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Abstract. Given a set of two input strings and a pattern string, the
constrained longest common subsequence problem deals with finding a
longest string that is a subsequence of both input strings and that con-
tains the given pattern string as a subsequence. This problem has various
applications, especially in computational biology. In this work we con-
sider the NP–hard case of the problem in which more than two input
strings are given. First, we adapt an existing A∗ search from two input
strings to an arbitrary number m of input strings (m ≥ 2). With the aim
of tackling large problem instances approximately, we additionally pro-
pose a greedy heuristic and a beam search. All three algorithms are com-
pared to an existing approximation algorithm from the literature. Beam
search turns out to be the best heuristic approach, matching almost all
optimal solutions obtained by A∗ search for rather small instances.

Keywords: Longest common subsequences · Constrained
subsequences · Beam search · A∗ search

1 Introduction

Strings are commonly used to represent DNA and RNA in computational biology,
and it is often necessary to obtain a measure of similarity for two or more input
strings. One of the most well-known measures is calculated by the so-called
longest common subsequence (LS) problem. Given a number of input strings,
this problem asks to find a longest string that is a subsequence of all input
strings. Hereby, a subsequence t of a string s is obtained by deleting zero or
more characters from s. Apart from computational biology, the LCS problem
finds also application in video segmentation [3] and text processing [13], just to
name a few.

During the last three decades, several variants of the LCS problem have
arisen from practice. One of these variants is the constrained longest common
subsequence (CLCS) problem [14], which can be stated as follows. Given m input
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strings and a pattern string P , we seek for a longest common subsequence of
the input strings that has P as a subsequence. This problem presents a useful
measure of similarity when additional information concerning common structure
of the input strings is known beforehand. The most studied CLCS variant is the
one with only two input strings (2–CLCS); see, for example, [2,5,14]. In addition
to these works from the literature, we recently proposed an A∗ search for the
2–CLCS problem [6] and showed that this algorithm is approximately one order
of magnitude faster than other exact approaches.

In the following we consider the general variant of the CLCS problem with
m ≥ 2 input strings S = {s1, . . . , sm}, henceforth denoted by m–CLCS. Note
that the m–CLCS problem is NP–hard [1]. An application of this general vari-
ant is motivated from computational biology when it is necessary to find the
commonality for not just two but an arbitrary number of DNA molecules under
the consideration of a specific known structure.

To the best of our knowledge, the approximation algorithm by Gotthilf
et al. [9] is the only existing algorithm for solving the general m–CLCS problem
so far. We first extend the general search framework and the A∗ search from [6]
to solve the more general m–CLCS problem. For the application to large-scale
instances we additionally propose two heuristic techniques: (i) a greedy heuristic
that is efficient in producing reasonably good solutions within a short runtime,
and (ii) a beam search (BS) which produces high-quality solutions at the cost
of more time. The experimental evaluation shows that the BS is the new state-
of-the-art algorithm, especially for large problem instances.

The rest of the paper is organized as follows. Section 2 describes a greedy
heuristic for the m–CLCS problem. In Sect. 3 the general search framework for
the m–CLCS problem is presented. Section 4 describes the A∗ search, and in
Sect. 5 the beam search is proposed. In Sect. 6, our computational experiments
are presented. Section 7 concludes this work and outlines directions for future
research.

2 A Fast Heuristic for the m–CLCS Problem

Henceforth we denote the length of a string s over a finite alphabet Σ by |s|,
and the length of the longest string from the set of input strings (s1, . . . , sm) by
n, i.e., n := max{|s1|, . . . , |sm|}. The j-th letter of a string s is denoted by s[j],
j = 1, . . . , |s|, and for j > |s| we define s[j] = ε, where ε denotes the empty string.
Moreover, we denote the contiguous subsequence—that is, the substring—of s
starting at position j and ending at position j′ by s[j, j′], j = 1, . . . , |s|, j′ =
j, . . . , |s|. If j > j′, then s[j, j′] = ε. The concatenation of a string s and a letter
c ∈ Σ is written as s · c. Finally, let |s|c be the number of occurrences of letter
c ∈ Σ in s. We make use of two data structures created during preprocessing to
allow an efficient search:

– For each i = 1, . . . ,m, j = 1, . . . , |si|, and c ∈ Σ, Succ[i, j, c] stores the
minimal position index x such that x ≥ j ∧si[x] = c or −1 if c does not occur
in si from position j onward. This structure is built in O(m · n · |Σ|) time.
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– For each i = 1, . . . , m, u = 1, . . . , |P |, Embed [i, u] stores the right-most posi-
tion x of si such that P [u, |P |] is a subsequence of si[x, |si|]. If no such position
exists, Embed [i, u] := −1. This table is built in O(|P | · m) time.

