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Abstract

The constrained longest common subsequence (CLCS) problem was introduced as a specific measure of similarity between molecules.
It is a special case of the constrained sequence alignment problem and of the longest common subsequence (LCS) problem, which
are both well-studied problems in the scientific literature. Finding similarities between sequences plays an important role in the fields
of molecular biology, gene recognition, pattern matching, text analysis, and voice recognition, among others. The CLCS problem
in particular represents an interesting measure of similarity for molecules that have a putative structure in common. This paper
proposes an exact A∗ search algorithm for effectively solving the CLCS problem. This A∗ search is guided by a tight upper bound
calculation for the cost-to-go for the LCS problem. Our computational study shows that on various artificial and real benchmark sets
this algorithm scales better with growing instance size and requires significantly less computation time to prove optimality than
earlier state-of-the-art approaches from the literature.
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1. Introduction

Strings are objects commonly used for representing DNA
and RNA molecules. Finding similarities between molecular
structures plays an important role for understanding biological
processes that relate to these molecular structures. A frequently
applied measure of similarity is given by considering the (length
of) subsequences common to all given input strings. Hereby,
a subsequence of a string s is any sequence obtained by delet-
ing zero or more characters from s. The well-known longest
common subsequence (LCS) problem [1] has been studied for
more than fifty years in the literature: Given a set of at least two
input strings, we seek for a longest string that is a subsequence
of all these input strings. This LCS problem has numerous ap-
plications, not only in molecular biology [2], but also in data
compression [3], pattern recognition, file plagiarism checking,
text editing, and voice recognition [4], to name some of the most
prominent ones. Furthermore, the LCS problem is a special case
of the also prominent sequence alignment problem. Aligning
multiple sequences finds application in many tasks such as study-
ing gene regulation or inferring the evolutionary relationships of
genes or proteins [5].

A literature review shows that there are several well-studied
variants of the LCS problem. Examples include the the
repetition-free longest common subsequence (RFLCS) prob-
lem [6], the longest arc-preserving common subsequence
(LAPCS) problem [7], and the the longest common palindromic
subsequence (LCPS) problem [8]. These variants provide se-
quence similarity measures depending on the structural proper-
ties of the compared molecules. In this paper we study the con-
strained longest common subsequence (CLCS) problem [9, 10],
which is defined as follows. We are given two input strings s1
and s2 and a so-called pattern string P. The goal of is to find

the longest common subsequence of the two input strings that
includes P as a subsequence. A possible application scenario
of the CLCS problem concerns the identification of homology
between two biological sequences which have a specific or pu-
tative structure in common [9]. A more concrete example is
described in [11]. It deals with the comparison of seven RNase
sequences so that the three active-site residues, HKH, form part
of the solution1. This pattern is responsible, in essence, for the
main functionality of the RNase molecules such as catalyzing
the degradation of RNA sequences.

1.1. Preliminaries

Before we start outlining our approach, let us introduce es-
sential notation. By |s| we denote the length of a string s over
a finite alphabet Σ, and by n we denote the length of the longer
one among the two input strings s1 and s2, i.e., max(|s1|, |s2|).
The j-th letter of a string s is denoted by s[ j], j = 1, . . . , |s|, and
for j > |s| we define s[ j] = ε, where ε denotes the empty string.
Moreover, we denote the contiguous subsequence—that is, the
substring—of s starting at position j and ending at position j′

by s[ j, j′], 1 ≤ j ≤ j′ ≤ |s|. If j > j′, then s[ j, j′] = ε. Finally,
let |s|a be the number of occurrences of letter a ∈ Σ in s.

2. Related Work

The CLCS problem with two input strings s1 and s2 and a
pattern string P was formally introduced by Tsai [9]. A first solu-
tion approach based on dynamic programming (DP), which runs

1National Center of Biotechnology Information database, at
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in time O(|s1|
2 · |s2|

2 · |P|), was also presented in this work. Due
to its large time complexity, this algorithm has no real practical
relevance. Since then, several more efficient algorithms were
proposed. The most relevant ones are explained in more detail
in Section 5. Chin et al. [12] proved that the CLCS problem is
a special case of the constrained multiple sequence alignment
(CMSA) problem. Moreover, they developed an alternative DP–
based approach that requires O(|s1| · |s2| · |P|) space and time.
In fact, this algorithm can be regarded as the first practical al-
gorithm for the CLCS problem. By modifying the recursion
of Tsai [9], Arslan and Eğecioğlu [10] also obtained a more
efficient algorithm requiring O(|s1| · |s2| · |P|) time. The approach
of Chin et al. [12] further inspired the development of an algo-
rithm suggested by Deorowicz [13] with a time complexity of
O(|P| · (|s1| · L + R) + |s2|), where L is the length of the LCS
of the two strings and R is the number of pairs of matching
positions between s1 and s2. Ideas by Hunt and Szymanski [14]
were used to achieve this complexity. Some improvements of
the performance of Deorowicz’s algorithm were introduced in a
follow-up paper by Deorowicz and Obstoj [15] by utilizing so-
called external-entry points (EEP) which were initially proposed
in the context of the CMSA problem. Another approach was
proposed by Iliopoulos and Rahman [16]. This algorithm has a
time complexity of O(|P| · R · log log n + n). It makes use of a
specialized bounded heap data structure. Ho et al. [17] proposed
a method exploiting the idea that most corresponding CLCS lat-
tice cells in a DP approach remain unchanged in two consecutive
layers when |Σ| is small. This algorithm avoids corresponding
redundant computations. To the best of our knowledge, the lat-
est algorithm developed for the CLCS problem was proposed
by Hung et al. [18]. It is based on the diagonal approach for
the LCS problem by Nakatsu et al. [19]. The method requires
O(|P| · L · (n − L)) time and O(|s1| · |P|) space, where L is the
length of a CLCS. From the existing literature, the following
conclusions can be drawn.

