A Scalable Approach for the K-Staged
Two-Dimensional Cutting Stock Problem*

Frederico Dusberger and Giinther R. Raidl

Abstract This work focuses on the K-staged two-dimensional cutting stock prob-
lem with variable sheet size. High-quality solutions are computed by an efficient
beam-search algorithm that exploits the congruency of subpatterns and takes in-
formed decisions on which of the available sheet types to use for the solutions.
We extend this algorithm by embedding it in a sequential value-correction frame-
work that runs the algorithm multiple times while adapting element type values in
each iteration and thus constitutes a guided diversification process for computing
a solution. Experiments demonstrate the effectiveness of the approach and that the
sequential value-correction further increases the overall quality of the constructed
solutions.

1 Introduction

We consider the K-staged two-dimensional cutting stock problem with variable
sheet size (K2CSV) in which we are given a set of ng rectangular element types
E ={1,...,ng}, each i € E specified by a height h; € NT, a width w; € N*, and a
demand d; € NT. Furthermore, we have a set of ny stock sheet types T ={1,...,nr},
each 1 € T specified by a height H, € N*, a width W; € NT, an available quantity
g: € NT, and a cost factor ¢; € N™. Both elements and sheets can be rotated by 90°.

A feasible solution is a set of cutting patterns & = {Py,...,P,}, i.e. an arrangement
of the elements specified by E on the stock sheets specified by 7 without overlap
and using guillotine cuts up to depth K. Each pattern P;, j = 1,...,n, has an associ-

ated stock sheet type #; and a quantity a; specifying how often the pattern is to be
applied, i.e. how many sheets of type ¢; are cut following pattern P;.

Frederico Dusberger — Giinther R. Raidl

Institute of Computer Graphics and Algorithms, TU Wien, Vienna, Austria
e-mail: {dusberger|raidl} @ac.tuwien.ac.at

*We thank LodeStar Technology for their support and collaboration in this project.

2 Frederico Dusberger and Giinther R. Raidl

The K2CSV occurs in many industrial applications and we are thus considering
here in particular large-scale instances from industry. For these instances, typically
the number of different element and sheet types is moderate but the demands of the
element types are rather high. Nonetheless, reasonable solutions need to be found
within moderate runtimes. The objective is to find a feasible set of cutting patterns
& minimizing the number of used sheets ¢(Z?) weighted by their cost factors, i.e.

min ¢(2) = Y ¢,6,(2) (1)

teT

where 0;(Z?) is the number of used sheets of type ¢ € T in the set Z.

Each cutting pattern P; € & is represented by a (cutting) tree structure where
the leaf nodes correspond to individual (possibly rotated) elements and the internal
nodes are either horizontal or vertical compounds containing at least one subpattern.
Vertical compounds always only appear at odd stages (levels), starting from stage
one, and represent parts separated by horizontal cuts of the respective stage. Hori-
zontal compounds always only appear at even stages and represent parts separated
by vertical cuts. Each node thus corresponds to a rectangle of a certain size (h,w),
which is in case of compound nodes the bounding box of the respectively aligned
subpatterns. A pattern’s root node always has a size that is not larger than the re-
spective sheet size, i.e. h < H;; and w < W;;. Analogously to a; denoting the quantity
of sheets cut according to pattern P;, compound nodes store congruent subpatterns
only by one subtree and maintain an additional quantity. In this tree structure, resid-
ual (waste) rectangles are never explicitly stored, but can be derived considering a
compound node’s embedding in its parent compound or sheet.

Each pattern P; € & can be transformed into a normal form of equal objective
value, hence it is sufficient to consider patterns in normal form only. In normal form,
subpatterns of vertical (horizontal) compounds are arranged from top to bottom (left
to right), ordered by nonincreasing width (height), and aligned at their left (top)
edges, i.e. in case the subpatterns have different widths (heights), remaining space
appears to their right (at their bottom). Figure 1 shows a 3-staged cutting tree and
the corresponding pattern.

0
Py (V-Comp.) 1
a: 1
H-Comp. H-Comp. H-Comp.
a:l a: 1 a: 1 3
T 7N T
1 2 V-Comp. 2 2 4
a: 1 a: 1 a:l a: 1 A
3 4
a: 1 a:2
2
(H;, W)

Fig. 1 A three-staged cutting tree (left) and the corresponding cutting pattern (right). The leaves
represent actual elements of types 1 to 4 obtained after at most three stages of guillotine cuts.