In the following we present Greedy, a heuristic for the m–CLCS problem
inspired by the well-known Best–Next heuristic [11] for the LCS problem.
Greedy is pseudo-coded in Algorithm 1. The basic principle is straight-forward.
The algorithm starts with an empty solution string s := ε and proceeds by
appending, at each construction step, exactly one letter to s. The choice of the
letter to append is done by means of a greedy function. The procedure stops
once no more letters can be added. The basic data structure of the algorithm is
a position vector ps = (ps

1, . . . , p
s
m) ∈ Nm which is initialized to ps := (1, . . . , 1)

at the beginning. The superscript indicates that this position vector depends on
the current (partial) solution s. Given ps, si[ps

i , |si|] for i = 1, . . . , m refer to
the substrings from which letters can still be chosen for extending the current
partial solution s. Moreover, the algorithm starts with a pattern position index
u := 1. The meaning of u is that P [u, |P |] is the substring of P that remains
to be included as a subsequence in s. At each construction step, first, a subset
Σfeas ⊆ Σ of letters is determined that can feasibly extend the current partial
solution s, ensuring that the final outcome contains pattern P as a subsequence.
More specifically, Σfeas contains a letter c ∈ Σ iff (i) c appears in all strings
si[ps

i , |si|] and (ii) s·c can be extended towards a solution that includes pattern P .
Condition (ii) is fulfilled if u = |P | + 1, P [u] = c, or Succ[i, ps

i , c] < Embed [i, u]
for all i = 1, . . . ,m (assuming that there is at least one feasible solution). These
three cases are checked in the given order, and with the first case that eval-
uates to true, condition (ii) evaluates to true; otherwise, condition (ii) evalu-
ates to false. Next, dominated letters are removed from Σfeas. For two letters
c, c′ ∈ Σfeas, we say that c dominates c′ iff Succ[i, ps

i , c] ≤ Succ[i, ps
i , c

′] for all
i = 1, . . . ,m. Afterwards, the remaining letters in Σfeas are evaluated by the
greedy function explained below, and a letter c∗ that has the best greedy value
is chosen and appended to s. Further, the position vector ps is updated w.r.t.
letter c∗ by ps

i := Succ[i, ps
i , c

∗]+1, i = 1, . . . ,m. Moreover, u is increased by one
if c∗ = P [u]. These steps are repeated until Σfeas = ∅, and the greedy solution s
is returned.

The greedy function used to evaluate each letter c ∈ Σfeas is

g(ps, u, c) =
1

lmin(ps, c) + 1P [u]=c
+

m∑

i=1

Succ[i, ps
i , c] − ps

i + 1
|si| − ps

i + 1
, (1)

where lmin(ps, c) is the length of the shortest remaining part of any of the input
strings when considering letter c appended to the solution string and thus con-
sumed, i.e., lmin := min{|si|−Succ[i, ps

i , c] | i = 1, . . . ,m}, and 1P [u]=c evaluates
to one if P [u] = c and to zero otherwise. Greedy chooses at each construction
step a letter that minimizes g(). The first term of g() penalizes letters for which
the lmin is decreased more and which are not the next letter from P [u]. The
second term in Eq. (1) represents the sum of the ratios of characters that are
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skipped (in relation to the remaining part of each input string) when extending
the current solution s with letter c.

Algorithm 1. Greedy: a heuristic for the m–CLCS problem
1: Input: problem instance (S, P, Σ)
2: Output: heuristic solution s
3: s ← ε
4: ps

i ← 1, i = 1, . . . , m
5: u ← 1
6: Σfeas ← set of feasible and non-dominated letters for extending s
7: while Σfeas �= ∅ do
8: c∗ ← arg min{g(ps, u, c) | c ∈ Σfeas)}
9: s ← s · c∗

10: for i ← 1 to m do
11: ps

i ← Succ[i, ps
i , c

∗] + 1
12: end for
13: if P [u] = c∗ then
14: u ← u + 1 // consider next letter in P
15: end if
16: Σfeas ← set of feasible and non-dominated letters for extending s
17: end while
18: return s

3 State Graph for the m–CLCS Problem

This section describes the state graph for the m–CLCS problem, in which paths
from a dedicated root node to inner nodes correspond to (meaningful) partial
solutions, paths from the root to sink nodes correspond to complete solutions,
and directed arcs represent (meaningful) extensions of partial solutions. Note
that the state graph for the m–CLCS problem is an extension of the state graph
of the 2–CLCS problem [6].

Given an m–CLCS problem instance I = (S, P,Σ), let s be any string over
Σ that is a common subsequence of all input strings S. Such a (partial) solution
s induces a position vector ps in a well-defined way by assigning a value to each
ps

i , i = 1, . . . ,m, such that si[1, ps
i − 1] is the smallest string among all strings

in {si[1, k] | k = 1, . . . , ps
i − 1} that contains s as a subsequence. Note that these

position vectors are the same ones as already defined in the context of Greedy.
In other words, s induces a subproblem I[ps] := {s1[ps