• The algorithm by Chin et al. [12] is effective for rather short
input strings or when |Σ| is small.

• The algorithm by Deorowicz [15] can be seen as the state-of
the-art algorithm for instances with large alphabet sizes.

• The algorithm by Hung et al. [18] was shown to be one
order of magnitude faster than the algorithm of Deorowicz.
Speed differences are especially noticeable in the presence
of a rather high similarity of the input strings (> 70%) or a
rather low similarity (< 20%).

Moreover, we can identify the following weaknesses in the
computational studies of the approaches from the literature.

• Most of the benchmark instances used in [18, 15] seem
rather easy to solve. In fact, most of the compared algo-
rithms were able to do so in a fraction of a second. This
makes it difficult to make well-founded claims about the
running times. Moreover, we remark that, apart from the
real benchmark instances, all other benchmark instances
from the literature are not publicly available.

• The comparison of the two state-of-the-art algorithms from
Hung et al. and Deorowicz and Obstoj) in [18] was limited
to instances with a large fixed alphabet size |Σ| = 256.
Although it was shown that the algorithm of Hung et al. is
an order of magnitude faster than the algorithm from [15]
on these instances, the observed differences in running
times may not be significant as they are mostly below 0.1
seconds.

2.1. Our Contribution
Our contribution is twofold. First, we present a novel A∗

search approach for the CLCS problem. This algorithm works on
a so-called state graph, which is a directed acyclic graph whose
nodes represent (partial) solutions. Second, we re-implemented
the leading algorithms from the literature and compare our A∗

search with these on a wide and diverse set of benchmark in-
stances which is made publicly available. By means of this
comprehensive comparison we are able to make, for the first
time, well-founded claims about the practical performance of
the considered methods and their individual pros and cons. The
obtained results in particular indicate the practical efficiency of
our A∗ algorithm. Running times of the A∗ search are in most
cases significantly lower than those of the competitors.

The remainder of this article is organized as follows. In
Section 3, we first present the state graph that will serve as
the environment for our A∗ search. Section 4 presents the A∗

search algorithm, while further details about the re-implemented
competitors from the literature are given in Section 5. The
experimental comparison of the A∗ search to other state-of-the-
art methods is detailed in Section 6. Finally, Section 7 offers
conclusions and directions for future work.

3. The State Graph

In the following we introduce the state graph, whose inner
nodes are (meaningful) partial solutions, sink nodes are complete
solutions, and directed arcs represent (meaningful) extensions
of partial solutions. Note that this state graph has similarities to
the one that we already presented for the general LCS problem
in [20, 21].

Henceforth, let S = (s1, s2, P,Σ) be the considered problem
instance. Let s be a string over Σ that is a subsequence of
both input strings s1 and s2. Moreover, for i = 1, 2, let ps

i be
the position in si such that si[1, ps

i − 1] is the minimal string
among all strings si[1, x], x = 1, . . . , |si|, that contains s as a
subsequence. We call ps = (ps

1, ps
2) the position vector induced

by s. Note that, in this way, s induces a CLCS subproblem
S [ps] that consists of strings s1[ps

1, |s1|] and s2[ps
2, |s2|]. This

is because s can only be extended by potentially adding letters
that appear both in s1[ps

1, |s1|] and s2[ps
2, |s2|]. In this context,

let substring P[1, k′] of pattern string P be the maximal string
among all strings P[1, x], x = 1, . . . , |P|, such that P[1, k′] is a
subsequence of s. We then say that s is a valid (partial) solution
iff P[k′ + 1, |P|] is a subsequence of the strings in subproblem
S [ps], that is, a subsequence of s1[ps

1, |s1|] and s2[ps
2, |s2|].

The state graph G = (V, A) for our A∗ algorithm is a di-
rected acyclic graph, which—at any moment—is only known
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Figure 1: Example showing the full state graph for the problem instance ({s1 =

bcaacbdba, s2 = cbccadcbbd}, P = cbb,Σ = {a, b, c, d}). There are four
sink nodes representing non-extensible solutions (marked by light-gray color).
The optimal solution is s = bcacbb of length 6 that corresponds to the node
v = (pv = (9, 10), lv = 6, uv = 3). The longest path that corresponds to the
optimal solution is displayed by means of thick arrows.

partially by our A∗ approach. Each node v ∈ V(G) stores a triple
(pv, lv, uv), where pv is a position vector that induces subproblem
S [pv] = (s1[pv

1, |s1|], s2[pv
2, |s2|], P[uv + 1, |P|],Σ), where lv is the

length of the currently best known valid partial solution that
induces pv, and uv is the length of the longest prefix string of
pattern string P that is contained as a subsequence in the best
known partial solution that induces node v. Moreover, there is
an arc a = (v, v′) ∈ A(G) with label l(a) ∈ Σ between two nodes
v = (pv, lv, uv) and v′ = (pv′ , lv

′

, uv′ ) iff

• lv
′

= lv + 1 and

• Subproblem S [pv′ ] is induced by the partial solution that is
obtained by appending letter l(a) to the partial solution that
induces v.

