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Abstract. In this work we consider the 3-staged 2-dimensional cut-
ting stock problem, which appears in many real-world applications such
as glass and wood cutting and various scheduling tasks. We suggest
a variable neighborhood search (VNS) employing “ruin-and-recreate”-
based very large neighborhood searches (VLNS). We further present a
polynomial-sized integer linear programming model (ILP) for solving
the subproblem of 2-staged 2-dimensional cutting with variable sheet
sizes, which is exploited in an additional neighborhood search within the
VNS. Both methods yield significantly better results on about half of the
benchmark instances from literature than have been published before.

1 Introduction

Cutting and packing problems are among the most well-studied combinatorial
optimization problems in literature. This is due to the versatility of these prob-
lems allowing many real-world applications to be modelled as such. In fact, both
cutting and packing usually refer to one and the same problem, however it is
common, according to the context, to use either one term or the other. Examples
of applications include actual industrial glass, paper or steel cutting, container
loading, VLSI design, or various scheduling tasks [1, 2]. Consequently, there are
many different variants of the basic cutting and packing problems that have
been discussed and for which a multitude of approaches already exists. Wäscher
et al. [3] present an extensive typology of these problems, as well as a litera-
ture review of the most important works for the different variants. Neverthe-
less, this research area remains interesting, as additional modifications and side
constraints arise, especially promoted due to new requirements from industry.
Therefore, finding a most economical solution is still a challenging goal which
calls for new approaches that are especially tailored and capable of respecting
these new side constraints.

In this paper we consider in particular the 2-dimensional cutting stock prob-
lem (2CS), which – being a variant of the classical bin packing problem (1BP,
or 2BP respectively) – is NP-hard [4]. In the basic problem setting one is given



a set of rectangular elements which need to be cut from a minimal number of
larger stock sheets. We also consider the common restriction that only guillo-
tine cuts are allowed, i.e. cuts are always parallel to one of the sheet sides and
reach from one border to the opposite one. A further common side constraint
due to the restrictions of real-world cutting machines, is that the cutting has to
be done using a certain number of stages. A k-staged cutting is a sequence of
k stages of cuts, where each stage consists of a series of parallel guillotine cuts
performed on the pieces obtained from the previous stage. The direction of the
cuts in one stage is always orthogonal to the cuts in the previous stage. Here, we
want to focus on 3-staged cutting, as this is a typical restriction, e.g. in the glass
manufacturing industry [5, 6]. Secondly, experimental studies have shown that
frequently no substantial gains can be obtained from more stages [7]. In case of
the strip packing problem without allowing rotation the asymptotic performance
ratio of a 3-staged cutting approximating an optimal cutting has been shown to
be 1.69103 [8], whereas the 2-staged case is unbounded. The step from 2-staged
to 3-staged cutting unfortunately dramatically increases the practical difficulty
of the problem due to the possibility of stacking elements arbitrarily within a
strip. In existing approaches there are often restrictions to the way elements can
be stacked [9, 10], but often the solution quality can be significantly increased
when dropping those restrictions.

In this work we present a variable neighborhood search (VNS) for the 3-staged
2CS which is composed by several very large neighborhood structures based on
the “ruin-and-recreate” principle. Trying to further improve the solution quality
we developed a new integer linear programming (ILP) model which also was
applied in the reconstruction phase of a “ruin-and-recreate” neighborhood.

The next section provides a detailed problem description of the 2CS, followed
by a literature review of the work related to our specific problem in section 3.
In section 4 we present our VNS framework, with the basic large neighborhood
searches. Section 5 describes the ILP model and how it is exploited in an ad-
ditional large neighborhood search. Section 6 gives experimental results for the
developed methods and an analysis thereof, and section 7 concludes this work.

2 Problem Definition

In the 2CS we are given a set of m rectangular elements M = {E1, . . . , Em} with
dimensions (h1, w1), . . . , (hm, wm), also called demand, which can be grouped
into t ≤ m element types having the same dimensions. Furthermore, we have a
(potentially unlimited) stock of identical rectangular sheets of height H > 0 and
width W > 0.

