhood of v by weighted
sampling according to the normalized transition probabilities. The parameter p then
controls the probability of returning to the most recently visited vertex, whereas the
parameter q controls the probability of either staying close to a vertex t or exploring
regions of the graph at a greater distance from t. The authors show that different
parameterizations can be used to capture either homophily or structural equivalence in
the produced embeddings.
While Node2Vec can capture some structural similarities between vertices in the input
graph, it only does so if vertices are at a certain maximum distance from each other,
as the random walks traverse the edges of the original graph. Struc2Vec [FRS17] is a
method for learning node representations from structural identity alone, not considering
the locality. This is done by creating a multi-layer graph, where each layer is composed
of a complete graph containing the vertices of the original graph, but edges between
the vertices are weighted by their structural similarity. For a vertex v, let Rk(v) be
the set of vertices at distance k from v, but cannot be reached by a path of length < k
from v. The authors define the structural similarity of two vertices u, v in layer k in the
multi-layer graph as the similarity between the ordered degree sequences of the vertex sets
Rk(u), Rk(v). Let A, B be the ordered degree sequences of the vertex sets Rk(u), Rk(v).
The authors define the distance between two elements a ∈ A, b ∈ B in the sequences as

d(a, b) = max(a, b)
min(a, b) − 1.

The similarity between two degree sequences is then computed by dynamic time warping,
which is a method used to find the optimal alignment between two sequences that
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Figure 3.2: Illustration of the definition of unnormalized transition probabilities for
a random walk that just traversed the edge (t, v) and is computing the transition
probabilities for its successor. Figure recreated from [GL16].

minimizes the proposed distance function. The edge weights of layer k in the multi-layer
graph are therefore set to be the result of this computation. Random walks are then
sampled from the constructed multi-layer graph. Before each step, the walk can decide
to go one layer up or down the multi-layer graph. A neighbor on the current layer is
then chosen by weighted sampling, considering the edge weights of the current layer. The
authors show that the proposed method of sampling random walks from a multi-layer
graph can capture structural similarities despite vertices being far apart in the input
graph.

Other notable approaches in node representation learning include HOPE [OCP+16],
which was developed specifically to preserve properties of directed graphs and DeepGL
[RZA17], which is a deep learning framework for node representation learning that is
designed such that learned embeddings transfer well across different networks. Beyond
the scope of node representation learning much research has also been done in other
areas of network representation learning, e.g. edge representation learning and graph
representation learning. In our work, we chose to consider and evaluate primarily
Node2Vec and Struc2Vec, as these methods are simple to implement and seem the most
suited to our application, as they are able to capture local and structural features for
non-attributed graphs.

3.4 The Maximum Quasi-Clique Problem

Since the introduction of the problem in [ARS02], researchers have proposed several
exact and heuristic algorithms for the MQCP. Especially in recent years, there has been
an increasing interest in the problem. In the following subsections, we review and discuss
exact and heuristic solution approaches for the MQCP.
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3.4.1 Exact Approaches

Pattillo et al. [PVBB13] propose a Mixed Integer Linear Programming formulation with
a number of variables that is quadratic in the size of the vertex set V . It is derived
from the following quadratic formulation, where xi ∈ {0, 1} are binary decision variables
representing the solution set S ⊆ V , and aij represent elements of the adjacency matrix
with aij equal to one if {i, j} ∈ E and zero otherwise:

max
n∑

i=1
xi (3.1)

s.t.
n∑

i=1

n∑
j=i+1

aijxixj ≥ γ
n∑

i=1

n∑
j=i+1

xixj (3.2)

The authors linearize the above quadratic formulation by introducing variables wij defined
as wij = xixj in their MILP-formulation named F1:

max
n∑

i=1
xi (3.3)

s.t.
n∑

i=1

n∑
j=i+1

(γ − aij)wij ≤ 0 (3.4)

wij ≤ xi ∀{i, j} ∈ E (3.5)
wij ≤ xj ∀{i, j} ∈ E (3.6)
wij ≥ xi + xj − 1 ∀{i, j} ∈ E (3.7)
wij ≥ 0 ∀{i, j} ∈ E (3.8)
xi ∈ {0, 1} i ∈ V (3.9)

Furthermore, the authors propose a second MILP-formulation F2 that has a number of
variables that is linear in n, but their computational experiments show that the above
formulation performs better in practice on most of the evaluated instances.

In [VPBP16], the authors propose two additional MILP-formulation. In one of their
proposed MILP-models which is named F3, they utilize an upper and lower bound to
provide a tighter formulation than the ones from [PVBB13]. As a lower bound ωℓ, the
size of any known γ-quasi clique can be used, whereas the upper bound is defined as
ωu = ⌊1

2 + 1
2

√
1 + 8 |E|

γ ⌋. The proposed formulation F3 is then defined as:
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max
∑
i∈V

xi (3.10)

s.t.
∑

(i,j)∈E

yij ≥ γ
ωu∑

k=ωℓ

k(k − 1)
2 zk (3.11)

yij ≤ xi ∀(i, j) ∈ E (3.12)
yij ≤ xj ∀(i, j) ∈ E (3.13)∑
i∈V

xi =
ωu∑

k=ωℓ

kzk (3.14)

ωu∑
k=ωℓ

zk = 1 (3.15)

xi ∈ {0, 1} ∀i ∈ V (3.16)
yij ≥ 0 ∀i, j ∈ V, i < j (3.17)
zk ≥ 0 ∀k ∈ {ωℓ, . . . , ωu} (3.18)

Compared to the formulation F1 in [PVBB13], the authors introduce a variable zk, that
is used to determine the size of the solution S, i.e. zk = 1 iff |S| = k. Clearly, providing
tight upper and lower bounds ωℓ, ωu has a great effect on the performance of this model.
The authors evaluate their formulations and show both theoretically and empirically
that they outperform the previously mentioned formulations F1 and F2, and that the
formulations are especially effective on sparse graphs. Dense graphs with |V | > 100
however are infeasible to solve in practice using any of the proposed formulations.

In [RR19], the authors propose a branch-and-bound algorithm that can outperform the
previously mentioned MILP-formulations on dense graphs of sizes of up to 100 vertices.
Furthermore, they propose a new method to calculate upper bounds for the size of a
maximum-quasi clique, which provides much tighter upper bounds than previously known
methods. A MILP-formulation with an exponential number of variables is proposed in
[MPR21]. The authors also present a branch-and-price algorithm that can be used for
column generation in the context of their presented formulation.

Despite the advances in the research of exact methods regarding the MQCP, the problem
proves to be extremely computationally challenging. In practice, only graphs that are
sufficiently small or sparse are feasible to solve using any of the discussed exact methods.

3.4.2 Heuristic Approaches

As already discussed, large and dense MQCP instances are infeasible to solve in practice
due to the computational complexity of the problem. Researchers have therefore come
up with several fast heuristic solution approaches that yield in practice often good, or
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even near-to-optimal solutions that can be used on large real-world instances. Early
heuristic work on the MQCP dates back to 2002 [ARS02], where the authors are the
first to formally define the problem and propose a greedy randomized adaptive search
procedure (GRASP) as a first heuristic solution approach. A GRASP iteration typically
consists of two phases - an initial candidate solution is given by a greedy randomized
construction heuristic, followed by improvements through local search. In [BHB08],
the authors present two stochastic algorithms based on the local search paradigm. A
distributed algorithm for mining quasi-cliques in large graphs based on the MapReduce
programming model is presented in [KS11], and in [OPR13] the authors present a restart
iterative greedy algorithm named RIG.
In recent years, several heuristic solution approaches have been presented. In [PPRR15],
[PRRP18], and [PRRR21] the authors present variations of a genetic algorithm for the
MQCP. The authors’ latest work on the MQCP, [PRRR21], shows the best performance
out of the three variations. It is based on the hybridization of their previously proposed
genetic algorithm and a local search strategy.
A multi-start tabu search algorithm is presented in [DHB19]. It builds upon an adaptive
multi-start tabu search algorithm that was initially proposed for the MCP. The authors
offer an analysis of the considered neighborhood structures used during the tabu search
and adapt the intensification and diversification mechanisms of this algorithm to be
suitable for the MQCP. The results of the computational experiments by the authors
show that the performance of their tabu search algorithm is highly competitive to the
state-of-the-art and performs well on established benchmark instances.
Furthermore, in [ZBW20], an opposition-based memetic algorithm for the MQCP is
presented. The authors combine the ideas of using a genetic algorithm to build a
population of candidate solutions with a tabu search that is used to improve these solutions.
Their main contribution is the incorporation of an opposition-based construction heuristic.
Every time an offspring, which corresponds to a candidate solution S, is created by
means of a recombination operator, another offspring S is created that does not share
any vertices with S. Both opposing individuals S, S are then improved by a tabu search
procedure, and the individual that leads to a better solution through tabu search is
then added to the population. The authors compare the performance of their algorithm
to RIG [OPR13], and three variations of BRKGA [PPRR15],[PRRP18], [PRRR21] and
show that their algorithm outperforms these approaches.
In [CCP+21], another local search-based algorithm is presented. The authors make
two main contributions to existing local search-based approaches: Firstly, they identify
weaknesses in the scoring function used to determine, which vertices should be used
during iterations of the local search procedure. Their computational experiments show
that in most iterations, there are several vertices with the same score, thus they provide
a secondary scoring function that serves as a tiebreaker. The value of this secondary
scoring function is proportional to the number of iterations that a vertex was not
moved during the local search, thus it strongly encourages exploration of the search
space. Secondly, they replace the commonly used tabu list by configuration checking,
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which is another short-term memory type that can be used to prevent cycling through
the search space. The authors present their own variation of configuration checking,
which they call BoundedCC. In general, configuration checking is a short-term memory
mechanism that blocks a vertex v from being considered in local search until one of its
(unblocked) neighbors is moved. BoundedCC refines this strategy by keeping track of
the values confChange(v), threshold(v), and it is parameterized by a user-defined value
ub_threshold ∈ N. A vertex is blocked, if confChange(v) < threshold(v) holds. Three
update rules are defined as follows:

• BoundedCC-InitialRule. Initially, for all v ∈ V set confChange(v) = 1,
threshold(v) = 1.

• BoundedCC-AddRule. When v is added into the candidate solution, for all u ∈
NG(v), confChange(u) is increased by one and threshold(v) is increased by one as
well. If threshold(v) > ub_threshold, threshold(v) will be reset to 1.

• BoundedCC-RemoveRule. When v is removed from the candidate solution, set
confChange(v) = 0.

The authors compare their algorithm to those presented in [PRRR21], [DHB19], and
[ZBW20] and show that their algorithm outperforms similar algorithms in terms of
solution quality and runtime.

Finally, the most recent heuristic solution approach for the MQCP at the time of writing
this thesis is presented in [PWWW21]. Here, the authors propose a hybrid artificial bee
colony algorithm, which incorporates an opposition-based construction phase and then
adapts the artificial bee colony framework to the MQCP. The algorithm again uses tabu
search to improve initially constructed candidate solutions. The authors report new best
results on several instances that were not included in the evaluation of [CCP+21]. A
comparison is made only with RIG [OPR13], and [PPRR15], [PRRP18], and [PRRR21],
which are outperformed on other instances by [CCP+21] and [ZBW20].

As we have extensively studied the literature regarding heuristic solution approaches, we
found that most state-of-the-art methods are based on or utilize metaheuristics based on
the local search paradigm. Therefore, we let previous work on the MQCP lead our way
and plan to build our work upon the local search paradigm as well.

3.5 The Maximum Defective Clique Problem

Compared to the MQCP, only a few solution approaches have been proposed for the
MDCP. The first algorithm is proposed in [YPTG06], along with the first formal definition
of the problem. The authors develop their approach for the use case of link prediction for
protein-protein interactions. Even before that, the problem has been considered in the
context of transportation planning [SST02], where MILP formulations of the problem
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are analyzed and discussed. Note that, similar to the MQCP, there is a straight-forward
MILP-formulation as presented in [SCS06]:

max
∑
i∈V

xi (3.19)

s.t.
∑

{i,j}∈E

zij ≤ k (3.20)

zij ≥ xi + xj − 1 ∀{i, j} ∈ E (3.21)
zij ≥ 0 ∀{i, j} ∈ E (3.22)
xi ∈ {0, 1} ∀i ∈ V (3.23)

Here, E denotes the set {{i, j} | {i, j} /∈ E}, i.e. the set of edges that are not in E.

In [TBBB13], the authors analyze several MCP relaxations from the perspective of
hereditary properties in graphs. They show that the property of being a defective clique
is a non-trivial, interesting property that is hereditary on induced subgraphs, and that
the NP-hardness of the problem follows from this observation. Furthermore, the authors
propose an exact algorithm based on Russian Doll Search (RDS) that can be used to solve
MCP relaxations that are hereditary. In [GIP18], the RDS algorithm is revisited and
improved by new pre-processing procedures. More recently, exact solution approaches
are proposed in [CZHX21] and [GXLY22] specifically to exploit massive sparse graphs,
and a heuristic first-order optimization method is presented in [BRZ22].

