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Abstract. We present a new scalable approach for the K-staged two-
dimensional cutting stock problem with variable sheet size, particularly
aiming to solve large-scale instances from industry. A construction heuris-
tic exploiting the congruency of subpatterns efficiently computes sheet
patterns of high quality. This heuristic is embedded in a beam-search
framework to allow for a meaningful selection from the available sheet
types. Computational experiments on benchmark instances show the ef-
fectiveness of our approach and demonstrate its scalability.

1 Introduction

The two-dimensional cutting stock problem occurs in many industrial applica-
tions, such as glass, paper or steel cutting, container loading, and VLSI [7]. It
is particularly relevant in the manufacturing industry, where large amounts of
material are processed and significant commercial benefits can be achieved by
minimizing the used material.

Formally, we consider in this work the K-staged two-dimensional cutting
stock problem with variable sheet size (K2CSV) in which we are given a set of
nE rectangular element types E = {1, . . . , nE}, each i ∈ E specified by a height
hi ∈ N+, a width wi ∈ N+, and a demand di ∈ N+. Furthermore, we have a set of
nT stock sheet types T = {1, . . . , nT }, each t ∈ T specified by a height Ht ∈ N+,
a width Wt ∈ N+, an available quantity qt ∈ N+, and a cost factor ct ∈ N+. Both
elements and sheets can be rotated by 90◦. A feasible solution is a set of cutting
patterns P = {P1, . . . , Pn}, i.e. an arrangement of the elements specified by E
on the available stock sheets specified by T without overlap and using guillotine
cuts up to depth K only. Each pattern Pj , j = 1, . . . , n, has an associated stock
sheet type tj and a quantity aj specifying how often the pattern is to be applied,
i.e. how many sheets of type tj are cut following pattern Pj . More precisely, a
cutting pattern is represented by a tree structure that is detailed in Section 1.1.

In particular, we are considering here large-scale instances from industry,
where the number of different element and sheet types is moderate but the
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demands of the element types are rather high. Reasonable solutions need to be
found within moderate runtimes. The objective is to find a feasible set of cutting
patterns P minimizing the weighted number of used sheets c(P).

min c(P) =
∑
t∈T

ctσt(P) (1)

where σt(P) is the number of used sheets of type t ∈ T in the set P.

1.1 Cutting Tree

Each cutting pattern Pj ∈ P is represented by a (cutting) tree structure. Its leaf
nodes correspond to individual elements (possibly in their rotated variants) and
its internal nodes are either horizontal or vertical compounds containing at least
one subpattern. Vertical compounds always only appear at odd stages (levels),
starting from stage 1, and represent parts separated by horizontal cuts of the
respective stage. Horizontal compounds always only appear at even stages and
represent parts separated by vertical cuts. Each node thus corresponds to a rect-
angle of a certain size (h,w), which is in case of compound nodes the bounding
box of the respectively aligned subpatterns. A pattern’s root node always has
a size that is not larger than the respective sheet size, i.e. h ≤ Htj , w ≤ Wtj .
Recall that aj represents the quantity of sheets cut according to pattern Pj .
Similarly, compound nodes store congruent subpatterns only by one subtree and
maintain an additional quantity. Compounds with only one successor are re-
quired in cases where a cut is necessary to cut off a waste rectangle, otherwise
they are avoided. In this tree structure, residual (waste) rectangles are never
explicitly stored, but can be derived considering a compound node’s embedding
in its parent compound or sheet.

Each pattern Pj ∈ P can be transformed into normal form having equal
objective value, hence it is sufficient to consider patterns in normal form only.
In normal form, subpatterns of vertical (horizontal) compounds are arranged
from top to bottom (left to right), ordered by nonincreasing width (height), and
aligned at their left (top) edges, i.e. in case the subpatterns have different widths
(heights), remaining space appears to their right (at their bottom). Figure 1
shows a 3-staged cutting pattern and the cutting tree representing it.

2 Related Work

A classical solution approach to the K2CSV has been proposed by Gilmore
and Gomory [4] who employ column generation, solving the pricing problem
by dynamic programming. Although more recently, both column generation
and dynamic programming still have been successfully used in approaches to
the K2CSV [11, 2], the high computational effort prohibits an efficient applica-
tion to large-scale instances. More reasonable approaches in terms of runtime
are fast construction heuristics. In their survey on solution approaches to two-
dimensional cutting stock problems, Lodi et al. [8] compare the most well-known
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Fig. 1: A three-staged cutting tree (left) and the corresponding cutting pattern (right).
The leaves represent actual elements of types 1, . . . , 4 obtained after at most K stages
of guillotine cuts. Note that the two elements of type 4 belong to the same vertical
compound and are thus only stored once.

ones, such as First-Fit Decreasing Height or Hybrid First-Fit. Being rather sim-
ple in their nature, a major drawback of these heuristics is their inflexibility.
Recently, Fleszar [3] proposed three more involved construction heuristics for
the K2CSV with only a single sheet type achieving excellent results in short
time. A solution is constructed element by element using a sophisticated enu-
meration of the possible ways of adding the current element to it.

