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Abstract. Beam search (BS) is a popular incomplete breadth-first
search widely used to find near-optimal solutions to hard combinato-
rial optimization problems in limited time. Its central component is an
evaluation function that estimates the quality of nodes encountered on
each level of the search tree. While this function is usually manually
crafted for a problem at hand, we propose a Policy-Based Learning Beam
Search (P-LBS) that learns a policy to select the most promising nodes
at each level offline on representative random problem instances in a
reinforcement learning manner. In contrast to an earlier learning beam
search, the policy function is realized by a neural network (NN) that is
applied to all the expanded nodes at a current level together and does
not rely on the prediction of actual node values. Different loss functions
suggested for beam-aware training in an earlier work, but there only
theoretically analyzed, are considered and evaluated in practice on the
well-studied Longest Common Subsequence (LCS) problem. To keep P-
LBS scalable to larger problem instances, a bootstrapping approach is
further proposed for training. Results on established sets of LCS bench-
mark instances show that P-LBS with loss functions “upper bound” and
“cost-sensitive margin beam” is able to learn suitable policies for BS such
that results highly competitive to the state-of-the-art can be obtained.

Keywords: Beam Search · Machine Learning · Reinforcement Learn-
ing · Longest Common Subsequence Problem

1 Introduction

Beam search (BS) is a prominent incomplete, i.e., heuristic, graph search algo-
rithm widely used to tackle hard planning and discrete optimization problems
in limited time. Starting from a root node r, BS traverses a state graph in a
breadth-first search manner but restricts the search by selecting at each level
only up to β most promising nodes to pursue further and discards the others.
The subset of selected nodes at the current level is referred to as the beam, and
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parameter β as beam width. To select the β most promising nodes at each level,
every node v from this level is typically evaluated by an evaluation function
f(v) = g(v) + h(v), where g(v) represents the cost of the path from the root
node r to the current node v and h(v), called heuristic function, is an estimate
for the cost of a best path from the current node v to a goal node. The β nodes
with the best values according to this evaluation then form the beam.

Clearly, the quality of the solution BS obtains depends in general fundamen-
tally on the evaluation function f . This function is usually developed manually
for a specific problem, and its effectiveness relies on a good understanding and
careful exploitation of the problem structure and possibly properties of expected
instances. In practice, it is sometimes difficult to come up with an effective eval-
uation function that strikes the right balance between good BS guidance and
reasonable computational effort.

The main contribution of this work is the investigation of a Policy-Based
Learning Beam Search (P-LBS) that learns a policy for BS to select the β most
promising nodes at each level of a BS, replacing the traditional approach of
evaluating each node independently with the hand-crafted evaluation function
f and afterwards selecting the nodes remaining on the beam based on their f -
values. It builds upon our earlier Learning Beam Search (LBS) [11] framework,
in which a machine learning model is used as heuristic function h as part of
f and trained offline in a reinforcement learning manner on a large number of
representative randomly generated problem instances to approximate specifically
the expected cost-to-go from a node to a goal node. By learning a policy that
is applied to all the nodes at a current level together in order to do the node
selection and not insisting on approximating the actual cost-to-go, we allow now
for greater flexibility and alternative modeling and training approaches.

In earlier work, Negrinho et al. [16] already described the learning of beam
search policies for structured prediction problems by imitation learning and ana-
lyzed different variants from a purely theoretical perspective. In their approach,
an abstract scoring function replaces the classical evaluation function f , which
is not expected to approximate real solution costs anymore but shall just ex-
press how promising a node is in relation to the others at the current level.
These scores thus induce a policy over the nodes, nodes are ranked accordingly,
and the best-ranked nodes are accepted for the beam—just as in classical BS.
Imitation learning is done on representative problem instances for which ex-
act solutions, i.e., optimal paths, are assumed to be known. While Negrinho et
al. [16] suggested and studied different loss functions for training with respect
to theoretical convergence, no practical experiments were done.

Building on LBS, P-LBS again relies on reinforcement learning and does not
need problem instances with known optimal solutions for training. We iteratively
apply a BS with an initially randomly initialized neural network (NN) model as
scoring function on many randomly generated representative problem instances.
In each BS iteration, a subset of the BS tree levels is selected for generating
training data. A training sample consists of all nodes encountered on a selected
BS level. Two different approaches, beam-unaware and beam-aware, are investi-
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gated to label training data. In beam-unaware training, the node in a training
sample that lies on the path from the root node to the finally best solution node
obtained by BS is labeled with one and all other nodes with zero. In beam-aware
training, we perform a nested beam search (NBS) on each subinstance induced
by each node of a training sample in order to approximate values for the true
cost-to-go. Based on these values, we rank the nodes of a sample accordingly,
and consider this ranking as the training target. Following Negrinho et al. [16],
we consider different surrogate loss functions for the actual training.