When studying the literature related to the MDCP, we notice that there are only a few
heuristic approaches. Due to the close relation of the MQCP and the MDCP we focus
our approach to build upon existing heuristic algorithms for the MQCP and show that it
can be adapted to the MDCP easily.
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CHAPTER 4
A Local Search Based

Metaheuristic for Edge-Based
Relaxations of the Maximum

Clique Problem

In this chapter we present a local search based metaheuristic, named LSBM, for relaxations
of the MCP in detail, which is the algorithmic foundation of the GNN-based algorithm
presented in Chapter 5. At first, we introduce the general structure of LSBM without
using GNNs in Section 4.1, followed by a detailed inspection of the components of our
algorithm. We propose a lower bound heuristic based on beam search (BS) in Section 4.2
that is used to efficiently obtain a feasible initial solution of high quality. Next, we discuss
the construction heuristic used within LSBM in Section 4.3. This construction heuristic
does not necessarily yield a feasible solution but is used to explore new regions of the
search space not visited yet, as it will be used as a starting point for the local search
procedure. The main move operator used in the local search procedure is defined in
Section 4.4. Moreover, we define and analyze the corresponding neighborhood structures.
Thereafter, we show in detail the local search procedure of LSBM that searches said
neighborhood structures and uses a scoring function to evaluate the vertices in the graph
to restrict the neighborhood to the most promising moves. We introduce such a scoring
function, namely the function dS , that denotes for a vertex in the input graph the number
of neighbors in the current candidate solution S. This scoring function is commonly used
in state-of-the-art heuristic approaches for the MQCP, but we also discuss that any other
scoring function can be used within LSBM.

Note that we present our algorithm in the context of the MQCP. As the MQCP and
the MDCP are closely related, the adaption to the MDCP is straight-forward and the
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necessary steps to adapt LSBM to the MDCP are shown at the end of the Chapter in
Section 4.5.

4.1 Algorithm Structure

As noted by Friden et al. [FHdW89], a solution for the MCP can be obtained by finding a
series of k-cliques for increasing values of k. Based on this observation, Wu et al. [WH13]
develop an adaptive multi-start tabu search algorithm for the MCP that in each iteration
searches for a clique of size k using a tabu search procedure. If such a clique can be
found, k is increased and the algorithm is restarted. The largest clique found this way is
returned as the solution. Djeddi et al. [DHB19] show that this idea can be extended to
the MQCP by following the same principle: The maximum γ-quasi clique in a graph is
approximated by finding a series of k-γ-quasi cliques, where the tabu search is restarted
with increased k each time a k-γ-quasi clique is found. This idea is applied successfully
also in other state-of-the-art algorithms for the MQCP, namely, [ZBW20] and [CCP+21],
which is why we want to base the general structure of our algorithm on this idea as well.

The pseudocode of the general structure of our local search algorithm is shown in
Algorithm 4.1. InitialSolution, which is a heuristic algorithm based on BS, constructs a
feasible initial solution. Its main purpose is to quickly obtain a reasonable lower bound
that can be used as a starting value for k. The procedure is described in detail in
Section 4.2.

In Line 3 a long-term memory Freq is initialized, where Freq[i] stores how many times
each vertex is operated on for i = 1, . . . , n. This memory is kept when the loop in
Lines 4–12 is repeated, but no feasible solution could be found. In ConstructionHeuristic,
Freq is used to produce a candidate solution that favors vertices that have not been
considered yet. This way, new regions of the search space are explored. The idea of using
this long-term memory Freq in the construction heuristic to cover a larger area of the
search space comes from [CCP+21]. We change their construction heuristic slightly by
combining it with a GRASP-like construction step as described in Section 4.3.

Once a candidate solution is obtained by a construction heuristic, we try to improve it by
the local search procedure in Line 6, which is described in detail in Section 4.4 along with
the definition of the neighborhood structures. During this local search procedure, we
use the scoring function fS in each iteration to restrict the neighborhood of a candidate
solution S to the most promising moves in order to increase its objective value. If the
resulting solution S is feasible, a simple search is performed in Extend to check if the
solution can be extended to a feasible solution of greater size as shown in Algorithm 4.2.
Furthermore, k is increased, Freq is reset, and the best-so-far found solution S∗ is updated.
If the solution obtained by the local search procedure is not feasible, the while-loop is
repeated until the stopping criterion is met. We define two user-defined parameters as
the stopping criterion: a time limit τ and a maximum number of restarts ξ. Whenever
one of the two stopping criteria is fulfilled, the execution of the algorithm is terminated.
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Algorithm 4.1: General structure of LSBM
Input: Graph G, Target Density γ
Output: Approximate maximum γ-quasi clique in G, scoring function fS

1 S∗ ← InitialSolution(G, γ)
2 k ← |S∗|
3 Freq ← [0, . . . , 0] // n-element Array, initialized with 0
4 while stop condition not met do
5 S ← ConstructionHeuristic(G, Freq, k)
6 S ← LocalSearch(G, Freq, γ, S, fS)
7 if S is feasible then
8 S ← Extend(G, S, γ)
9 S∗ ← S

10 k ← |S|+ 1
11 Freq ← [0, . . . , 0]
12 end
13 end
14 return S∗

Algorithm 4.2: Extend a feasible solution
Input: Graph G, Feasible solution S, Target Density γ
Output: Feasible solution S′ of size at least |S|

1 S′ ← S
2 while true do
3 for u ∈ V \ S′ do
4 if S′ ∪ {u} is a γ-Quasi Clique then
5 S′ ← S′ ∪ {u}
6 continue while-loop in line 2
7 end
8 end
9 break out of while-loop

10 end
11 return S′
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4.2 Lower Bound Heuristic
In this Section, we propose a BS-based heuristic that returns a feasible solution that can
be used as a lower bound for the size of a maximum γ-quasi clique in the input graph.
This lower bound is used to obtain a high starting value for k in Line 2 of Algorithm 4.1.
The pseudocode of the beam search is shown in Algorithm 4.3. In the following, note
the textual distinction between nodes in the search tree and vertices in the input graph
which is made for the sake of clarity.

In BS, a node v of the search tree is in general evaluated by a function f(v) = g(v) +h(v),
where g(v) is the cost of the solution corresponding to a node, and h(v) is a heuristically
determined value given by a guidance function, which predicts the cost-to-go to complete
the partial solution corresponding to a node. We use a simple data structure for nodes
of the search tree where a node v has fields v.S containing a feasible γ-quasi clique
that this node represents, v.ne, which contains the number of edges in G[v.S], v.dS ,
which is a vector containing the dS-values for vertices in G in order to allow efficient
computation of v.ne, and v.h, which is the heuristically determined value of the node
according to the used guidance function. Additionally, we define the cost of a node
v as g(v) = |v.S|, which is the size of the feasible solution that this node represents.
The root node r of the BS tree is then defined by an empty candidate set r.S with
r.g = 0, r.h = 0, r.dS = [0 . . . 0], r.ne = 0.

The main loop in Lines 3–17 expands all nodes in the current beam B into feasible
successor nodes. The maximum size of the beam is defined by the parameter beta, the
so-called beam-width. Since a node v represents a set of vertices v.S which is a feasible
γ-quasi clique, successor nodes are generated by checking for each vertex u ∈ V \ v.S
whether v.S ∪ {u} is still a feasible γ-quasi clique. These successor nodes are then added
to a set C, containing all expanded nodes of the next level of the search tree. Using the
information stored in a node v of the beam search tree, it can be checked in O(1) whether
any vertex u ∈ V \ v.S in the graph can be used to extend the solution v.S into a feasible
γ-quasi clique. Creating a successor node however takes O(n) time, as the dS-values for
the created successor node have to be updated. In order to keep the computational effort
low, we introduce a parameter ε that controls the maximum number of successor nodes
for each node in the search tree. Thus, if a node has more than ε feasible successors, we
add only the first ε successor nodes to C, as can be seen in Line 7 of the algorithm.

To avoid symmetries, i.e., nodes u, v representing the same solutions such that u.S = v.S,
we use a hash map for each level of the search tree containing all solution vertex sets
that were already added for expansion. Before adding a successor node v to C, a check
is performed to make sure that a node representing v.S is not already contained in C.

Note that due to this expansion into successor nodes all the solutions corresponding to
the nodes on a level of the search tree have the same cardinality, and thus the same
g-value. Therefore, g-values can be ignored in the evaluation, and all nodes in C are
evaluated only by a guidance function h. The β nodes with the highest h-values then
form a new beam while the remaining nodes are discarded. Furthermore, since all the
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solutions corresponding to nodes on a level of the search tree have the same cardinality,
a random node is selected to update the best-so-far solution S∗ on each level. Finally,
when the beam becomes empty, the maximum cardinality solution is returned.
The heuristic guidance function h can have a great impact on the quality of the obtained
solutions, but also the runtime of the beam search. Therefore, we propose three guidance
functions, Greedy Construction, Feasible Neighbors, and Number of Edges, which we want
to consider in the context of this beam search:

• Greedy Construction. We use the result of a simple greedy construction as the value
of the heuristic function h: Given a node v with candidate set S = v.S, greedily
add the vertex v = arg maxu∈V \S dS(u) if S ∪ {v} is still a feasible γ-quasi clique,
where dS(u) = |{v | v ∈ S, {u, v} ∈ E}|. Ties are broken randomly. This greedy
extension is repeated until the corresponding solution is maximal, i.e., no single
vertex can extend the cardinality of the solution while maintaining feasibility. The
size of the solution obtained this way is then the return value of the guidance
function h(v). This greedy guidance function has a time complexity of O(|S∗|n) per
iteration, where |S∗| is the size of the best found solution obtained by the greedy
construction and n is the number of vertices in G. As |S∗| is bound by n, the time
complexity of Greedy Construction is in O(n2) per node of the search tree.

• Feasible Neighbors. Consider the following function defined for a node v in the
search tree hv.S : V \ v.S → N:

hv.S(w) =
{

0 if w cannot extend v.S into a feasible solution
v.dS(w)− δ if w can extend v.S

,

where δ = ⌈γ · |v.S|·(|v.S|+1)
2 ⌉ − v.ne, i.e. the number of edges that need to be added

when extending v.S into a feasible solution of size |v.S|+ 1. The heuristic value
h(v) for a node v in the search tree is then computed as the sum ∑

w∈V \v.S hv.S(w).
For each vertex that can be used to extend v.S - which we call a feasible neighbor in
this context - we count the surplus of edges that are added to v.S when extending
v.S by this vertex. As we have access to v.ne, we know that each vertex that
adds at least |v.S|·|(v.S|+1)

2 − v.ne edges to the solution can be used to extend v.S.
As the number of edges gained by adding a vertex is determined by the values
in v.dS , this computation can be done in time O(n) per node of the search tree.
Furthermore, consider two nodes u, v on the same level of the search tree, such
that u.ne = v.ne, both nodes have the same number of feasible neighbors, but the
dS-values for the feasible neighbors of u.S are higher than the dS-values of the
feasible neighbors of u.S. Intuitively, u is more promising than v, as adding one of
the feasible neighbors adds more edges to the corresponding solution, which is also
reflected in the computation of this heuristic guidance function.

• Number of Edges. We set h(v) = v.ne, which means this heuristic guidance function
has a time complexity of O(1). This allows for efficient computation at the cost of
not obtaining much additional information.
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These heuristic guidance functions differ greatly in terms of time complexity per node
and information obtained to guide the search. As the main purpose of the lower bound
heuristic proposed in this Section is to quickly obtain a good approximation, we will
prioritize fast computation over solution quality. Nonetheless, for small instances, it
could still be useful to consider more expensive guidance functions.

Algorithm 4.3: Lower Bound heuristic based on Beam Search
Input: Graph G, Target density γ, guidance function h, beam width β,

expansion control parameter ε
Output: A feasible γ-quasi clique S

1 r.S, r.g, r.h, r.ne ← ∅, 0, 0, 0 // Root node r
2 S∗ ← ∅ // Best obtained solution
3 B ← {root} // Beam B
4 while B not empty do
5 C ← ∅ // Set of successors (children) of nodes in B
6 for v ∈ B do
7 Expand v.S into up to ε successor nodes that can be obtained by adding a

vertex from V \ v.S
8 C ← add feasible successor nodes obtained from expanding v

9 end
10 if C not empty then
11 S∗ ← v.S for some arbitrary node in C
12 end
13 Evaluate nodes in C by guidance function h
14 B ← Choose β nodes with highest h-values as new beam
15 end
16 return S∗

4.3 Construction Heuristic

The construction heuristic in Line 5 in Algorithm 4.1 aims to return a set of nodes
S of fixed size |S| = k that is promising to lead to new local optima when used as a
starting point for the local search procedure. The candidate solution returned by this
construction heuristic is not necessarily feasible. The construction heuristic includes a
parameter b ∈ [0, 1] which controls the balance between choosing nodes that have not
been explored yet and nodes that increase the number of edges among vertices in the
current candidate solution. This approach of balancing exploration and objective value
is inspired by [CCP+21], where the authors use a similar strategy during construction.
We combine the authors’ idea with a GRASP-like construction step. The procedure is
shown in Algorithm 4.4. At first, a starting node is selected by choosing a node with
the lowest Freq-value, breaking ties randomly. In each iteration of the main while loop
in line 3-17, with probability b a node with the lowest Freq-value in NG(S) is added to
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the current candidate solution S. If NG(S) is empty, an arbitrary node with the lowest
Freq value from V \ S is selected instead. With probability 1− b we perform an iteration
of a GRASP-like construction step: A restricted candidate list RCL is built by adding
all nodes from V \ S that fulfill the condition dS(u) ≥ dmax − α(dmax − dmin), where
dS(u) denotes the number of neighbors in S for a node u ∈ V \ S, and dmax, dmin are the
maximum and minimum values dS(u), respectively, over all nodes u ∈ V \ S. Here, the
parameter α controls the balance between greediness and randomness in a GRASP-like
manner: α = 0 corresponds to a greedy strategy, whereas α = 1 corresponds to a purely
random strategy.