The literature on heuristic approaches for the K2CSV specifically (i.e. when
multiple sheet types are given) is rather scarce. Only recently, Hong et al. [5]
embedded fast construction heuristics in a backtracking framework to address
the problem of a meaningful sheet type selection. Several solutions are computed
in a sheet by sheet manner and the best one is returned. Backtracking is applied
to choose a different sheet type, if a choice leads to a poor solution. Another
promising technique, generally applicable to problems where solutions can be
computed in terms of sequences, is beam-search, which was first applied in speech
recognition [9]. Beam-search is a heuristic breadth-first tree-search algorithm
that only further explores a most promising restricted-size subset of nodes at
each level.

3 A Congruency-Aware Construction Heuristic

In the following, we describe our heuristic for computing a pattern for a given
sheet. One of the major drawbacks of conventional construction heuristics is
their lack of scalability. A solution is usually constructed element by element
leading to rather high runtimes for large-scale instances with high demands. To
overcome this problem, we exploit congruent subpatterns during the solution
construction using the following principle: The heuristic operates not on single
elements but on element types. When considering a certain element type i ∈ E
for insertion into a compound c, we attempt to simultaneously insert multiple
instances of i. This is realized by inserting a completely filled grid of averti ×ahori



instances of i in c and doing the same for the compounds congruent to c. The
congruent compounds can be determined by considering the quantities along the
path from the current node representing c to the root of the cutting tree. Let
accuma be the accumulated quantity over these congruent compounds and let
dri be the residual demand of element type i. We can then, in total, insert

min

{⌊
averti · ahori

accuma

⌋
, dri

}
(2)

instances of i at once. Figure 2 demonstrates this principle on a simple example.
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Fig. 2: Congruency-aware pattern insertion: Considering the insertion of element type
3, eight instances can be added at once by exploiting the quantities in the cutting tree.

Another drawback of conventional construction heuristics we aim to avoid is
their inflexibility w.r.t. already placed elements. In particular, the sizes of the
(sub-)patterns currently in the pattern tree, as well as its general structure, are
usually fixed. Towards a more flexible construction heuristic, we therefore extend
the concept of Fleszar [3] as follows:

For a pattern p, let hmax
p (wmax

p ) denote the maximum height (width) of p.
The maximum rectangle of p is the largest rectangle to which the size of p can be
extended such that it remains feasible. Let further h̃p (w̃p) denote the vertical
(horizontal) slack of p, which is the difference between p’s maximum height
(width) and its current height (width). The maximum rectangles and the slack
values allow us to determine how much space there is left in a given compound
– considering a possible resizing of it – for the insertion of a new subpattern.

A further increase of flexibility is achieved by considering not only insertions
as a subpattern of a given compound, but also so-called in-parallel insertions.
For a given compound c and a subsequence S of c’s subpatterns, the averti × ahori

grid is joined in parallel to S, which allows restructuring the pattern. For further
details we refer to [3].

When an element type i ∈ E is considered for insertion, two basic questions
need to be addressed: Where should the insertion be made and how many in-
stances of i should be added, i.e. what is the best size of the grid? To answer



these questions, we define the fitness of an insertion in a certain compound c as
follows: Let h̃c and w̃c be the vertical and horizontal slacks of the compound after
the insertion of ai ≤ dri instances of i, arranged in a completely filled averti ×ahori

grid, i.e. ai = averti · ahori . Furthermore, let η be the absolute difference between
the total height (width) of the inserted grid and the height (width) of the grid’s
neighbor in c’s normal form, given that c is a horizontal (vertical) compound.
This neighbor is either the predecessor or the successor, whichever yields the
smaller difference. The fitness function is then defined as

f(h̃c, w̃c, ñ) =
1

(h̃c + 1) · (w̃c + 1) · (η + 1)
. (3)