As remarked already above, we are only interested in meaning-
ful partial solutions, and our A∗ search builds the state graph
on the fly. In particular, for extending a node v, the outgoing
arcs—that is, the letters that may be used to extend partial so-
lutions that induce node v—are determined as follows. First
of all, these letters must appear in both strings from S [pv]; we

call this subset of the alphabet potential letters. In order to find
the position of the first (left-most) appearance of each poten-
tial letter in the strings from S [pv] we make use of a successor
data structure determined during preprocessing that allows to
retrieve each position in constant time. Let this position of
the first appearance of a potential letter c in string si[pv

i , |si| be
Succ[i, pv

i , c], i = 1, 2. Moreover, a potential letter should not be
taken for extending v in case it is dominated by another potential
letter: We say that a letter c is dominated by a letter c′ , c iff
Succ[i, pv

i , c] ≥ Succ[i, pv
i , c
′], i = 1, 2. Note that a dominated

letter cannot lead to a better solution than when taking the letter
by which it is dominated instead. Henceforth, we denote the
set of non-dominated potential letters for extending a node v
by Σnd

v ⊆ Σ. However, in order to generate only extensions of
node v that correspond to feasible partial solutions, we addition-
ally have to filter out those extensions that lead to subproblems
whose strings do not contain the remaining part of P as a sub-
sequence. These cases are encountered by introducing another
data structure that is set up during preprocessing: Embed[i, u]
stores for each si, i = 1, 2, and for each u = 1, . . . , |P| the
right-most position x of si such that P[u, |P|] is a subsequence
of si[x, |si|]. Thus, for each letter c ∈ Σnd

v , if c , P[uv + 1] and
Succ[i, pv

i , c] > Embed[i, uv + 1], letter c cannot be used for ex-
tending a partial solution represented by v, and consequently it is
removed from Σnd

v . An extension v′ = (pv′ , lv
′

, uv′) is generated
for each remaining letter c ∈ Σnd

v , where pv′
i = Succ[i, pv

i , c] + 1
for i = 1, 2, lv

′

= lv + 1 and uv′ = uv + 1 in case c = P[uv + 1],
respectively uv′ = uv otherwise.

The root node of the state graph is defined by r = (pr =

(1, 1), lr = 0, ur = 0). Sink nodes are all non-extensible nodes
and represent complete solutions (in contrast to partial solutions).
Consequently, a longest path from the root node to a sink node
in the state graph represents an optimal solution to the CLCS
problem. Finally, notice that the definition of the state graph
does not depend on the number of input strings, and can there-
fore be straightforwardly extended to an arbitrary number of
input strings. An example of the full state graph for problem
instance ({s1 = bcaacbdba, s2 = cbccadcbbd}, P = cbb,Σ =

{a, b, c, d}) is shown in Fig. 1. The root node, for example, can
only be extended by letters b and c, because letters a and d
are dominated by the other two letters. Furthermore, note that
node ((6, 5), 3, 1) (induced by partial solution bcc) can only be
extended by letter b. Even though letter d is not dominated by
letter b, adding letter d can only lead to infeasible solutions,
because any possible solution starting with bccd will not have
P = cbb as a subsequence. Finally, the sequence of arc labels
on the longest path is bcacbb, which is therefore the (unique)
optimal solution to this example problem instance.

3.1. Upper Bounds for the CLCS Problem
One of the essential ingredients of an A∗ search is an admissi-

ble heuristic function for estimating the cost-to-go, i.e., in our
case the length of a CLCS for any subproblem represented by
a node of our state graph. In the context of a maximization
problem such as the CLCS problem, a heuristic function is said
to be admissible if it never underestimates the length of an op-
timal solution. We therefore make use here of a typically tight
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upper bound function that was originally developed for the LCS
problem [20]. Note, in this context, that any valid upper bound
for an LCS problem instance is also an upper bound for a corre-
sponding CLCS problem instance obtained by adding a pattern
string P to the LCS problem instance.

Given a node v of the state graph, the LCS upper bound
function proposed by Blum et al. [22] determines for each letter
an upper limit on the number of its occurrences in any solution
that contains the partial solution inducing v as prefix string.
Summing these values over all letters from Σ, we obtain a valid
upper bound on any complete solution that can be constructed
starting from v:

UB1(v) =
∑
a∈Σ

min
(
|s1[pv

1, |s1|]|a, |s2[pv
2, |s2|]|a

)
(1)

This bound is efficiently calculated in O(|Σ|) time by making use
of some data structures as detailed in [21].

An alternative DP–based upper bound function was intro-
duced by Wang et al. [23]. It makes use of the DP recursion
for the LCS problem with two input strings. A scoring ma-
trix M is generated where entry M[x, y], x = 1, . . . , |s1| + 1,
y = 1, . . . , |s2| + 1 stores the length of the LCS of s1[x, |s1|] and
s2[y, |s2|]. Thus, an upper bound for a given state graph node v
is given by

UB2(v) = M[pv
1, pv

2]. (2)

Neglecting the preprocessing step for generating M, this bound
can be efficiently retrieved in constant time. As neither of the
two bounds dominate the other, we use here the combination of
both given by UB(v) := min{UB1(v),UB2(v)}.

4. A∗ Algorithm for the CLCS Problem

A∗ is a so-called informed search algorithm that was originally
developed by Hart et al. [24] to find shortest paths in weighted
graphs. The search maintains a list of open nodes, which is
initialized with the root node, and works in a best-first-search
manner by expanding in each iteration a most promising open
node. In order to rank open nodes, A∗ search makes use of a
priority function f (v) = g(v) + h(v), for v ∈ V(G), where, g(v)
denotes the length of a so far best path from the root node to
v, and h(v) is the heuristic estimate for the cost-to-go, i.e., the
length of an optimal further path from v to a goal node. As
the state graph in the case of the CLCS problem was already
outlined in Section 3, it remains to be mentioned that for h(v)
we will use the upper bound UB(v) from the previous section,
and g(v) := lv.