Algorithm 4.4: Construction Heuristic with focus on exploration
Input: Graph G, n-element array Freq, Target size k, GRASP parameter α,

Exploration parameter b
Output: Candidate set S

1 u← node in G with lowest Freq-value, break ties randomly
2 S ← {u}
3 while |S| < k do
4 if rand() < b then
5 if NG(S) not empty then
6 u← Pick random neighbor in NG(S) with lowest Freq-value
7 else
8 u← Pick random node in V \ S with lowest Freq-value
9 end

10 else
11 dmin = minu∈V \S dS(u)
12 dmax = maxu∈V \S dS(u)
13 RCL← {u | u ∈ V \ S, dS(u) ≥ dmax − α(dmax − dmin)}
14 u← Pick random node from RCL

15 end
16 S ← S ∪ {u}
17 end
18 return S

4.4 Neighborhood Structure and Local Search
The neighborhood of a candidate solution S is defined by a move operator that swaps
a node u ∈ S with a node v ∈ V \ S. The set of neighboring candidate solutions of
S with |S| = k that can be obtained by a single swap move is therefore defined as
Ω1 = {(S \ {u}) ∪ {v} | u ∈ S, v ∈ V \ S} and has size |Ω1| = k · (n − k), which is in
O(n2). Similarly, we define Ωd for d = 1, 2, 3, . . . as the set of neighboring solutions
that can be obtained by swapping d nodes from S with d nodes from V \ S, obtaining a
neighborhood of size |Ωd| =

(k
d

)
·
(n−k

d

)
, which is in O(n2d).
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In general, this definition of a neighborhood structure can be applied to many MCP
relaxations. The quality of a candidate solution then depends on the considered problem.
However, for the MQCP and the MDCP, the definition of objective value coincides: a
candidate solution S is of higher quality than a neighboring solution S′ if G[S] contains
more edges than G[S′]. Thus, we define the objective function f : 2V → N for the local
search for MQCP and MDCP as the function that maps a subset of vertices S ⊆ V to
the number of edges in the induced subgraph G[S]. Therefore, S is of higher quality than
S′ if and only if f(S) > f(S′).

Similar algorithms that use local search to improve a candidate solution (e.g., [CCP+21],
[DHB19], [ZBW20]) only search the neighborhood Ω1 for improving solutions. As the size
of this neighborhood is already quadratic in n, the authors of the mentioned algorithms
restrict the neighborhood to promising moves. A scoring function is used to find promising
vertices in V \ S and in S that can be used for swaps. This scoring function is in most
cases defined as dS(u) = |{v | v ∈ S, {u, v} ∈ E}|. This way, the change in the objective
function value, i.e., the gain, when swapping a node u ∈ S with a node v ∈ V \ S can
efficiently be calculated by ∆uv = dS(v)− dS(u)− euv, where euv = 1 if {u, v} ∈ E and
euv = 0 otherwise. The scoring function dS is thus used to restrict the neighborhood Ω1.
Let dmin = minu∈S dS(u) and dmax = maxu∈V \S dS(u). Furthermore, let

X = {u | u ∈ S, dS(u) ≤ dmin + 1},
Y = {v | v ∈ V \ S, dS(v) ≥ dmax − 1}.

The neighborhood Ω1 of a candidate solution S is then restricted to only those neighboring
solutions that can be obtained by swapping a node u ∈ X with a node v ∈ Y , as all node
swaps that maximize ∆uv are contained in this restricted neighborhood.

In LSBM, we want to make use of this scoring function as well. The pseudocode for
our local search procedure is shown in Algorithm 4.5. Note that a scoring function fS

is passed as an input parameter to the local search procedure. Within the context of
LSBM, any scoring function can be used to restrict the candidate sets X, Y , and we plan
to replace this scoring function with a GNN-based scoring function in Chapter 5. For
this Chapter, however, we want to focus on the well-established scoring function dS , i.e.,
fS is instantiated by dS .

In each iteration of the main while-loop in Algorithm 4.5, we first define the aspiration
value a, which is the number of edges that have to be added to the current candidate
solution S such that f(S) > f(S∗) holds. Then, the restricted candidate sets X and
Y are created from the sets S and V \ S, respectively by using the scoring function fS .
The sets X, Y are created as described before, with an additional restriction: To prevent
cycling through the same candidate solutions over and over again, a short-term memory
mechanism is applied which prevents unblocked vertices from being chosen for a swap
if they do not fulfill an aspiration criterion. Two main methods can be found in the
literature, which we want to evaluate in our algorithm:
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• In [DHB19] and [ZBW20], a tabu list is used to prevent cycling. Each time a vertex
is added to or removed from the solution, it is added to the tabu list for a fixed
number of iterations. While a vertex is in the tabu list, it is blocked and cannot be
used in swaps. In [DHB19], the authors use two tabu lists: One for moving vertices
out of the candidate solution, and one for adding vertices to the candidate solution.
In [ZBW20], a single tabu list is used for both operations.

• Configuration Checking is used by the authors of [CCP+21]. In its simplest form,
once a vertex v is moved out of the candidate Solution, it is blocked from being
moved again until at least one neighbor of v is moved. The authors refine this
strategy by using a threshold for each node v that starts with threshold(v) = 1 for
all v ∈ V . Each time a vertex v is moved into the candidate solution, threshold(v)
is increased by 1. When v is moved out of the candidate solution, it is blocked
from being moved again, until threshold(v) of its neighbors have been moved.
Additionally, if threshold(v) > ub_threshold, where ub_threshold is a user-defined
upper bound, then threshold(v) is reset to 1.

In Line 8, the neighborhood defined by X, Y is searched. The subroutine is shown in
Algorithm 4.6. The neighborhood is searched exhaustively for the swap that maximizes
the gain of edges ∆uv. Blocked vertices are not considered for potential swaps unless
the respective gain of edges is greater than the aspiration value a. If no improving swap
was found, a random unblocked move is chosen u ∈ X, v ∈ Y . Afterward, the chosen
vertices u, v are swapped and Freq, the short-term memory, and the dS values are updated
correspondingly. Furthermore, we define as a stopping criterion: If the best solution S∗

does not improve for a fixed number of iterations η, the procedure is stopped and S∗ is
returned. Additionally, if a given time limit is reached, the procedure is stopped as well.

Summarizing the previous sections, we present a flowchart visualization of LSBM in
Figure 4.1.

4.5 Adaption to the Maximum Defective Clique Problem
The MQCP and the MDCP can be approached similarly in the context of a local search-
based algorithm, as during the local search procedure in both cases we try to find
neighboring solutions that maximize the number of edges in the subgraph induced by
the current candidate solution. The objective value of a candidate solution as defined in
Section 4.4 is equivalent in both problems. Thus, we only have to change the feasibility
checks for feasible MQCs in Line 7 of Algorithm 4.1, Line 4 of Algorithm 4.2, and
Line 19 in Algorithm 4.5, as well as the expansion into feasible successors in the lower
bound heuristic in Line 7 of Algorithm 4.3 to feasibility checks for MDCs. The proposed
construction heuristic can be used for the MDCP without any change.
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Algorithm 4.5: Local Search Procedure
Input: Graph G, Frequency list Freq, Target density γ, Candidate solution S,

scoring function fS

Output: Best found solution S∗

1 k ← |S|
2 S∗ ← S
3 dS ← compute dS-values for vertices in G
4 while stopping criterion not met do
5 a← f(S∗)− f(S) // aspiration value
6 X, Y ← restrict candidate sets X ⊆ S, Y ⊆ V \ S using fS

7 B ← blocked vertices according to short-term memory
8 u, v, ∆uv ← SearchNeighborhood(G, dS , X, Y, B, a)
9 if ∆uv < 0 then

// No improving solution found
10 u, v ← choose arbitrary (unblocked) u ∈ X, v ∈ Y

11 end
12 S ← solution obtained by swapping u ∈ X, v ∈ Y
13 Update Freq[u], Freq[v] with swap u, v
14 Update short-term memory with swap u, v
15 Update dS-values
16 if f(S) > f(S∗) then
17 S∗ ← S
18 end
19 if S∗ is feasible then
20 return S∗

21 end
22 end
23 return S∗
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Algorithm 4.6: Search restricted neighborhood
Input: Graph G, Restricted candidate sets X, Y . Blocked vertices B, aspiration

value a
Output: Best found swap u ∈ X, v ∈ Y and corresponding gain ∆uv

1 ubest , vbest , ∆best ← 0, 0,−∞
2 for u ∈ X, v ∈ Y do
3 ∆uv ← dS [v]− dS [u]− euv

4 if ∆uv ≤ a ∧ (u ∈ B ∨ v ∈ B) then
5 continue
6 end
7 if ∆uv > ∆best then
8 ubest , vbest , ∆best ← u, v, ∆uv

9 end
10 end
11 return ubest , vbest , ∆best
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Figure 4.1: Flowchart of the structure of the Local Search Based Metaheuristic.
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CHAPTER 5
A GNN-based Metaheuristic

In this Chapter, we extend our algorithm LSBM presented in Chapter 4 by utilizing a
GNN as a learnable scoring function to enhance the algorithm. Section 5.1 discusses
the motivation for using a GNN within LSBM and points out weaknesses of current
approaches that we attempt to overcome. Moreover, we show the general structure
of our training algorithm LSBM-T and an overview of our approach. In the following
Sections, we present in detail the components of LSBM-T. The definition of training
samples is given in Section 5.2, and we discuss, how training data is generated. Next,
in Section 5.3, we present our idea of using a look-ahead search that takes into account
the current candidate solution and returns the best neighboring solution with respect to
a user-defined neighborhood structure in order to obtain target values for training the
GNN. Our proposed GNN architecture is shown in Section 5.4. Finally, we analyze the
effect on the runtime of LSBM when using the GNN-based scoring function in contrast
to using only dS as a scoring function in Section 5.5.

Note that all the methods presented in this Chapter can be used both for the MQCP and
the MDCP. Only LSBM itself has to be adapted as discussed previously in Section 4.5,
but no changes have to be made in training data generation and during the look-ahead
search, as the definition of the objective value of a candidate solution coincides for both
problems.

5.1 Motivation and Overview
In Chapter 4 we presented a swap-based metaheuristic that evaluates possible swaps
relative to a candidate solution S by their respective gain ∆uv for u ∈ S, v ∈ V \ S which
is similar to current state-of-the-art heuristic solution approaches. Here, the function dS

can be seen as a scoring function over the vertices in V . Vertices with higher scores in
V \ S and vertices with low scores in S are promising candidates for swapping, as they
maximize the expected gain of a swap ∆uv. Most local search-based algorithms on the
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MQCP rely on this scoring function, as it is efficiently computable, and swaps with a
positive ∆uv directly increase the objective value, which is the number of edges in the
subgraph induced by the candidate solution. However, using dS as a scoring function to
evaluate the quality of swaps has two major drawbacks:

• In each iteration of the local search procedure, potential swaps are determined
greedily: Only swaps that maximize the gain ∆uv are considered. As discussed in
Chapter 4, this corresponds to only searching the neighborhood structure Ω1. It is
possible, however, that one or more swaps with low gain later lead to an improved
solution – for example, a local optimum S with respect to the neighborhood
structure Ω1 is not necessarily a local optimum with respect to the neighborhood
structure Ω5, and in order to obtain an improving solution from S with respect to
Ω5, some swaps might have a negative gain when applied consecutively.

• As shown in [CCP+21], in most iterations there are many possible swaps with the
same gain, but not all of them lead to the same local optimum. To decide between
swaps with equal gain the authors propose to use a more fine-grained secondary
scoring function that serves as a tiebreaker.

To address these drawbacks, we propose to incorporate a GNN into the local search
algorithm as a possible improvement over the function dS as a scoring function for swaps:
In each major iteration of the local search algorithm, all vertices are evaluated by a GNN,
assigning scores to vertices. The GNN can therefore be seen as a scoring function gS ,
where gS(v) denotes the score of vertex v relative to candidate solution S. As with dS ,
the scores returned by the GNN induce a ranking over the possible swaps: High scores
for vertices in V \ S and low scores for vertices in S shall indicate that these vertices are
more likely to lead to an improved solution when considered for swaps.

The use of a GNN in the context of LSBM in this approach is two-fold:

• Similar to the use of dS , the scoring function gS can be used to restrict the neigh-
borhood to only promising neighboring candidate solutions that can be obtained
by only considering swaps involving the k′ vertices with the highest scores in V \ S
with the k′ vertices with the lowest scores in S.

• The GNN can be trained to determine scores not only based on the neighborhood
Ω1 but also to look ahead more than a single swap. This way, it can be used
to obtain higher quality solutions as it is not caught in the local optima of the
neighborhood structure Ω1.

We plan to achieve the desired behavior of gS by training the GNN using principles
from imitation learning: gS is trained offline on representative problem instances to
imitate an expert strategy that searches a user-defined neighborhood structure (e.g.,
Ω1 ∪Ω2) with respect to a candidate solution S and computes the neighboring candidate
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solutions that maximize the gain of edges. From these neighboring solutions, binary
target labels are computed for all vertices in the input graph, where vertices outside S
are given a target value of one if they lead to one of the best neighboring solutions, and
zero otherwise, whereas vertices in S are given a target value of one if they appear in
every neighboring solution, and zero otherwise. The GNN has a final layer with a single
sigmoid output per vertex and is trained to predict the target values computed using
this expert strategy, which can be seen as a vertex-level binary classification task. The
concrete details regarding our training algorithm are presented in Sections 5.2 and 5.3.

