
A Beam Search for the Longest Common
Subsequence Problem Guided by a Novel
Approximate Expected Length Calculation

Marko Djukanovic1, Günther R. Raidl1, and Christian Blum2

1Institute of Logic and Computation, TU Wien, Vienna, Austria,
2 Artificial Intelligence Research Institute (IIIA-CSIC),

Campus UAB, Bellaterra, Spain
{djukanovic,raidl}@ac.tuwien.ac.at,

christian.blum@iiia.csic.es

Abstract. The longest common subsequence problem (LCS) aims at
finding a longest string that appears as subsequence in each of a given
set of input strings. This is a well known NP-hard problem which has
been tackled by many heuristic approaches. Among them, the best per-
forming ones are based on beam search (BS) but differ significantly in
various aspects. In this paper we compare the existing BS-based ap-
proaches by using a common BS framework making the differences more
explicit. Furthermore, we derive a novel heuristic function to guide BS,
which approximates the expected length of an LCS of random strings.
In a rigorous experimental evaluation we compare all BS-based meth-
ods from the literature and investigate the impact of our new heuristic
guidance. Results show in particular that our novel heuristic guidance
leads frequently to significantly better solutions. New best solutions are
obtained for a wide range of the existing benchmark instances.
Keywords: string problems; expected value; beam search.

1 Introduction

We define a string s as a finite sequence of |s| characters from a finite alphabet Σ.
Strings are widely used for representing sequence information. Words, and even
whole texts, are naturally stored by means of strings. In the field of bioinfor-
matics, DNA and protein sequences, for example, play particularly important
roles. A frequently occurring necessity is to detect similarities between several
strings in order to derive relationships and possibly predict diverse aspects of
some strings. A sequence of a string s is any sequence obtained by removing an
arbitrary number of characters from s. A natural and common way to compare
two or more strings is to find common subsequences. More specifically, given a
set of m input strings S = {s1, . . . , sm}, the longest common subsequence (LCS)
problem [16] aims at finding a subsequence of maximal length which is common
for all the strings in S. Apart from applications in computational biology [13],
this problem appears, for example, also in data compression [19,1], text edit-
ing [14], and the production of circuits in field programmable gate arrays [6].

The LCS problem is NP-hard for an arbitrary number (m) of input
strings [16]. However, for fixed m polynomial algorithms based on dynamic pro-
gramming (DP) are known [10]. Standard dynamic programming approaches run
in O(nm) time, where n is the length of the longest input string. This means
that these exact methods become quickly impractical when m grows and n is
not small. In practice, heuristics optimization techniques are therefore frequently
used. Concerning simple approximate methods, the expansion algorithm [5] and
the Best-Next heuristic [9,11] are well known construction heuristics.

A break-through in terms of both, computation time and solution quality
was achieved by the Beam Search (BS) of Blum et al. [3]. This algorithm is an
incomplete tree search which relies on a solution construction mechanism based
on the Best-Next heuristic and exploits bounding information using a simple
upper bound function to prune non promising solutions. The algorithm was able
to outperform all existing algorithms at the time of its presentation. Later, Wang
et al. [21] proposed a fast A∗-based heuristic utilizing a new DP-based upper
bound function. Mousavi and Tabataba [17] proposed a variant of the BS which
uses a probability-based heuristic and a different pruning mechanism. Moreover,
Tabataba et al. [20] suggested a hyper-heuristic approach which makes use of
two different heuristics and applies a beam search with low beam width first to
make the decision about which heuristic to use in a successive BS with higher
beam width. This approach is currently state-of-the-art for the LCS problem.

Recently, a chemical reaction optimization [12] was also proposed for the
LCS and the authors claimed to achieve new best results for some of the bench-
mark instances. We gave our best to re-implement their approach but were not
successful due to many ambiguities and mistakes found within the algorithm’s
description and open questions that could not be resolved from the paper. The
authors of the paper also were not able to provide us the original implementation
of their approach or enough clarification. Therefore, we exclude this algorithm
from further consideration in our experimental comparison in this article.

In conclusion, the currently best performing heuristic approaches to solve also
large LCS problem instances are thus based on BS guided by different heuristics
and incorporate different pruning mechanisms to omit nodes that likely lead to
weaker suboptimal solutions. More detailed conclusions are, however, difficult as
the experimental studies in the literature are limited and partly questionable:
On the one hand, in [20,3] mistakes in earlier works have been reported, whose
impact on the final solution quality are not known. On the other hand, the algo-
rithms have partly been tested on different LCS instance sets and/or the methods
were implemented in different programming languages and the experiments were
performed on different machines.