The objective is to find a cutting pattern, i.e. an arrangement of the elements
in M on the stock sheets without overlap, s.t. the number of required sheets is
minimal and the pattern can be cut in a 3-staged process. Elements are rotatable
by 90◦, which is reflected by adding for each element Ei ∈M an element Em+i

with (hm+i, wm+i) = (wi, hi). We assume that an instance is generally feasible,



i.e. 0 < hi ≤ H and 0 < wi ≤W for each Ei ∈M . Stage-1 and stage-3 cuts are
always horizontal while stage-2 cuts are vertical.

We refer to the rectangles resulting from stage-1 cuts as strips, and the ones
resulting from stage-2 cuts as stacks. We say that a cutting pattern is in normal
form, if

(i) Waste occurs only at the bottom of stacks, at the right end of a strip and
at the bottom of the sheet.

(ii) The topmost element of each stack is the widest one.

(iii) The leftmost stack of each strip is the highest one.

Clearly, every cutting pattern can be transformed into a pattern in normal form
of equivalent quality. It is therefore sufficient to only consider patterns in normal
form in the optimization.

We use the refined objective function proposed by Puchinger et al. [5] which
considers the last sheet only partly. Let S(x) denote the number of sheets used
in a solution x and cl the position of the last stage-1 cut of the last sheet. The
objective function is then

f(x) = min

(
S(x)− H − cl

H

)
, (1)

This refinement allows for a more fine-grained distinction between solutions hav-
ing an equal number of sheets. When considering real-world applications a cut-
ting pattern yielding one larger waste area is typically preferred as this part can
presumably more likely be reused than several smaller ones.

2.1 Solution Representation

We represent a solution explicitly by its cutting tree (in the literature also referred
to as slicing tree). Note that a given cutting tree does not necessarily represent
a complete solution, but can also be used as a representation of partial solutions
or intermediate steps.

The root node represents the whole set of used sheets S = {s1, . . . , sn}. Each
of its children is associated with one sheet (and can be seen as a stage-0 cut).
Every further level in the tree corresponds to a guillotine cut of the next stage
l that has been applied. Note that the elements from M always appear as leaf
nodes at the third level. Whenever an element actually is already finished after
the stage-1 or stage-2 cuts, additional so-called Null-cuts are introduced to keep
this consistent structure.
Each node N in the tree stores the dimensions (h,w) of the represented area,
the waste within it and the absolute cut coordinate c on the sheet. If it is a leaf
node, the associated element is stored. Figure 1 shows a 3-staged cutting pattern
for a single sheet in normal form and the cutting tree representing it.



root

s1
h: 5870
w: 3080
c: 0

s11
h: 1988
w: 3080
c: 0

s12
h: 1875
w: 3080
c: 1988

s13
h: 1875
w: 3080
c: 3863

s111
h: 1988
w: 2985
c: 0

s121
h: 1875
w: 2174
c: 0

s122
h: 1875
w: 635
c: 2174

s131
h: 1875
w: 2174
c: 0

s1111
h: 1988
w: 2985
c: 0

s1211
h: 1875
w: 2174
c: 1988

s1221
h: 1337
w: 635
c: 1988

s1222
h: 378
w: 635
c: 3325

s1311
h: 1875
w : 2174
c: 3863

E1

h: 1988
w: 2985

E2

h: 1875
w: 2174

E3

h: 1337
w: 635

E4

h: 378
w: 635

E5

h: 1875
w: 2174

Fig. 1: A cutting tree (left) and the single sheet, s1, represented by it (right). The
leaf nodes E1, . . . , E5 represent the actual elements obtained by the applied cutting
pattern. The nodes s1111 and s1211 and s1311 are Null-cuts.

