
Solving the 3-Staged 2-Dimensional Cutting
Stock Problem by Dynamic Programming and

Variable Neighborhood Search

Frederico Dusberger and Günther R. Raidl 1

Institute of Computer Graphics and Algorithms
Vienna University of Technology, Vienna Austria

Abstract

We present a variable neighborhood search (VNS) for the 3-staged 2-dimensional
cutting stock problem employing “ruin-and-recreate”-based very large neighborhood
search in which parts of the incumbent solution are destroyed and rebuilt using
construction heuristics and dynamic programming. Experimental results show that
for instances where the sizes of the elements are not too small compared to the sheet
size the hybridization of VNS with dynamic programming significantly outperforms
a VNS relying solely on construction heuristics.

Keywords: cutting stock, variable neighborhood search, dynamic programming

1 Introduction

The two-dimensional cutting stock problem (2CS) occurs in many real-world
applications such as industrial glass, paper or steel cutting, container loading,
VLSI design, and various scheduling tasks [6]. In the 2CS the aim is to cut a
set of small rectangular elements from larger stock sheets using as few sheets

1 Email: {dusberger|raidl}@ads.tuwien.ac.at

as possible. Only guillotine cuts are allowed, i.e. cuts are always parallel to one
of the sheet sides and reach from one border to the opposite one. Furthermore,
the number of stages during which only cuts in one direction orthogonal to
the cuts in the previous stage are allowed, is often limited. For a restriction to
K stages the cutting process is referred to as a K-staged cutting. In practice,
often a further final stage for separating the elements from the waste is allowed.

In this work we present a variable neighborhood search (VNS) for the 3-
staged 2CS which is composed of several very large neighborhood structures
based on the “ruin-and-recreate” principle and dynamic programming. The
general VNS framework is based on the approach presented in [3].

2 Problem Definition

In the 2CS we are given a set of nE rectangular element types E = {1, . . . , nE}
where each element type is specified by a height hi ∈ N

+, a width wi ∈ N
+ and

a demand di ∈ N
+. Furthermore, we have a (potentially unlimited) stock of

identical rectangular sheets of height H ∈ N
+ and width W ∈ N

+. Elements
are rotatable by 90◦, which is reflected by adding for each type i ∈ E a rotated
type nE + i with (hnE+i, wnE+i) = (wi, hi).

The objective is to find a cutting pattern P , i.e. an arrangement of the
elements in E on the stock sheets without overlap, s.t. the number of required
sheets is minimal and the pattern can be cut in a 3-staged process. Stage-1
and stage-3 cuts are always horizontal while stage-2 cuts are vertical. We refer
to the rectangles resulting from stage-1 cuts as strips, the ones resulting from
stage-2 cuts as stacks and the target rectangles specified by E as elements. A
cutting pattern is specified by a cutting tree, which is detailed in Section 2.1.

We define the upper left corner of a stock sheet to have coordinates (0, 0)
and the lower right corner with coordinates (H,W). For each used sheet
j = 1, . . . , n, let ρj be the height of the possibly remaining waste-strip at the
sheet’s bottom (ρj = 0 if there is no such remainder).

The objective function c(P) considers not only the number of used sheets,
but also the largest remaining waste strip:

c(P) = min
(

n−
maxj=1,...,n ρj

H

)

. (1)

2.1 Cutting Tree

A cutting pattern is represented by its cutting tree, where each node represents
a certain rectangle (h, w) obtained by a series of guillotine cuts. Note that a

root

s1
h: 5870
w: 3080
p: 0

s11
h: 1988
w: 3080
p: 0

s12
h: 1875
w: 3080
p: 1988

s13
h: 1875
w: 3080
p: 3863

s111
h: 1988
w: 2985
p: 0

s121
h: 1875
w: 2174
p: 0

s122
h: 1875
w: 635
p: 2174

s131
h: 1875
w: 2174
p: 0

s1111(E1)
h: 1988
w: 2985
p: 0

s1211(E2)
h: 1875
w: 2174
p: 1988

s1221(E3)
h: 1337
w: 635
p: 1988

s1222(E4)
h: 378
w: 635
p: 3325

s1311(E2)
h: 1875
w: 2174
p: 3863

0

(Ht,Wt)

E1

E2

E2

E3

E4

Fig. 1. A cutting tree (left) representing a single sheet, s1, and the corresponding
three-staged pattern in normal form (right). The leaf nodes represent elements of
the types E1 to E4 obtained by the applied cutting pattern. The nodes drawn with
a dotted border were introduced to keep the structure consistent.

given cutting tree does not necessarily represent a complete solution, but can
also be used for partial solutions or intermediate steps.