In our work we re-implemented all the mentioned BS-based methods from
the literature with their specific heuristics and pruning mechanisms within a
common BS framework in order to rigorously compare the methods on the same
sets of existing benchmark instances. Furthermore, we derive a novel heuristic
function for guiding BS that computes an approximate expected length of an
LCS. This function is derived from our previous work done for the palindromic
version of the LCS problem [7]). The experimental evaluation shows that this

2

heuristic is for most of the benchmark sets a significantly better guidance than
the other so far used heuristic functions, and we obtain new best known results
on several occasions. An exception is only one benchmark set were the input
strings are artificially created in a strongly correlated way.

The rest of the paper is organized as follows. Section 2 describes the state
graph to be searched for solving the LCS problem. In Section 3 we present our
united BS framework which covers all the considered BS-based algorithms from
the literature. We further propose our novel heuristic function for approximating
the expected length for the LCS here. Section 4 reports the main results of our
rigorous experimental comparison. We finally conclude with Section 5 where also
some directions for promising future work are sketched.

2 State Graph

We start this section by introducing some common notation. Let n, as already
stated, be the maximum length of the strings in S. The j-th letter of a string s is
denoted by s[j], j = 1, . . . , |s|, and let s1 · s2 denote the concatenation obtained
by appending string s2 to string s1. By s[j, j′], j ≤ j′, we denote the continuous
subsequence of s starting at position j and ending at position j′; if j > j′,
s[j, j′] is the empty string ε. Finally, let |s|a be the number of occurrences of
letter a ∈ Σ in string s. Henceforth, a string s is called a (valid) partial solution
concerning input strings S = {s1, . . . , sm}, if s is a common subsequence of the
strings in S.

Let pL ∈ Nm be an integer valued vector such that 1 ≤ pLi ≤ |si|, for
i = 1, . . . ,m. Given such vector pL, the set S[pL] := {si[pLi , |si|] | i = 1, . . . ,m}
consists of each original string’s continuous subsequence from the position given
in pL up to the end. We call vector pL left position vector, and it represents
the LCS subproblem on the strings S[pL]. Note that the original problem can
be denoted by S[(1, . . . , 1)]. We are, however, not interested in all possible sub-
problems but just those which are induced by (meaningful) partial solutions.
A partial solution s induces the subproblem S[pL] for which

– si[1, p
L
i − 1] is the minimal string among strings si[1, x], x = 1, . . . , pL − 1

such that it contains s as a subsequence, for all i = 1, . . . ,m.

For example, if S = {abcbacb, accbbaa}, then for the partial solution s = acb

the induced subproblem is represented by pL = (5, 5).
The state graph of the LCS problem is a directed acyclic graph G = (V,A),

where a node v ∈ V is represented by the respective left position vector pL,v and
by the length lv of the partial solution which induces the corresponding sub-
problem S[pL,v], i.e. v = (pL,v, lv). An arc a = (v1, v2) ∈ A with a label `(a) ∈ Σ
exists if lv2 is by one larger than lv1 and if the partial solution obtained by ap-
pending letter `(a) to the partial solution of v1 induces the subproblem S[pL,v2].
The root node r of the state graph G corresponds to the original problem, which
can be said to be induced by the empty partial solution ε, i.e., r = ((1, . . . , 1), 0).
In order to derive the successor nodes of a node v ∈ V in G, we first determine

3

all the letters by which partial solutions inducing S[pL,v] can be feasibly ex-
tended, i.e., all letters a ∈ Σ appearing at least once in each string in S[pL,v].
Let Σv denote this set of feasible extension letters w.r.t. node v. For each letter
a ∈ Σv, the position of the first occurrence of a in si[p

L,v
i , |si|] is denoted by pL,vi,a ,

i = 1, . . . ,m. We can in general reduce Σv by disregarding dominated letters.
We say letter a ∈ Σv dominates letter b ∈ Σv iff pL,vi,a ≤ p

L,v
i,b for all i = 1, . . . ,m.

Dominated letters can safely be ignored since they always lead to suboptimal
solutions as they “skip” some other letter that can be used before. Let Σnd

v be
the obtained set of feasible and non-dominated letters for node v. For each letter
a ∈ Σnd

v we derive a successor node v′ = (pL,v
′
, lv + 1), where pL,v

′

i = pL,v
′

i,a + 1,

i = 1, . . . ,m. Each node that receives no successor node, i.e., where Σnd
v = ∅, is

called a complete node. Now, note that any path from the root node r to any
node in V represents the feasible partial solution given by the sequence of labels
of the traversed arcs. Any path from r to a complete node represents a common
subsequence of S that cannot be further extended, and an LCS is therefore given
by a longest path from r to any complete node.

3 Beam Search Framework

In the literature for the LCS problem, the so far leading algorithms to approach
larger instances heuristically are all based on Beam Search (BS). This essentially
is an incomplete tree search which expands nodes in a breadth-first search man-
ner. A collection of nodes, called the beam, is maintained. Initially, the beam
contains just the root node r. In each major iteration, BS expands all nodes of
the beam in order to obtain the respective successor nodes at the next level.
From those the β > 0 most promising nodes are selected to become the beam
for the next iteration, where β is a strategy parameter called beam width. This
expansion and selection steps are repeated level by level until the beam becomes
empty. We will consider several ways to determine the most promising nodes
to be kept at each step of BS in Section 3.1. The BS returns the partial solu-
tion of a complete node with the largest lv value discovered during the search.
The main difference among BS approaches from the literature are the heuristic
functions used to evaluate LCS nodes for the selection of the beam and pruning
mechanisms to recognize and discard dominated nodes. A general BS framework
for the LCS is shown in Algorithm 1.