1, |s1|], . . . , sm[ps
m, |sm|]} of

the original problem instance. This is because s can only be extended by adding
letters that appear in all strings of si[ps

i , |si|], i = 1, . . . ,m. In this context, let
substring P [1, k′] of pattern string P be the maximal string among all strings of
P [1, k], k = 1, . . . , |P |, such that P [1, k′] is a subsequence of s. We then say that
s is a valid (partial) solution iff P [k′ + 1, |P |] is a subsequence of the strings in
subproblem I[ps], that is, a subsequence of si[ps

i , |si|] for all i = 1, . . . , m.
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Fig. 1. State graph for the instance ({s1 = bcaacbdba, s2 = cbccadcbbd, s3 =
bbccabcdbba}, P = cbb, Σ = {a, b, c, d}). There are five non-extensible sink nodes
(shown in gray). The longest path corresponds to the optimal solution s = bcacbb

with length six and leads to node v = (pv = (9, 10, 11), lv = 6, uv = 4) (shown in blue).
(Color figure online)

The state graph G = (V,A) of our A∗ search is a directed acyclic graph where
each node v ∈ V stores a triple (pv, lv, uv), with pv being a position vector that
induces subproblem I[pv], lv is the length of (any) valid partial solution (i.e.,
path from the root to node v) that induces pv, and uv is the length of the longest
prefix string of pattern P that is contained as a subsequence in any of the partial
solutions that induce node v. Moreover, there is an arc a = (v, v′) ∈ A labeled
with letter c(a) ∈ Σ between two nodes v = (pv, lv, uv) and v′ = (pv′

, lv
′
, uv′

) iff
(i) lv

′
= lv +1 and (ii) subproblem I[pv′

] is induced by the partial solution that
is obtained by appending letter c(a) to the end of a partial solution that induces
v. As mentioned above, we are only interested in meaningful partial solutions,
and thus, for feasibly extending a node v, only the letters from Σfeas can be
chosen (see Sect. 2 for the definition of Σfeas). An extension v′ = (pv′

, lv
′
, uv′

) is
therefore generated for each c ∈ Σfeas in the following way: pv′

i = Succ[i, pv
i , c]+1

for i = 1, . . . , m, lv
′
= lv + 1, and uv′

= uv + 1 in case c = P [uv], respectively
uv′

= uv otherwise.
The root node of the state graph is defined by r = (pr = (1, . . . , 1), lr =

0, ur = 1) and it thus represents the original problem instance. Sink nodes
correspond to non-extensible states. A longest path from the root node to some
sink node represents an optimal solution to the m–CLCS problem. Figure 1 shows
as example the full state graph for the problem instance ({s1 = bcaacbdba, s2 =
cbccadcbbd, s3 = bbccabcdbba}, P = cbb, Σ = {a, b, c, d}). The root node,
for example can only be extended by letters b and c, because letters a and d
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are dominated by the other two letters. Moreover, note that node ((6, 5, 5), 3, 2)
(induced by partial solution bcc) can only be extended by letter b. Even though
letter d is not dominated by letter b, adding letter d cannot lead to any feasible
solution, because any solution starting with bccd does not have P = cbb as a
subsequence.

3.1 Upper Bounds

As any upper bound for the general LCS problem is also valid for the m–CLCS
problem [8], we adopt the following ones from existing work on the LCS problem.
Given a subproblem represented by a node v of the state graph, the upper bound
proposed by Blum et al. [4] determines for each letter a limit for the number of
its occurrences in any solution that can be built starting from a partial solution
represented by v. The upper bound is obtained by summing these values for all
letters from Σ:

UB1(v) =
∑

c∈Σ

min
i=1,...,m

{|si[pv
i , |si|]|c} (2)

where |si[pv
i , |si|]|c is the number of occurrences of letter c in si[pv

i , |si|]. This
bound is efficiently calculated in O(m · |Σ|) time by making use of appropriate
data structures created during preprocessing; see [7] for more details.

A dynamic programming (DP) based upper bound was introduced by Wang
et al. [15]. It makes use of the DP recursion for the classical LCS problem for all
pairs of input strings {si, si+1}, i = 1, . . . ,m − 1. In more detail, for each pair
Si = {si, si+1}, a scoring matrix Mi is recursively derived, where entry Mi[x, y],
x = 1, . . . , |si| + 1, y = 1, . . . , |si+1| + 1 stores the length of the longest common
subsequence of si[x, |si|] and si+1[y, |si+1|]. We then get the upper bound

UB2(v) = min
i=1,...,m−1

Mi[pv
i , pv

i+1]. (3)

Neglecting the preprocessing step, this bound can be calculated efficiently
in O(m) time. By combining the two bounds we obtain UB(v) :=
min{UB1(v),UB2(v)}. This bound is admissible for the A∗ search, which means
that its values never underestimate the optimal value of the subproblem that
corresponds to a node v. Moreover, the bound is monotonic, that is, the esti-
mated upper bound of any child node is never smaller than the upper bound of
the parent node. Monotonicity is an important property in A∗ search, because
it implies that no re-expansion of already expanded nodes [6] may occur.

4 A∗ Search for the m–CLCS Problem

A∗ search [10] is a well-known technique in the field of artificial intelligence. More
specifically, it is a search algorithm based on the best-first principle, explicitly
suited for path-finding in large possibly weighted graphs. Moreover, it is an
informed search, that is, the nodes to be further pursued are prioritized according
to a function that includes a heuristic guidance component. This function is
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expressed as f(v) = g(v) + h(v) for all nodes v ∈ V to which a path has already
been found. In our context the graph to be searched is the acyclic state graph
G = (V,A) introduced in the previous section. The components of the priority
function f(v) are:

– the length g(v) of a best-so-far path from the root r to node v, and
– an estimated length h(v) of a best path from node v to a sink node (known

as dual bound).