To achieve reasonable scalability to larger problem instances, we stop the
NBS executions when they reach a maximum level d ∈ N in their search trees,
and evaluate the returned nodes by the so far trained NN to obtain suitable
training targets for the new training data. This approach resembles a form of
bootstrapping as known in reinforcement learning [22]. Produced training sam-
ples are stored in a FIFO replay buffer and used to continuously train the NN,
intertwined with the P-LBS’s further training data production.

While the general principle of P-LBS is quite generic, we test its effectiveness
on the well-known NP-hard Longest Common Subsequence (LCS) problem [6].
Experiments show that policies trained by P-LBS are able to guide BS on es-
tablished LCS benchmark instances well such that results being competitive to
the state-of-the-art can be obtained.

Section 2 reviews related work. In Section 3 we present the general P-LBS
framework, different loss functions, and the bootstrapping approach for speed-
ing up the training data generation. The general NN architecture used as scor-
ing function in P-LBS is described in Section 4. Section 5 introduces the LCS
problem, its specific state graph, and the features used for the NN. Results of
computational experiments are discussed in Section 6. Finally, we conclude in
Section 7, where we also outline promising future work.

2 Related Work

In recent years there has been a growing interest at leveraging machine learning
(ML) techniques to better solve discrete optimization problems. Under the um-
brella term learning to search much work has been done in different directions for
improving classical tree search [3]. We focus here particularly on beam search,
which is a conceptually simple and classical incomplete search strategy for ob-
taining a heuristic solution in controlled time. It was originally introduced in
the context of speech recognition [14], but since then has been widely applied to
many combinatorial problems including scheduling, packing, and various string
problems from bioinformatics such as the LCS problem, for which it frequently
yields state-of-the-art results [6].

In the context of prediction tasks and sequence to sequence learning, BS
is frequently used to derive better or feasible solutions than just by applying
a simple greedy solution construction, see, e.g., [8,21]. These approaches rely
on ML models that are trained independently of the BS beforehand on the
basis of given labeled data, imitation learning, or occasionally reinforcement
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learning. The BS is then applied as a decoder in the actual application (test
time). Typically, such approaches suffer from ignoring the existence of the beam
during training.

In contrast, beam-aware learning algorithms use BS at both, training and
application/test time. A first approach by Collins and Roark [4] is perceptron-
based and updates the parameters when the best node does not score first in the
beam. On the other hand, Daumé et al. [5] described an approach that updates
the parameters only when the best node falls out of the beam.

While further work on beam-aware algorithms exists in the context of pre-
diction tasks and sequence to sequence learning, see, e.g., [23], most approaches
do not expose the learned model to its own consecutive mistakes at train time:
when a transition leads to a beam where the assumed best node is excluded,
the algorithms either stop or reset to a beam with the best node included. To
our knowledge, only Negrinho et al. [16] described an approach to learn beam
search policies that addresses this issue. They formulate the task as learning a
policy to traverse the combinatorial search space of beams. A scoring function
is learned to match the ranking induced by given oracle costs from an assumed
expert strategy. The authors proposed and analyzed several loss functions and
data collection strategies that consider the beam also at train time and proved
novel no-regret guarantees for learning BS policies.

In the context of classical combinatorial optimization, we are only aware of
our LBS [11] sketched already in the introduction as a method where a guidance
function is learned and used within a BS. This approach also exposes its learned
model to its own mistakes by using the model in the BS for further training data
generation and performing training in an interleaved way. However, it cannot be
considered an actual beam-aware approach, as the model is specifically trained to
approximate the cost to go, and the respective labels are obtained by independent
NBS calls. In [12], we refined the original LBS specifically for the LCS problem
by making the model independent of the number of strings and relying on a
relative value function in which a cut-off is applied to the values of nodes at the
same level.

LBS as well as the new P-LBS are both based on principles inspired by Alp-
haZero [20], although AlphaZero relies on Monte Carlo Tree Search (MCTS) and
not BS. AlphaZero has proven to be very successful in the board games Go, chess,
and shogi, with its predecessor AlphaGo being the first computer program that
was able to beat a human Go champion. In the MCTS a neural network is used
to evaluate game states and to provide a policy over possible moves. Training
data is continuously produced by self-play in a reinforcement learning manner
and stored in a replay buffer for training. AlphaZero has also been adapted to
solve various combinatorial optimization problems like 3D packing problems [13],
minimum vertex cover and maximum cut [1], or graph coloring [10].
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3 Policy-Based Learning Beam Search

Solving a combinatorial optimization problem can be formulated as search in
a state graph G = (V, A) with nodes V and arcs A. Each node v ∈ V repre-
sents a problem-specific state, e.g., a partial assignment of values to the decision
variables. Nodes u, v ∈ V are connected by an arc (u, v) ∈ A if there is a valid
problem-specific action that can be performed to transform state u into state
v, for example, the assignment of a specific value to a so far unassigned deci-
sion variable of state u. Let label τ(u, v) denote this action transforming state
u into state v. We assume each arc (u, v) ∈ A has associated cost ca(u, v) that
are induced by the action w.r.t. the objective function of the problem. State
graph G has a dedicated root node r ∈ V representing the initial state, in which
typically all decision variables are unassigned. Moreover, there are one or more
goal nodes T ⊂ V , which have no outgoing arcs and represent valid final states,
e.g., in which all decision variables have feasible values. A complete solution is
represented by a path from r to a goal node t ∈ T , referred to as r–t path, and
we assume that the arc costs are defined in such a way that the objective value
of the solution corresponds to the sum of the path’s arc costs.