ExtendAndEvaluate(B, h) derives and collects the successor nodes of all
v ∈ B and evaluates them by heuristic h, generating the set of extension nodes
Vext ordered according to non-increasing h-values. Prune(Vext, ubprune) option-
ally removes any dominated node v for which lv + ubprune(v) ≤ |slcs|, where
ubprune(·) is an upper bound function for the number of letters that may pos-
sibly still be appended, or in other words an upper bound for the LCS of the
corresponding remaining subproblem, and |slcs| is the length of the so far best
solution. Filter(Vext, kbest) is another optional step. It removes nodes correspond-
ing to dominated letters as defined in Section 2, but in a possibly restricted way
controlled by parameter kbest in order to limit the spent computing effort. More
concretely, the dominance relationship is checked for each node v ∈ Vext against

4

Algorithm 1 BS framework for the LCS problem

1: Input: an instance (S,Σ), heuristic function h to evaluate nodes; upper bound
function ubprune to prune nodes; parameter kbest to filter nodes (non-dominance
relation check); β: beam size (and others depending on the specific algorithm)

2: Output: a feasible LCS solution
3: B ← {r}
4: slcs ← ε
5: while B 6= ∅ do
6: Vext ← ExtendAndEvaluate(B, h)
7: update slcs if a complete node v with a new largest lv value reached
8: Vext ← Prune(Vext, ubprune) // optional
9: Vext ← Filter(Vext, kbest) // optional

10: B ← Reduce(Vext, β)
11: end while
12: return slcs

the kbest most promising nodes from Vext. Last but not least, Reduce(Vext, β)
returns the new beam consisting of the β best ranked nodes in Vext.

3.1 Functions for Evaluating Nodes

In the literature, several different functions are used for evaluating and pruning
nodes, i.e., for h and ubprune. In the following we summarize them.

Fraser [9] used as upper bound on the number of letters that might be fur-
ther added to a partial solution leading to a node v—or in other words the
length of an LCS of the induced remaining subproblem S[pL,v]–by UBmin(v) =

UBmin(S[pL]) = mini=1,...,m(|si| − pL,vi + 1).
Blum et al. [3] suggested the upper bound UB1(v) = UB1(S[pL,v]) =∑
a∈Σ ca, with ca = mini=1,...,m |si[pL,vi , |si|]|a, which dominates UBmin. While

UB1 is efficiently calculated using smart preprocessing in O(m · |Σ|), it is
still a rather weak bound. The same authors proposed the following ranking
function Rank(v) to use for heuristic function h. When expanding a node v,
all the successors v′ of v are ranked either by UBmin(v′) or by g(v, v′) =(∑m

i=1
pL,v′
i −pL,v

i −1
|si|−pL,v

i

)−1
. If v′ has the largest UBmin(v′) (or g(v, v′)) value among

all the successors of v, it receives rank 1, the successor with the second largest
value among the successors receives rank 2, etc. The overall value Rank(v) is
obtained by summarizing all the ranks along the path from the root node to the
node corresponding to the partial solution. Finally, the nodes in Vext are sorted
according to non-increasing values Rank(v) (i.e., smaller values preferable here).

Wang et al. [21] proposed a DP-based upper bound using the LCS for two
input strings, given by

UB2(v) = UB2(S[pL,v]) = min
i=1,...,m−1

|LCS(si[p
L,v
i , |si|], si+1[pL,vi+1, |si+1|])|.

Even if not so obvious, UB2 can be calculated efficiently in time O(m)
by creating appropriate data structures in preprocessing. By combining the

5

two upper bounds we obtain the so far tightest known bound UB(v) =
min(UB1(v),UB2(v)) that can still efficiently be calculated in O(m · |Σ|) time.
This bound will serve in Prune() of our BS framework, since it can filter more
non-promising nodes than when UB1 or UB2 are just individually applied.

Mousavi and Tabataba [17,20] proposed two heuristic guidances. The first
estimation is derived by assuming that all input strings are uniformly at ran-
dom generated and that they are mutually independent. The authors derived
a recursion which determines the probability P(p, q) that a uniform random
string of length p is a subsequence of a string of length q. These probabili-
ties can be calculated during preprocessing and are stored in a matrix. For
some fixed k, using the assumption that the input strings are independent,
each node is evaluated by H(v) = H(S[pL,v]) =

∏m
i=1 P(k, |si| − pL,vi + 1).