The concrete architecture of the GNN is inspired by [KvHW19], where the authors use
an Encoder-Decoder-based architecture with a more complex attention-based encoder
that generates node embeddings only once per graph, and a light-weight decoder that
uses the node embeddings as inputs and is called multiple times to construct a solution
in an end-to-end ML approach for the TSP. In our approach, evaluating the whole graph
by a ConvGNN every time the candidate solution is updated by a swap is too expensive,
as the convolution operation has a time complexity of Θ(n2) for dense graphs. This
motivates the choice of the described architecture. The node embeddings are generated
only once per graph by the encoder, which is an attention-based spatial ConvGNN.
The node embeddings and the current candidate solution S are then used to compute
a context embedding. These embeddings are concatenated and used as inputs for the
light-weight decoder, which is an MLP that evaluates the vertices of the graph with a
time complexity of O(n) and outputs scores for the vertices by the use of a final sigmoid
layer with a single output per vertex. Note that gS is not necessarily independent of
dS : In our approach, the dS-values of vertices are used as features for the vertices in the
graph when constructing the context embedding. Thus, the function dS is also taken into
consideration, but its information is enhanced by structural information obtained from
the graph to overcome its drawbacks. The architecture of the Encoder-Decoder-based
GNN is presented in detail in Section 5.4.

The attentive reader might have noticed that the approach described above is only sensible
if the vertices in the input graph are represented by relevant initial feature vectors. As
the input graphs are non-attributed, these node features cannot come directly from the
problem input, unlike in [KvHW19], where the node inputs for solving the 2D Euclidean
TSP are the 2D coordinates of the vertices embedded in the unit square. To overcome
this issue, we investigate several feature initialization methods that extract information
from the graph to compute initial node features. These methods can be categorized as
centrality-based methods, where information is computed directly from properties of
the vertices in the graph (e.g., degree-based initialization), and learning-based methods,
where vertices in the graph are mapped into a feature space by a learnable function that
tries to capture similarities between vertices. Using such feature initialization methods in
node-level vertex classification tasks on non-attributed graphs has proven to be successful,
as reported in [DHD+19]. We refer to Section 5.4 for more information about the choice
of node features evaluated within our approach.

Even when employing the proposed Encoder-Decoder-based architecture, the use of a
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GNN-based scoring function within our approach is computationally expensive compared
to the scoring function dS : Whereas dS can be updated efficiently after a swap, incre-
mentally updating the scores is generally not possible with a GNN, as the whole graph
has to be re-evaluated. Therefore, obtaining scores is less efficient using gS as a scoring
function. In Section 5.5 we analyze from a theoretical perspective, how the use of gS

affects the performance of LSBM compared to the use of dS .

5.2 Training the GNN

The general approach of the training algorithm LSBM-T is structured as depicted in
Algorithm 5.1. A visualization of the algorithm structure is presented in the flowchart
in Figure 5.1. At the start, the GNN-based scoring function gS is initialized randomly.
Then, in each iteration of the training loop a random representative instance is generated
on the fly and LSBM is started with a fixed time limit τ , a maximum number of iterations
without improvement η until the local search procedure is restarted, a maximum number
of restarts ξ if no feasible solution is found, and - most importantly - with the scoring
function gS that is used to restrict the neighborhood during the local search procedure
instead of the scoring function dS . The size of the restricted neighborhood during this
local search is defined by input parameter k′, which sets the maximum cardinality for
the restricted candidate sets X, Y .

We adapt LSBM slightly to return a swap history H in Line 5 besides the best found
solution S∗. This swap history is a simple array-like data structure that contains an
entry for each call to the local search procedure during the execution of LSBM. An
entry consists of the candidate solution that is generated by the construction heuristic
at the start of the local search procedure and a chronological list of pairs of vertices
in the input graph that correspond to the vertices swapped during the local search
procedure. Thus, the number of encountered candidate solutions, denoted as |H|, their
order of appearance, and all encountered candidate solutions themselves can be obtained
from H. After the execution of LSBM has finished, ns encountered candidate solutions
are reconstructed from the entries in H to generate training samples. This is done
by sampling ns numbers without replacement from {1, . . . , |H|} and reconstructing the
respective candidate solutions in their order of appearance in H. Note that in general
ns is much smaller than |H|, as thousands of candidate solutions can be encountered
during the execution of LSBM. Only a small subset S of these is chosen in Line 6 as
training samples, as the generation of these samples can be computationally expensive. A
look-ahead search is applied to compute the best neighboring solutions for each candidate
solution in S, returning a vector t of target values for the vertices in G. From G, S, t, a
training sample is created and added to the replay buffer R. For a detailed description
of how target values for these samples are computed, we refer to Subsection 5.2.1 and
Section 5.3, where we propose and discuss different methods to identify and compute
improving neighboring solutions. At the end of each iteration of the training loop, the
GNN is trained with data from the replay buffer, if it has reached at least half of its
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maximum fill capacity ρ. This process is repeated for z iterations until the GNN is
sufficiently trained.

Using the NN during training data generation is common practice in reinforcement
learning, where the NN is often improved by “self-play”. We justify this algorithmic
design choice by arguing about the trajectory of the search, i.e., the set of candidate
solutions encountered during execution of the local search-based metaheuristic with
or without the GNN: using the GNN-based scoring function gS during training data
generation will generate samples that would appear naturally during the execution of
LSBM at test time. In contrast, using only dS as a scoring function during training data
generation, the trajectory of the search might differ greatly compared to the trajectory
when using gS - especially for an initially untrained GNN, which might decrease the
stability of training.

Algorithm 5.1: Training algorithm LSBM-T
Input: Target density γ, Number of iterations z, replay buffer size ρ, size of

restricted neighborhood k′, number of samples generated per iteration ns

Output: Trained GNN-based scoring function gS

1 Initialize untrained GNN-based scoring function gS

2 Initialize Replay Buffer R
3 for z iterations do
4 G← create representative graph instance
5 S∗, H ← LSBM (G, γ, gS , k′)
6 S ← reconstruct ns randomly sampled candidate solutions from H
7 for S ∈ S do
8 t← LookaheadSearch(G, S)
9 Add (G, S, t) to R

10 end
11 if |R| > ρ

2 then
12 Train gS with data from R
13 end
14 end
15 return gS

5.2.1 Obtaining Target Values

As already mentioned, a training sample consists of a graph G = (V, E), a candidate
solution S, and a vector of target values t containing target values for each vertex in G.
Training is done in an imitation learning setting: In order to obtain target values for the
vertices in V , we apply a look-ahead search to the candidate solution S as described in
Section 5.3, and the GNN is then trained to imitate this look-ahead search.

The computation of target vector t is shown in Algorithm 5.2. It is a subroutine called
at the end of the look-ahead search. The look-ahead search first computes the set
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Initialize gS
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Yes

NoNo

Yes

Figure 5.1: Flowchart of the structure of the training algorithm.

T = {(X1, Y1), . . . , (Xj , Yj)} of vertices Xi ∈ S, Yi ∈ V \ S, 1 ≤ i ≤ j that need to be
removed from and added to the current candidate solution S, respectively, in order to
obtain a neighboring solution with respect to S that maximizes the objective value. This
set T is passed as an input argument in Algorithm 5.2 to compute the target vector t.
Note that there might be multiple such neighboring solutions with equal objective value,
or none if S is a local optimum. The target vector t is then initialized by setting t[u] = 1
for u ∈ S, and t[v] = 0 for v ∈ V \ S. Then, for every pair of vertex sets (Xi, Yi) ∈ T
we set t[u] = 0 for u ∈ Xi and t[v] = 1 for v ∈ Yi. The resulting target vector t is then
returned. We demonstrate this computation by a small example in Figure 5.2.

Algorithm 5.2: Computation of target values
Input: Graph G, Candidate solution S, Set T
Output: Vector of target values t

1 t← [0 . . . 0] // n-element vector
2 for u ∈ S do
3 t[u] = 1
4 end
5 for (Xi, Yi) ∈ T do
6 for u ∈ Xi do
7 t[u] = 0
8 end
9 for v ∈ Yi do

10 t[v] = 1
11 end
12 end
13 return t
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u2

u1

S

v1

v2

Target value 1

Target value 0

Figure 5.2: Target vector t obtained from a graph G with candidate solution S.
Edges are omitted for the sake of clarity. The three best neighboring solutions of
S w.r.t. the Ω1 neighborhood structure can be obtained by applying one of the swaps
({u1}, {v1}), ({u1}, {v2}), ({u2}, {v2}) (marked by dotted lines). Thus, the vertices v1, v2
and the vertices in S \ {u1, u2} are labeled with 1, whereas all remaining vertices are
labeled with 0.

As the target vector t contains a label of either zero or one for each vertex in G, this
method of training can be seen as a vertex-level binary classification task. To train the
GNN we propose to use the binary cross entropy1 as a loss function, which is suitable for
binary classification tasks:

binarycrossentropy(ŷ, t) = 1
n

n∑
i=1

(−t[i] · log(ŷ[i] + ϵ)− (1− t[i]) · log(1− ŷ[i] + ϵ))

Here, ŷ denotes a vector of size |V | that contains predictions given by the GNN-based
scoring function gS , t denotes the target vector computed as described above, and ϵ
denotes a small positive number that is included to avoid infinity.

5.3 Look-Ahead Search

In order to obtain target values for training the GNN, we need to be able to identify the
best neighboring solutions in a given neighborhood structure relative to the S. More
specifically, we want to consider the neighborhood structure(s) ⋃d

i=1 Ωi for different values
of d. In this section, we propose different methods in order to search these neighborhood
structures.

1More precisely, we use Flux.jl’s logitbinarycrossentropy function, which is mathematically equivalent,
but more numerically stable
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5.3.1 A simple approach: Searching Ω1

As a first approach, we can define the look-ahead search as simply searching the neigh-
borhood structure Ω1 w.r.t. a candidate solution S, which can be done in time O(n2)
by inspecting all possible swaps. Note that the optimization described in 4.4 using the
restriction of possible swaps to vertices from X ⊆ S, Y ⊆ V \ S can be applied in order
to speed up the search. When gS is trained successfully to imitate this look-ahead search,
it will serve the same purpose as the function dS in Chapter 4, as dS is used to efficiently
search the neighborhood structure Ω1.

5.3.2 Beyond Ω1: Exact Approaches

In order to search the larger neighborhoods ⋃d
i=1 Ωi for d > 1, we distinguish between

exact approaches and heuristic approaches. In the remainder of this section, let Xi ⊆
S, Yi ⊆ V \ S be two sets of vertices of equal cardinality and let S′ = (S \Xi)∪ Yi be the
neighboring solution of S obtained by removing the vertices in Xi from S and adding the
vertices in Yi to this set of vertices. Let gainS(Xi, Yi) = |E(G[S′])| − |E(G[S])| denote
the gain of edges when comparing S′ and S.

Enumerating all possible swaps

As already stated in Chapter 4, the neighborhood structure Ωd contains O(|V |2d) neigh-
boring solutions and can be searched in time O(|V |2d · Td) by enumerating all possible
swaps, where Td is the time needed for determining the objective value of a neighboring
solution in Ωd. The gainS(Xi, Yi) of a swap of nodes Xi = {u1, . . . , ud}, Yi = {v1, . . . , vd}
is calculated using dS the following way:

gainS(Xi, Yi) =
∑

u∈Xi

dS(u)−
∑
v∈Yi

dS(v) + |E(G[Xi])|+ |E(G[Yi])| −
∑

u∈Xi

∑
v∈Yi

euv, (5.1)

where euv = 1 if {u, v} ∈ E, and euv = 0 otherwise. The above equation is a generalization
of the calculation of ∆uv: When adding the vertices in Yi to the candidate solution S,
we add ∑

u∈Yi
dS(u) edges between vertices in Yi and S, and |E(G[Yi])| edges between

vertices in Yi, from which we have to subtract ∑
u∈Xi

∑
v∈Yi

euv edges between Xi and
Yi, as the vertices from Xi are removed from S. When removing the vertices in Xi from
S, we remove ∑

u∈Xi
dS(u) edges, but the edges in G[Xi] are counted twice, which is

why we need to add the term |E(G[Yi])|. Note that Td is in O(d2), as the number of
summands in Equation 5.1 depends on d.

We propose the following optimizations to speed up the search:

• Let Xj = {u1, . . . , ud} ⊆ S, Yj = {v1, . . . , vd} ⊆ V \ S such that dS(ui) ≤ u
for 1 ≤ i ≤ d, u ∈ S \ Xj , dS(v) ≥ v for 1 ≤ i ≤ d, v ∈ V \ (S ∪ Yj), so Xj

contains the d vertices in S with the lowest dS-values, and Yj contains the d
vertices in V \ S with the highest dS-values. Then, for any sets of vertices Xi =
{u1, . . . , ud} ⊆ S, Yi = {v1, . . . , vd} ⊆ V \ S it must hold that gainS(Xi, Yi) ≤
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∑
v∈Yj

dS(v)−∑
u∈Xj

dS(u) + 2 ·
(d

2
)
. If the upper bound on the right side of the

inequality is less than or equal to zero, then S is a local optimum with respect to
Ωd, and it is not necessary to examine any of the neighboring solutions at all.

• Similarly, we can derive a lower bound: Let Xj , Yj be as defined above. Then,
gainS(Xj , Yj) is clearly a lower bound for the maximum gain among all neigh-
boring solutions of S. When calculating gainS(Xi, Yi) for arbitrary sets Xi =
{u1, . . . , ud} ⊆ S, Yi = {v1, . . . , vd} ⊆ V \ S, we can therefore check, whether∑

u∈Yi
dS(u) −∑

v∈Xi
dS(v) + 2 ·

(d
2
)

< gainS(Xj , Yj). If this is the case, we can
avoid the computation of gainS(Xi, Yi). This reduces the time Td from O(d2) to
O(d) if the above condition is fulfilled.

In practice, preliminary experiments have shown that searching the neighborhood ex-
haustively by enumeration of all possible swaps as described above is computationally
infeasible for d ≥ 3 even for small graphs (|V | ≤ 250), even when applying the described
optimizations.

MILP Approach

As an alternative approach, we present the following MILP-formulation which we adapted
from the formulations in [PVBB13] and [VPBP16].