The root node, defined to be at level -1, represents the whole cutting
pattern and has one child for each used sheet. Each internal node has children
corresponding to the rectangles resulting from guillotine cuts on the rectangle
represented by it. One specific level k of the tree represents therefore exactly
those rectangles obtained after k stages of guillotine cuts. To ensure that
elements always appear as leaf nodes, additional nodes with only one child
are introduced whenever an element is already finished before the 3rd stage.

Each cutting pattern P can be transformed into normal form, by moving
waste rectangles to the bottom of stacks, the right end of strips and the
bottom of sheets, respectively. Furthermore, strips and elements are ordered
by nonincreasing width, stacks by nonincreasing height in the rectangle they
are cut from and the sheets themselves are ordered by nondecreasing waste-
strip heights ρj . Figure 1 shows a cutting pattern for a single sheet in normal
form and the cutting tree representing it.

3 Related Work

Several state-of-the-art algorithms for the 2CS are based on a set covering
formulation using variables for all possible sheet patterns, which is solved

with the help of column generation [9,2]. The first formulation of this kind has
been described by Gilmore and Gomory [4] for the 2-staged 2CS. Based on this
work several heuristic as well as exact approaches have been proposed in the
literature, one of the crucial differences between them being how the pricing
problem for the column generation is solved. Since for the 2CS this problem
consists of a 2-dimensional knapsack problem with guillotine constraints a
promising method to solve it is dynamic programming. Successful applications
have been showed by Cintra et al. [2] and Morabito et al. [8].

As the main drawback of dynamic programming is certainly the vast num-
ber of positions where a cut on a given rectangle can potentially be applied,
Herz [5] presented the concept of discretization points restricting the place-
ment of the guillotine cuts. Scheithauer [10] further reduced the possibilities
with his definition of so-called reduced raster points.

Besides the mentioned approaches there are, of course, also other heuristic
algorithms for the 2CS. Lodi et al. [6] give a survey on common construction
heuristics, such as first-fit decreasing height and finite first-fit.

4 A Dynamic Programming-Based VNS

The neighborhoods for our VNS are defined by very large(-scale) neighborhood
search (VLNS). More precisely, they follow the “ruin-and-recreate” principle
where one iteration consists of destroying randomly chosen or weak parts of an
incumbent solution followed by a recreation by some optimization procedure.
For this purpose we employ construction heuristics and dynamic programming.

An initial solution is constructed by running three simple construction
heuristics, 3-staged First Fit Decreasing Height with rotations (3SFFDHR),
3SFFDHR preceded by a matching step (MATCH) and Fill Strip (FS) and
choosing the best solution obtained from them. All three heuristics are based
on a finite-first fit approach, more details can be found in [3].

4.1 Neighborhood Structures and Search

All neighborhoods we consider follow the ruin-and-recreate principle and have
the same basic structure. First, the ruin operator removes a fixed number (δ)
or a ratio (π) of level-λ subtrees in the cutting tree, s.t. the elements in their
leaf nodes become free. Besides choosing random subtrees for removal a second
possibility is to order them by nonincreasing waste ratio and remove those with
the largest relative waste. The removed elements are then reinserted into the
cutting tree by dynamic programming.

Our dynamic programming approach uses the reduced raster points in-
troduced by Scheithauer [10]. Let X and Y denote the raster points of the
height and width, respectively and let V v

k (x, y) and V h
k (x, y) be the values of

the optimal cutting pattern with at most k cutting stages applied to rectangle
(x, y), where the first stage consists of vertical or horizontal cuts, respectively.
In case of the unrestricted 2CS, i.e. when dropping the demand bounds on the
element types, these values can be computed recursively by

V v
k (x, y) = max

{

V h
k−1(x, y), max

y′<y,y′∈Y

{

V v
k (x, y

′) + V h
k−1(x− x′, y)

}

}

, (2)