This corresponds to the probability that a partial solution represented by
v can be extended by k letters. The value of k is heuristically chosen as

k := max
(

1,
⌊

1
|Σ| ·minv∈Vext, i=1,...,m(|si| − pL,vi + 1)

⌋)
. The second heuristic es-

timation, the so called power heuristic, is proposed as follows:

Pow(v) = Pow(S[pL,v]) =

(
m∏
i=1

(|si| − pL,vi + 1)

)q
·UBmin(v), q ∈ [0, 1).

It can be seen as a generalized form of UBmin. The authors argue to use smaller
values for q in case of larger m and specifically set q = a × exp (−b ·m) + c,
where a, b, c ≥ 0 are then instance-independent parameters of the algorithm.

3.2 A Heuristic Estimation of the Expected Length of an LCS

By making use of the matrix of probabilities P(p, q) from [17] for a uniform
random string of length p to be a subsequence of a random string of length q
and some basic laws from probability theory, we derive an approximation for the
expected length of a LCS of S[pL,v] as follows. Let Y be the random variable
which corresponds to the length of an LCS for a set S of uniformly at random
generated strings. This value cannot be larger than the length of the shortest
string in S, denoted by lmax = mini=1,...,m(|si| − pL,vi + 1). Let us enumerate all
sequences of length k over alphabet Σ; trivially, there are |Σ|k such sequences.
We now make the simplifying assumption that for any sequence of length k over
Σ, the event that the sequence is a common subsequence of all strings in S is
independent of the corresponding events for other sequences. Let Yk ∈ {0, 1},
k = 0, . . . , lmax, be a binary random variable which denotes the event that S has
a common subsequence of length at least k. If S has a common subsequence of
length k+ 1, this implies that it has a common subsequence of length k as well.
Consequently, we get that Pr[Y = k] = E[Yk]− E[Yk+1] and

E[Y] =

lmax∑
k=1

k · Pr[Y = k] =

lmax∑
k=1

k · (E[Yk]− E[Yk+1]) =

lmax∑
k=1

E[Yk]. (1)

The probability that the input strings of S have no common subsequence of
length k is equal to 1 − E[Yk]. Due to our assumption of independence, this

6

probability is equal to (1−
∏m
i=1 P(k, |si|))

|Σ|k
. Finally, for any node v ∈ V , we

obtain the approximate expected length

EX(v) = EX(S[pL,v]) =

lmax∑
k=1

1−

(
1−

m∏
i=1

P(k, |si| − pL,vi + 1)

)|Σ|k . (2)

Since a direct numerical calculation would yield too large intermediate values for
a common floating point arithmetic when k is large, we use the decomposition

A|Σ|
k

=

(· · · (A)|Σ|
p

· · ·
)|Σ|p

︸ ︷︷ ︸
bk/pc

|Σ|(k mod p)

for any expression A with p = 20. Moreover, the calculation of (2) can in practice
be efficiently done in O(m log(n)) time by exploiting the fact that the terms
under the sum present a decreasing sequence of values within [0, 1] and many
values are very close to zero or one: We apply a divide-and-conquer principle

for detecting the values
(

1−
∏m
i=1 P(k, |si| − pL,vi + 1)

)|Σ|k
∈ (ε, 1− ε) with the

threshold ε = 10−6. Furthermore, note that if the product which appears in (2)
is close to zero, this might cause further numerical issues. These are resolved by

replacing the term
(

1−
∏m
i=1 P(k, |si| − pL,vi + 1)

)|Σ|k
with an approximation

derived from the Taylor expansion of (1− x)α; details are described in [7].

3.3 Expressing Existing Approaches in Terms of our Framework

All BS-related approaches from the literature (see Section 1) can be defined as
follows within our framework from Algorithm 1.

BS by Blum et al. [3]. The heuristic function h is set to h = Rank−1. Func-
tion Prune(Vext, ubprune) uses ubprune = UB1. Moreover, all nodes that are not
among the µ ·β most promising nodes from Vext are pruned. Hereby, µ ≥ 1 is an
algorithm-specific parameter. Finally, with a setting of kbest ≥ β · |Vext| in func-
tion Filter(Vext, kbest), the original algorithm is obtained. Instead of testing this
original algorithm, we study here an improved version that uses ubprune = UB.
Moreover, during tuning (see below) we will consider also values for kbest such
that kbest < β · |Vext|. The resulting method is henceforth denoted by Bs-Blum.

Heuristic by Wang [21]. h = UB2 is used as heuristic function. Moreover, a
priority queue to store extensions is used instead of the standard vector structure
used in the implementation of other algorithms. Function Prune(Vext, ubprune)
removes all those nodes from Vext whose h-values deviate more than W ≥ 0
units from the priority value of the most promising node of Vext. Filtering is not
used. Instead of h = UB2 (as in the original algorithm) we use here h = UB,
which significantly improves the algorithm henceforth denoted by Bs-Wang.