As already pointed out in the introduction, classical BS explores such a state
space in an incomplete breadth-first search manner to find one or more heuristic
solutions. Nodes are considered level by level, and at each level only up to β nodes
are selected as beam to continue with. Now, let Vext be the set of all nodes that
have been derived as successors of the current beam. Moreover, let fs : (V, 2V ) →
R be a scoring function so that fs(v, Vext) assigns each node v ∈ V a real-valued
score in relation to all the other nodes in Vext. Thus, the score of a node is not
determined independently for each node but under consideration of Vext. The
score obtained by evaluating fs(v, Vext) for each v ∈ Vext induces a policy over
the nodes in Vext, where higher values shall indicate a higher probability of a
node leading to a best goal node. In P-LBS this scoring function fs replaces the
classical node-individual evaluation function f of BS and is realized in the form
of a neural network that will be described in Section 4.

The core idea of P-LBS is to train function fs via “self-play” similarly as
in AlphaZero [20] by iterated application on many random instances generated
according to the properties of the instances expected in the future application. A
pseudocode of the P-LBS framework is shown in Alg. 1. It starts with a randomly
initialized NN as scoring function fs, and an initially empty replay buffer R
which will contain the training data. The buffer is realized as first-in-first-out
(FIFO) queue of maximum size ρ. The idea hereby is to remove older, outdated
training samples when the scoring function has already been improved. After
initialization, a certain number z of iterations is performed. In each iteration, a
new independent random problem instance I with root node r is created and a
BS with the current scoring function fs is applied. This BS returns a best goal
node t, and also the set L of node sets Vext encountered at each level during the
search. Next, from each set Vext ∈ L a training sample is derived with probability
α/L, where parameter α controls the expected number of samples produced per
instance.
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Algorithm 1 Policy-Based Learning Beam Search (P-LBS)
1: Input: nr. of iterations z, beam width β, NBS beam width β′, replay buffer size

ρ, min. buffer size for training γ, nr. of training samples per instance α
2: Output: trained scoring function fs
3: fs ← scoring function (randomly initialized NN)
4: R← ∅ // replay buffer: FIFO of max. size ρ
5: for z iterations do
6: I, r ← create representative random problem instance with root node r
7: t, L← BeamSearch(I, β, fs) // best found goal node t,
8: // set L of node sets Vext encountered at each level
9: for Vext ∈ L do

10: if rand() < α/|L| then // generate training sample
11: for v ∈ Vext do
12: if beam-unaware then

13: cv ←
{

1, if node v lies on r–t path
0, otherwise

14: else if beam-aware then
15: t′

v ← BeamSearch(I(v), β′, fs) // NBS call → best goal node
16: cv ← g(t′

v)
17: end if
18: end for
19: add training sample (Vext, {cv}v∈Vext ) to R
20: end if
21: end for
22: if |R| ≥ γ then
23: train fs with batches of randomly sampled data from R
24: end if
25: end for
26: return fs

For beam-unaware training, target values for the nodes in Vext are derived by
mapping a node v ∈ Vext to cv = 1 if node v lies on the best solution path r–t
(ties are broken randomly in case there are multiple such paths with equal cost)
and to cv = 0 otherwise. For beam-aware training, each node v ∈ Vext is mapped
to a target value (i.e., approximate oracle cost) cv obtained by performing an
independent nested beam search (NBS) with beam width β′ and scoring function
fs on the problem subinstance I(v) induced by node v. However, as each NBS
call is in general computationally expensive, we apply a bootstrapping approach
(details below) to keep P-LBS scalable. All training samples derived are added
to the replay buffer R.

At the end of each P-LBS iteration, if the replay buffer has reached a mini-
mum fill level of γ, the scoring function fs is incrementally trained with batches
of data sampled uniformly at random from R using one of the following loss
functions.
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3.1 Loss functions.