V h
k (x, y) = max

{

V v
k−1(x, y), max

x′<x,x′∈X

{

V h
k (x

′, y) + V v
k−1(x, y − y′)

}

}

, (3)

for all k > 0, x ∈ X and y ∈ Y and

V v
0 (x, y) = V h

0 (x, y) = max

{

0,max
i∈E

{hiwi | hi ≤ y, wi ≤ x}

}

. (4)

The restriction imposed by the element type demands leads to the problem
that optimal solutions might need to be based on sub-optimal partial solu-
tions [5]. On the other hand, for an instance consisting of a single element
type the recursion will clearly yield the optimal value. Thus, the higher the
average ratio of actual elements to element types, the better we can expect
the results of the dynamic programming algorithm to be. To minimize the
number of excess elements the algorithm considers in the recursion, we store
for each computed value V the elements used to obtain this value. This allows
for ensuring that the recursion does not consider combinations of two sub-
patterns exceeding the residual demand of one or more element types. When
constructing the actual cutting pattern based on the optimal values, still an
excess of some element types might be chosen, which is removed in the end.

Let D = (d1, . . . , dnE
) be the vector of residual demands for the available

element types. Let further R be the set of the waste rectangles at the bottom
of the sheets and at the end of the strips, ordered by nonincreasing area. In
detail the recreate step then works as follows:

(i) For each r ∈ R compute V o
k (xr, yr), where o ∈ {h, v} and k ∈ {2, 3}

according to the level in the cutting tree, the node representing r lies in.

(ii) If D 6= 0 continue running the recursion for rectangles of dimensions
(H,W) until a resulting rectangle contains more than 60% waste.

(iii) Insert the remaining free elements using the 3SFFDHR heuristic.

k Nk-Ruin Nk-Recreate
1 Random; λ = 3; δ = 2 Next Imp.

2-3 Random; λ = 2; δ = k − 1 Next Imp.
4-5 Random; λ = 1; δ = k − 3 Next Imp.
6-9 Max. waste subtrees; λ = 2; π = (k − 5) · 0.1 DP

10-13 Max. waste subtrees; λ = 1; π = (k − 9) · 0.1 DP
14-17 Max. waste subtrees; λ = 0; π = (k − 13) · 0.05 DP
18-21 Random subtrees; λ = 3; π = (k − 17) · 0.1 DP
22-25 Random subtrees; λ = 0; π = (k − 21) · 0.05 DP

Table 1
Neighborhoods and their order used in the VNS

We further consider smaller neighborhoods which are searched in a next im-
provement manner for intensification. Due to the small number of destroyed
subtrees, we apply only the 3SFFDHR heuristic in the reconstruction oper-
ator. In this work we use a fixed order of neighborhoods, which is shown in
Table 1.

5 Experimental Results

Our algorithm has been implemented in C++, compiled with GCC version
4.6.3 and executed on a single core of a 3.40 GHz Intel Core i7-3770.

For the computational experiments we adapted the benchmark instances
from Berkey and Wang [1] (classes 1 to 6) and Martello and Vigo [7] (classes 7
to 10) as follows: Each class consists of 5 subclasses with |E| = 4, . . . , 20, each
element type having a demand of 10. Each of these subclasses comprises 10
instances. We compare the basic VLNS-based VNS from [3], whose neighbor-
hoods only use construction heuristics in the recreate operator (VNS SIMPLE)
and the VNS presented in this work (VNS DP). In each experiment the VNS
was given 25 major iterations over all neighborhoods and a general time limit
of 1000s. Both algorithms were applied five times to each instance. For each
subclass the average objective values c(P) and times t were computed. The
results for classes 3,4,7,8 and 10 are given in Table 2. 2

We performed one-sided Wilcoxon signed rank tests comparing the objec-
tive values for each instance class using a 95% confidence interval. For instance
classes 3,7,8 and 10 VNS DP yields significantly better results than VNS SIM-
PLE, while VNS SIMPLE is significantly better only for class 4. In general,

2 A complete listing of the results for all instance classes can be found online under
https://www.ads.tuwien.ac.at/resources/results/2cs/vns2014 simple dp.pdf