7

BS approaches by Mousavi and Tabataba [17,20]. The first approach, denoted
by Bs-H, uses h = H, whereas in the second one, denoted by Bs-Pow, h = Pow
is used. No pruning is done. Finally, a restricted filtering (kbest > 0) is applied.

The Hyper-heuristic approach by Mousavi and Tabataba [20]. This approach,
henceforth labeled Hh, combines heuristic functions H and Pow as follows. First,
Bs-H and Bs-Pow are both executed using a low beam width βh > 0. Based on
the outcome of these two executions, either Bs-H or Bs-Pow will be selected
as the final method executed with a beam width β � βh. The result is the best
solution found in both phases.

4 Experimental Evaluation

The presented BS framework was implemented in C++ and all experiments were
performed in single-threaded mode on an Intel Xeon E5-2640 with 2.40GHz and
16 GB of memory. In addition to the five approaches from the literature as
detailed in Section 3.3, we test our own approach, labeled Bs-Ex, which uses
h = EX, no pruning, and a restricted filtering.

The related literature offers six different benchmark sets for the LCS problem.
The ES benchmark, introduced by Easton and Singireddy [8], consists of 600
instances of different sizes in terms of the number and the length of the input
strings, and in terms of the alphabet size. A second benchmark consists of three
groups of 20 instances each: Random, Rat and Virus. It was introduced by Shyu
and Tsai [18] for testing their ant colony optimization algorithm. Hereby, Rat
and Virus consist of sequences from rat and virus genomes. The BB benchmark
of 80 instances was generated by Blum and Blesa [2] in a way such that a large
similarity between the input strings exists. Finally, the BL instance set [4] consists
of 450 problem instances that were generated uniformly at random.

The final solution quality produced by any of the considered BS methods is
largely determined by the beam size parameter β. We decided to test all algo-
rithms with a setting aiming for a low computation time (β = 50) and with a
second setting aiming for a high solution quality (β = 600). The first setting
is henceforth called the low-time setting, and the second one the high-quality
setting. Note that when using the same value of β, the considered algorithms
expand a comparable number of nodes. The remaining parameters of the algo-
rithms are tuned by irace [15] for the high-quality setting. Separate tuning runs
with a budget of 5000 algorithm applications are performed for benchmark in-
stances in which the input strings have a random character (ES, Random, Rat,
Virus, BL),1 and for the structured instances from set BB. 30 training instances
are used for the first tuning run and 20 for the second one.

The outcome reported by irace for random instances is as follows. Bs-Blum
makes use of function g(., .) within h = Rank−1. Moreover, µ = 4.0 and kbest = 5
are used. Bs-Wang uses W = 10. For Bs-H we obtain kbest = 50, for Bs-Pow

1 Note that even instance sets Rat and Virus contain sequences that are close to
random strings.

8

we get kbest = 100, a = 1.677, b = 0.054, and c = 0.074. Finally, Hh uses
βh = 50, and for Bs-Ex we get kbest = 100.

For the structured instances from set BB irace reports the following. Bs-
Blum makes use of UBmin within h = Rank−1. Moreover, it uses µ = 4.0 and
kbest = 1000. Bs-Wang uses W = 10, Bs-H needs kbest = 100, and Bs-Pow
requires kbest = 100, a = 1.823, b = 0.112, and c = 0.014. Finally, Hh uses
βh = 50 and for Bs-Ex kbest = 100. At this point we want to emphasize that we
made sure that the five re-implemented competitor algorithms obtain equivalent
(and often even better) results on all benchmark sets than those reported in the
original papers.

We now proceed to study the numerical results presented in Tables 1–5. In
each table, the first three columns describe the respective instances in terms
of the alphabet size (|Σ|), the number of input strings (n), and the maximum
string length (m). Columns 4–8 report the results obtained with the low-time
setting, while columns 9–13 report on the results of the high-quality setting. The
first three columns of both blocks provide the results of the best performing
algorithm among the five competitors from the literature. Listed are for each
instance (or instance group) the (average) solution length, the respective (aver-
age) computation time, and the algorithm that achieved this result. The last two
columns of both blocks present the (average) solution length and the (average)
computation time of our new Bs-Ex. The overall best result of each comparison
is indicated in bold font, and an asterisk indicates that this result is better than
the so-far best known one from the literature. These results allow to make the
following observations.

– Concerning the low-time setting of the algorithms, the approaches from the
literature compare as follows. Bs-H and Bs-Pow seem to outperform the
other approaches in the context of benchmarks Rat and Virus, with Bs-
Blum and Bs-Wang gaining some terrain when moving towards the alpha-
bet size of |Σ| = 20. Furthermore, Hh and—to some extent—Bs-H dominate
the remaining approaches in the context of benchmarks ES and BL. Concern-
ing the structured instances from set BB the picture is not so clear. Here, the
oldest BS approach (Bs-Blum) is able to win over the other approaches in
three out of seven cases.