In order for the search process to be efficient, our implemen-
tation maintains two data structures: (1) a hash-map N storing
all nodes that were encountered during the search, and (2) the
open list Q ⊆ N containing all not yet expanded/treated nodes.
More specifically, N is implemented as a nested data structure
of sorted lists within a hash map. The position vector pv of a
node v = (pv, lv, uv) is mapped to a (linked) list storing pairs (lv,
uv). This structure allows for an efficient membership check, i.e.,
whether or not a node that represents subproblem a S [pv] was

already encountered during the search, and a quick retrieval of
the respective nodes.

Note that it might occur that several nodes representing the
same subproblem S [pv] are stored, as the following example
demonstrates: Consider the problem instance with input strings
s1 = bacxmnob, s2 = abcxmbno, and pattern string P = b. The
A∗ search might, at some time, encounter node v1 = ((4, 4), 2, 1)
induced by partial solution bx, and—at some other time—it
might encounter another node v2 = ((4, 4), 3, 0) induced by
partial solution acx. Even though the path from the root node to
node v1 is shorter than the path to node v2, the former still leads
to a better solution in the end (bxmno in comparison to acxb). As
the information which of the nodes leads to an optimal solution
is not known beforehand, both nodes are stored.

Finally, the open list Q is realized by a priority queue with
priority values f (v) = lv + UB(v), for all v ∈ V . In case of ties,
nodes with larger lv-values are preferred. In the case of further
ties, nodes with larger uv-values are preferred.

The search starts by inserting the root node of the state graph
into N and Q. Then, at each iteration, a node v with highest
priority is retrieved from Q and expanded by considering all
successor nodes for a ∈ Σnd

v ). If such an extensions leads to
a new state, the corresponding node, denoted by vext, is added
to N and Q. Otherwise, vext is compared to the nodes from
set Nrel ⊆ N containing those nodes that represent the same
subproblem S [pv]. Dominated nodes are identified in this way
and dropped from the search process, i.e., the dominated nodes
are removed from N and Q. If node vext is dominated by one
of the nodes from Nrel, it can simply be discarded. Otherwise,
it is added to N and Q. In this context, given v1, v2 ∈ Nrel we
say that v1 dominates v2 iff lv1 ≥ lv2 ∧ uv1 ≥ uv2 . We would
like to emphasize that detecting the domination in Nrel was, on
average, slightly faster when the elements of the lists were sorted
in decreasing order of their uv-values. Therefore, we used this
ordering in our implementation.

As the upper bound function UB() is admissible—that is,
it never underestimates the length of an optimal solution—A∗

yields an optimal solution whenever the node selected for expan-
sion is a complete node [24]. Moreover, note that UB() also is
monotonic, which means that the upper bound of any child node
never overestimates the upper bound of its parent node. This
implies that no re-expansion of already expanded nodes become
necessary [24]. In general, A∗ search is known to be optimal
in terms of the number of node expansions required to prove
optimality w.r.t. the upper bound and the tie–breaking criterion
used. A pseudocode of our A∗ search implementation for the
CLCS problem is provided in Algorithm 1.

1

2 N = Q = []
3 r = ((1,1) ,0,0)
4 N.insert(r)
5 Q.insert(r)
6 while(Q != []):
7 v = Q.pop()
8 Determine Σnd

v
9 if Σnd

v = []: # complete solution found
10 return the solution corresponds to v
11 else:
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12 for c in Σnd
v :

13 Generate child vext w.r.t. char. c
14 Nrel = N[pvext ]
15 for vrel in Nrel:
16 if lvrel ≥ lvext and uvrel ≥ uvext :
17 insert = false
18 break # domination fulfilled
19 if lvext >= lvrel and uvext ≥ uvrel :
20 Remove node vrel from N, Q
21 if insert: #new state is non -dominated
22 N.insert(vext)
23 Q.insert(vext) # priritized acc. to UB
24 return ε if no feasible solution exists
25

Algorithm 1: A∗ search for the CLCS problem.

4.1. Time and Space Complexity of the A∗ Search
In general, an upper bound for the worst-case performance

of A∗ search is O(bd), where b is the branching factor—which,
in our case, is the number of letters—and d is the length of an
optimal solution. In other words, the runtime of A∗ search is, in
general, exponential. Providing a tighter bound is often hardly
possible, as the practical runtime strongly depends on the used
guidance heuristic [25]. In practice, however, it frequently hap-
pens that A∗ search, when using a meaningful heuristic, is quite
fast, even in those cases in which nothing better than the expo-
nential worst-case run time can be proven. Therefore, respective
publications typically focus more on empirically observed run
times or indicate the number of expanded/visited nodes, for
example, [23].