A Scalable Approach for the K-Staged Two-Dimensional Cutting Stock Problem 3

2 Related Work

Many state of the art approaches for cutting and packing problems employ column
generation, dynamic programming, or a combination thereof [10, 3]. However, in
the light of large-scale instances, exact approaches cannot compute solutions within
reasonable time. Instead, heuristics and metaheuristics are far more promising in
obtaining competitive solutions in this context. Lodi et al. [9] give a survey on the
classical construction heuristics for cutting and packing problems. In contrast to the
exponential runtime of the exact approaches, their runtime complexities range from
O(nlogn) to O(n?), where n is the total demand over all elements. Unfortunately,
this advantage is still not enough when the total demand is very high. Moreover,
these heuristics are rather inflexible and a strategy that does not prematurely fix the
structure of the cutting tree and the sizes of the inserted subpatterns is needed. In
a recent paper, Fleszar [6] proposed three more involved construction heuristics for
the cutting stock problem with only a single sheet type achieving excellent results
in short time. A promising approach to boost the quality of constructed solutions
is sequential value-correction, an idea that has been successfully applied, among
others, to the two-dimensional strip packing problem by Belov et al. [1] and the
two-dimensional bin packing problem with a single sheet type by Cui et al. [4]. The
basic idea is to associate each element type with a value signifying that type’s prior-
ity. Multiple solutions are constructed based on these values, which are continuously
adapted according to certain quality criteria, leading to a guided diversification pro-
cess. The values are increased for types that led to patterns with high relative waste,
s.t. those types are used earlier in the following iterations. Considering multiple
sheet types, Hong et al. [7] embedded fast construction heuristics in a backtracking
framework to address the problem of a meaningful sheet type selection. Solutions
are constructed sheet by sheet, where backtracking is applied to revise the choice of
a sheet type that led to a poor solution. In recent work, we followed a similar strat-
egy by successfully employing a beam-search algorithm to the K2CSV [5], which
serves as a basis for the sequential value-correction framework we propose here and
is summarized in the following section.

3 A Congruency-Aware Construction Heuristic for the K2CSV

The main component of the algorithm is a construction-heuristic for computing the
pattern for a single sheet, more precisely, the heuristic solves the K-staged two-
dimensional knapsack problem. By operating on element types rather than the sin-
gle elements separately, the heuristic is highly scalable w.r.t. element type demands
avoiding the excessive runtimes of element-based construction heuristics. A solu-
tion is constructed by considering for each element type i € E the insertion of a
completely filled grid of a)*" x a?"r instances of i. The best position and grid size in
the sheet pattern are determined according to a heuristic fitness criterion. Note that
in contrast to the original algorithm, we use here the more complex sufficiency cri-

4 Frederico Dusberger and Giinther R. Raidl

terion as proposed in [2]. Due to the compact solution representation in the cutting
tree, where congruent subpatterns are stored only once with an associated quantity,
the heuristic can then simultaneously apply this insertion to as many congruent sub-
patterns as possible. Another drawback of conventional construction heuristics we
avoid is their inflexibility w.r.t. already placed elements. The heuristic considers the
current pattern flexible in the sense that compounds are not fixed after their initial-
ization, but can be resized, if necessary to accommodate additional subpatterns.

In order to make meaningful decisions on the choice of sheet types, this con-
struction heuristic is used in a beam-search algorithm generating the solution sheet
by sheet. Each node in the search tree corresponds to a (partial) solution, starting
with the empty solution at the root. A branch from a node reflects the decision for
one of the sheet types from 7, the computation of a new pattern on a sheet of that
type using the construction heuristic and adding this pattern to the solution with
a quantity as high as possible considering the residual element type demands. At
each level, all the nodes on that level are evaluated and all but the BW best ones
are pruned, where BW is the chosen beam-width. The quality of a partial solution is
determined by the average relative waste over all used sheets weighted by the cost
factors of the respective types. The lower the relative waste, the better the solution.
This procedure continues until all requested elements are used.

4 Sequential Value-Correction

The effectiveness of the beam-search algorithm is demonstrated in [5], where ex-
perimental results showed that the approach computes high-quality solutions in rel-
atively short time. Nonetheless, being heuristic in nature, the algorithm is not guar-
anteed to always find good solutions. In order to compensate for this drawback, we
embed it in a sequential value-correction framework.

We associate each element type i € E with a value v; that is initially equal to its
area, i.e. v; = h;w;. The beam-search algorithm is then called for a certain number of
iterations and each time a solution has been computed, these values are updated. Let
elems;(P;) be the number of elements of type i in pattern P; and let further wr(P;)
denote the waste ratio of pattern P}, i.e. the ratio of unused area to total area in P;.
For a given solution, the value v; of each element type i € E is adapted for each of
the sheet patterns P; € & according to the following formula:

g (hyw;)?
vi (1-g) Y (P @)
where p is a parameter slightly larger than 1 (e.g. 1.02) and g is defined as
elems;(P;)-a;
g= clemsi(Fy) a; 3)

d,—l—dlr

where d] is the residual demand of element type i after computing pattern P;.

A Scalable Approach for the K-Staged Two-Dimensional Cutting Stock Problem 5

The intuition behind this formula is the following:

e The deterministic weighting factor g ensures that the value of each element type
i is updated to an extent that is proportional to the number of elements of type
i used in P;. In particular, we have g = 0 if elems;(P;) -a; = 0, i.e. v; remains
unchanged if no element of type i occurs in the pattern.

e As p > 1, the values are overproportional to the element types’ areas. The inten-
tion is to prefer element types that have a relatively large area and are therefore
harder to pack.

e Similarly, combinations of elements that yield a high waste ratio will lead to
higher values for the respective element types and to their preference in the fol-
lowing iterations as they are hard to combine.