The formulation is based on F1 from [PVBB13]:

max
n∑

i=1

n∑
j=i+1

aijwij (5.2)

s.t.
∑
i∈V

xi = k (5.3)
∑
i∈S

xi ≥ k − d (5.4)

wij ≤ xi ∀{i, j} ∈ E (5.5)
wij ≤ xj ∀{i, j} ∈ E (5.6)
wij ≥ xi + xj − 1 ∀{i, j} ∈ E (5.7)
wij ≥ 0 ∀{i, j} ∈ E (5.8)
xi ∈ {0, 1} i ∈ V (5.9)

We change the objective function to determine the neighboring solution S′ of S that can
be obtained after at most d swaps and maximizes the number of edges in G[S′]. The
equality in 5.3 ensures that the neighboring solution contains |S| = k vertices, and the
inequality in 5.4 ensures that |S′ \ S| ≤ d.

Furthermore, note that this method has similarities to the idea from formulation F3 in
[VPBP16] presented in Section 3.4, where the variables zωℓ , . . . , zωu are introduced that
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“guess” the size of the solution, which must be somewhere between the lower and upper
bounds ωℓ, ωu. The formulation above can therefore be seen as fixing the variable zk = 1
while setting zj = 0 for j ̸= k. Theoretically, this should speed up the search significantly,
as the search space is reduced greatly by fixing the size k of the solution.

In practice, we obtain similar results as for the exhaustive search of ⋃d
i=1 Ωi: Even for

relatively small graphs (|V | ≤ 250), this method becomes infeasible for d ≥ 3.

5.3.3 Beyond Ω1: Heuristic Approaches

In order to make training feasible on larger instances and for greater d, we propose
heuristic approaches that approximate the best neighboring solution, trading solution
quality for efficiency.

Restricting the neighborhood

Recall that during the execution of LSBM we restrict the cardinality of the sets of
vertices X ⊆ S, Y ⊆ V \ S to the k′ vertices with the lowest and highest gS-values,
respectively. Similarly, when searching ⋃d

i=1 Ωi, we can restrict the cardinality of the
sets of vertices considered for swaps X, Y to contain up to k′ vertices with the lowest
and highest gS-values each, and then exhaustively enumerate all possible neighboring
solutions that can be obtained by removing up to d vertices in X from S and adding up
to d vertices from Y . Intuitively, it makes sense to use a value k∗ > k′ for the size of the
restricted neighborhood during the look-ahead search, as this means a greater part of
the neighborhood structure ⋃d

i=1 Ωi is searched and therefore the approximation is more
likely to be precise. Furthermore, by using a fixed size neighborhood determined by k∗,
the computation scales better to larger graphs.

For making this training process more stable, we introduce a user-defined parameter
ω ∈ N to the look-ahead search. This parameter dictates the number of iterations that
the scoring function dS is used to restrict the neighborhood during the look-ahead search
instead of the scoring function gS , as the latter is initially untrained and thus unlikely
to restrict the neighborhood to the most promising vertices. After the first ω iterations
of the training loop in LSBM-T were completed, the look-ahead search then uses the
scoring function gS to restrict the neighborhood.

Furthermore, we note that the optimizations we proposed to exhaustively search the
neighborhood ⋃d

i=1 Ωi can also be applied to this neighborhood restricted by a GNN-based
scoring function.

5.4 GNN Architecture

In this Section, we present the key components of the GNN architecture used in our
algorithm and justify our choices in designing said architecture. The convolution operation
of attention-based spatial ConvGNNs has a time complexity of Θ(n2) for dense graphs
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(i.e., each vertex in the input graph has O(n) neighbors), which means it is too expensive
to re-evaluate the graph by the GNN-based scoring function after every swap of vertices.
Thus, we follow the work presented in [KvHW19], where an Encoder-Decoder-based
GNN architecture is used in an end-to-end ML approach for the 2D Euclidean TSP. The
main motivation for utilizing the Encoder-Decoder paradigm lies in its gain in efficiency:
The costly attention-based encoder is only evaluated once per graph to compute node
embeddings. Every time the context, i.e., the candidate solution S, changes during the
local search, only the decoder is applied to re-evaluate the vertices in the input graph. In
contrast, the lightweight decoder only has a time complexity of O(n).

The whole process of evaluating a graph G = (V, E) and a candidate solution S is
presented through a small example in Figure 5.3. Initially, feature vectors x1, . . . , xn are
computed for all vertices in V = {v1, . . . , vn}, producing a feature matrix of dimension
dimin×|V |, where dimin is the size of a feature vector. This feature matrix is used as input
for the GNN-based encoder, which consists of le graph convolutional layers and outputs
a node embedding matrix of dimension dimout × |V |. From these node embeddings, a
context embedding is computed by taking into account the current candidate solution S,
and aggregating corresponding node embeddings by an aggregation function agg. The
context embedding and input features derived from the dS-values for the vertices in V
are then concatenated to the node embeddings. The resulting matrix is used as input for
the decoder, which is realized as an MLP with a final layer that maps the values of the
previous layer to a scalar output score by applying a sigmoid activation function.

In the remaining Section, we will discuss the used node features, the more specific
structure of the encoder and decoder, and the context embedding in detail.

5.4.1 Node Features

While the feature initialization method is not a part of the NN itself, it plays an important
role in the overall process of computing the node embeddings. Since the node embeddings
are only computed once per instance, the computed node features must represent the
vertices in a meaningful way by extracting similarities and differences between vertices
and their surrounding neighborhoods. More precisely, high-quality features should map
vertices with similar neighborhoods closer together in the feature space, whereas vertices
that do not share any structural similarities should be further apart. Moreover, the
chosen feature initialization method should ideally generalize well on unseen graphs, as
the GNN used in our algorithm is trained offline on representative problem instances
that differ from the instances encountered during execution.

In [DHD+19] the authors analyze the effect of different node feature initialization methods
in vertex-level node classification tasks. They distinguish between centrality-based
approaches (e.g., degree-based initialization, number of triangles that a vertex participates
in, etc.), and learning-based approaches (e.g., DeepWalk [PAS14], where vertices are
mapped closer together if the probability that they occur in a random walk together
is higher). The authors conclude that centrality-based approaches are generally not
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as suitable as learning-based approaches by evaluating different feature initialization
approaches in a node classification setting.

We investigate both the application of centrality-based and learning-based feature initial-
ization methods within the context of LSBM. More precisely, the following methods are
considered:

• Degree. Each vertex is simply initialized by its degree, normalized by 1
n .

• EgoNet. For a vertex v we derive a feature vector of size three from its EgoNet.
It contains the number of vertices in the EgoNet of v, the number of edges in the
subgraph induced by the EgoNet of v, and the number of edges that have exactly
one endpoint in the EgoNet of v. Note that to avoid the vanishing gradient problem,
the first value of the feature vector generated for each vertex is normalized by
1
n , whereas the second and third values are normalized by 1

(n
2)

. Furthermore, we
consider the 1-hop-EgoNet and the 2-hop-EgoNet as separate node features.

• Node2Vec. Input features for the vertices of the input graph are learned using the
learning-based method Node2Vec [GL16]. We consider this method, as the authors
show that the produced embeddings can capture the similarities of vertices that
have similar neighborhoods.

• Struc2Vec. Struc2Vec [FRS17] is used to learn the node features. This method
was proposed by the authors to capture structural similarities between vertices
regardless of the length of the shortest path between the vertices.

The concrete parameterizations of the learning-based feature initialization method are
given in Subsection 6.2.2, which shows the results of our evaluation regarding node
features within the context of our algorithm. Furthermore, we evaluate each of the
proposed node features on their own, and combinations of them, i.e., we concatenate the
output of two different feature initialization methods.

5.4.2 Encoder

In general, any ConvGNN model can be used as an encoder. Recent applications of GNNs
in the context of COPs (e.g., [KvHW19], [JCRL21], [HLMP21]) show that attention-based
GNNs seem especially promising, which is why we want to build our proposed GNN
architecture upon an attention-based encoder as well. The architecture of our encoder
builds upon the work presented in [KvHW19], in which the authors use attention-based
GNNs to solve the Euclidean 2D TSP. We use their encoder architecture in this proposed
ConvGNN model and slightly adapt it to our purpose:

• Layer 1: We apply a linear transformation A1xi + b1 with learnable parameters
A1, b1 for each feature vector xi, 1 ≤ i ≤ n.
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• Layers 2, . . . , le: Following the ConvGNN model used by [KvHW19], each atten-
tion layer consists of two sub-layers: A multi-head attention (MHA) layer and
a dense, fully connected feed-forward (FF) layer. Each sub-layer also applies a
skip-connection and batch-normalization. The following sub-layer definitions are
given by the authors:

ĥi = BNl(h(l−1)
i + MHAl

i(h
(l−1)
1 , . . . , h(l−1)

n ))

h
(l)
i = BNl(ĥi + FFl(ĥi))

In [KvHW19], the authors use as the MHA layer an attention mechanism that is based on
the transformer architecture in [VSP+17]. We replace this layer with the newer GATv2
layer from [BAY21], which was developed as an improved version of the Graph Attention
Network [VCC+18]. Here, a GATv2 attention layer is defined by the update function

h
(l)
i =

∑
j∈NG[i]

αijW
(l)
1 h

(l−1)
j .

The attention coefficients αij are defined as

αij = 1
zi

exp(aT LeakyReLU(W (l)
2 h

(l−1)
i + W1h

(l−1)
j )),

where zi is a normalization factor and a, W1, W2 are learned layers.

In our concrete implementation, we denote by dimin the size of the node embeddings, by
dimconv

e the size of all MHA layers, and by dimFF
e the size of all FF layers in the encoder.

5.4.3 Context

Within LSBM, the context is determined by the current candidate solution S. The
context embedding is computed by aggregating the columns of the node embedding
matrix that correspond to the vertices in S. This is inspired by graph representation
learning, where the node embeddings are aggregated into a graph embedding by the
application of an order invariant aggregation function agg ∈ {sum, mean, max}. Most
commonly, however, mean is used to compute the graph embedding, e.g., in [KvHW19].
We follow a similar approach but only consider the columns of the node embedding matrix
that correspond to the vertices in S, as we are only concerned about the representation
of the candidate solution. The main motivation behind this approach is to compress a
context of linear size into a constant-size context embedding c. However, we note that
this definition of a context is one of the current weaknesses of our approach – by taking
the mean of the node embeddings of the vertices in S the information of the candidate
solution is highly compressed. Future work will be dedicated to developing methods that
generate a stronger context embedding that preserves more relevant information about
the candidate solution.

Furthermore, we derive features from the function dS . From the dS-values for the vertices
in the input graph, we compute the mean and standard deviation. Then, for each vertex
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in the graph, we concatenate a vector containing its dS-value and the mean and standard
deviation of all dS-values to the context embedding c, creating feature vectors ci for
vi, 1 ≤ i ≤ |V |. These vectors are then concatenated to the node embeddings, creating
the final decoder inputs ei || ci for vi, 1 ≤ i ≤ |V |.

5.4.4 Decoder

The decoder is a classification model that maps the inputs obtained from the node
embeddings and the context embedding to scalar values representing scores for the
vertices in V . We suggest using a simple MLP architecture. The input dimension of
the decoder is determined by its inputs, which are computed as previously described
by concatenating the context embeddings to the node embeddings. The first layer of
the decoder then simply applies a learnable linear transformation, followed by a batch
normalization. Furthermore, it consists of ld layers, with layers 2, . . . , ld − 1 being hidden
feed-forward layers of dimension dimd with a ReLU activation function, each followed by
a batch normalization. The final layer ld of the decoder has a single dimension, mapping
the results of the previous layer to scalar values between zero and one with a sigmoid
activation function. The concrete number of layers and their dimensions are shown in
Chapter 6, were we evaluate suitable values for our approach.

5.5 Performance
Since the main difference between the algorithms presented in Chapter 4 and 5 lies in the
scoring function used to evaluate vertices during the swap-based local search procedure,
we want to analyze the effect of using the scoring function gS to restrict the neighborhoods
instead of the scoring function dS . Note that dS has to be used in LSBM, even when
another scoring function is used to restrict the neighborhoods, as using the dS-values is
the most efficient way to keep track of the objective value of candidate solutions. Thus,
we know that using the scoring function gS can never be faster than using dS , alone,
but we want to analyze, where possible bottlenecks can be found and how to keep the
additional computational effort as low as possible. In order to do so, we identify the
three main operations during the local search procedure that are influenced by the choice
of scoring function: Initialization, restricting neighborhoods, and updating the scoring
function.

5.5.1 Initializing the scoring function dS

At the start of the local search procedure, a construction heuristic is used to produce
a new candidate solution S, which serves as a starting point. The scoring function dS

must then be initialized, as it is dependent on S. The initialization procedure can be
seen in Algorithm 5.3. It starts by initializing an array of zeros of size n. For each vertex
u ∈ S, increase the value dS [v] by one for each neighbor v of u. This procedure has a
worst-time-complexity of O(n2) time, as the size of S is in O(n), and each vertex in S
can have O(n) neighbors.
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Algorithm 5.3: Initialize scoring function dS

Input: Graph G = (V, E), candidate solution S
Output: Initialized scoring function dS

1 dS ← [0, . . . , 0] // Array of size n
2 for u ∈ S do
3 for v ∈ NG(u) do
4 dS [v]← dS [v] + 1
5 end
6 end
7 return dS

5.5.2 Initializing the scoring function gS

When using the scoring function gS , initializing the scoring function is done by computing
node embeddings for each vertex in G. This is done by first computing node features and
then computing node embeddings by passing the node features through a GNN-based
encoder. The time complexity of this initialization depends on the two parts. Firstly,
the chosen node features have to be computed once per graph. This can be as simple
as obtaining the node degrees, but can also be much more complex when for example
learning-based node features are used. Thus, let Tf be the node feature-specific time
taken for initialization. Secondly, the convolutional operations defined by the layers of
the GNN itself will take O(n2) time. The argument is similar as with dS , as each vertex
needs to be evaluated by taking into account all its neighboring vertices. Note that this
initialization process has to be done only once per graph, thus it has a combined runtime
of O(Tf + n2). In subsequent restarts of the local search procedure, the node embeddings
are already precomputed, and only the linear time decoder has to be applied.