Let c = (cv)v∈Vext be the vector of all target values of the nodes in Vext. Moreover,
given a training sample (Vext, c), let sv = fs(v, Vext) be the score obtained by
evaluating our learnable scoring function fs for each v ∈ Vext and s = (sv)v∈Vext .
Moreover, let σ̂ be a permutation of Vext that sorts the scores in s in descend-
ing order such that sσ̂(1) ≥ sσ̂(2) ≥ · · · ≥ sσ̂(|Vext|), and let σ∗ be a permu-
tation of |Vext| that sorts the target values in c in descending order such that
cσ∗(1) ≥ cσ∗(2) ≥ · · · ≥ cσ∗(|Vext). We consider the following loss functions orig-
inally proposed by Negrinho et al. [16], as well as one introduced by ourselves
called cost-sensitive marginal beam (cmb).

perceptron first (pf): ℓ(s, c) = max(0, sσ̂(1) − sσ∗(1))
This loss is positive if the node with the highest target value does not cor-
respond to the highest score node.

perceptron last (pl): ℓ(s, c) = max(0, sσ̂(β) − sσ∗(1))
The loss is positive if the node with the highest target value falls out of
the beam.

margin last (ml): ℓ(s, c) = max(0, 1 + sσ̂(β) − sσ∗(1))
A penalty is given if the highest target value node is not among the β best
nodes in s, but also a smaller penalty may be given if the highest target
value node is placed low in the beam.

cost-sensitive margin last (cml):

ℓ(s, c) = (cσ∗(1) − cσ̂(β)) max(0, 1 + sσ̂(β) − sσ∗(1))

The previous ml loss is here weighted by the difference between the highest
target value and the target value of the node at place β in the beam according
to σ̂.

cost-sensitive margin beam (cmb):

ℓ(s, c) =
β−1∑
i=1

max(0, cσ∗(i) − cσ̂(β)) max(0, 1 + sσ̂(β) − sσ∗(i))

We suggest this additional variant of cml, in which the sum of the weighted
ml losses for the first (β − 1) elements in the beam is calculated. A penalty
is given if any of the (β − 1) first nodes in the beam according to c falls out
of the beam according to s. This penalty is weighted as in the cml loss for
each of the (β − 1) first nodes in the beam.

log loss neighbors (lln): ℓ(s, c) = −sσ∗(1) + log
(∑|Vext|

i=1 exp(si)
)

Here we normalizes over all elements in Vext. A higher penalty is given if
there are nodes with higher scores than the score of the highest target value
node.
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log loss beam (llb): ℓ(s, c) = −sσ∗(1) + log
(∑

i∈I exp(si)
)

Here, I denotes the index set that contains the index of the highest target
value node and the indices of the β elements with the highest scores in s.
This loss function is similar to the lln loss, but normalization is done only
over the nodes in the beam according to the scores.

upper bound (ub): ℓ(s, c) = max(0, δβ+1, . . . , δk)
Here, δj = (cσ∗(1) − cσ∗(j))(sσ∗(j) − sσ∗(1)) for j = β + 1, . . . , |Vext|. Ne-
grinho et al. [16] showed that this loss function is a convex upper bound for
the expected beam transition cost.

Preliminary tests indicated that it is beneficial to use for the loss calculation
not necessarily the beam width for which BS is intended to be finally applied,
but an independent value proportional to |Vext|. Therefore, the beam width con-
sidered in the loss functions is ⌈|Vext| ·ξ⌉, where ξ ∈ (0, 1] is a control parameter.

3.2 Bootstrapping

In beam-aware training, a training sample for a node set Vext is obtained by exe-
cuting NBS on each subinstance I(v) induced by a node v ∈ Vext. Depending on
the beam width and the specific instance to be solved, these NBS executions can
become computationally expensive. To keep beam-aware training scalable and
reduce the computational effort, NBS executions are stopped when they reach a
maximum level d ∈ N. For simplicity, we assume in the following maximization
and that goal nodes deeper in the search tree are always better, as it is the case
in our benchmark, the LCS problem. An extension to the general case needs
to consider the g-values of nodes but is otherwise straight-forward. Each depth-
limited NBS call returns then either a set of nodes if level d is reached and the
execution stopped or a best goal node otherwise. To determine the target costs
for the nodes in Vext, let M ⊆ Vext be the set of nodes for which the respective
NBS calls finish with a goal node before or at level d, and let N ⊆ Vext be the set
of nodes for which the NBS calls are stopped prematurely at level d. Moreover,
let NBS(I(v)) be the set of nodes that is returned from level d for v ∈ N . Three
cases are now distinguished:

1. M = Vext, N = ∅. In this case no early stopping occurred, and the target
value of node v ∈ M is set to cv = g(NBS(I(v))).

2. M = ∅, N = Vext. Let V ′
ext = {argmaxu∈NBS(I(v)) fs(u, NBS(I(v))) | v ∈ N}

be the set of nodes with highest fs-values from each node set returned by
NBS(I(v)). Moreover, let v′ ∈ V ′

ext be the node that corresponds to v ∈ Vext,
i.e., the node v′ = argmaxu∈NBS(I(v)) fs(u, NBS(I(v))) . The target values
are then set to cv = fs(v′, V ′

ext).
3. M ̸= ∅, N ̸= ∅. Let M ′ be the set of goal nodes that represent the solutions

returned by the NBS calls executed on subinstances I(v) for v ∈ M . Set V ′
ext

is derived analogously to the previous case as the node set representing the
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most promising partial solutions for the nodes in N . The target value for a
node v ∈ Vext is then determined as cv = fs(v′, V ′

ext ∪ M ′
v), where

v′ =
{

NBS(I(v)) if v ∈ M

argmaxu∈NBS(I(v)) fs(u, NBS(I(v))) if v ∈ N
.