Nevertheless, it is possible to derive polynomial worst-case
time and space complexity bounds for our A∗ search from Algo-
rithm 1 as follows. The number of visited nodes is bounded by
O(n2 · |P|). Since the used upper bound function is monotonic,
we can be sure that no re-expansion of already expanded nodes
is necessary, which further implies that the outer while-loop of
Algorithm 1 is executed at most O(n2 · |P|) times. The pop() func-
tion in Line 7 of Algorithm 1 needs a constant time to retrieve
the top node of Q. Afterwards, reorganizing the nodes in the
priority queue Q is done in O(log |Q|) = O(log(n · |P|) = O(n)
time. Determining the set of non-dominated nodes of a node v is
achieved in O(|Σ|2 ·n) time by pairwise comparisons. For generat-
ing all child nodes of a node v and then checking the domination
among the nodes which refer to the same subproblem (Lines
15-20), O(|Σ| · n · log n) time is required in total. Note that the
factor log(n) reflects the time required to check the domination
of a single node, which can be done via binary search. The
code in Lines 21–23 is executes in O(log(n · |P|)) = O(n) time.
Overall, to execute a single iteration of the main while-loop, we
need

O(log n + |Σ| · n · log n + |Σ|2 · n + log(n · |P|)) = (3)

O(|Σ| · n · log n + |Σ|2 · n) = O(n · |Σ| · (log n + |Σ|)) (4)

time. For executing the whole algorithm, the time is in

O(n · |Σ| · (log n + |Σ|) · O(n2 · |P|) = (5)

O(n3 · |P| · |Σ| · (log n + |Σ|)). (6)

Since |Σ|, in practice, represents a small constant number, the
time to execute our A∗ search is in

O(n3 · |P| · log n). (7)

Concerning the space complexity of the proposed A∗ algorithm,
the worst case corresponds to storing all nodes of the state graph,
and is thus in O(n2 · |P|).

5. Algorithms Used for Comparison

Algorithm by Chin et al. [12].. This method is based on
dynamic programming. It uses a three-dimensional matrix
M to store the lengths of optimal solutions of subproblems
S i, j,k = (s1[1, i], s2[1, j], P[1, k],Σ) for i = 1, . . . , |s1|, j =

1, . . . , |s2|, k = 1, . . . , |P|. All these values are obtained recur-
sively on the basis of solutions to smaller subinstances for which
optimal values are already known. In essence, the recursive
procedure distinguishes the following cases and handles them
appropriately: s1[i] = s2[ j] = P[k], s1[i] = s2[ j] , P[k], or
s1[i] , s2[ j]. In this way, optimal values of successor entries
(representing larger subproblems) are determined in constant
time. Due to its simplicity, the algorithm is fast for problem
instances of small and medium size but its performance degrades
for longer sequences. In general, its time and space complexity
is O(|s1| · |s2| · |P|).

Algorithm by Arslan and Eğecioğlu [10].. This approach re-
places the matrix used in the original dynamic programming
algorithm of Tsai [9] by multiple three-dimensional matrices
in order to realize some calculations of the approach of Tsai
more efficiently. In particular, the recurrence used by Tsai was
simplified. In the end, this results in an algorithm with the same
time complexity as the algorithm of Chin et al., however with a
memory requirement that is by a factor of three higher.

Algorithm by Iliopoulos and Rahman [16].. This method is
based on a modification of the dynamic programming formu-
lation from [10]. To perform the matrix calculations of each
iteration efficiently, the authors make use of a so-called bounded
heap data structure [26] that was realized by means of Van Emde
Boas (vEB) trees [27]. This data structure allows to calculate in-
termediate results more efficiently in O(log log n) time, leading
to a total time complexity of O(|P| · R · log log n + n), where R is
the number of ordered pairs of positions at which input strings
s1 and s2 match.

Algorithm by Hung et al. [18].. This method is a more recent
development that is particularly suited for input strings that
are highly similar. It was developed on the basis of the so-
called diagonal concept for the LCS problem by Nakatsu et
al. [19]. In general it can be said that the efficiency of the
algorithm grows with the length of an optimal CLCS solution.
The algorithm uses a table D of dimension |P| × L, where L is
an upper bound for the CLCS length. Each cell Di,l stores a
triple associated with a partial solution. At each iteration of the
algorithm some of the cells are filled with information such that
for any triple (i′, j, k) ∈ Di,l, where i′ = 1, . . . , i, the relation
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|CLCS(s1[1, i′], s2[1, j], P[1, |P| − k])| ≥ l holds. The elements
belonging to Di,l are determined by extending all the partial
solutions from Di−1,l−1, to which all the partial solutions of Di−1,l
are added, and by filtering out dominated pairs. If (i′, j, 0) ∈ Di,l

and there is no other (i′′, j′′, 0) ∈ Di,l with i′ , i′′ and j , j′′,
it implies that |CLCS(s1[1, i′], s2[1, j], P)| = l. In this way an
optimal solution is found for the specific subproblem.

Algorithm by Deorowicz [13].. Just like the previous approach,
this algorithm is a so-called sparse approach. The matrix utilized
for the calculations is processed for each level k = 0, . . . , |P| in
a row-wise manner and an ordered list is maintained to store
for each rank (representing the assumed length of an optimal
solution) the lowest possible column number. Furthermore, a
two-dimensional matrix T is used to store computed values from
the current and previous levels. For each row i and column j
where s1[i] = s2[ j], the list entries are recalculated. If s1[i] =

s2[ j] , P[k], then the value for the match at (i, j) is calculated
from the highest rank in the list with a column number lower
than j. Otherwise, if s1[i] = s2[ j] = P[k], the value is calculated
from matrix T . On completion, the highest rank in the list
corresponds to the length of an optimal solution.

Improvements of Deorowicz’s algorithm were introduced by
Deorowicz and Obstoj [15]. They utilize so–called external–
entry points (EEP) [28] initially proposed for the pairwise se-
quence alignment problem, for omitting those cells in the lists
that do not contribute to optimal solutions.