Since the decisions in both the beam-search algorithm as well as the fitness-criterion
of the underlying construction heuristic are based on the element types’ areas, they
can easily be adapted to utilize the values v;, for i € E, instead.

5 Computational Results

Our algorithms were implemented in C++, compiled with GCC version 4.8.4, and
executed on a single core of a 3.40 GHz Intel Core i7-3770. We tested the sequential
value-correction approach for 30 iterations and BW=20 (SVC) on the benchmark
set by Hopper and Turton [8]. It comprises three instance categories of increasing
complexity, each consisting of five randomly generated instances with |T| =6, 2 <
qr < 4 and ¢, proportional to t’s area, for allt € T, and d; = 1, for all i € E. We
compared SVC with the HHA algorithm by Hong et al. [7] and with applying the
pure beam-search for BW=500 (BS500) and, using the original fitness criterion from
[5], for BW=5000 (BS5000). As HHA does not use a stage limit, we set K = 10
for our algorithms. Table 1 reports for each category the average percentage of the
used area on the sheets a(#?), to be comparable with the results from [7], and the
average runtime 7. Although d; = 1, for all i € E, i.e. we cannot exploit congruency,

HHA BS500 BS5000 SVvC

Instance Category |E| |T| a(2?) t(s) a(P) t(s) a(P) t(s) a(Z) 1(s)
Ml 100 6 984 60 97.7 21.6 984 342 984 18.6

M2 100 6 956 60 963 122 961 320 963 13.0

M3 150 6 97.4 60 96.8 458 96.5 103.1 97.6 359

Table 1 Comparison of area utilization for the three instance categories M1 to M3. The best value
for a(2) in each row is printed in bold.

our algorithms yield competitive results in comparison to HHA. While the pure
beam search variants achieve the same or slightly worse results, SVC yields the
best results for all categories demonstrating the effectiveness of our value-correction

6 Frederico Dusberger and Giinther R. Raidl

strategy. Moreover, the runtimes of SVC are comparable to those of BS500 and
better than both those of BS5000 and HHA, which always runs for 60 seconds.

6 Conclusions and Future Work

In this work, we extended a successful constructive algorithm for the K2CSV by
a sequential value-correction framework in order to improve the overall quality of
the constructed solutions. The basic algorithm, which was presented in [5], is a
beam-search constructing a solution sheet by sheet using a congruency-aware con-
struction heuristic, which makes the approach highly scalable and allows it to solve
large real-world instances within reasonable time. By computing multiple solutions
while adapting values associated to the element types after each iteration, this ap-
proach can be seen as a guided diversification process. Experiments on benchmark
instances document the effectiveness of this strategy.

In future work, we intend to develop a subsequent improvement heuristic for
which the excellent results provided by this algorithm are used as initial solutions.

References

1. Belov, G., Scheithauer, G., Mukhacheva, E.A.: One-Dimensional Heuristics Adapted for Two-
Dimensional Rectangular Strip Packing. The Journal of the Operational Research Society
59(6), 823-832 (2008)

2. Charalambous, C., Fleszar, K.: A constructive bin-oriented heuristic for the two-dimensional
bin packing problem with guillotine cuts. Computers & Operations Research 38(10), 1443—
1451 (2011)

3. Cintra, G., Miyazawa, F., Wakabayashi, Y., Xavier, E.: Algorithms for two-dimensional cut-
ting stock and strip packing problems using dynamic programming and column generation.
European Journal of Operational Research 191(1), 61-85 (2008)

4. Cui, Y., Yang, L., Zhao, Z., Tang, T., Yin, M.: Sequential grouping heuristic for the two-
dimensional cutting stock problem with pattern reduction. International Journal of Production
Economics (2013)

5. Dusberger, F., Raidl, G.R.: A Scalable Approach for the K-Staged Two-Dimensional Cutting
Stock Problem with Variable Sheet Size. In: Computer Aided Systems Theory — EUROCAST
2015, LNCS. Springer (2015). to appear

6. Fleszar, K.: Three Insertion Heuristics and a Justification Improvement Heuristic for Two-
Dimensional Bin Packing with Guillotine Cuts. Computers & Operations Research 40(1),
463-474 (2013)

7. Hong, S., Zhang, D., Lau, H.C., Zeng, X., Si, Y.: A hybrid heuristic algorithm for the 2D
variable-sized bin packing problem. European Journal of Operational Research 238(1), 95—
103 (2014)

8. Hopper, E., Turton, B.C.H.: An Empirical Study of meta-Heuristics Applied to 2D Rectangu-
lar Bin Packing - Part I. Studia Informatica Universalis 2(1), 77-92 (2002)

9. Lodi, A., Martello, S., Vigo, D.: Recent advances on two-dimensional bin packing problems.
Discrete Applied Mathematics 123(13), 379-396 (2002)

10. Pisinger, D., Sigurd, M.: The two-dimensional bin packing problem with variable bin sizes
and costs. Discrete Optimization 2(2), 154—167 (2005)