Additional post-processing may help in problem-specific scenarios. For ex-
ample, in case of uniform arc costs as in our LCS benchmark problem, the
nodes in N should always be ranked higher than the nodes in M , because
the respective NBS calls on the subinstances induced by nodes in M finish
at an earlier level than the NBS calls on subinstances induced by nodes in
N . The oracle cost corresponding to nodes in N can then simply all be in-
creased by the same value in order to be ranked above all nodes in M while
still maintaining their relative positioning among the nodes in N .

4 Neural Network Architecture

The NN used as scoring function fs in P-LBS must fulfill an important property:
It must be able to deal with inputs of variable size as |Vext| in general varies and
we aim at scoring each node in dependence of all nodes in Vext.

Let the input to the NN be a vector of vectors (xv)v∈Vext , where xv is a
problem-specific feature vector representing the state associated with node v.
Moreover, also g(v), the cost from the r–v path, are appended as an additional
feature in xv. Figure 1 illustrates the NN architecture realizing fs. The NN is a
feedforward network with layers j = 0, . . . , 3 described in the following. Hereby,
A(j) denotes a weight matrix and b(j) a bias vector for each layer j. Weights and
biases are shared within each layer among the components for the individual
nodes’ feature vectors.
Layer 0: The inputs xv are first embedded by a linear transformation

h(0)
v = A(0)xv + b(0) ∀v ∈ Vext.

Layer 1: The embeddings h
(0)
v of the individual nodes are then pooled to obtain a

constant-size global embedding for Vext. We do this simply by averaging, i.e.,

h(1) = 1
|Vext|

∑
v∈Vext

h(0)
v .

Layer 2: Now, the node-individual embeddings from layer 0 are combined with
the the global embedding from layer 1 by concatenation and used subse-
quently as inputs for a per-node linear transformation followed by a ReLU
activation:

h(2)
v = ReLU(A(2)(h(0)

v || h(1)) + b(2)) ∀v ∈ Vext.

Layer 3: A final linear transformation is used to compute the scores sv in the
form of logits

sv = h(3)
v = A(3)h(2)

v + b(3) ∀v ∈ Vext.
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Fig. 1: Four-layer feedforward NN architecture for P-LBS.

5 Case Study: Longest Common Subsequence Problem

A string is a finite sequence of symbols taken from an alphabet Σ. A subsequence
of a string is a string that is obtained by deleting zero or more symbols. A
common subsequence of a set of strings S = {S1, . . . , Sm} is a string that is
a subsequence of every string in S. The longest common subsequence (LCS)
problem aims at finding a common subsequence of maximum length for S. For
example, the LCS of strings AGACT, GTAAC, and GTACT is GAC. The LCS problem
is well-studied and has many applications, in particular in bioinformatics [18],
database query optimization [17], and image processing [2]. For a fixed number m
of strings the LCS problem is polynomially solvable by dynamic programming in
time O(nm) [9], where n denotes the length of the longest input string, while for
general m it is NP-hard [15]. The current state-of-the-art heuristic approaches
for large m and n are based on BS with a theoretically derived function EX that
approximates the expected length of the result of random strings from a partial
solution [6] and also on our LBS [11].

Notations. We denote the length of a string S by |S|, and the maximum length
of all input strings in S by n. The j-th letter of a string shall be S[j]. By S[j, j′]
we denote the substring of S starting with S[j] and ending with S[j′] if j ≤ j′

or the empty string ε otherwise. As in previous works [6,11], the following data
structure is prepared in preprocessing to enable an efficient “forward stepping”
in the strings. For each i = 1, . . . , m, j = 1, . . . , |Si|, and a ∈ Σ, succ[i, j, a]
stores the minimal position j′ such that j′ ≥ j ∧ Si[j′] = a or 0 if letter a does
not occur in Si from position j onward.