Since initialization is only done once per graph or once per restart of the local search
procedure, the runtime should not have a great impact on the performance of the
algorithm. Therefore, especially with a GNN-based scoring function, this time should be
used by utilizing an encoder of high enough complexity to produce high-quality node
embeddings.

5.5.3 Restricting the neighborhood using dS

When using the scoring function dS , the neighborhood Ω1 is searched implicitly, as only
swaps that maximize the gain are considered. The restricted candidate sets X ⊆ S, Y ⊆
V \S are generated in time O(n), as only the minimum and maximum scores for vertices
in S and V \ S, respectively, have to be determined. As a reminder, the restricted
candidate sets are defined as

X = {u | u ∈ S, dS(u) ≤ dmin + 1},
Y = {v | v ∈ V \ S, dS(v) ≥ dmax − 1},

50



5.5. Performance

with dmin = minu∈S dS(u), dmax = maxv∈V \S . If the swap u ∈ S, v ∈ V \S maximizes the
gain of the candidate solution, this method of restricting the neighborhood guarantees
that u ∈ X, v ∈ Y . While this method produces restricted neighborhoods of variable size,
these neighborhoods are usually small and thus can be searched efficiently in practice. In
general, however, the size of the sets X, Y can be in O(|V |) in the worst case.

5.5.4 Restricting the neighborhood using gS

Using the scoring function gS , we do not have a guarantee that the swap that maximizes
the gain lies among the lowest-scoring vertices in S and the highest-scoring vertices in
V \S. Moreover, we might not even want to consider such a swap, as the scoring function
was trained to search greater neighborhoods than Ω1, and the swap that maximizes
the gain does not lead to the best neighboring solution. We therefore propose to use
restricted candidate sets X, Y of a fixed size k′, where X consists of the k lowest-scoring
vertices in S, and Y consists of the k′ highest-scoring vertices in V \ S. This guarantees
that searching the neighborhood takes a fixed amount of time. Obtaining the k′ highest
or lowest scoring vertices can be done in time O(k′ · n), which is linear for fixed k′, but is
still more expensive than generating a restricted neighborhood for the scoring function
dS . As the restricted neighborhood is searched in every iteration of the local search
procedure, its size can therefore also have a great impact on the runtime. It is therefore
essential to determine a neighborhood size that strikes a good balance between efficiency
and the quality of neighboring solutions found in the neighborhood.

5.5.5 Updating the scoring function dS

After each swap of vertices u ∈ S, v ∈ V \S the scoring function needs to be updated, as it
is dependent on the current candidate solution S. For dS , this update can be efficiently in
O(|V |) time by decrementing dS [x] for x ∈ NG(u) and incrementing dS [y] for y ∈ NG(v).
All other vertices remain unaffected by a single swap and their corresponding dS-values
do not need to be updated.

5.5.6 Updating the scoring function gS

For the scoring function gS , we can generally not update the scores incrementally, as
the context embedding changes, which is part of the input of all vertices. Therefore, all
vertices need to be re-evaluated by the decoder. This still takes time linear in the number
of vertices, but, depending on the complexity of the decoder, it can take considerably
more time than updating dS after a swap. As this operation is done in every iteration of
the local search procedure, it has a great impact on the performance of the algorithm.
Therefore, the complexity of the decoder should be chosen such that it is as small and
efficient as possible while still providing high-quality predictions.
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Initialization Restricting the neighborhood Update
dS gS dS gS dS gS

O(n2) O(Tf + n2) O(n) O(k′ · n) O(n) O(n)

Table 5.1: Worst-case time complexity of the main operations used during LSBM when
using the scoring functions dS and gS .

5.5.7 Conclusion

When analyzing the performance aspect of the proposed scoring functions, it seems
clear that a GNN-based scoring function can in practice not be as fast and efficient
as the scoring function dS alone. However, we want to address this weakness of our
approach by keeping the NN – especially the decoder – as small and efficient as possible,
by determining a neighborhood size that balances efficiency and solution quality, and by
training the NN to provide better guidance through the search space than dS , leading to
solutions of improved quality. Finally, in Table 5.1 we summarize the discussed worst-case
time complexity of each of the three main operations.
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CHAPTER 6
Computational Experiments &

Evaluation

We conduct several computational experiments to evaluate the components and parameter
settings of LSBM and LSBM-T. An overview of parameters for LSBM and LSBM-T is
given in Tables 6.1 and 6.2. The evaluation of the BS-based lower bound heuristic is
shown in Section 6.1, where we compare the runtimes and quality of obtained solutions
of the proposed guidance functions with several parameter configurations. Next, we use
Section 6.2 to analyze in detail how the different parameter settings of LSBM-T affect
the performance of the trained GNNs on graphs of different sizes and densities. Most
importantly, we show in Subsection 6.2.1 that LSBM-T is able to successfully train the
GNNs to imitate the look-ahead search and that the trained models effectively guide the
local search during LSBM. Then, we investigate different parameter settings of LSBM-T.
Our focus lies on evaluating the different feature initialization methods and combinations
thereof, and depth values for the look-ahead search parameter d. Furthermore, we
investigate how our approach generalizes to bigger, unseen instances. Next, in Section 6.3
we discuss the settings used for the execution of LSBM, and how different LSBM-specific
parameters affect runtime and solution quality. Finally, the performance of our approach
is evaluated on well-established benchmark instances, and we compare the results to the
state-of-the-art in Section 6.4.

The computational experiments are focused on evaluating results obtained on dense
graphs, i.e., the number of neighbors of each vertex is in O(n). These instances seem
especially challenging, as exact algorithms are often infeasible to use in practice on dense
graphs. We consider both random graphs and selected benchmark instances within
the scope of our evaluation. Moreover, we primarily focus on the evaluation of MQCP
instances, as we expect our findings to apply to the MDCP as well.
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Parameter Description
M Short Term Memory type (TabuList, ConfigurationChecking)
α GRASP control variable of construction heuristic, controls randomness
b Exploration parameter b for construction heuristic
β Beam width of beam search used as lower bound heuristic
ε Maximum number of successor nodes for a node in lower bound heuristic
τ Cutoff time for execution of algorithm
η Local search is restarted after η iterations without improvement
ξ Execution is terminated after ξ restarts without improvement
k′ Maximum size of sets X, Y in restricted neighborhood during local search

Table 6.1: LSBM parameters

A Note on Random Graphs

All random graphs are generated using the Erdős-Rényi random graph model [ER59], also
referred to as uniform random graphs, where, given n ∈ N, m ∈ N, m ≤

(n
2
)
, a random

graph is sampled with uniform probability from all graphs with n vertices and m edges.
Note that instead of using the parameter m directly, we generate graphs by specifying
a density 0 ≤ dens(G) ≤ 1 from which m can be easily obtained as ⌈dens(G)

(n
2
)
⌉ = m.

We use this random graph model to generate graph instances in all our experiments due
to its generality and ease of implementation. However, we note that there are other
methods to generate random graphs (e.g., [ACL01]), and any method can be used within
our approach. Especially if some structural properties of the graphs encountered at test
time are known, it can lead to improved performance if these structural properties are
also present in the generated random instances during training.

We generally sample n, dens(G) from distributions V,D to make the trained GNNs
more robust towards small variations in size and density of the input graphs. The
instances generated are thus defined by a tuple, e.g., (V ∼ N (200, 10),D ∼ U(0.45, 0.55))
denotes that instances are generated by sampling the number of vertices n from a normal
distribution N with µ = 200, σ2 = 10 and the density of the graph is sampled from a
uniform distribution U with a = 0.45, b = 0.55.

Experiment Setup

We implemented LSBM and LSBM-T in Julia 1.8.3 using Flux 1 and GraphNeuralNet-
works 2[Loc21] for the implementation of the GNN, and Word2Vec 3 for the implemen-
tation of Node2Vec and Struc2Vec. All computational experiments in this chapter are
executed on an Intel Xeon E5-2640 processor with 2.40 GHz. For training the NNs, we
use a memory limit of 32 GB, whereas, for all other experiments a memory limit of 20 GB
is used.

1https://github.com/FluxML/Flux.jl
2https://github.com/CarloLucibello/GraphNeuralNetworks.jl
3https://github.com/JuliaText/Word2Vec.jl
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Parameter Description
d Depth of look-ahead search
k∗ Maximum size of sets X, Y in restricted neighborhood in look-ahead search
dimconv

e Dimension of Convolutional layers of encoder
dimFF

e Dimensions of Feed Forward layers of encoder
le Number of layers in encoder
dimd Dimensions of Feed Forward layers of decoder
ld Number of layers in decoder
ρ Maximum replay buffer capacity
z Number of iterations of training loop
nf List of node features extracted from the input graph

(Degree, EgoNet, Node2Vec, Struc2Vec)

Table 6.2: LSBM-T parameters

Benchmark Instances

The DIMACS benchmark set is a heterogenous collection of artificially created graphs
of different sizes and densities. It is a standard benchmark set for the MCP and
related problems and it is used to evaluate the performance of state-of-the-art MQCP
(e.g., [PWWW21], [CCP+21]) and MDCP (e.g., [CZHX21]) algorithms. Similarly, the
BHOSLIB benchmark set is a collection of large graphs of high density which was
specifically created for performing benchmark tests for graph problems. We evaluate the
performance of our algorithm on a subset of these benchmark instances.

6.1 Lower Bound Heuristic

The BS-based lower bound heuristic proposed in Section 4.2 is a heuristic method that
produces a feasible solution on its own. We presented three different heuristic guidance
functions: Greedy Completion, which has a complexity of O(|S∗|n) per node of the beam
search tree, where |S∗| is the size of the best found solution, Feasible Neighbors, which has
a complexity of O(n) per node, and Number of Edges, which returns in O(1) the density
of the candidate solution represented by a node in the search tree and thus corresponds
to a simple generalized greedy construction in the context of Beam Search.

Our proposed lower bound heuristic is controlled by two parameters, namely the beam
width β ∈ N and the expansion control variable ε ∈ N, which is the maximum number of
successor nodes for each node in the search tree. Clearly, these two parameters control
the breadth of the search tree and thus can be used to balance runtime and solution
quality. As the lower bound heuristic is used to find a feasible solution quickly in the
context of LSBM, we prioritize runtime over solution quality, as the main part of the
computation within LSBM is done during local search. Nonetheless, we evaluate different
parameter settings for the different heuristic functions to obtain a good starting solution
even with a low computational effort.
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In Figures 6.1 and 6.2 we show the obtained solution qualities and runtimes of the
three heuristics on randomly generated instances of different sizes and densities. We
generated 20 uniform random graphs for each combination of |V | ∈ {500, 1000}, dens(G) ∈
{0.75, 0.9} and ran our beam search with MQCP parameter γ = 0.95. As to be expected,
Greedy Completion outperforms the other heuristics in terms of solution quality, but due
to its time complexity, it should only be used when smaller solutions are to be expected, as
the time complexity per node of the search tree is dependent on the solution length when
using this heuristic evaluation function. In comparison, the solution quality obtained
when using Feasible Neighbors is slightly lower, but especially when larger solutions are
expected, the speedup is significant. We can also see that the difference in runtime
between Feasible Neighbors and Number of Edges is marginal, while the former produces
better results in all tested hyperparameter settings. We conclude that Greedy Completion
works well on instances where smaller solutions are expected, but on large instances
with high densities and low γ the much more efficient Feasible Neighbors heuristic should
be used. Thus, we set β = 10, ε = 10 in all further experiments and use the heuristic
guidance function Feasible Neighbors, as we argue that the speedup compared to Greedy
Completion outweighs the loss in solution quality within the context of LSBM.

6.2 Evaluation of Training Parameters

The performance of LSBM when using a GNN-based scoring function depends mainly
on how effectively the GNN is trained to make high-quality predictions. First, we show
that our training algorithm LSBM-T effectively trains the GNN to imitate the search
of a neighborhood, which is a central result of this thesis. Furthermore, we provide
evidence from computational experiments, that, after the training has been completed,
the GNN-based scoring function gS is an improvement over the scoring function dS and
guides the local search more effectively. In the remaining Section, we evaluate the impact
of different feature initialization methods, different values for the look-ahead search
parameter d, and the generalization on unseen, larger graph instances.

For the execution of LSBM within LSBM-T, we use the following settings in this Section
unless stated otherwise: The short-term memory mechanism used in all experiments is a
tabu list with a tabu tenure of ten, the construction heuristic parameters α = 0.2, b = 0.3,
the lower bound heuristic parameters β = ε = 10, a time limit τ = 300.0, a maximum
number of iterations without improvement η = 2000, and a maximum number of ξ = 3
restarts before execution is terminated. During the evaluation of random graphs and
benchmark instances we set ξ = 10, but keep the remaining parameters unchanged.