– The results obtained by Bs-Ex with the low-time setting are comparable to
the best results obtained by the methods from the literature. More specifi-
cally, Bs-Ex produces comparable results for Virus and Rat and is able to
outperform the other approaches in the context of ES and BL. As could be
expected, for the BB instance set, in which the input strings have a strong
relation to each other, the EX guiding function cannot successfully guide the
search. This is because EX assumes the input strings to be random strings,
that is, to be independent of each other.

– Concerning the results obtained with the high-quality setting, the comparison
of the algorithms from the literature can be summarized as follows. For all
benchmark sets (apart from BB) the best performance is shown by Bs-H
and/or Bs-Pow. For benchmark set BB the picture is, again, not so clear,
with Bs-Blum gaining some terrain.

9

Table 1. Results on benchmark set Rat.

low-time, literature low-time, Bs-Ex high-quality, literature high-quality, Bs-Ex

|Σ| n m |sbest| tbest Algo. |sbest| t[s] |sbest| tbest Algo. |sbest| t[s]
4 600 10 201 0.09 Bs-Pow 198 0.22 204 1.18 Bs-Pow *205 3.09
4 600 15 182 0.10 Bs-Pow 182 0.18 184 0.62 Bs-H *185 2.65
4 600 20 169 0.05 Bs-Pow 168 0.15 170 0.94 Bs-Pow *172 2.25
4 600 25 166 0.12 Bs-Pow 167 0.18 168 1.01 Bs-Pow *170 2.71
4 600 40 151 0.04 Bs-H 146 0.15 150 1.02 Bs-Pow 152 1.81
4 600 60 149 0.10 Bs-Pow 150 0.17 151 1.16 Bs-Pow *152 2.27
4 600 80 137 0.05 Bs-H 137 0.17 139 0.67 Bs-H *142 2.47
4 600 100 133 0.07 Bs-Pow 131 0.14 135 0.47 Bs-H *137 2.50
4 600 150 125 0.06 Bs-H 127 0.13 126 0.91 Bs-Pow *129 1.97
4 600 200 121 0.09 Bs-Pow 121 0.17 *123 0.70 Bs-Pow *123 2.65

20 600 10 70 0.09 Bs-H 70 0.37 *71 1.86 Bs-H *71 3.44
20 600 15 61 0.15 Bs-Pow 62 0.28 62 1.40 Bs-H *63 2.55
20 600 20 53 0.12 Bs-Pow 53 0.20 54 1.15 Bs-H 54 2.45
20 600 25 50 0.22 Bs-Wang 50 0.21 51 1.09 Bs-H *52 2.94
20 600 40 48 0.09 Bs-H 47 0.19 49 1.15 Bs-Blum 49 2.97
20 600 60 46 0.09 Bs-H 46 0.20 47 1.61 Bs-Pow 46 2.42
20 600 80 43 0.18 Bs-Blum 41 0.21 *44 1.14 Bs-H 43 2.64
20 600 100 38 0.11 Bs-Pow 38 0.23 39 0.96 Bs-H *40 2.54
20 600 150 36 0.32 Bs-Blum 36 0.14 37 5.11 Bs-Wang 37 2.03
20 600 200 34 0.10 Bs-Pow 34 0.18 34 2.62 Bs-Blum 34 2.74

– Bs-Ex with the high-quality setting outperforms the other approaches from
the literature on all benchmark sets except for BB, the latter again due to the
strong correlation of the strings. In fact, in 48 out of 67 cases (concerning
benchmarks Rat, Virus, ES and BL) Bs-Ex is able to obtain a new best-
known result. Moreover, in most of the remaining cases, the obtained result
is equal to the so-far best known one.

– Concerning the run times of the approaches, the calculation of EX is done
in O(m log n) time and, therefore, is a bit more expensive when compared
to the simpler UB, H, or Pow. However, this is not a significant issue since
almost all runs completed within rather short times of usually a few seconds
up to less than two minutes.

– We performed Wilcoxon signed-rank tests with an error level of 5% to check
the significance of differences in the results of the approaches. These indicate
that the solutions of the high-quality Bs-Ex are in the expected case indeed
significantly better than those obtained from the high-quality state-of-the-
art approaches from the literature for all except for the Virus benchmark,
where no conclusion can be drawn, and the BB benchmark, where the Bs-
Ex results are significantly worse due to the strong relationship among the
sequences.

Overall, the numerical results clearly show that EX is a better guidance for BS
than the heuristics and upper bounds used in former work, as long as (near-)
independence among the input strings is given. Finally, note that the result for
Random and for the instances with |Σ| > 4 of set BL are not provided due to
page limitations. Full results can be found at https://www.ac.tuwien.ac.at/
files/resources/instances/LCS/LCS-report.zip.