3 Related Work

The first exact solution approaches to the 2CS have been proposed by Gilmore
and Gomory [11], who introduced the “exact two-stage guillotine cutting stock
problem”, which is a 2-staged 2CS under the additional constraint that all el-
ements packed in one strip of the sheet have the same height. They further
introduced the “non-exact two-stage guillotine cutting stock problem” where a
final, third stage is allowed but only to separate an element from the waste area.
Their approach is the well-known set covering formulation of the problem in-
troducing a variable for each possible cutting pattern of a single sheet. Column
generation is used to avoid the explicit enumeration of the exponentially many
variables. Oliveira and Ferreira [12], already considering the 3-staged 2CS, pre-
sented a faster variant of this approach in which the pricing problem is solved by
a greedy heuristic. The exact method is only applied in case the heuristic fails.
A more recent approach is by Monaci and Toth [13] whose two-phase algorithm
first creates cutting patterns using greedy heuristics which are then the columns
in a set covering formulation solved by a Lagrangian-based heuristic algorithm.
Alvarez-Valdes et al. [14] proposed a more sophisticated method for solving the
pricing problem for the general n-staged 2CS without rotation using GRASP
or tabu search for column generation. Puchinger and Raidl [10, 15] approached
the 3-staged 2CS without rotation restricting the elements in a stack to be of
equal width. They use a hierarchy consisting of a greedy construction heuris-
tic, an evolutionary algorithm, a restricted ILP model for the pricing problem



and an exact ILP model to generate columns, thus avoiding the computationally
expensive uses of the exact method as much as possible.

An important step towards the reduction of the search space was done by
Herz [16] who presented the concept of discretization points, excluding the verti-
cal and horizontal coordinates at which no cut can occur in a pattern in normal
form. This is also the first definition of so-called “canonical patterns” which cor-
respond to patterns in normal form as defined in section 2. Later Christofides
and Whitlock [17] showed a dynamic programming approach to compute them.

Since most of the exact approaches found in the literature are, in fact, hy-
brid approaches in one way or another, there are also numerous heuristic and
metaheuristic approaches for the 2CS that have been studied. In [18] Lodi et al.
give a survey on the concept and performance ratios for the prominent greedy
heuristics, such as first-fit, first-fit decreasing height and finite first-fit.

4 Variable Neighborhood Search

The Variable neighborhood search (VNS) is a metaheuristic which relies on the
idea of systematically searching for a better solution in an ordered set of increas-
ingly complex neighborhood structures [19].

Frequently, VNS is combined with very large(-scale) neighborhood search
(VLNS) techniques. The basic idea of a VLNS in contrast to a “classical” local
search approach is to employ a special problem-specific large neighborhood struc-
ture N(x), for which an efficient algorithm exists to derive an optimal or good
approximate solution [20]. Methods that have been successfully used in VLNS
for investigating neighborhoods include shortest path and matching algorithms,
dynamic programming, (mixed) integer programming (MIP) and constraint pro-
gramming. It is not always necessary to solve large neighborhoods to optimality
but sometimes also simpler greedy constructive approaches can be applied. These
approaches are often used in the context of so-called “ruin-and-recreate” meth-
ods, where one iteration consists of destroying randomly chosen or weak parts
of an incumbent solution followed by a (usually relatively fast) recreation by a
construction heuristic [21].
We follow these considerations in our VNS for the 3-staged 2CS, which is pre-
sented in the following.

4.1 Construction Heuristics

As a starting solution for the search the best among the solutions obtained
by three different greedy construction heuristics is chosen. These approaches are
3-staged First Fit Decreasing Height with rotations (3SFFDHR), 3SFFDHR pre-
ceded by a matching step (MATCH) and Fill Strip (FS), which are summarized
in the following.

3SFFDHR This heuristic is based on the well-known first-fit decreasing height
(FFDH) approach for the 2BP. The elements in M are ordered by non-increasing



heights hi; ties are broken randomly. The algorithm iterates through the element
list trying to fit the current element in the cutting tree at the first possible
position using a post-order traversal. At each level – given the dimensions of the
parent and the already existing siblings – it is checked (i) if there is still enough
room to accommodate the element, or (ii) if there is enough room for the rotated
counterpart of the element. If so, a new sibling is created offering the required
height (for a horizontal cut) or width (for a vertical cut) to accommodate the
element.