State Graph for the LCS Problem. In the state graph G = (V, A) for
the LCS problem, a node v ∈ V represents a state by a position vector pv =
(pv

i )i=1,...,m with pv
i ∈ 1, . . . , |Si|+1, indicating the remaining relevant substrings

Si[pv
i , |Si|] for i = 1, . . . , m. These substrings form the LCS subproblem instance

I(v) = Si[pv
i , |Si|], for i = 1, . . . , m induced by node v. The root node r ∈ V

has position vector pv
i = (1, . . . , 1). Hence, I(v) corresponds to the original LCS
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instance. An arc (u, v) ∈ A refers to transitioning from state u to state v by
adding a valid letter a ∈ Σ to a partial solution, and consequently, arc (u, v)
is labeled by this letter, i.e., τ(u, v) = a. Extending a partial solution at state
u by letter a ∈ Σ is only valid, if succ[i, pu

i , a] > 0 for i = 1, . . . , m and yields
state v with pv

i = succ[i, pu
i , a] + 1 for i = 1, . . . , m. States that allow no feasible

extension are represented by a single goal node t ∈ V with pt
i = |Si| + 1 for

i = 1, . . . , m that has no outgoing arcs. As with each arc always exactly one
letter is appended to a partial solution, the cost of each arc (u, v) ∈ A is one.
As the objective of the LCS problem is to find a maximum length string, g(v)
corresponds to the number of arcs of the longest identified r–v path.

Node features and training. As features to represent a state we only use the
remaining string lengths |Si| − pv

i + 1, i = 1, . . . , m, on which also the heuristic
from [6] is based. To prevent possible difficulties in learning symmetries, the
remaining string lengths are always sorted according to non-decreasing values
before providing them as feature vector xv. In the NN, the hidden vectors h

(j)
v

for j = 0, 1, have size ten, whereas the hidden vectors h
(2)
v have size 20, and the

weight matrices and bias vectors were dimensioned accordingly.
As in previous work [11], the ADAM optimizer with step size 0.001 and

exponential momentum decay rates 0.9 and 0.999 is applied for training. In each
P-LBS iteration, two mini-batches of eight random samples are selected from the
replay buffer R and used for learning. The loss of a single sample is obtained by
one of the loss functions from Section 3.1, and the loss of a batch is determined
by the mean loss of the individual batches.

6 Experimental Evaluation

We implemented P-LBS in Julia 1.7 using Flux for the NN. All experiments
were executed on an Intel Xeon E5-2640 processor with 2.40 GHz and a memory
limit of 20 GB. Two in the literature commonly used benchmark sets for the LCS
problem are considered to empirically analyze and evaluate P-LBS. The first set
referred to as rat was introduced in [19], and consists of 20 single instances
composed of sequences from rat genomes. Each of these instances differs in the
combination of the alphabet size |Σ| ∈ {4, 20}, number of input strings m ∈
{10, 15, 20, 25, 40, 60, 80, 100, 150, 200}. The length of the strings is n = 600.
The second benchmark set denoted as ES is from [7] and consists of 50 random
instances for each combination of |Σ| ∈ {2, 10, 25}, m ∈ {10, 50, 100}, where
n = 1000 for instances with |Σ| ∈ {2, 10}, and n = 2500 for instances with
|Σ| = 25. Preliminary tests led to the following P-LBS configuration that turned
out to be suitable for all our benchmark sets unless stated otherwise: nr. of P-
LBS iterations z = 2000, P-LBS and NBS beam widths β = β′ = 50, NBS depth
limit d = 5, beam width parameter for loss calculation ξ = 0.1, max. buffer size
ρ = 500, min. buffer size for learning γ = 250, nr. of training samples generated
per instance α = 5, ten restarts with randomly initialized NN weights and final
adoption of the NN yielding the best result on 30 independent random instances.
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Fig. 2: Impact of the loss function in P-LBS on the solution lengths of BS on
rat and ES instances.

Loss functions. One of our main goals is to analyze the impact of the different
loss functions from Section 3.1 in practice, as they were so far only theoretically
considered in [16]. For this purpose, ten P-LBS runs were performed for (|Σ| = 4,
m = 100, n = 600) and (|Σ| = 10, m = 10, n = 1000), and the learned scoring
functions were used in BS to solve the respective rat and ES instances. Figure 2
shows the obtained solution lengths for each loss function pf, lln, pl, ml, cml, llb,
ub, and cmb as box plots. Loss functions pf and lln were used in the conjunction
with beam-unaware training, whereas all other loss functions were used with
beam-aware training. We can clearly see that loss functions pf, pl, ml, and llb
perform significantly worse than cml, cmb, lln, and ub. Therefore, we use only
loss functions cml, cmb, lln, and ub in the further experiments.

NBS depth limit. The choice of depth limit d in the NBS calls has a consid-
erable impact on the runtime of P-LBS. Thus, we want to use a depth limit in
the NBS calls that is as small as possible, but at the same time, large enough
to produce robust models leading to high-quality predictions. In order to ex-
amine this aspect, we performed ten P-LBS runs each for different depth limits
d in the NBS calls. Figure 3 shows exemplary box plots for final LCS lengths
and training times on a representative rat instance, obtained by BS with scoring
functions trained via P-LBS using the different depth limits. As one may expect,
higher values for d lead to a more stable convergence of the NN, reflected by
the smaller standard deviation and generally larger solution lengths seen in the
left subfigure. The right subfigure shows the runtimes of P-LBS with z = 2000
iterations. We can see that our bootstrapping approach works well already for
quite moderate depth limits d ≥ 5 and can save much time. We therefore apply
d = 5 in the remaining experiments.