The parameter settings regarding the GNN were obtained by manually fine-tuning
our approach over many experiments. We use a GATv2-based encoder as described in
Section 5.4 with four attention heads per layer, le = 3 attention layers of size dimconv

e = 64
and feed-forward layers of size dimF F

e = 128, and an MLP-decoder with ld = 2 hidden
layers of size dimd = 32. We did not notice any significant increase in performance using
an encoder or decoder with more or higher-dimensional layers, and in terms of efficiency,
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Figure 6.1: Beam Search solution sizes and runtimes in seconds for instances with
|V | = 500, dens(G) ∈ {0.75, 0.9}
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Figure 6.2: BS solution sizes and runtimes in seconds for instances with |V | =
1000, dens(G) ∈ {0.75, 0.9}.
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Benchmark Set Instance V E dens(G)
DIMACS brock200_2 200 9876 0.496
DIMACS brock400_1 400 59723 0.748
DIMACS brock400_2 400 59786 0.749
DIMACS brock400_3 400 59681 0.748
DIMACS C250 250 27984 0.899
BHOSLIB frb30-15-1 450 83198 0.824
BHOSLIB frb30-15-2 450 83151 0.823
BHOSLIB frb30-15-3 450 83216 0.824
BHOSLIB frb30-15-4 450 83194 0.823
BHOSLIB frb30-15-5 450 83231 0.824

Table 6.3: Benchmark instances used for experiments

it is clearly beneficial to keep the NN as small as possible. By this reasoning, we justify
our choice of the presented GNN parameter settings.

The remaining LSBM-T specific parameters are set as follows: The size of the restricted
neighborhood is set to k′ = 20. Furthermore, we run LSBM-T with a replay buffer size
ρ = 1000 for z = 300 iterations and generate ns = 50 training samples per iteration.
The GNN is trained in four batches of size eight in each iteration. We use the ADAM
optimizer with a learning rate of 0.001 and a momentum of (0.9, 0.999) and train the
models using FLux.jl’s logitbinarycrossentropy loss function.

In the following experiments, we evaluate the results of the trained models on uniform
random graphs and on selected benchmark instances. The benchmark instances used
in this Section are shown in Table 6.3 for reference. In all experiments shown in this
Section, we train ten GNNs for each investigated parameter configuration unless stated
otherwise.

6.2.1 Effectivity of Training

The most important questions that arise in the context of this work are whether the
presented training algorithm LSBM-T successfully trains the GNN to imitate the look-
ahead search and how the results obtained using the GNN-based scoring function compare
to those obtained using dS . To answer these questions, we show the results of two test
runs of training ten GNNs each using LSBM-T. During each iteration of the training
loop, LSBM is executed twice on the random instance generated in this iteration, once
with the GNN-based scoring function gS , and once with dS , while all other parameters
regarding the execution of LSBM are equal in both runs. In the first experiment, we
trained ten GNNs on MQCP instances with |V | = 200, dens(G) = 0.65, γ = 0.999
using a combination of Node2Vec and Struc2Vec as a feature initialization method,
and in the second experimental run ten models are trained on MQCP instances with
|V | = 400, dens(G) = 0.75, γ = 0.999 and the feature initialization method Struc2Vec is
used.
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The line plots in Figure 6.3 show the gap between the solution size of the best found
solutions S∗

gS
, S∗

dS
obtained by LSBM using gS and dS , respectively. The gap is computed

as
|S∗

gS
|−|S∗

dS
|

|S∗
dS

| . Therefore, a positive gap between solution sizes indicates that LSBM was
able to find a larger solution using gS as a scoring function compared to using dS .

We observe that in both runs during the first 50 iterations the gap is negative, which
is to be expected as the GNN is initialized randomly. Note that the training starts
after the replay buffer was filled to half its capacity, which is after the completion of ten
iterations of the training loop. As the training progresses and the loss decreases, the
solution quality of LSBM using gS increases. This strongly indicates that the GNN is
successfully learning to imitate the look-ahead search.

In the first experiment on smaller instances, we notice that after the first 200 iter-
ations of the training loop the gap never reaches a value below zero, which shows
that LSBM consistently performs equally well or better using gS as compared to dS .
The second experiment is done to evaluate the effect on larger MQCP instances with
|V | = 400, dens(G) = 0.75, γ = 0.999. We observe a higher variance in the gap, but
smoothing the lines shows that the average gap is above zero, which again indicates that
the scoring function gS outperforms dS .

Furthermore, we perform additional experiments to compare the solution quality of
LSBM using gS and dS on random instances. We train ten GNNs each for three feature
initialization methods on instances of different sizes and densities and evaluate them
by the average solution quality obtained on a test set of 20 random instances for each
instance group. Figure 6.4 shows the results. The dashed line represents the average
solution quality of LSBM using the scoring function dS on on the same test instances.
Regarding the execution of LSBM, the same parameter configuration is used when using
the trained GNN-based scoring functions or dS . On both instance sets, we observe
that the average solution quality is higher when using the trained GNN-based scoring
functions.

In conclusion, the reported observations show strong evidence that LSBM-T successfully
trains the GNNs to imitate the look-ahead search and the trained GNN-based scoring
functions outperform the scoring function dS on random instances that are similar to
those the GNNs were trained on.

6.2.2 Node Features

In Chapter 5 we proposed four different feature initialization methods: Degree (D),
EgoNet of size 1 and 2, (E1, E2), Node2Vec (N2V), and Struc2Vec (S2V). What follows is
an evaluation of these feature initialization methods and combinations thereof: D+N2V,
D+S2V, E1+N2V, E1+S2V, N2V+S2V, and E1+E2. In total, we thus investigate ten
different node features.

We note that N2V and S2V node features are learned using the recommended settings
from the respective papers ([GL16], [FRS17]): we sample 20 random walks of length 80
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Figure 6.3: Each line in the plots represents an independent run of the training algorithm
LSBM-T. In each iteration, a random instance is generated and LSBM is performed using
the scoring functions gS and dS , producing the best found solutions S∗

gS
, S∗

dS
, respectively.

The gaps between these solutions are computed as
|S∗

gS
|−|S∗

dS
|

|S∗
dS

| . 61



6. Computational Experiments & Evaluation

E1 E1+N2V N2V+S2V

13.7

13.8

13.9

14

Node Features

S
ol

ut
io

n 
S
iz

e

(a) |V | = 200, dens(G) = 0.5, γ = 0.999
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(b) |V | = 400, dens(G) = 0.65, γ = 0.999

Figure 6.4: Comparison of solution quality of gS and dS . The average solution quality
on 20 random instances by dS is marked by the dashed line. LSBM is executed with the
same parameters for gS and dS .

for each vertex in the input graph, and node contexts are generated with a window size
of five to produce node embeddings of size 64. Furthermore, for N2V we use a return
parameter p = 2 and an in/out-parameter q = 4, as preliminary experiments have shown
these parameter settings to be suitable to focus on locality-based feature extraction, and
for S2V we use a layer transition probability of 0.3, which is the default setting in the
authors’ S2V implementation.

In each experimental run, we trained ten models for each node feature on uniform random
graphs defined by a specific size and density. Furthermore, in each run, we use 20 unseen
graphs drawn from the same distribution and evaluate the trained models by the average
solution quality obtained on these test instances. The results are then grouped by the
feature initialization method. Additionally, we compare the results obtained on random
instances to selected benchmark instances that are similar in size and density to those
seen during training. Moreover, all models are trained with a look-ahead depth d = 1, as
we want to investigate, which node features are suited to imitate a simple look-ahead
search before trying higher and thus more computationally expensive values for d.

The first experiment is done to investigate the effect of the choice of feature initialization
methods on relatively small graphs with a density of about 0.5: V ∼ N (200, 5),D ∼
U(0.48, 0.52). We set the MQCP input parameter γ = 0.8 during training and evaluation.
The results obtained on 20 random graphs and on benchmark instance brock_200_2,
which has a similar size and density, are shown in Figure 6.5. Moreover, the results on
random graphs show that node features E1+E2, E1+S2V performed best, followed by
E1, N2V, N2V+S2V. All trained models were able to obtain a solution of size 24 on
the benchmark instance, which is the best known solution for this MQCP instance as
reported in [PWWW21].

To investigate the performance of the trained models on graphs of even higher density,
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Figure 6.5: Results for uniform random graphs with V ∼ N (200, 5),D ∼ U(0.48, 0.52),
MQCP parameter γ = 0.8, grouped by average solution quality per model on unseen test
instances.

we target benchmark instance groups brock400_i, i ∈ {1, 2, 3} with |V | = 400, dens(G) ≈
0.75, and frb30-15-i, i ∈ {1, . . . , 5} with |V | = 450, dens(G) ≈ 0.823. Again, we generate
20 random instances of similar size and density for both instance groups and evaluate the
trained models by the average results obtained on the random graphs and the benchmark
instances. The results are shown in Figure 6.6. Note that we removed the node feature
E1+E2, as the 2-hop EgoNet for graphs of this density is already G itself in most cases,
and thus no additional information is provided. The results show that the learning-based
features N2V, S2V, perform well in terms of solution quality on random instances and
on the brock400 instance group compared to the other feature initialization methods.
Interestingly, E1 is among the lowest-performing feature initialization methods for the
brock400 instance group and corresponding random graphs, but among the highest-
performing for random graphs generated corresponding to the frb30-15 instance group.
Furthermore, we notice that the solution sizes obtained on the frb30-15 benchmark
instances are considerably smaller than those obtained on random instances, as these
instances are generated differently than the uniform random graphs used to train the
models. This indicates that using uniform random graphs during training does not
generalize well to structurally different graph instances.

We draw two conclusions from the results of the computational experiments presented in
this Section. First, all the presented feature initialization methods can effectively be used
within the context of our algorithm, as most of the trained models improve significantly
throughout the training, and no method clearly outperforms all other methods. Second,
the differences between the evaluated feature initialization methods regarding the obtained
solution quality seem to be only marginal. We explain this observation by arguing that
feature initialization is only the first stage when evaluating the graph, and the main part
of the computation is done by the application of the attention-based GNN.
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(a) Results on random graphs with V ∼ N (400, 10), dens(G) ∼ U(0.74, 0.76), γ = 0.999.
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(b) Results on DIMACS benchmark instances brock400_i, i ∈ {1, 2, 3}, γ = 0.999.
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(c) Results on random graphs with V ∼ N (450, 10), dens(G) ∼ U(0.82, 0.825), γ = 0.95.
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(d) Results on benchmark instances frb30-15-i, i ∈ {1, . . . , 5}, γ = 0.95.

Figure 6.6: Impact of feature initialization method on random graphs and selected
benchmark instances.
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Figure 6.7: Results of training on smaller instances. The left Subfigure shows the effect
of training on graphs of size |V | ∈ {200, 400}, evaluation on graphs of size 400. The right
Subfigure shows training for |V | ∈ {150, 300, 450}, evaluation on graphs of size 450. On
all instances, we set γ = 0.999.

6.2.3 Generalization to Larger Instances

Training the GNN-based scoring function is time-consuming, especially when larger
graphs are used during training. To keep our approach scalable, we investigate, whether
the trained models generalize to larger instances with similar densities to the instances
seen during training. Figure 6.7 shows the results of our experiments. We select the two
best-performing node features for two instance groups from Subsection 6.2.2, namely
|V | = 400, dens(G) ≈ 0.75 and |V | = 450, dens(G) ≈ 0.823 with γ = 0.999 and compare,
how models that were trained on smaller graphs perform on random instances with these
properties. The left Subfigure shows the results for models that were trained on graphs
of size |V | = 200 in comparison with models trained on graphs of size |V | = 400. While
N2V did not generalize to bigger instances, S2V even outperformed the best results of
models trained on the size of instances seen during evaluation. In the right Subfigure we
see that the models with feature initialization methods E1, E1+N2V did not generalize
well to larger graphs. The GNNs trained on graphs of size |V | = 150 show the worst
performance, whereas the best models that were trained on graphs of size |V | = 300 were
able to match the performance of the models trained on graphs of size |V | = 450.

We conclude that, at its current state, our approach does not generalize reliably to
instances that are larger than those seen during training by a factor of two or more.
Finally, we note that future work shall evaluate curriculum learning strategies as discussed
in [LAT20], where the NNs are trained by starting on smaller instances and gradually
increasing the instance size. The authors show that these strategies are successful in
making the trained models achieve better generalization.
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(a) Results for brock400 instances.
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(b) Results for instance C250.

Figure 6.8: Impact of look-ahead depth d on the average solution quality of the trained
models (γ = 0.999).

6.2.4 Look-ahead Search Parameters

To evaluate the impact of the look-ahead depth, we compare models trained with a
look-ahead depth d = 1, which corresponds to imitating a search of the Ω1 neighborhood
structure, to models trained with a look-ahead depth d = 2 and a restricted neighborhood
size of k′ = 50. Due to computational budget limitations, we set the number of generated
training samples per iteration ns = 25 to balance the increase in runtime.

We train ten models each for the two best-performing node features for the brock400
instances, and for instance C250 with lookahead-depth d ∈ {1, 2}. The results are shown
in Figure 6.8. The difference in average solution quality of the trained models is only
marginal on the brock400 instances seen in the left Subfigure, but the right Subfigure
shows that the models trained using a depth d = 2 achieve a better average solution
quality on instance C250.

The results depicted in the figure are representative of other similar experiments we
conducted. We conclude that using a higher look-ahead depth increases in most cases the
average solution quality of the trained models, as expected, which justifies the increased
computational effort during training.

To compare the impact on the runtime when using a look-ahead depth d = 2 compared
to d = 1, we observe the average runtime in an iteration of the training loop that is
used to generate training samples in both parameter settings for the trained models
in this Subsection. Whereas 50 samples with look-ahead depth d = 1 are generated
in less than one second per iteration, the average runtime per iteration to compute 25
training samples using a look-ahead depth d = 2 is 24.32 seconds, introducing a noticeable
computational overhead throughout z = 300 iterations of the training loop.
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Figure 6.9: Impact of using the context embedding for MQCP instances with |V | =
250, dens = 0.9, γ = 0.999 (left) and |V | = 400, dens = 0.75, γ = 0.999 (right).