In the worst case the algorithm needs to traverse trough the whole tree for
inserting a new element. Therefore the runtime is in O(m2).

MATCH The basic construction principle is the same as for 3SFFDHR. How-
ever, one of the disadvantages of the method is that the extent of each area
created by a lower stage cut (height for stage-1 and width for stage-2) is fixed
based on the element that initialized it.
To increase the space of potential stage-1 heights a preprocessing step is included
based on the iterative matching approach by Fritsch and Vornberger [6].

A certain percentage p of the elements in M is chosen randomly and paired
into meta-rectangles, s.t. the overall waste is minimal. This is done by first
constructing a complete graph G(V,E), where V corresponds to the elements
and each edge (u, v) ∈ E has associated a weight that is inversely proportional
to the amount of waste in the bounding rectangle when aligning the elements
corresponding to u and v. The meta-rectangles minimizing the overall waste are
now determined by calculating a maximum weight matching on this graph.
The resulting meta-rectangles and the remaining elements that were not matched
are then packed using the 3SFFDHR heuristic.

As the maximum-weight matching in a graph can be computed in O(|V |3),
the worst-case runtime of the MATCH construction heuristic is in O(m3).

FS Fill Strip is a strip-based greedy construction heuristic and is an adaptation
of the FFFWS heuristic proposed by Puchinger et al. [5]. As for 3SFFDHR
the elements are ordered beforehand by non-decreasing height. The algorithm
then basically fits the elements according to the same criteria they are fit with
3SFFDHR with the two following modifications:

– Whenever an element does not fit in the current subtree, it is skipped and
the algorithm tries to fit the next one from M .

– Once the last element in M is reached, i.e. none of the remaining elements
can fit in the current position in the cutting tree, the respective subtree is
closed and never reconsidered again in the remaining construction process.

– When a strip is closed, the algorithm continues with the remaining unused
elements in M beginning again with the highest one.

In the worst case the algorithm has to restart at the beginning of M for every
new strip, hence its worst-case runtime is in O(m2).



4.2 Neighborhood Structures and Search

All neighborhood structures we consider follow the principle of a ruin-and-
recreate-based VLNS. We choose no “classical” local search neighborhood, since
a local search approach based on solutions encoded by e.g. the order of the el-
ement list M is prone to suffer from poor locality. Provided no sophisticated
decoding algorithm different from simple greedy construction heuristics is em-
ployed, a move as basic as a 2-exchange might lead to a rather different cut-
ting pattern. Moreover, evaluating the objective of a solution requires decoding
the cutting pattern completely, thereby forfeiting the runtime advantage a local
search on a compact encoding usually comes with.

Maximum Waste Ratio We consider the maximum unused capacity in a
used sheet as a secondary fitness value, following an idea that has also been
successfully applied for the classical 1BP, cf. [22]. The waste ratio wr(s) of a sheet
s is defined as the free area on s (i.e. the area not covered by elements) relative to
the total area of s. However, to be consistent with the (main) objective function
the last sheet is also considered only partly when determining the maximum.
Thus, we have

wr(s) =


clW −

∑m
i=1 | i∈elems(s) hiwi

clW
, if s is the last sheet

HW −
∑m
i=1 | i∈elems(s) hiwi

HW
, otherwise

(2)

where elems(s) is the set of elements that are placed on s and cl defines the
position of the last stage-1 cut of the sheet. The secondary fitness G(x) of a
solution x is therefore

G(x) = max
s non-empty

wr(s) (3)

G(x) is used as a tie-breaking criterion for solutions with equal objective value
to steer the search further towards more compact cutting patterns.

A basic step in our neighborhood search works as follows:
In the incumbent solution one or more subtree(s) of the cutting tree are removed,
s.t. the elements associated with the leaves of these sub-trees become free. Using
one of the aforementioned construction heuristics they are then reinserted again.
Both steps can be efficiently done on the cutting tree representation. Next, we
describe the variants for each the ruin and the recreate step in greater detail.