Evaluation on benchmark instances. Finally, we evaluate our approach with
each of the remaining loss function alternatives on all instances from benchmark
sets rat and ES and also compare it to state-of-the-art methods from the lit-
erature. For this purpose, NNs were trained for each combination of |Σ|, m,
and n occurring in the benchmark instances on random instances using P-LBS
with each loss function. All training with P-LBS was done using beam width
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Fig. 3: Impact of depth limit d in NBS calls on the solution length of BS on a
rat instance.

β = β′ = 50, except for rat instances with |Σ| = 20, for which β = β′ = 20
and z = 1000 were used due to computational budget limitations. Concerning
the final testing, we followed [6] and applied BS on all benchmark instances
using β = 50 to aim at low (computation) time and β = 600 to aim at high-
quality solutions, respectively. Table 1 shows the obtained results. Columns |glln|,
|gcml|, |gub|, and |gcmb| list the average solution lengths obtained by BS with the
NNs trained by P-LBS with loss functions lln, cml, ub, and cmb, respectively.
Additionally, respective average solution qualities of LBS from [12] are shown
in columns |gLBS|. So far best-known average solution lengths reported in [6]
are listed in columns |glit-best|. Average runtimes of the BS with the trained
NNs (with loss function cmb) and corresponding ones from LBS are provided in
columns tcmb[s] and tLBS[s].

The results show that BS with the trained NNs with loss function ub yields
for both, low time and high-quality experiments, in six out of nine instance
groups on benchmark set ES higher average solution lengths than lln, cml and
cmb, while BS with the trained NNs with loss functions ub and cmb achieves
on many instance groups on benchmark set rat higher average solution lengths
than lln and cml. This coincides with our previous loss function analysis, where
loss functions ub and cmb yielded higher solution lengths than lln and cml.
Furthermore, the high variance in the results obtained by BS with the trained
NNs with loss functions lln and cml on benchmark set rat indicates that these
loss functions produce less robust models than ub and cmb. We conclude that
loss functions ub and cmb are most suitable for training NNs to guide BS on the
LCS problem. While BS with the trained NNs with loss function ub yields in six
out of nine instance groups for low time and in seven out of nine for high-quality
experiments higher average solution lengths compared to LBS on benchmark set
ES, loss functions ub and cmb perform slightly worse than LBS on benchmark
set rat.

Comparing BS with the trained NNs with loss functions ub and cmb to
the so far best-known solutions, ub and cmb yield results being competitive on
benchmark set ES but perform slightly worse on benchmark set rat. In total, BS
with the trained NNs with loss functions lln, cml, ub and cmb could achieve in
five out of 29 instance groups new best solutions for low time and in two out of
29 for high-quality. Concerning runtimes, we can conclude that they are lower
than those of LBS, as more node features were used in LBS.
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10
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198.0
199.0

199.0
199.0

0.280
199.0

0.550
201.0

205.0
201.0

204.0
203.0

7.542
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8.591
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rat
4
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600

*186.0
178.0
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0.318
184.0

0.660
184.0

183.0
182.0

184.0
184.0

7.485
185.0

9.097
185.0

rat
4

20
600

162.0
159.0

*170.0
167.0

0.298
169.0

0.620
169.0

173.0
167.0

172.0
171.0

7.388
173.0

8.082
173.0

rat
4

25
600

*169.0
167.0

166.0
166.0

0.344
166.0

0.766
167.0

169.0
167.0

170.0
170.0

8.392
171.0

9.295
171.0
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4
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600

147.0
143.0

152.0
150.0

0.204
152.0

0.844
152.0

145.0
150.0

153.0
153.0

8.649
156.0

10.064
156.0

rat
4

60
600

145.0
144.0

147.0
149.0

0.284
149.0

0.868
150.0

150.0
149.0

151.0
149.0

9.027
152.0

12.129
152.0

rat
4

80
600

110.0
134.0

132.0
132.0

0.304
138.0

1.056
138.0

132.0
137.0

140.0
138.0

9.451
140.0

12.564
142.0

rat
4

100
600

122.0
119.0

129.0
134.0

0.508
135.0

0.483
135.0

128.0
134.0

138.0
131.0

9.521
137.0

13.650
138.0

rat
4
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600

101.0
117.0

123.0
126.0

0.746
127.0

1.176
127.0

117.0
122.0

114.0
128.0

10.159
130.0

11.625
130.0

rat
4

200
600

105.0
104.0

115.0
115.0

1.438
121.0

1.572
123.0

111.0
115.0

124.0
118.0

10.529
123.0

14.117
123.0

rat
20
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600

70.0
*71.0

70.0
70.0

1.420
70.0

1.108
70.0

71.0
71.0

71.0
71.0

11.774
71.0

10.104
71.0
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61.0

62.0
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62.0

1.117
62.0

62.0
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63.0
62.0

12.457
63.0
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63.0
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600