6.2.5 Impact of the Context Embedding

As previously noted, we identified the context embedding to be a weakness of our
approach, as it compresses the information given by the candidate solution S too much
by simply taking the mean of the node embeddings of the vertices in S. Therefore, we
conduct additional experiments to investigate, whether the context embedding as defined
in Section 5.4 has a positive effect on the performance, or if the same solution quality
can be achieved by removing these context embeddings and only appending the features
obtained from the dS-values to the node embeddings as inputs for the decoder.

We perform two test runs by training ten GNNs with and without the context embedding
for three different feature initialization methods on randomly generated MQCP instances
with |V | = 250, dens = 0.9, γ = 0.999 and |V | = 400, dens = 0.75, γ = 0.999. The results,
evaluated on independent random instances of similar size and density, are shown in
Figure 6.9. For feature initialization method E1 we notice a clear improvement in solution
quality in both test runs if the context embedding is used during the training and the
execution of the algorithm. The GNNs using E1+S2V and the context embedding show
slightly better performance in terms of solution quality when compared to those that do
not use the context embedding. The results for the models trained with N2V+S2V are
inconclusive, as those that use the context embedding perform better on the instances
with |V | = 250, whereas those trained without the context embedding perform better on
the instances with |V | = 400. We conclude that using the context embedding produces
better results in most cases. Nonetheless, using a stronger context can certainly lead
further to improvements in our approach.

6.3 Evaluation of Search Parameters

In this Section, we discuss the used parameter settings of LSBM. First, we implemented
both considered short-term memory mechanisms, Tabu List and Configuration Checking,

67



6. Computational Experiments & Evaluation

and used the recommended settings presented in [ZBW20] for the tabu tenure, and
in [CCP+21] for the Configuration Checking specific parameter ub_threshold. As we
did not notice any significant differences in terms of solution quality between the two
short-term memory mechanisms within our algorithm, we decided to use a Tabu List
approach, as the tabu values for the vertices can be updated in time O(1) after a swap,
whereas the update in Configuration Checking takes O(n) time, as all neighbors of the
swapped vertices need to be updated as well.

Regarding the LSBM parameters τ, η, ξ, we decide to use a time limit τ = 300.0, a number
of iterations without improvement until the local search procedure is restarted η = 2000,
and a maximum number of restarts ξ = 10, as increasing the values beyond this point did
only increase the runtime of LSBM, but not the solution quality. The parameter b = 0.3
for the construction heuristic is set to the recommended value of the similar construction
heuristic presented in [CCP+21], and we use the parameter α = 0.25 for the GRASP-like
construction step. Furthermore, we use the parameter settings β = 10, ε = 10 for the
lower bound heuristic, as discussed in Section 6.1.

6.3.1 Neighborhood Size

We evaluate the effect on runtime and solution quality of differently sized neighborhoods
during the execution of LSBM. We consider the values k′ ∈ {10, 20, 30}. The GNNs
are trained using the exact LSBM-T parameters as stated in Section 6.2 and use a
neighborhood size k′ = 20 during training. Figure 6.10 shows the obtained solution
qualities and runtimes for randomly generated instances with |V | = 378, dens(G) =
0.92, γ = 0.999. We observe that the solution quality increase when using a larger
neighborhood, which is to be expected. Furthermore, the runs with k′ = 10 have in
general a longer runtime than those with k′ = 20, which is an unintuitive result. This
is most likely because fewer swaps are performed on average with k′ = 20 compared to
k′ = 10, until a feasible solution is found. We conclude that a neighborhood size smaller
than k′ = 20 shall not be used in the context of LSBM.

6.3.2 Sparse evaluation

As discussed in Section 5.5 the use of a GNN-based scoring function introduces a significant
computational overhead. During our experiments, we notice that the runtime increases
by an average factor between five and ten, depending on the input graph size and density
and choice of node features, when using gS during the execution of LSBM instead of dS .
This is primarily due to the decoder that evaluates the vertices in the graph every time
the candidate solution changes. To reduce this overhead, we investigate, how runtime
and solution quality are affected if the decoder is only re-applied if the previous vertex
swap did not yield a solution with an increased objective value. We call this variation
sparse evaluation.

We conduct two experiments on MQCP instances of different sizes and densities. We
trained ten GNNs for three different feature initialization methods with a look-ahead
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Figure 6.10: Impact of neighborhood size k′ on the average solution quality and runtime
in seconds using trained models for |V | = 378, dens(G) = 0.92, γ = 0.999.

depth d = 2. The remaining parameter settings are as discussed in Section 6.2. Figure 6.11
shows the results of the experiment for 20 randomly generated MQCP instances with
size |V | = 250, dens(G) = 0.9, γ = 0.999. There is only a noticeable difference in solution
quality in the test runs of the models using the feature initialization method N2V+S2V.
However, the results seem unintuitive as the runtimes are slightly higher with sparse
evaluation. We explain this observation by the fact that LSBM needs more iterations of
the local search procedure, i.e., more swaps occur, when sparse evaluation is used, which
balances out the gain in efficiency. In Figure 6.12 the results for 20 randomly generated
MQCP instances with size |V | = 300, dens(G) = 0.425, γ = 0.8 are shown. Here, we
notice a positive effect on the runtime when using sparse evaluation, while the obtained
solution quality is similar for all trained models. We note that due to the lower density,
the instances are generally easier to solve.

In conclusion, the presented method can reduce the computational effort on less dense
instances, but we do not observe a significant improvement in terms of runtime on
high-density instances.

6.4 Results on Benchmark Instances

For the final experiments on the benchmark instances, we choose one centrality-based
node feature (E1), one learning-based node feature (N2V+S2V), and one node feature that
combines both approaches (E1+S2V), as these features have shown to be promising during
our evaluation. We use a neighborhood size k′ = 30 and look-ahead search parameters
d = 2, k∗ = 50. The remaining parameter settings during training are exactly as
described in Section 6.2. For each evaluated benchmark graph G, we train ten randomly
initialized GNNs on independent random instances defined by V ∼ N (n, n

100),D ∼
U(dens(G)− dens(G)

100 , dens(G) + dens(G)
100 ) and the problem-specific parameter γ (MQCP)

or s (MDCP). After the training is completed, we adopt the GNN that yields the best
results on 20 unseen uniform random graphs of similar size and density as those seen
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Figure 6.11: Impact of sparse evaluation on solution quality and runtime in seconds for
MQCP instances with |V | = 250, dens(G) = 0.9, γ = 0.999
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Figure 6.12: Impact of sparse evaluation on solution quality and runtime in seconds for
MQCP instances with |V | = 300, dens(G) = 0.425, γ = 0.8

during training.

The results regarding the MQCP instances are shown in Table 6.4. We perform ten
runs for each of the evaluated models and show the size of the best found solution, the
average solution quality and the average runtime. The rightmost column contains the
size of the best known solutions as reported by the most recent publications on the
MQCP, [CCP+21] and [PWWW21]. The three considered variants of our algorithm,
LSBM (E1), LSBM (N2V+S2V), and LSBM (E1+S2V) can match 17, 17 and 18 of the
best known results out of the 26 evaluated instances, respectively. Again, this indicates
that the impact of the chosen feature initialization method is only marginal. We notice
that, especially on larger instances with high density (e.g., the brock400 instances, or
MANN_a27 ), our approach is not yet competitive with the state-of-the-art in terms of
solution quality. A determining factor in this regard is most likely that our approach
uses uniform random graphs during training, and some of these benchmark instances are
created artificially to include certain structural properties which are not commonly seen
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in randomly generated graphs. Furthermore, we do not observe any significant differences
in runtime for the three variants of LSBM.

Table 6.5 shows the results on MDCP instances. The rightmost column shows the
reported optimal values from [CZHX21] for reference. LSBM finds optimal solutions on
most of the evaluated instances, except for the instances keller4 and san200_0.7_2. We
observe that the adaption to the MDCP is successful, as we notice similar results as with
MQCP instances with high γ-values.
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6.4. Results on Benchmark Instances
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CHAPTER 7
Conclusions & Future Work

In this thesis, we presented a local search-based metaheuristic algorithm LSBM for
edge-based relaxations of the MCP, namely, the MQCP and the MDCP, that utilizes
a GNN-based scoring function to guide the local search. We developed a BS-based
heuristic that is used to quickly obtain a feasible solution, and as an initial lower bound
for the optimal objective value within LSBM. The structure of LSBM is built upon
state-of-the-art heuristic algorithms ([DHB19], [ZBW20], and [CCP+21]) and is adapted
to incorporate a GNN to extract and use structural information obtained from the input
graph during its execution. Initially, a (possibly infeasible) candidate solution S of fixed
size k is generated by a construction heuristic, which is then improved by a local search
procedure centered around swapping pairs of vertices in and outside S to increase the
objective value of the current candidate solution. If the candidate solution becomes a
feasible solution, k is increased and the process is repeated until a stopping criterion is
met. In the context of this algorithm, the GNN is used to restrict the neighborhood
of a candidate solution to only the most promising vertices in and outside the current
candidate solution.

As the main contribution of this work, we proposed an algorithm LSBM-T that can
be used to generate training data and train the GNN. Training is done in an offline
setting on representative problem instances using principles from imitation learning to
imitate the exhaustive search of a user-defined neighborhood structure with respect to
a candidate solution S. The results of our evaluation show that LSBM-T successfully
trains the models to imitate the exhaustive search of a neighborhood.

As the input graphs for the considered problems are non-attributed, we investigated
node feature initialization methods within the context of our algorithm, namely, degree-
based initialization, EgoNet initialization, and the learning-based methods Node2Vec
and Struc2Vec. We thoroughly evaluated, which feature initialization methods and
combinations thereof can be used. Our computation experiments show that, at the
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7. Conclusions & Future Work

current state of our work, the differences in node feature initialization methods are only
marginal.

We employed an autoregressive Encoder-Decoder-based GNN architecture inspired by the
work shown in [KvHW19] to make the application of a NN feasible within our approach.
The computationally expensive attention-based encoder, which utilizes GATv2 attention
layers [BAY21], is only applied once per instance to produce node embeddings, whereas
the lightweight decoder is applied after each change in the candidate solution. We are
aware of the computational overhead introduced by the use of a NN, as the analysis of
the additional computational effort is part of this work.

We evaluate selected benchmark instances for the MQCP and MDCP from the literature
and compare our approach to the state-of-the-art. The results for the MQCP show that
in terms of solution quality, the performance of the models trained using LSBM-T gets
close to the leading methods and can match most best known results on instances with
|V | < 300. On larger instances, however, our approach is not yet competitive. Partly this
can be explained by the fact that we only used uniform random graphs when training
the GNNs, whereas many of the benchmark instances are artificially created to exhibit
certain structural properties that are unlikely to be found in uniform random graphs.
We expect training on representative instances to yield better results, as this is where the
strength of our approach lies. We note that in terms of runtime, LSBM is outperformed
by the leading methods, as the computational overhead introduced by the GNN is too
large. However, all experiments were conducted on CPUs. Since GPUs are known to
speed up computations involving GNNs and NNs in general by a significant factor, the
application of a GPU could greatly reduce the runtime of our approach. Furthermore,
the evaluation of MDCP-instances shows that our approach is successfully adapted to
the MDCP and produces similar results on this related problem.

Finally, the results of our evaluation show that our approach performs well when evaluated
on uniform random graphs and using the trained GNN-based scoring functions within
our algorithm leads to a substantial improvement in terms of solution quality compared
to using the scoring function dS .

Future Work

There are several promising directions in which the work of this thesis can be continued.
We conclude this thesis by outlining possible ways of continuing this work and discussing
questions and challenges that remained unsolved during our work.

One great challenge for future work on this algorithm is to define a stronger context
that is fully independent of the dS-values of the current candidate solution. Instead, it
shall rely solely on information obtained from the corresponding node embeddings of
the vertices in the current candidate solution S. The difficulty here lies in defining a
context of, if possible, constant size, that is expressive enough to provide information
about candidate solutions of variable size. Furthermore, the context should ideally be
computable in time O(n) as it needs to be computed in each iteration of the local search
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procedure. Defining a stronger context could also lead to a stronger generalization of our
approach.

Future work shall also include the evaluation of a more fine-grained GNN architecture
and training data generation that allows the GNN to predict two scores for each vertex,
one for vertices that should be added, and one for vertices that should be removed from
the candidate solution. Splitting these prediction tasks and finding ways to adapt the
algorithm to incorporate these changes could potentially improve the performance of the
utilized GNN within LSBM.

During our evaluation, we noticed the potential for the improvement of generalization to
larger instances. In this context, future work shall evaluate curriculum learning strategies
as evaluated in [LAT20], which might lead to better generalization.

All experiments in this thesis were executed on CPUs. However, GPUs are known
to speed up computations involving GNNs and NNs in general by a significant factor.
Therefore, it would be of interest to perform larger-scale experiments using GPUs to
investigate how strongly this speedup affects the execution of LSBM and LSBM-T.

At the current state of our work, training on large, dense graphs (|V | > 500) is very
time-consuming. Another continuation of this work is therefore the optimization of
the training algorithm to make training on larger instances computationally feasible in
practice. As already discussed, one approach is to improve the generalization to larger
instances and train on small instances, where training is less time-consuming. Besides
that, other, methods to reduce the computational effort can be investigated, e.g., the
preprocessing and reduction of instances.

LSBM-T generates graph instances on the fly during training. In our experiments, all
models were trained on uniform random graphs. Naturally, the question arises, of how
other random graph models can be utilized in LSBM-T and how well the trained GNNs
generalize to graphs drawn from other distributions. Furthermore, real-world datasets
should be analyzed and evaluated to determine, whether structural patterns in these
datasets can be exploited within the context of our algorithm.

Finally, we note that LSBM and LSBM-T can be adapted in a relatively straightforward
manner to other MCP-relaxations by defining relevant neighborhood structures and the
objective value of a candidate solution in the context of LSBM.
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