The performance of A∗ search usually depends on the tightness of the dual
bound, that is, the size of the gap between the estimation and the real cost. In
our A∗ search, g(v) = lv and h(v) = UB(v), and the search utilizes the following
two data structures:

1. The set of all so far created (reached) nodes N : This set is realized as a nested
data structure of sorted lists within a hash map. That is, pv vectors act as
keys of the hash-map, each one mapping to a list that stores all pairs (lv, uv)
of nodes (pv, lv, uv) that induce subproblem I[pv]. This structure was chosen
to efficiently check if a specific node was already generated during the search
and to keep the memory footprint comparably small.

2. The open list Q: This is a priority queue that stores references to all not-yet-
expanded nodes sorted according to non-increasing values f(v). The structure
is used to efficiently retrieve the most promising non-expanded node at any
moment.

The search starts by adding root node r = ((1, . . . , 1), 0, 1) to N and Q. Then, at
each iteration, the node with highest priority, i.e., the top node of Q, is extended
in all possible ways (see Sect. 3), and any newly created node v′ is stored in N
and Q. If some node v′ is reached via the expanded node in a better way, its
f -value is updated accordingly. Moreover, it is checked if v′ is dominated by
some other node from N [v′] ⊆ N , where N [v′] is the set of all nodes from N
representing the same subproblem I[pv′

]. If this is the case, v′ is discarded. In
this context, given v̂, v ∈ N [v′] we say that v̂ dominates v iff lv̂ ≥ lv ∧ uv̂ ≥ uv.
In the opposite case—that is, if any v′′ ∈ N [v′] is dominated by v′—node v′′

is removed from N [v′] ⊆ N and Q. The node expansion iterations are repeated
until the top node of Q is a sink node, in which case a path from the root
node to this sink node corresponds to a proven optimal solution. Such a path
is retrieved by reversing the path from following each node’s predecessor from
the sink node to the root node. Moreover, our A∗ search terminates without a
meaningful solution when a specified time or memory limit is exceeded.

5 Beam Search for the m–CLCS Problem

It is well known from research on other LCS variants that beam search (BS) is
often able to produce high-quality approximate solutions in this domain [8]. For
those cases in which our A∗ approach is not able to deliver an optimal solution in
a reasonable computation time, we therefore propose the following BS approach.
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Before the start of the BS procedure, Greedy is performed to obtain an
initial solution sbsf . This solution can be used in BS for pruning partial solutions
(nodes) that provenly cannot be extended towards a solution better than sbsf .
Beam search maintains a set of nodes B, called the beam, which is initialized
with the root node r at the start of the algorithm. Remember that this root node
represents the empty partial solution. A single major iteration of BS consists of
the following steps:

– Each node v ∈ B is expanded in all possible ways (see the definition of the
state graph) and the extensions are kept in a set Vext. If any node v ∈ Vext

is a complete node for which lv is larger than |sbsf |, the best-so-far solution
sbsf is updated accordingly.

– Application of function Prune(Vext,UBprune) (optional): All nodes from Vext

whose upper bound value is no more than |sbsf | are removed. UBprune refers
to the utilized upper bound function (see Sect. 3.1 for the options).

– Application of function Filter(Vext, kbest) (optional): this function examines
the nodes from Vext and removes dominated ones. Given v, v′ ∈ Vext, we
say in this context that v dominates v′ iff pv

i ≤ pv′
i , for all i = 1, . . . ,m

∧ uv ≥ uv′
. Note that this is a generalization of the domination relation

introduced in [4] for the LCS problem. Since it is time-demanding to examine
the possible domination for each pair of nodes from Vext if |Vext| is not small,
the domination for each node v ∈ Vext is only checked against the best kbest
nodes from Vext w.r.t. a heuristic guidance function h(v), where kbest is a
strategy parameter. We will consider several options for h(v) presented in the
next section.

– Application of function Reduce(Vext, β): The best at most β nodes are selected
from Vext to form the new beam B for the next major iteration; the beam
width β is another strategy parameter.

These four steps are repeated until B becomes empty. Beam search is thus a
kind of incomplete breadth-first-search.

5.1 Options for the Heuristic Guidance of BS

Different functions can be used as heuristic guidance of the BS, that is, for the
function h that evaluates the heuristic goodness of any node v = (pL,v, lv, uv) ∈
V . An obvious choice is, of course, the upper bound UB from Sect. 3.1. Addi-
tionally, we consider the following three options.