Ruin Subtree The general parameters for the ruin step are the tree-level λ
and either a fixed number of subtrees of the level to be ruined (δ), or a per-
centage thereof (π). Furthermore, the range with respect to the affected sheets
can be controlled. The subtrees may either be chosen randomly from all sheets
or restricted to come from the same sheet(s), i.e. they are subtrees of the same
level-0 node in the cutting tree. Independent from these settings the last sheet
is always affected first, as both the objective function and the secondary fitness



capture gradual improvements in terms of the last stage-1 cut of the last sheet.
We consider two basic variants:

– Ruin Random Subtree (RAND): Remove the defined number of level-λ sub-
trees from randomly selected positions in the tree respecting the sheet re-
strictions.

– Ruin Max-Waste Subtree (MAX-W): Order the available level-λ subtrees by
non-increasing waste ratio. Starting with the first one, remove the defined
number from the tree respecting the sheet restrictions.

Recreate Cutting Tree After the ruin step the ruined subtree is normalized,
i.e. the remaining subtrees are reordered (and the stored coordinates adapted),
s.t. the pattern represented by the tree is in normal form. The removed elements
are then sorted again by non-increasing height, shuffled or left unsorted in the
order they were removed, before 3SFFDHR, MATCH or FS is used to reinsert
them into the tree.

We also consider a next-improvement step function for the possible ruin and
recreate combinations. In this work we use a fixed neighborhood order, which
is shown in Table 1. Neighborhoods in which the ruin operation is restricted to
affecting elements on the same sheet are marked as (f). The first five neighbor-
hoods are chosen for intensification and finding improvements by relatively small
changes. The following neighborhoods increasingly perturb the cutting tree by
removing random and maximum waste subtrees and reinserting them in various
ways. In the last neighborhoods, a special ruin operator is used, the removed
subtrees are left intact, s.t. they can be reinserted as a whole (Soft Remove).

k Nk-Ruin Nk-Recreate Step function

1 Random (λ = 3, δ = 2) 3SFFDHR Unsorted Next Imp.
2-3 Random (λ = 2, δ = k − 1) 3SFFDHR Unsorted Next Imp.
4-5 Random (λ = 1, δ = k − 3) 3SFFDHR Unsorted Next Imp.
6-9 Random (λ = 3, π = (k − 5) · 0.1) 3SFFDHR Shuffled Random

10-13 Random (λ = 3, π = (k − 9) · 0.1) MATCH Shuffled Random
14-17 MAX-W (λ = 2, π = (k − 13) · 0.1) 3SFFDHR Shuffled Random
18-21 MAX-W (λ = 2, π = (k − 17) · 0.1) MATCH Shuffled Random
22-25 MAX-W (f) (λ = 2, π = (k − 21) · 0.1) 3SFFDHR Shuffled Random
26-29 MAX-W (f) (λ = 2, π = (k − 25) · 0.1) MATCH Shuffled Random
30-33 Soft (λ = 1, π = (k − 29) · 0.1) FFDH Shuffled Random

Table 1: Neighborhoods and their order used in the VNS

5 ILP-Based Very Large Neighborhood Search

In the following we introduce a novel compact ILP model for the 2-staged 2CS
with variable sheet size. This model is employed in the recreate step of a VLNS



neighborhood. More particularly, it is used for optimally packing strips (i.e.
defining the stage-2 and stage-3 cuts of the pattern). The remaining problem
consists then of packing these strips into sheets.

5.1 An ILP for Packing Strips

Lodi et al. [23] proposed a polynomial-sized ILP model for the 2-staged 2CS. We
base our ILP formulation on this model extending it to a model for optimally
packing elements in strips of different sizes (in fact, it is a model for the 2-staged
2CS with variable sheet size). The dimensions of the different sheets reflect the
dimensions of the stage-1 cuts that can then be placed on the actual sheets.