VNS SIMPLE VNS DP

Class |E| c(P) t[s] c(P) t[s]
4 10.27 12.8 10.26 12.0
8 16.60 94.0 16.59 93.4

3 12 32.30 321.7 32.09 319.9
16 37.02 791.8 36.91 758.2
20 49.25 1000 49.05 1000.0
4 1.44 10.6 1.45 19.3
8 2.28 67.9 2.32 82.9

4 12 4.29 231.0 4.33 260.4
16 5.10 556.4 5.11 565.9
20 6.57 946.7 6.58 989.2
4 10.72 12.9 10.71 15.0
8 19.61 97.7 19.48 116.1

7 12 27.68 363.2 27.40 419.3
16 43.61 799.6 43.26 900.6
20 52.90 1000.0 52.36 1000.0
4 10.88 14.4 10.86 16.7
8 18.80 110.2 18.76 122.2

8 12 28.94 389.3 28.65 443.6
16 40.12 943.0 40.06 961.7
20 50.79 1000.0 50.48 1000.0
4 7.58 12.4 7.54 13.1
8 16.73 93.9 16.72 99.4

10 12 21.55 301.6 21.36 333.2
16 27.95 667.4 27.86 708.0
20 33.94 928.0 33.82 965.5

Table 2
Experimental results. The best objective value in each row is printed in bold.

VNS DP performed better for instances where the element sizes are not very
small compared to the sheet size. An obvious reason for this is that dynamic
programming will more likely run out of available elements if many elements
potentially fit in the larger rectangles. Remarkably, the overall runtimes of
both algorithms are comparable, which is due to the generally relatively small
subproblems that are solved by dynamic programming.

6 Conclusions and Future Work

We investigated a VNS for the 3-staged 2CS which relies on neighborhoods
based on the “ruin-and-recreate” principle. For the reconstruction of a ruined
solution we use dynamic programming based on the reduced raster points by
Scheithauer. Experiments show that the proposed approach is competitive
in runtime and outperforms a VNS approach relying purely on heuristics for

reconstruction.

Following the observed differences in performance w.r.t. the proportion of
element sizes to the sheet size we plan to develop an adaptive VNS approach
choosing suitable neighborhood structures based on their past performance or
directly on features of the given problem instance.

References

[1] Berkey, J. O. and P. Y. Wang, Two-Dimensional Finite Bin-Packing
Algorithms, The Journal of the Operations Research Society 38 (1987), pp. 423–
429.

[2] Cintra, G., F. Miyazawa, Y. Wakabayashi and E. Xavier, Algorithms for
two-dimensional cutting stock and strip packing problems using dynamic
programming and column generation, European Journal of Operational
Research 191 (2008), pp. 61–85.

[3] Dusberger, F. and G. R. Raidl, A Variable Neighborhood Search Using Very
Large Neighborhood Structures for the 3-Staged 2-Dimensional Cutting Stock
Problem, in: Hybrid Metaheuristics, 2014, pp. 85–99.

[4] Gilmore, P. C. and R. E. Gomory, Multistage Cutting Stock Problems of Two
and More Dimensions, Operations Research 13 (1965), pp. 94–120.

[5] Herz, J. C., Recursive Computational Procedure for Two-dimensional Stock
Cutting, IBM Journal of Research and Development 16 (1972), pp. 462–469.

[6] Lodi, A., S. Martello and D. Vigo, Recent advances on two-dimensional bin
packing problems, Discrete Applied Mathematics 123 (2002), pp. 379–396.

[7] Martello, S. and D. Vigo, Exact Solution of the Two-Dimensional Finite Bin
Packing Problem, Management Science 44 (1998), pp. 388–399.

[8] Morabito, R. and V. Pureza, A heuristic approach based on dynamic
programming and and/or-graph search for the constrained two-dimensional
guillotine cutting problem, Annals of Operations Research 179 (2010), pp. 297–
315.

[9] Puchinger, J. and G. R. Raidl, Models and algorithms for three-stage two-
dimensional bin packing , European Journal of Operational Research 183

(2007), pp. 1304–1327.

[10] Scheithauer, G., Equivalence and Dominance for Problems of Optimal Packing
of Rectangles, Ricerca Operativa 83 (1997), pp. 3–34.

	Introduction
	Problem Definition
	Cutting Tree

	Related Work
	A Dynamic Programming-Based VNS
	Neighborhood Structures and Search

	Experimental Results
	Conclusions and Future Work
	References