10

https://www.ac.tuwien.ac.at/files/resources/instances/LCS/LCS-report.zip
https://www.ac.tuwien.ac.at/files/resources/instances/LCS/LCS-report.zip

Table 2. Results on benchmark set Virus.

low-time, literature low-time, Bs-Ex high-quality, literature high-quality, Bs-Ex

|Σ| n m |sbest| tbest Algo. |sbest| t[s] |sbest| tbest Algo. |sbest| t[s]
4 600 10 225 0.04 Bs-H 223 0.21 226 0.68 Bs-H *227 2.88
4 600 15 200 0.04 Bs-H 201 0.23 204 0.71 Bs-H *205 2.24
4 600 20 186 0.05 Bs-H 188 0.18 190 0.69 Bs-H *192 2.69
4 600 25 191 0.06 Bs-H 191 0.20 *194 0.68 Bs-H *194 2.20
4 600 40 165 0.04 Bs-H 167 0.17 *170 1.21 Bs-Pow *170 2.24
4 600 60 163 0.04 Bs-H 162 0.27 *166 0.69 Bs-H *166 2.38
4 600 80 157 0.04 Bs-H 158 0.19 159 0.72 Bs-H *163 2.70
4 600 100 153 0.07 Bs-H 156 0.19 158 0.90 Bs-H 158 2.31
4 600 150 154 0.06 Bs-H 154 0.22 156 0.66 Bs-H 156 2.37
4 600 200 153 0.09 Bs-H 152 0.39 *155 1.22 Bs-H 154 2.63

20 600 10 75 0.15 Bs-Pow 74 0.28 *77 2.38 Bs-Pow 76 2.86
20 600 15 63 0.16 Bs-Pow 63 0.24 *64 1.57 Bs-H *64 2.91
20 600 20 59 0.13 Bs-H 59 0.29 60 1.58 Bs-H 60 2.68
20 600 25 55 0.11 Bs-Pow 54 0.20 55 1.10 Bs-H 55 2.65
20 600 40 49 0.08 Bs-H 49 0.20 *50 0.85 Bs-H *50 2.85
20 600 60 47 0.16 Bs-Pow 46 0.19 47 1.43 Bs-Blum *48 3.34
20 600 80 44 0.18 Bs-Blum 46 0.30 46 1.39 Bs-H 46 2.60
20 600 100 44 0.14 Bs-H 44 0.27 44 2.04 Bs-Blum *45 2.33
20 600 150 45 0.11 Bs-H 45 0.24 45 2.94 Bs-Blum 45 2.75
20 600 200 43 0.17 Bs-H 43 0.28 44 1.69 Bs-H 43 3.17

Table 3. Results on benchmark set ES (averaged over 50 instances per row).

low-time, literature low-time, Bs-Ex high-quality, literature high-quality, Bs-Ex

|Σ| n m |sbest| tbest Algo. |sbest| t[s] |sbest| tbest Algo. |sbest| t[s]
2 1000 10 608.52 0.31 Hh 609.80 0.39 614.2 1.42 Bs-Pow *615.06 4.43
2 1000 50 533.16 0.33 Hh 535.02 0.42 536.46 1.05 Bs-H *538.24 4.43
2 1000 100 515.94 0.11 Bs-H 517.38 0.46 518.56 1.33 Bs-H *519.84 4.82

10 1000 10 199.10 0.53 Hh 199.38 0.47 202.72 2.52 Bs-Pow *203.10 5.64
10 1000 50 133.86 0.46 Hh 134.74 0.35 135.52 2.12 Bs-Pow *136.32 3.94
10 1000 100 121.28 0.50 Hh 122.10 0.40 122.40 1.50 Bs-H *123.32 4.32
25 2500 10 230.28 2.33 Hh 223.00 1.57 *235.22 10.45 Bs-Pow 231.12 19.10
25 2500 50 136.6 1.69 Hh 137.90 1.24 138.56 7.23 Bs-Pow *139.50 14.51
25 2500 100 120.3 1.74 Hh 121.74 1.32 121.62 7.29 Bs-Pow *122.88 15.97

100 5000 10 141.86 16.12 Hh 139.82 6.98 *144.90 75.88 Bs-Pow 144.18 91.87
100 5000 50 70.28 9.16 Hh 71.08 4.79 71.32 39.11 Bs-Pow *71.94 53.54
100 5000 100 59.2 8.71 Hh 60.04 4.75 60.06 36.03 Bs-Pow *60.66 53.67

Table 4. Results on benchmark BL (averaged over 10 instances per row, |Σ| = 4).