5.1.1 Probability Based Heuristic
For a probability based heuristic guidance, we make use of a DP recursion
from [12] for calculating the probability Pr(p, q) that any string of length p
is a subsequence of a random string of length q. These probabilities are com-
puted in a preprocessing step for p, q = 0, . . . , n. Remember, in this context that
n is the length of the longest input string. Assuming independence among the
input strings, the probability Pr(s ≺ S) that a random string s of length p is a
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common subsequence of all input strings from S is Pr(s ≺ S) =
∏m

i=1 Pr(p, |si|).
Given Vext in some construction step of BS, the question is now how to choose
the value p common for all nodes v ∈ Vext in order to take profit from the above
formula in a sensible heuristic manner. For this purpose, we first calculate

pmin = min
v∈Vext

(|P | − uv + 1) , (4)

where P is the pattern string of the tackled m–CLCS instance. Note that the
string P [pmin, |P |] must appear as a subsequence in all possible completions of
all nodes from v ∈ Vext, because pattern P must be a subsequence of any feasible
solution. Based on pmin, the value of p for all v ∈ Vext is then heuristically chosen
as

p = pmin + min
v∈Vext

⌊
mini=1,...,m {|si| − pv

i + 1} − pmin

|Σ|
⌋

. (5)

The intention here is, first, to let the characters from P [pmin, |P |] fully count,
because they will—as mentioned above—appear for sure in any possible exten-
sion. This explains the first term (pmin) in Eq. (5). The second term is justified
by the fact that an optimal m–CLCS solution becomes shorter if the alphabet
size becomes larger. Moreover, the solution tends to be longer for nodes v whose
length of the shortest remaining string from I[pv] is longer than the one of other
nodes. We emphasize that this is a heuristic choice which might be improvable.
If p would be zero, we set it to one in order to break ties. The final probability-
based heuristic for evaluating a node v ∈ Vext is then

H(v) =
m∏

i=1

Pr(p, |si| − pv
i + 1), (6)

and those nodes with a larger H–value are preferred.

5.1.2 Expected Length Based Heuristic
In [8] we derived an approximate formula for the expected length of a longest
common subsequence of a set of uniform random strings. Before we extend this
result to the m–CLCS problem, we state those aspects of the results from [8]
that are needed for this purpose. For more information we refer the interested
reader to the original article. In particular, from [8] we know that

E[Y ] =
lmin∑

k=1

E[Yk], (7)

where lmin := min{|si| | i = 1, . . . ,m}, Y is a random variable for the length of
an LCS, and Yk is, for any k = 1, . . . , lmin, a binary random variable indicating
whether or not there is an LCS with a length of at least k. E[·] denotes the
expected value of some random variable.
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In the context of the m–CLCS problem, a similar formula with the following
re-definition of the binary variables is used. Y is now a random variable for the
length of an LCS that has pattern string P as a subsequence, and the Yk are
binary random variables indicating whether or not there is an LCS with a length
of at least k having P as a subsequence. If we assume the existence of at least
one feasible solution, we get E[Y ] = |P | +

∑lmin
k=|P |+1 E[Yk].

For k = |P |, . . . , lmin, let Tk be the set of all possible strings of length k
over alphabet Σ. Clearly, there are |Σ|k such strings. For each s ∈ Tk we define
the event Evs that s is a subsequence of all input strings from S having P as
a subsequence. For simplicity, we assume the independence among events Evs

and Evs′ , for any s, s′ ∈ Tk, s 	= s′. With this assumption, the probability
that string s ∈ Tk is a subsequence of all input strings from S is equal to∏m

i=1 Pr(|s|, |si|). Further, under the assumption that (i) s is a uniform random
string and (ii) the probabilities that s is a subsequence of si (denoted by Pr(s ≺
si)) for i = 1, . . . ,m, and the probability that P is a subsequence of s (denoted
by (Pr(P ≺ s)) are independent, it follows that the probability PCLCS(s, S, P )
that s is a common subsequence of all strings from S having pattern P as a
subsequence is equal to Pr(|P |, k) · ∏m

i=1 Pr(k, |si|). Moreover, note that, under
our assumptions, it holds that Pr(P ≺ s′) = Pr(P ≺ s′′) = Pr(|P |, k), for any
pair of sampled strings s′, s′′ ∈ Tk. Therefore, it follows that

E[Yk] = 1 −
∏

s∈Tk

(
1 − PCLCS(s, S, P )

)

= 1 −
(

1 −
(

m∏

i=1

Pr(k, |si|)
)

· Pr(|P |, k)

)|Σ|k

. (8)

Using this result, the expected length of a final m–CLCS solution that includes
a string inducing node v ∈ V as a prefix can be approximated by the following
(heuristic) expression:

EXCLCS(v)
7,8
= |P | − uv + (lmin − (|P | − uv + 1) + 1)−

lmin∑

k=|P |−uv+1

(
1 −

(
m∏

i=1

Pr(k, |si| − pL,v
i + 1)

)
· Pr(|P | − uv, k)

)|Σ|k

= lvmin −
lvmin∑

k=|P |−uv+1

(
1 −

(
m∏

i=1

Pr(k, |si| − pL,v
i + 1)

)
· Pr(|P | − uv, k)