As defined in section 2 we denote by t ≤ m the number of different element
types. Let further ej be the number of elements of type j ∈ {1, . . . , t} in the
demand. The model is now based on the following considerations: We assume
that m potential stacks are available. Each of them is associated with a different
element a of a certain type i initializing it. Analogously, there are m potential
strips, each initialized by a different potential stack a of type k (i.e. a stack
initialized by an element of type k).
Furthermore, there are d different dimensions for the strips and each strip, as
well as each stack, is of a certain type l ∈ {1, . . . , d}, defined by its dimensions.

We make use of the following observation which is similar to the definition of
the normal form of a cutting pattern: For any optimal solution to the problem
there exists an equivalent one in which the following conditions hold:

1. The first (topmost) element in each stack is the widest one in the stack.
2. The first (leftmost) element in each strip is the widest one in the strip.

We can further assume an ordering of the element types by nondecreasing width.
Finally, the occurrence of multiple elements of the same type in the demand

can be exploited. In a given cutting pattern every permutation of such elements
yields another pattern equivalent in structure and quality and can thus be con-
sidered symmetrical.

These considerations lead to the following 0/1-variables

ylia =


1 if the a-th stack of dimension type l is initialized

by an element of type i,

0, otherwise

(4)

for i = 1, . . . , t; l = 1, . . . , d; a = 1, . . . ,m

qlka =


1 if the a-th strip of dimension type l is initialized

by a stack of type k,

0, otherwise

(5)

for k = 1, . . . , t; l = 1, . . . , d; a = 1, . . . ,m
and the positive integer variables



– xliaj : The number of elements of type j packed in the a-th stack of dimension
type l, initialized by an element of type i.
for i = 1, . . . , t; j ≥ i; l = 1, . . . , d; a = 1, . . . ,m

– zlkai: The number of stacks of type i packed into the a-th strip of dimension
type l, initialized by a stack of type k.
for k = 1, . . . , t; i ≥ k; l = 1, . . . , d; a = 1, . . . ,m

Note that the variables inherently satisfy the guillotine cut restriction.
Our variant of the 2-staged 2CS with variable sheet size can now be stated as
the following ILP:

min

d∑
l=1

t∑
k=1

m∑
a=1

qlkaHl (6)

s. t.

d∑
l=1

m∑
a=1

(
j∑
i=1

xliaj + ylja

)
= ej j = 1, . . . , t (7)

m∑
j=i

hjx
l
iaj ≤ (Hl − hi)ylia i = 1, . . . , t; a = 1, . . . ,m; l = 1, . . . , d

(8)

m∑
a=1

(
i∑

k=1

zlkai + qlia

)
=

m∑
a=1

ylia i = 1, . . . , t; l = 1, . . . , d (9)

m∑
i=k

wiz
l
kai ≤ (Wl − wk)qlka k = 1, . . . , t; a = 1, . . . ,m; l = 1, . . . , d

(10)

d∑
l=1

ylia ≤ 1 i = 1, . . . , t; a = 1, . . . ,m (11)

d∑
l=1

qlka ≤ 1 k = 1, . . . , t; a = 1, . . . ,m (12)

The objective function (6) minimizes the total height of all used strips. Note that
strip a of dimension type l is initialized by an element of type k, iff qlka = 1. Equa-
tions (7) ensure that each element j is packed exactly ej times and constraints
(8) impose that the height of each used stack does not exceed the respective
dimension type’s height. Analogously, equations (9) guarantee that each used
stack is packed in a used strip while constraints (10) imply that the width of
each used strip does not exceed the used dimension type’s width. The last two
groups of constraints strengthen the model by imposing that each potential stack
(11) and each potential strip (12) a can only be used for one specific dimension
type.