6. Experimental Results

All algorithms were implemented in C++ with g++ 7.4 and
the experiments were conducted in single-threaded mode on a
machine with an Intel Xeon E5-2640 processor with 2.40 GHz
and a memory limit of 32 GB. The maximum computation time
allowed for each run was limited to one hour.

We aimed to re-implement all algorithms from the literature
in the way in which they are described in the original articles as
the respective code could not be obtained. In a few cases, due
to a lack of sufficient details, we had to make our own specific
implementation decisions. This was in particular the case for
the algorithm of Iliopoulos and Rahman [16]: The bounded
heap data structure has to be initialized for different indices,
and it remains unclear how this can be done efficiently. The
authors were contacted with this issue but we did not receive
a response. Our implementation creates a new bounded heap
for a new index by copying the content from the bounded heap
of the previous index. This is the most time-demanding part
of the algorithm, which is in particular noticed in the context
of instances with large values of n. Unfortunately, the original
article does not contain any computational study that could serve
as a comparison but just focuses on asymptotic runtimes from a
theoretical point-of-view.

We emphasize that in general, we did our best to achieve
efficient re-implementations of the approaches from literature
for the experimental comparison.

Table 1: Benchmark suite Real from [15].

data set number of
sequences

sequence length
(min, med, max)

|Σ| origin

ds0 7 (111, 124, 134) 20 [11]
ds1 6 (124, 149, 185) 20 [11]
ds2 6 (131, 142, 160) 20 [11]
ds3 5 (189, 277, 327) 20 [11]
ds4 6 (98, 114, 123) 20 [29]

6.1. Benchmark Instances

First of all, the benchmark instances are available
at https://www.ac.tuwien.ac.at/files/resources/
instances/clcs/2d-clcs.zip

With the aim of creating a diverse set of problem instances,
for each combination of n ∈ {100, 500, 1000} (length of the
input strings), |Σ| ∈ {4, 12, 20} (alphabet size), p′ =

|P|
n ∈{

1
50 ,

1
20 ,

1
10 ,

1
4 ,

1
2

}
(length of the pattern string), ten problem in-

stances were randomly generated. This results in a total of 450
instances. The following procedure was used for generating
each instances. First, a pattern string P was created uniformly at
random, that is, each character from Σ has an equal chance to be
chosen for each position of P. Second, two input strings of equal
length n were generated as follows. First, |P| different positions
were randomly chosen in each input string. Then, characters
P[1], . . . , P[|P|] are placed (in this order) from left to right at
these positions. Finally, the remaining characters of each input
string were set to letters chosen uniformly at random from the
alphabet Σ. This procedure ensures that at least one feasible
CLCS solution exists for each benchmark instances. Unfortu-
nately, none of the artificial benchmarks from [15] and [18] were
provided to us, although the respective authors were contacted
with this concern.

In addition to these artificially generated instances, we use
a benchmark suite from [15] based on strings representing real
biological sequences2. This benchmark set is henceforth called
Real. It has its origins in experimental studies on the con-
strained multiple sequence alignment (CMSA) problem consid-
ered in [29, 11]. Each possible pair of sequences from this data
set, together with a pattern string, was used in [15] to define a
problem instance for the CLCS problem. Properties of the input
strings, together with their origins, are provided in Table 1. In
particular, Chin et al. [11] provided four sets of strings contain-
ing RNase sequences with lengths from 111 to 327. In contrast,
set ds4—containing aspartic acid protease family sequences—
was provided by Lu and Huang [29], also in the context of the
CMSA problem. Overall, benchmark set Real consists of 121
problem instances.

6.2. Results

We compare our A∗ search from Section 4 with our re-
implementations of the following state-of-the-art algorithms
from the literature.

2Available at http://sun.aei.polsl.pl/~sdeor/pub/do09-ds.zip.
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Table 2: Instances with p′ =
|P|
n = 1

50 : Average runtimes in seconds.

|Σ| n |s| Chin Deo AE IR Hung A∗

4 100 60.9 0.2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
4 500 319.3 < 0.1 0.1 0.2 6.5 0.1 < 0.1
4 1000 646.3 0.2 1 1.3 86.4 0.5 < 0.1

12 100 40.1 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 216.0 < 0.1 0.1 0.2 2.9 0.2 < 0.1
12 1000 435.5 0.3 0.5 1.4 39.4 1 0.1
20 100 33.5 < 0.1 0.1 < 0.1 < 0.1 < 0.1 < 0.1
20 500 175.7 < 0.1 0.1 0.2 2.2 0.2 < 0.1
20 1000 355.4 0.3 0.5 1.4 26.6 1.1 < 0.1

Table 3: Instances with p′ =
|P|
n = 1

20 : Average runtimes in seconds.

|Σ| n |s| Chin Deo AE IR Hung A∗

4 100 61.9 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
4 500 323.0 0.1 0.5 0.4 15.7 0.2 < 0.1
4 1000 645.9 0.9 1.8 3.4 215.5 1.2 0.1

12 100 41.0 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 215.3 0.1 0.2 0.4 5.3 0.3 < 0.1
12 1000 437.0 0.9 1.1 3.4 69.2 2.2 0.2
20 100 32.2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
20 500 170.9 0.1 0.2 0.3 3.3 0.2 < 0.1
20 1000 348.4 1 1.1 3.5 40.6 1.7 0.2

• Chin: Algorithm by Chin et al. [12];

• Deo: Algorithm by Deorowicz [13];

• AE: Algorithm by Arslan and Eğecioğlu [10];

• IR: Algorithm by Iliopoulos and Rahman [16];

• Hung: Algorithm by Hung et al. [18].