)|Σ|k

,

(9)

where lvmin = min{|si| − pL,v
i + 1 | i = 1, . . . , m}. To calculate this value in

practice, one has to take care of numerical issues, in particular the large power
value |Σ|k. We resolve it in the same way as in [8] by applying a Taylor series.
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5.1.3 Pattern Ratio Heuristic
So far we have introduced three options for the heuristic function in beam search:
the upper bound (Sect. 3.1), the probability based heuristic (Sect. 5.1.1) and
the expected length based heuristic (Sect. 5.1.2). With the intention to test, in
comparison, a much simpler measure we introduce in the following the pattern
ratio heuristic that only depends on the length of the shortest string in S[pv] and
the length of the remaining part of the pattern string to be covered (|P |−uv +1).
In fact, we might directly use the following function for estimating the goodness
of any v ∈ V :

R(v) :=
mini=1,...,m(|si| − pv

i + 1)
|P | − uv + 1

. (10)

In general, the larger R(v), the more preferable should be v. However, note
that the direct use of (10) generates numerous ties. In order to avoid a
large number of ties, instead of R(v) we use the well-known k-norm ||v||kk =
∑m

i=1

( |si| − pv
i + 1

|P | − uv + 1

)k

, with some k > 0. Again, nodes v ∈ V with a larger

|| · ||k-values are preferable. In our experiments, we set k = 2 (Euclidean norm).

6 Experimental Evaluation

All algorithms were implemented in C++ using GCC 7.4, and the experiments
were conducted in single-threaded mode on a machine with an Intel Xeon E5–
2640 processor with 2.40 GHz and a memory limit of 32 GB. The maximal CPU
time allowed for each run was set to 15 min, i.e., 900 s. We generated the following
set of problem instances for the experimental evaluation. For each combination
of the number of input strings m ∈ {10, 50, 100}, the length of input strings
n ∈ {100, 500, 1000}, the alphabet size |Σ| ∈ {4, 20} and the ratio p′ = |P |

n ∈{
1
50 , 1

20 , 1
10 , 1

4 , 1
2

}
, ten instances were created, each one as follows. First, P is

generated uniformly at random. Then, each string si ∈ S is generated as follows.
First, P is copied, that is, si := P . Then, si is augmented in n − |P | steps by
single random characters. The position for the new character is selected randomly
between any two consecutive characters of si, at the beginning, or at the end
of si. This procedure ensures that at least one feasible solution exists for each
instance. The benchmarks are available at https://www.ac.tuwien.ac.at/files/
resources/instances/m-clcs.zip. Overall, we thus created and use 900 benchmark
instances.

We include the following six algorithms (resp. algorithm variants) in our com-
parison: (i) the approximation algorithm from [9] (Approx), (ii) Greedy from
Sect. 2, and (iii) the four beam search configurations differing only in the heuris-
tic guidance function. These BS versions are denoted as follows. Bs-Ub refers to
BS using the upper bound, Bs-Prob refers to the use of the probability based
heuristic, Bs-Ex to the use of expected length based heuristic, and BS-Pat to the
use of the pattern ratio heuristic. Moreover, we include the information of how

https://www.ac.tuwien.ac.at/files/resources/instances/m-clcs.zip
https://www.ac.tuwien.ac.at/files/resources/instances/m-clcs.zip
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many instances of each type were solved to optimality by the exact A∗ search.
Concerning the beam search, parameters β (the maximum number of nodes kept
for the next iteration) and kbest (the extent of filtering) are crucial for obtaining
good results. After tuning we selected β = 2000 and kbest = 100. Moreover, the
tuning procedure indicated that function upper bound based pruning is indeed
beneficial.

Table 1. Results for instances with p′ = |P |
n

= 1
20

.

|Σ| m n Approx Greedy Bs-Ub Bs-Prob Bs-Ex Bs-Pat A∗

|s| t[s] |s| t[s] |s| t[s] |s| t[s] |s| t[s] |s| t[s] # t[s]

4 10 100 21.4 <0.1 30.8 <0.1 34.5 19.2 34.5 16.8 34.5 21.7 33.4 25.6 3 332.8

4 10 500 119.7 <0.1 162.3 <0.1 181.7 130.1 184.2 163.7 185.1 179.8 173.3 192.1 0 -