For the sake of clarity, we keep all variables in the model. However, in an
actual implementation we can exclude the following variables, which can never



be nonzero. For 1 ≤ a ≤ m and 1 ≤ l ≤ d we can set

ylia = 0 1 ≤ i ≤ t |hi > Hl ∨ wi > Wl (13)

qlka = 0 1 ≤ k ≤ t |hk > Hl ∨ wk > Wl (14)

xliaj = 0 1 ≤ i, j ≤ t |hi > Hl ∨ wi > Wl ∨ hj > Hl ∨ wj > Wl∨
hi + hj > Hl (15)

zlkai = 0 1 ≤ k, i ≤ t |hi > Hl ∨ wi > Wl ∨ hj > Hl ∨ wj > Wl∨
wi + wj > Wl (16)

Constraints (13) and (14) exclude variables for element types that do not fit in
the respective dimension type, while (15) and (16) additionally rule out that
two element types whose combination exceeds the dimensions can appear to-
gether. Finally, we can assume an ordering of the potential stacks and strips in
accordance to the order of the element types, i.e.

a1, . . . , ae1 , a(e1+1), . . . , a(e1+e2) . . . , a
∑t

i=1 ei

This reflects that each of the stacks (strips) is associated with exactly one ele-
ment and we can additionally exclude the variables ylia and xliaj (qlka and zlkai)
according to the range associated with the element type i (k).

Note that the described ILP does not consider rotation of the elements.
However, rotation can easily be incorporated by replacing the constraints (7)
with

d∑
l=1

m∑
a=1

[(
j∑
i=1

xliaj + yli

)
+

(
δj∑
i=1

xliaδj + ylδj

)]
= ej , j = 1, . . . , 2t; j < δj ,

where δj is the index of the rotated variant of type j in the element type or-
der, and by replacing m with 2m and t with 2t in all the remaining equations,
analogously to the variant proposed in [23].

In our ILP-VLNS approach we model the whole cutting tree but fix the vari-
ables corresponding to parts not selected by the ruin operator by the respective
constants. The resulting strips obtained from solving the ILP are then inserted
into the cutting tree, where completely new strips are packed using a FFDH
strategy.

This approach is used in two variants within the VNS, see Table 2.

k Nk-Ruin Nk-Recreate Step function

34 Random (f) (λ = 3, π = 0.33) ILP Random
35 Random (f) (λ = 3, δ = 0.33) ILP Random

Table 2: Aditional neighborhoods in the ILP-based VNS



5.2 Determining Strip Dimensions

The remaining open question is how to determine the different strip dimensions,
i.e. the different strip heights, that are considered by the model. Clearly, the
already used dimensions in the parts of the cutting tree not affected by the ruin
operator need to be included. For the additional dimensions there are, however,
exponentially many possibilities in the number of element types, even when re-
stricting the choices to the discretization points as proposed in [16].
In our approach this number is reduced during the ILP model generation by
restricting the heights to multiples of the heights of available elements. In more
detail, a random integer n ∈ {dhmax

hmin
e, . . . , d H

hmin
e} is chosen, with hmax and hmin

being the largest and the smallest height of all the element types. For each ele-
ment type i the height dimensions hi ·k, with k ∈ {1, . . . , n} are then generated.
As this usually still yields a relatively large number of different heights, a quick
evaluation is performed of how promising each of them is. This is done by first
shuffling the list of free elements and then letting 3SFFDHR reinsert them into
a strip of the given height. The strip heights that yield no more than the average
waste ratio are finally chosen.

6 Experimental Results

Our algorithms have been implemented in C++, compiled with GCC version
4.6.3 and executed on a single core of a 3.40 GHz Intel Core i7-3770 with 16 GB
RAM. For solving the developed ILP model we have used the general purpose
MIP solver CPLEX version 12.6 with default parameter settings and a general
time limit of 1000s, as well as a restriction to a single thread. Furthermore, the
optimization was stopped as soon as an integer solution having a relative gap of
less than or equal to 1% was found.