As an exception we define f(h̃c, w̃c, ñ) = −1 if the size of the grid exceeds
the available space in c, i.e. if no insertion is possible. To determine the best
compound c and the best size of the averti × ahori grid for the insertion, we select
the compound and quantities that maximize the fitness function (3), i.e.

argmaxc,avert
i ,ahor

i
f(h̃c, w̃c, ñ) (4)

3.1 Congruency-Aware Critical-Fit Insertion Heuristic

Based on these ideas, we propose the congruency-aware critical-fit insertion
heuristic (CCF) extending the approach by Fleszar [3], which works as follows:

1. Order the element types in E by nonincreasing area and let further D =
〈dr1, . . . , drnE

〉 be the vector of residual demands, for all i ∈ E.
2. While D 6= 0 repeat steps 3 to 5.
3. An element type i ∈ E dominates another type j ∈ E if wi ≥ wj and
hi ≥ hj . Let U be the set of undominated element types considering only
those types for which dri > 0.

4. For each i ∈ U , determine the number of sheets in which i fits. Let the
critical element type i∗ be the one that fits in the least number of sheets.

5. Perform the insertion of i∗ that has the highest fitness value. If no insertion
of i∗ is possible, a new sheet is started. Afterwards, decrease dri∗ accordingly.

4 Sheet Type Selection by Beam-Search

A crucial aspect of solving the K2CSV is a meaningful selection of the sheet
types on which the patterns are computed. To address this issue, we employ a
beam-search strategy that generates a solution sheet by sheet. Each node in the
search tree corresponds to a (partial) solution, starting with the empty solution
at the root. A branch from a node reflects the decision for one of the sheet types
from T , including the possibly rotated variants. At each level, all the nodes on
that level are evaluated and all but the BW best ones are pruned, where BW is
the chosen beam-width. Note that some nodes might also be pruned earlier, e.g.
if there is no more sheet available of a certain type. This procedure continues
until all residual demands are zero. Figure 3 shows an example for BW = 2.
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Fig. 3: Beam-search example for BW = 2. At each level, each node is evaluated by
computing a pattern on the sheet type corresponding to it. The search is continued
only for the two best (highlighted) nodes from that level, the remaining ones are pruned.

We compute the pattern for a single sheet using the following variant of the
CCF heuristic (cf. Section 3.1): As there is only one sheet to fill, the critical
element type is simply the one having the highest fitness. If there is no i ∈ U
that fits, consider all i ∈ E. Finally, if no type i ∈ E fits, the pattern is considered
finished. Exploiting congruency, the pattern resulting from the evaluation of a
certain sheet type is considered to be used as often as possible. Let elemsi(Pj)
be the number of elements of type i ∈ E contained in the computed pattern Pj ,
let tj be the type of the sheet Pj is defined on and let dri be the residual demand
of i before the computation of Pj . The usable quantity for pattern Pj is then

min

{
mini∈E

⌊
elemsi(Pj)

dri

⌋
, qtj

}
(5)

4.1 Node Evaluation

To evaluate the tree nodes the following criterion is applied: Let P be the set of
patterns in the current partial solution, i.e. the patterns selected when following
the path in the search tree from the root down to the current node. Furthermore,
wr(Pj) denotes the waste ratio of pattern Pj , i.e. the unused area on the sheet,
ctj is the cost factor of the sheet type used for pattern Pj and aj is the quantity
of Pj . We prefer (partial) solutions for which the average waste ratio over P,
weighted by the respective cost factors is comparatively smaller. Formally, this
ratio is defined by: ∑

Pj∈P wr(Pj) · ctj · aj∑
Pj∈P ctj · aj

. (6)

5 Computational Results

Our algorithms have been implemented in C++, compiled with GCC version
4.8.2 and executed on a single core of a 3.40 GHz Intel Core i7-3770. For all
experiments, the stage limit was set to K = 10.

First, we investigated the effectiveness of congruency-aware pattern insertion
on instances with only a single sheet type. We adapted the randomly generated
benchmark instances from Berkey and Wang [1] (classes 1 to 6) and Martello



FF CFF CCF FF CFF CCF

|E| c(P) t[s] c(P) t[s] c(P) t[s] |E| c(P) t[s] c(P) t[s] c(P) t[s]