53.0
52.0

52.0
52.0

1.184
54.0

1.059
54.0

*55.0
54.0

54.0
*55.0

11.557
54.0

13.704
54.0

rat
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25
600

50.0
50.0

51.0
50.0

0.983
51.0

1.152
51.0

52.0
52.0

52.0
51.0

7.662
52.0

13.073
52.0
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20
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43.0
43.0

44.0
45.0

1.206
49.0

0.529
49.0

47.0
47.0

47.0
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10.368
49.0

16.005
49.0

rat
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60
600

43.0
43.0

43.0
45.0

1.948
46.0

1.945
46.0

46.0
45.0

45.0
46.0

16.698
47.0

19.734
47.0

rat
20

80
600

40.0
38.0

39.0
38.0

1.858
42.0

1.953
43.0

40.0
40.0

40.0
40.0

16.986
43.0

24.741
44.0

rat
20

100
600

37.0
37.0

36.0
38.0

1.711
38.0

2.007
38.0

38.0
39.0

38.0
39.0

13.746
39.0

24.441
40.0

rat
20

150
600

34.0
34.0

35.0
37.0

1.828
37.0

2.457
37.0

37.0
37.0

37.0
37.0

15.408
37.0

28.719
37.0

rat
20

200
600

33.0
33.0

33.0
33.0

1.956
34.0

2.048
34.0

34.0
34.0

34.0
34.0

18.582
34.0

32.118
34.0

ES
2

10
1000

608.74
605.06

608.84
604.62

0.41
606.80

0.71
609.80

614.42
612.18

614.68
611.64

8.107
613.35

11.248
615.06

ES
2

50
1000

518.54
529.24

531.46
529.30

0.67
529.76

1.02
535.02

523.38
532.96

535.76
533.24

13.046
534.29

16.684
538.24

ES
2

100
1000

503.64
508.40

511.36
508.54

1.09
514.62

1.72
517.38

507.96
512.34

513.94
512.32

17.777
516.85

22.103
519.84

ES
10

10
1000

198.70
198.56

198.80
199.00

0.94
198.94

1.17
199.38

202.60
202.42

202.42
202.60

18.081
202.10

23.249
203.10

ES
10

50
1000

134.60
133.80

134.22
133.64

1.15
134.02

1.89
134.74

136.28
135.64

136.12
135.58

16.080
135.56

19.720
136.32

ES
10

100
1000

119.46
120.82

120.94
120.88

1.39
121.20

1.20
122.10

121.26
122.12

122.38
122.14

17.258
122.67

24.349
123.32

ES
25

10
2500

*230.90
230.49

230.49
230.76

4.62
229.39

5.15
230.28

235.38
235.28

235.69
*235.69

76.820
235.20

77.550
235.22

ES
25

50
2500

136.62
136.84

137.18
136.84

8.09
133.88

7.82
137.9

138.56
138.92

139.04
138.66

74.902
137.44

105.956
139.5

ES
25

100
2500

119.76
120.56

120.64
120.46

10.33
119.70

16.74
121.74

121.22
121.92

122.12
121.94

116.728
121.71

159.843
122.88
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7 Conclusions and Future Work

We proposed a general Policy-Based Learning Beam Search (P-LBS) framework
for learning BS policies to solve combinatorial optimization problems. Instead
of the traditional approach of evaluating each node independently with a hand-
crafted evaluation function in BS, we learn a policy for selecting the nodes to
continue with in the next BS level. Learning is performed by utilizing concepts
from reinforcement learning, in particular the self-play of AlphaZero: P-LBS
generates training data on its own by executing BS with the so far trained policy
on many representative randomly generated problem instances. While different
loss functions for learning a BS policy have been suggested but only studied from
a theoretical point of view in the literature, we compare and evaluate them in the
practical scenario of solving the prominent LCS problem. Reasonable scalability
to larger problem instances could be achieved by utilizing bootstrapping. Our
case study on the LCS demonstrates that P-LBS with loss functions ub and cmb
is able to learn BS policies such that highly competitive results can be obtained.

One weakness we recognized in P-LBS using beam-unaware training is that
the BS in our implementation returns exactly one best goal node and r–t path
disregarding the fact that multiple best goal nodes with equal objective values
and different r–t paths may exist. As a result, nodes in a training sample are
labeled with zeroes, although these nodes possibly lie on a path of another best
goal node. In future work, it would be promising to adapting the BS so that
all found equally good goal nodes and corresponding r–t paths are considered.
General improvement potential of P-LBS lies in using a more advanced graph
neural network as policy to get rid of the dependency of specific instance sizes.
Finally, we are interested in applying P-LBS to further problems of different
nature to investigate the full potential of P-LBS.
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