Computational experiments were performed on the benchmark instances
from Berkey and Wang [24] (classes 1 to 6) and Martello and Vigo [25] (classes 7
to 10). Each class consists of 5 subclasses with m = 20, . . . , 100 elements, each of
which comprising 10 instances. We compare the basic VNS (VNS SIMPLE), the
VNS consisting of the two ILP neighborhoods only (VNS ILP), a combination of
both (VNS FULL) and the results obtained by the so far best-performing Branch
& Price algorithm from [15] (BPStabEA), which were taken as presented in the
respective work. In order to stay comparable to these results rotation of elements
is not considered. For VNS SIMPLE, 25 major iterations over all neighborhoods
are done, for VNS ILP and VNS FULL the VNS is stopped, when a major iter-
ation does not yield an improvement. Each algorithm (VNS SIMPLE, VNS ILP,
VNS FULL, BPStabEA) was applied five times to each problem instance and
the average objective value and time spent per instance were determined. These
values are then used for computing the average objective f(x) and time t for the
instances of each subclass, which are shown in Table 3. The runtime for each of
the experiments was additionally limited to 1000s. Occasionally, this limit was
exceeded due to the same but independently measured time limit of 1000s given
to CPLEX. The best objective value in each row is printed in bold. In the last



rows sums, average and median values over all instances are given.
In general, VNS SIMPLE outperforms VNS ILP and VNS FULL, whereas VNS
FULL performs better than VNS ILP for all instance subclasses. We performed
one-sided Wilcoxon signed rank tests comparing the objective for each instance
class using a 95 % confidence interval. For five out of ten instance classes (2,4,6,9
and 10) both VNS SIMPLE and VNS FULL yield significantly better results
than obtained by BPStabEA, VNS ILP is significantly better for classes 2,4,6
and 9. VNS FULL does not yield significantly better results than VNS SIMPLE
but we observe an average increase in runtime. It can be expected that allowing
VNS FULL to run for 25 major iterations would further improve the objective
values, however, at the cost of a dramatic increase in the overall runtime.

7 Conclusions

We presented a VNS for the 3-staged 2-dimensional cutting stock problem which
uses exclusively “ruin-and-recreate”-based VLNS. In a first straightforward ap-
proach greedy construction heuristics were used in the recreate step. We further
developed a polynomial-sized ILP as an alternative method for recreating a so-
lution. In fact, this model can also be applied for the 2-staged 2-dimensional
cutting stock problem with variable sheet sizes. Experimental results on well-
known problem instances show that the hybridization of VNS and VLNS indeed
leads to a significant increase in solution quality for half of the instance classes.
Using the ILP for recreation of the solution did not significantly increase the
performance in comparison to the recreation by construction heuristics.

In future work, we want to improve the ILP-based VLNS in order to reduce
the runtime allowing for more searches through larger neighborhoods. To this
end we want to develop a more sophisticated approach to determine the dimen-
sions for the strips and strengthen the model itself. Furthermore, it would be
interesting to see, if the performance can be improved by inserting the strips
with an exact method, e.g. an ILP formulation for the 1BP.
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19. Hansen, P., Mladenović, N.: Variable Neighborhood Search. In Glover, F., Kochen-
berger, G., eds.: Handbook of Metaheuristics. Volume 57 of International Series in
Operations Research & Management Science. Springer (2003) 145–184

20. Ahuja, R.K., Ergun, O., Orlin, J.B., Punnen, A.P.: A survey of very large-scale
neighborhood search techniques. Discrete Applied Mathematics 123(1-3) (2002)
75–102

21. Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., Dueck, G.: Record Breaking
Optimization Results Using the Ruin and Recreate Principle. Journal of Compu-
tational Physics 159(2) (2000) 139 – 171

22. Benjamin, J., Julstrom, B.A.: Breaking ties with secondary fitness in a genetic
algorithm for the bin packing problem. In: Genetic and Evolutionary Computation
Conference. (2010) 657–664

23. Lodi, A., Martello, S., Vigo, D.: Models and bounds for two-dimensional level
packing problems. Journal of Combinatorial Optimization 8 (2004) 363–379

24. Berkey, J.O., Wang, P.Y.: Two-Dimensional Finite Bin-Packing Algorithms. The
Journal of the Operational Research Society 38(5) (1987) 423–429

25. Martello, S., Vigo, D.: Exact Solution of the Two-Dimensional Finite Bin Packing
Problem. Management Science 44(3) (1998) 388–399