The source code of this project is accessible at https:
//www.ac.tuwien.ac.at/files/resources/software/
clcs.zip.

In general, all algorithms could find optimal solutions and
prove their optimality for all instances. However, the required
runtimes differ sometimes substantially. Tables 2–7 show these
runtimes for each re-implemented algorithm as well as our A∗

search in seconds averaged over each group of instances. Results
for the artificial instance sets are subdivided into five different
subclasses w.r.t. the value of p′, which determines the length of
pattern string P. Concerning benchmark suite Real, the average
running times refer to all those instances that belong to the
respective data set in combination with a pattern P, cf. Table 7.
For each instance group (line), the lowest runtimes among the
competing algorithms are shown in bold font. The first two
columns present the properties of the instance group, while the
third column |s| lists the average length of the optimal solutions
for the respective problem instances.
The following observations can be drawn from these results.

• The small instances (where n = 100) are easy to solve and
all competitors require only a fraction of a second for doing
so.

• The first algorithm that starts losing efficiency with grow-
ing input string length is IR. Already starting with n = 500,

Table 4: Instances with p′ =
|P|
n = 1

10 : : Average runtimes in seconds.

|Σ| n |s| Chin Deo AE IR Hung A∗

4 100 62.6 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1
4 500 320.9 0.3 0.6 0.9 26.8 0.4 < 0.1
4 1000 646.4 1.8 3.5 9.2 331.2 3.3 < 0.1

12 100 40.5 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 207.1 0.2 0.3 0.9 7.3 0.3 < 0.1
12 1000 419.0 2.1 2.2 8.3 91.1 2.7 0.2
20 100 31.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
20 500 157.4 0.2 0.3 0.9 5.3 0.2 < 0.1
20 1000 317.9 1.8 2.1 8.4 68.1 2 < 0.1

Table 5: Instances with p′ =
|P|
n = 1

4 : Average runtimes in seconds.

|Σ| n |s| Chin Deo AE IR Hung A∗

4 100 63.2 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1
4 500 320.1 0.6 1.4 2.7 34.8 0.5 < 0.1
4 1000 642.5 5 6.6 113.6 436.6 4.5 0.1

12 100 39.9 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 203.0 0.6 0.7 3 18.7 0.3 < 0.1
12 1000 413.2 5.3 5.7 112 213.2 3.2 < 0.1
20 100 35.7 < 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1
20 500 175.5 0.6 0.6 3.3 14.4 0.3 < 0.1
20 1000 351.1 5.2 5.9 105.4 154.8 1.8 0.1

Table 6: Instances with p′ =
|P|
n = 1

2 : Average runtimes in seconds.

|Σ| n |s| Chin Deo AE IR Hung A∗

4 100 63.9 < 0.1 < 0.1 < 0.1 0.2 < 0.1 < 0.1
4 500 325.5 1.4 1.5 22.5 60.6 0.4 < 0.1
4 1000 652.5 19.1 12.6 336.5 739.4 3.6 < 0.1

12 100 54.6 0.1 < 0.1 < 0.1 0.1 < 0.1 < 0.1
12 500 276.5 1.4 1.4 23.9 34.2 0.2 < 0.1
12 1000 544.3 17.8 11.3 347.5 362.2 2.4 0.1
20 100 53.0 < 0.1 0.1 < 0.1 0.1 < 0.1 < 0.1
20 500 264.9 1.2 1.3 21.5 30.6 0.2 < 0.1
20 1000 524.5 18.8 11.1 341 278.8 1.5 0.1

Table 7: Benchmark set Real: Average runtimes in seconds.

data set P |s| Chin Deo AE IR Hung A∗

ds0 HKH 60.62 0.012 0.015 0.012 0.026 0.017 0.011
ds1 HKH 64.00 0.012 0.017 0.013 0.032 0.019 0.015
ds1 HKSH 63.93 0.011 0.021 0.017 0.033 0.017 0.011
ds1 HKSTH 63.87 0.016 0.022 0.019 0.043 0.024 0.012
ds2 HKSH 79.60 0.015 0.020 0.016 0.030 0.052 0.012
ds2 HKSTH 77.87 0.013 0.018 0.016 0.030 0.051 0.013
ds3 HKH 103.90 0.018 0.026 0.019 0.138 0.188 0.014
ds4 DGGG 43.87 0.012 0.022 0.014 0.023 0.049 0.012

the computation times start to grow substantially in com-
parison to the other approaches, which is most likely due to
the complexity of the utilized data structures. We remark
that our specific implementation decision concerning the
initialization of the bounded heap may have a significant
impact, as mentioned already in Section 5.

• Algorithm Chin clearly outperforms Deo when |Σ| is small.
With growing |Σ|, as already noticed in earlier studies [13],
Deo becomes more efficient. In fact, the two approaches
perform similarly for |Σ| = 20. The advantages of Deo over
Chin are noticed in particular for higher p′; see Table 5.
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• Algorithm Hung generally performs better than Deo and
Chin. This confirms the conclusions from the computa-
tional study in Hung et al. [18].

• With increasing p′ and thus an increasing length of P, all
approaches degrade in their performance, except for A∗ and
Hung, which still remain highly efficient.

• A general conclusion for the artificial benchmark set is that
A∗ search is in most cases about one order of magnitude
faster than Hung, which is overall the second-best approach.