4 10 1000 244.4 0.1 330.9 0.1 365.7 288.5 372.7 346.7 374.1 339.2 343.8 391 0 -

4 50 100 18.7 <0.1 21.3 <0.1 24.3 11.5 24.7 13.3 24.9 15.1 24 19.8 0 -

4 50 500 111.1 0.1 127.1 0.1 137.9 98.5 141.2 109.4 142.2 115.4 134.2 162.8 0 -

4 50 1000 232.7 0.5 265 0.3 281 226.4 290.1 267.6 291.3 289.4 273 366.4 0 -

4 100 100 17.6 <0.1 18.5 <0.1 22.3 11.6 22.4 9.6 22.5 13.60 21.9 19.7 0 -

4 100 500 109.4 0.2 119.5 0.2 128.9 101.2 131.9 86.2 132.4 119.3 126.6 156 0 -

4 100 1000 227.5 0.8 248 0.9 263.7 244.2 272.0 218.1 273.0 232.2 259.2 301.8 0 -

20 10 100 6 <0.1 7.1 <0.1 ∗7.3 <0.1 ∗7.3 <0.1 ∗7.3 <0.1 ∗7.3 <0.1 10 <0.1

20 10 500 30.2 <0.1 40 <0.1 46.6 16.9 47.0 17.5 46.3 60.0 44.7 57 10 332.1

20 10 1000 56.6 0.1 81.2 0.1 95.7 37.9 97.8 45.5 95.4 185.4 87.9 146.3 0 -

20 50 100 ∗5.0 <0.1 ∗5.0 <0.1 ∗5.0 <0.1 ∗5.0 <0.1 ∗5.0 <0.1 ∗5.0 <0.1 10 <0.1

20 50 500 26.9 0.1 28.2 0.1 ∗29.9 1.8 ∗29.9 1.7 ∗29.9 1.3 ∗29.9 1.5 10 1.2

20 50 1000 53.1 0.5 58.2 0.5 62.4 17.6 62.7 17 62.5 8.6 60.4 34.4 0 -

20 100 100 ∗5.0 <0.1 ∗5.0 <0.1 ∗5.0 <0.1 ∗5.0 <0.1 ∗5.0 <0.1 ∗5.0 <0.1 10 <0.1

20 100 500 26.1 0.2 26.4 0.2 ∗27.3 0.3 ∗27.3 0.2 ∗27.3 0.3 ∗27.3 0.3 10 0.3

20 100 1000 52 1 54.7 0.8 57.2 14 ∗57.3 13.6 ∗57.3 9.4 56.4 17.7 10 86.0

Table 1 reports results for the instances with p′ = 1
20 and Table 2 those for

the instances with p′ = 1
4 . The remaining numerical results as well as the tun-

ing process are, due to space limitations, reported in a supplementary docu-
ment that can be downloaded from https://www.ac.tuwien.ac.at/files/resources/
supplementary/clcs-suppl.pdf. The first three columns of each table indicate the
instance characteristics. Then, for the six competitors we provide in each table
row the obtained solution quality and computation time averaged over the 10
instances with the respective characteristics. The best result of each table row is
shown in bold. Finally, for A∗ search we provide in each table row the number
of instances solved to optimality (out of 10) and the average runtime required
to do so. A preceding asterisk indicates that the respective result is provenly
optimal. The results allow to make the following observations.

– The m–CLCS problem tends to be most difficult to solve for short pattern
strings—that is, low values of |P |—and for small alphabet sizes. With growing
|P | and |Σ|, the problem becomes easier. On the one side, this is indicated
by the results of the A∗ search. When |P |

n = 1/20 and |Σ| = 4, A∗ can
only solve three problem instances to optimality. When moving to instances

https://www.ac.tuwien.ac.at/files/resources/supplementary/clcs-suppl.pdf
https://www.ac.tuwien.ac.at/files/resources/supplementary/clcs-suppl.pdf
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Table 2. Results for instances with p′ = |P |
n

= 1
4
.

|Σ| m n Approx Greedy Bs-Ub Bs-Prob Bs-Ex Bs-Pat A∗

|s| t[s][s] |s| t[s][s] |s| t[s][s] |s| t[s][s] |s| t[s][s] |s| t[s][s] # t[s][s]

4 10 100 28.6 <0.1 32.2 <0.1 ∗34.5 1.1 ∗34.5 0.9 ∗34.5 1.0 ∗34.5 1.5 10 0.2

4 10 500 134.3 <0.1 160.4 <0.1 179.3 45.6 182.4 48.8 181.1 98.0 168.6 97 1 660.8

4 10 1000 264.7 0.1 317.4 0.1 350.3 76.8 361.7 108 361.4 249.4 330.8 220.2 0 -

4 50 100 26.4 <0.1 26.9 <0.1 ∗27.5 <0.1 ∗27.5 <0.1 ∗27.5 <0.1 ∗27.5 <0.1 10 <0.1

4 50 500 130.1 0.1 139.5 0.1 146.2 33.6 148.3 28 146.3 19.9 142.7 55.9 0 -

4 50 1000 257.4 0.5 277.3 0.3 291.9 73.6 296.4 63.6 289.5 41.1 284.2 107.6 0 -

4 100 100 25.9 <0.1 26.2 <0.1 ∗26.5 <0.1 ∗26.5 <0.1 ∗26.5 <0.1 ∗26.5 <0.1 10 <0.1

4 100 500 128.9 0.2 135.8 0.2 140.4 24.6 140.8 34.8 140.3 17.4 137.3 45.9 0 -

4 100 1000 256.4 0.8 270.7 0.9 279.7 56.4 282.5 73.4 279.0 40.4 273.3 122 0 -

20 10 100 ∗25.0 <0.1 ∗25.0 <0.1 ∗25.0 <0.1 ∗25.0 <0.1 ∗25.0 <0.1 ∗25.0 <0.1 10 <0.1

20 10 500 ∗125.0 <0.1 ∗125.0 <0.1 ∗125.0 <0.1 ∗125.0 <0.1 ∗125.0 <0.1 ∗125.0 <0.1 10 <0.1