C
la

ss
5

4 1442.3 0.2 1450 < 0.1 1417.4 < 0.1

C
la

ss
7

4 1091.7 0.1 1099.9 < 0.1 1087.9 < 0.1
8 2285.6 0.5 2318.4 < 0.1 2190.7 < 0.1 8 2016 0.4 2030.3 < 0.1 1949.3 < 0.1
12 4197.6 1.4 4213.4 < 0.1 4071.9 < 0.1 12 2870 0.9 2885 < 0.1 2748.1 < 0.1
16 4983.6 2.2 5015.2 < 0.1 4857.3 < 0.1 16 4533.8 1.9 4541.4 < 0.1 4401.4 < 0.1
20 6344.8 3.5 6366 < 0.1 6212.8 < 0.1 20 5442.8 2.9 5466.5 < 0.1 5215.2 < 0.1

C
la

ss
6

4 126.6 < 0.1 128.6 < 0.1 124.5 < 0.1

C
la

ss
8

4 1162.7 0.1 1167.3 < 0.1 1136.2 < 0.1
8 199.3 0.1 200.7 < 0.1 194.5 < 0.1 8 1989.3 0.4 1988.3 < 0.1 1887.3 < 0.1
12 375.5 0.2 377.4 < 0.1 371.4 < 0.1 12 3052.8 1.0 3063.7 < 0.1 2949.5 < 0.1
16 447.2 0.3 447.5 < 0.1 440.6 0.1 16 4241.8 1.9 4248.4 < 0.1 4059.8 < 0.1
20 582.7 0.4 583.4 < 0.1 573.7 0.1 20 5273.3 2.9 5297.1 < 0.1 5178.2 < 0.1

Table 1: Experimental results for classes 5 and 6 from [1] and classes 7 and 8 from [10].
The best objective value for each subclass is printed in bold.

HHA BS (BW = 150) BS (BW = 500)

Instance Category |E| |T | a(P) t[s] a(P) t[s] a(P) t[s]
M1 100 6 98.4 60 98.4 1.36 98.4 4.10
M2 100 6 95.6 60 95.7 1.18 96.3 3.56
M3 150 6 97.4 60 96.5 3.51 96.5 10.70

Table 2: Comparison of area utilization for the three instance categories M1 to M3

and Vigo [10] (classes 7 to 10) as follows: Each class consists of 5 subclasses with
|E| = 4, . . . , 20 and di = 1000, for all i ∈ E. Each of these subclasses comprises
10 instances. We compared a simple first-fit heuristic proceeding element by
element (FF), a congruency-aware first-fit heuristic that always naively adds as
many instances of an element type as possible at once (CFF), and the CCF
heuristic. For each subclass, the average objective values c(P) and runtimes
t were computed. In Table 1 we give the results for classes 5,6,7 and 8. As
expected, for CFF we observe a significant speed-up over FF, but also an overall
worse solution quality. Remarkably, the much more involved CCF heuristic has
runtimes in the same order of magnitude and additionally yields significantly
better solutions for each subclass. The same holds for the remaining classes.

Second, we tested our beam-search approach on the benchmark set by Hop-
per and Turton [6]. The set comprises 3 categories of increasing complexity. Each
category consists of 5 randomly generated instances with |T | = 6, 2 ≤ qt ≤ 4
for all t ∈ T and di = 1 for all i ∈ E. We compared our beam-search approach
(BS) with the HHA algorithm by Hong et al. [5] as it yields – to the best of
our knowledge – the so far best results on these instances in the literature and
due to its relatedness to our approach. We experimented with several values for
BW and chose BW = 150 and BW = 500 as the best compromises for runtime
and solution quality, respectively. In Table 2 we report for each category the
average percentage of the used area on the sheets a(P) and the average runtime
t to be comparable with the results reported in [5]. Although we cannot exploit
congruency, as no element type is needed more than once, our runtimes are sig-
nificantly lower for all categories, compared to HHA, which always runs for 60s.
Nonetheless, our approach is competitive to HHA, achieving the same solution



quality for category M1, surpassing it for category M2, and falling slightly be-
hind for category M3. This even holds for BW = 150. Despite better runtimes,
the solution quality only declines for M2, still surpassing the result from HHA.

6 Conclusions and Future Work

We presented a scalable approach for the K2CSV based on the exploitation of
congruency during solution construction. The underlying construction heuristic
scales, in principle, to arbitrarily high element type demands generating very
reasonable results within a few milliseconds. In the light of multiple sheet types,
beam-search has been shown to be an effective approach for a meaningful selec-
tion of the types to use, even though the underlying construction heuristic could
not use its full potential.

Our congruency-aware construction heuristic poses a solid basis for the subse-
quent application of metaheuristics such as variable neighborhood search, where
the heuristic is called very often. In future work, we thus plan to extend our
approach by a respective improvement heuristic that is applied to the initially
constructed solution.
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