• Concerning the results for benchmark set Real (see Ta-
ble 7), we can conclude that all algorithms only require
short times as the input strings are rather short. Never-
theless we can also see here that the A∗ search is almost
consistently fastest.

• Figure 2 shows the influence of the instance length on
the algorithms’ runtimes for |Σ| = 4 and |Σ| = 20. Note
that IR is not included here since it was obviously the
slowest among the competitors. It can be noticed that the
performance of A∗ is the only one that does not degrade
much with increasing n.

• Figure 3 shows the influence of the length of P on the
algorithms’ runtimes for n = 500 and n = 1000 (in log-
scale). It can be noticed again that A∗ does not suffer much
from an increase of the length of P. This also holds for
Hung but not the other competitors, whose performance
degrades with increasing |P|.

Finally, we also compare the amount of work done by the
algorithms in order to reach the optimal solutions. In the case
of A∗, this amount of work is measured by the number of gener-
ated nodes of the state graph. In the case of Deo, this refers to
the number of different keys (i, j, k) generated during the algo-
rithm execution. Finally, in the case of Hung, this is measured
by the amount of newly generated nodes in each Di,l (which
corresponds to the amount of non-dominated extensions of the
nodes from Di−1,l−1). Let us call this measure the amount of
created nodes for all three algorithms. This measure is shown
in log-scale in Fig. 4 for the instances with n = 500. The x-axis
of these graphics varies over different ratios p′ =

|P|
n . The curve

denoted by Max (see legends) is the theoretical upper bound on
the number of created nodes, which is |s1| × |s2| × |P| for an
instance (s1, s2, P,Σ). The graphics clearly show that A∗ creates
the fewest nodes in comparison to the other approaches. The
difference becomes larger with an increasing length of P, which
correlates with an increase in the similarity between the input
strings. For those instances with strongly related input strings,
the upper bound UB used in the A∗ search is usually tighter,
which results in fewer node expansions. The amount of created
nodes in A∗ decreases with an increasing length of P after some
point, because the search space becomes more restricted; see
Fig. 4 and |Σ| = 4 from p′ ≥ 1

4 onward and |Σ| = 20 from p′ ≥ 1
20

onward.

Table 8: Results for instances with different degrees of similarity (θ) of the input
strings. The similarity of the input strings grows with an increasing value of θ.

θ |s| Chin A∗

0.1 41.3 0.060 0.050
0.2 43.8 0.070 0.050
0.5 55.0 0.061 0.052
0.8 73.2 0.050 0.055
0.9 82.5 0.050 0.075

6.3. Additional Experimental Evaluation and Findings

From a more practical point of view our results suggest that,
the more misleading the heuristic function used by our A∗ for a
specific problem instance is, the higher will be its running time.
More specifically, the heuristic employed in our A∗ algorithm
seems more misleading when the input strings are rather similar.
In order to verify this impression, we conducted an additional set
of experiments. First, we generated an additional set of problem
instances with different degrees of similarity in the input strings.
For example, a similarity of θ = 0.3 means that, on average, 30%
of the positions in the two input strings have the same character.
We generated 10 problem instances with input string length
n = 100 for each similarity degree θ ∈ {0.1, 0.2, 0.5, 0.8, 0.9}
and an alphabet size of |Σ| = 12. Moreover, the same pattern
string P = abbbcbcbdb was used for all instances.

Running times of our A∗ algorithm are shown in comparison
to algorithm Chin in Table 8. Results indeed confirm our obser-
vation from above. That is, when the degree of similarity is rather
low, our A∗ search is faster (see the results for θ ∈ {0.1, 0.2, 0.5}).
On the other side, when the degree of similarity is rather high
(θ ∈ {0.8, 0.9}), Chin is faster. This is because in the case of
instances with a rather high θ-value, a significant amount of time
of the overall running time of A∗ is spent to calculate the upper
bound values of the generated nodes. However, as shown in our
main experimental evaluation, the A∗ search can be expected
to outperform the competitor algorithms in most other cases,
especially the harder ones.

7. Conclusions and Future Work

In this paper we considered the constrained longest common
subsequence (CLCS) problem. The problem is well studied
in the literature, which offers algorithms based on dynamic
programming as well as sparse approaches. In contrast, we
presented an A∗ search for this problem, which is guided by
tight upper bound function for the LCS problem. The effectivity
of this approach was demonstrated by comparing it to several
other so far leading algorithms from the literature. The A∗ search
is able to solve all artificially generated benchmarks as well as
the real benchmark instances in a fraction of a second. More
specifically, the running times required by A∗ are about an order
of magnitude smaller than those of the second-best algorithm.
Interestingly, the performance of A∗ does not degrade much with
an increase of the instance size, which is not the case for the
other algorithms from the literature. We conclude that A∗ search
is a tool that has a great potential to be used for the study of
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similarities between sequences. In fact, our A∗ search is the new
state-of-the-art method for the CLCS problem.

In future work, we plan extend this A∗ search towards the
general CLCS problem with an arbitrary number of input strings,
which is an NP–hard problem. Moreover, we consider the A∗

search also a promising framework for solving related LCS prob-
lem variants such as the restricted LCS (RLCS) problem [30, 31].
For those instances where A∗ search might fail to prove optimal-
ity (e.g., due to exceeding a memory limit), the A∗ framework
might be turned into an anytime algorithm [32] in order to obtain
high-quality heuristic solutions already early during the search
process.
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Figure 2: Average computation times of the algorithms for p′ = 1
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Figure 4: Average amount of created nodes by the algorithms for n = 500.
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