20 10 1000 ∗250.0 0.1 ∗250.0 0.1 0.1 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 ∗250.0 0.1 10 0.1

20 50 100 ∗25.0 <0.1 ∗25.0 <0.1 ∗25.0 <0.1 ∗25.0 <0.1 ∗25.0 <0.1 ∗25.0 <0.1 10 <0.1

20 50 500 ∗125.0 0.1 ∗125.0 0.1 ∗125.0 0.2 ∗125.0 0.2 ∗125.0 0.1 ∗125.0 0.1 10 0.1

20 50 1000 ∗250.0 0.5 ∗250.0 0.5 ∗250.0 0.4 ∗250.0 0.5 ∗250.0 0.5 ∗250.0 0.5 10 0.5

20 100 100 ∗25.0 <0.1 ∗25.0 <0.1 ∗25.0 <0.1 ∗25.0 <0.1 ∗25.0 <0.1 ∗25.0 <0.1 10 <0.1

20 100 500 ∗125.0 0.3 ∗125.0 0.2 ∗125.0 0.3 ∗125.0 0.3 ∗125.0 0.2 ∗125.0 0.2 10 0.3

20 100 1000 ∗250.0 1 ∗250.0 0.8 ∗250.0 1.1 ∗250.0 1.1 ∗250.0 0.8 ∗250.0 1.1 10 1.0

with |Σ| = 20, A∗ search can already solve 70 instances to optimality. The
corresponding numbers for instances with |P |

n = 1/4 are 31 (for |Σ| = 4) and
90 (for |Σ| = 20). In fact, in this last case 90 corresponds to all problem
instances of this type. On the other side, the decreasing problem difficulty for
growing |P | and |Σ| is also indicated by the differences between the results of
the heuristic algorithms. In fact, for |P |

n = 1/20 and |Σ| = 20 all algorithms
are able to solve all 90 problem instances to optimality.

– The reason for the problem difficulty to decrease with growing |P | can be
explained as follows. With growing |P |, the similarity between the input
strings also grows. This results in a decrease of the search space size. More-
over, from [8] we know that EX-type guidance for BS becomes worse with a
growing similarity of the input strings. And, in fact, this observation holds
also in the case of the m–CLCS problem. For |P |

n = 1/20, Bs-Ex delivers in
most cases better results than the other BS configurations. However, Bs-Ex
seems to lose efficiency for |P |

n = 1/4 where Bs-Prob is generally the better
choice.

– All our heuristic algorithms significantly improve over Approx, which is the
only existing technique from the literature. This also holds for Greedy, which
requires approximately the same computation time as Approx. Only when
instances are easy to solve—that is, when n and m are small, and |Σ| and
|P | are rather large—Approx is competitive with our algorithms.

– All versions of BS improve over Greedy. However, this comes at the price of
significantly elevated computation times.

– Bs-Pat, which uses the most simplistic guidance heuristic, is clearly inferior
to the other three BS variants in terms of solution quality for almost all
instance types.
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(b) |Σ| = 20

Fig. 2. Average fraction (in percent) of the length of heuristic solutions with respect
to the length of the A∗ solutions.
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Fig. 3. Percentage of instances solved to optimality.

– The results of Bs-Ub are comparable with those of Bs-Ex only when |P |
and n are both small. This is because the upper bound is especially tight for
smaller instances.

Finally, we want to shed some more light on the comparison of the heuristic
techniques with A∗ search. For this purpose, from now on we only consider those
instances that can be solved to optimality by A∗ search. The two plots in Fig. 2
show for each heuristic algorithm and for each value of |P |

n (x-axis) the average
fraction (in percent) of the length of heuristic solutions in respect to the length
of the A∗ search solutions. A dot at 100% means that the length of the heuristic
solution matches the length of the optimal solution from A∗ search. The plots
show, in particular, that Bs-Prob, Bs-Ub and Bs-Ex always reach at least a
value of 98%. Complementary, the two plots in Fig. 3 show for each heuristic
algorithm and for each value of |P |

n (x-axis) the percentage of instances that
were solved to optimality. Bs-Prob fails to deliver an optimal solution for only
one instance of type m = 10, n = 500, |Σ| = 20, and |P |

n = 1/20.
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7 Conclusions and Future Work

We tackled the generalized constrained longest common subsequence problem.
First, we presented an exact A∗ search algorithm. Moreover, apart from a simple
greedy heuristic, we also introduced four different variants of beam search that
differ in the heuristic function they use for selecting the partial solutions to be
further expanded in the subsequent iteration. More specifically, we considered an
upper bound, a probability based heuristic, an expected length based heuristic,
and a simple greedy criterion. Our approaches are compared to an approximation
algorithm from the literature, the only one so far available for the problem.
In general, the BS variant using the expected length calculation heuristic is
best when the pattern string is rather short, while the BS variant with the
probability based heuristic is leading when the pattern string is rather long.
Moreover, instances become more easily solvable the longer the pattern is.

Concerning future work, the general search framework derived for the CLCS
problem can be further extended towards an arbitrary number of pattern strings.
We also intend to search for possibly existing real-world benchmark sets for
further testing the performances of the algorithms.
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