low-time, literature low-time, Bs-Ex high-quality, literature high-quality, Bs-Ex

|Σ| n m |sbest| tbest Algo. |sbest| t[s] |sbest| tbest Algo. |sbest| t[s]
4 100 10 34.0 0.01 Bs-Pow 34.0 0.02 *34.1 0.14 Bs-Pow *34.1 0.39
4 100 50 23.7 0.03 Hh 23.8 0.02 *24.2 0.08 Bs-H *24.2 0.30
4 100 100 21.5 0.03 Hh 21.5 0.02 *22.0 0.23 Bs-Wang *22.0 0.27
4 100 150 20.2 0.03 Hh 20.2 0.02 *20.5 0.12 Bs-Pow *20.5 0.31
4 100 200 19.8 0.01 Bs-H 19.5 0.02 *19.9 0.14 Bs-H *19.9 0.31
4 500 10 182.0 0.24 Hh 181.2 0.25 *184.1 1.03 Bs-Pow 184.0 2.41
4 500 50 138.6 0.21 Hh 139.1 0.19 140.1 0.90 Bs-Pow *141.0 2.13
4 500 100 129.2 0.06 Bs-H 129.7 0.18 130.2 1.01 Bs-Pow *130.8 2.10
4 500 150 124.7 0.07 Bs-H 125.5 0.19 125.9 0.79 Bs-H *126.4 2.38
4 500 200 122.6 0.07 Bs-H 123.0 0.22 123.2 0.83 Bs-H *123.7 2.61
4 1000 10 368.3 0.35 Hh 368.5 0.42 373.2 1.80 Bs-Pow *374.6 5.22
4 1000 50 284.2 0.36 Hh 286.2 0.35 287.0 1.69 Bs-Pow *288.6 4.43
4 1000 100 267.5 0.11 Bs-H 268.8 0.41 269.5 1.36 Bs-H *270.6 4.56
4 1000 150 259.5 0.14 Bs-H 261.2 0.47 261.5 1.38 Bs-H *262.8 5.30
4 1000 200 254.9 0.17 Bs-H 256.0 0.52 256.5 1.81 Bs-H *257.6 6.31

11

Table 5. Results on benchmark set BB (averaged over 10 instances per row).

low-time, literature low-time, Bs-Ex high-quality, literature high-quality, Bs-Ex

|Σ| n m |sbest| tbest Algo. |sbest| t[s] |sbest| tbest Algo. |sbest| t[s]
2 1000 10 662.9 0.33 Hh 635.1 0.44 *676.5 1.16 Bs-H 673.5 5.49
2 1000 100 551.0 0.54 Hh 525.1 0.50 *560.7 2.10 Bs-Pow 536.6 6.05
4 1000 10 537.8 0.43 Hh 453.0 0.48 *545.4 1.73 Bs-H 545.2 6.24
4 1000 100 371.2 0.24 Bs-Pow 318.6 0.53 *388.8 2.86 Bs-Pow 329.5 5.85
8 1000 10 462.6 0.27 Bs-Blum 338.8 0.53 *462.7 7.93 Bs-Blum *462.7 7.90
8 1000 100 260.9 0.87 Bs-Blum 198.0 0.67 *272.1 18.43 Bs-Blum 210.6 8.00

24 1000 10 385.6 0.67 Bs-Blum 385.6 1.04 385.6 13.14 Bs-Blum 385.6 16.24
24 1000 100 147.0 0.66 Bs-Pow 95.8 0.98 *149.5 8.01 Bs-Pow 113.3 12.45

5 Conclusions and Future Work

This paper presents a beam search (BS) framework for the longest common
subsequence (LCS) problem that covers all BS-related approaches that were
proposed so-far in the literature. These approaches are currently state-of-the-art
for the LCS problem. A second contribution consists of a new heuristic function
for BS that is based on approximating the expected length of an LCS, assuming
that the input strings are randomly created and independent of each other. Our
experimental evaluation showed that our new heuristic guides the search in a
much better way than the heuristics and upper bounds from the literature. In
particular, we were able to produce new best-known results in 48 out of 67 cases.

On the other side, the experimental evaluation has shown that the new guid-
ing function does not work so well in the context of instances in which the input
strings are strongly correlated. This, however, comes with no surprise. In future
work we therefore aim at combining our new heuristic with the ones available in
the literature in order to exploit the advantages of each of them. For example, it
could be considered to evaluate the extensions of the nodes in the current beam
by applying several heuristics and keep those that are ranked promising by any
of the heuristics. Alternatively, algorithm selection techniques might be applied
in order to chose the most promising heuristic based on features of the problem
instance. Moreover, note that the general search framework proposed in this pa-
per also naturally extends towards exact search algorithms for the LCS, such as
an A∗ algorithm, for example. Solving small instances to proven optimality and
returning proven optimality gaps for larger instances is also our future goal.

Acknowledgments. We gratefully acknowledge the financial support of this
project by the Doctoral Program “Vienna Graduate School on Computational
Optimization” funded by the Austrian Science Foundation (FWF) under con-
tract no. W1260-N35. Moreover, Christian Blum acknowledges the support of
LOGISTAR, a proyect from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 769142.

References

1. R. Beal, T. Afrin, A. Farheen, and D. Adjeroh. A new algorithm for “the LCS prob-
lem” with application in compressing genome resequencing data. BMC Genomics,
17(4):544, 2016.

12

2. C. Blum and M. J. Blesa. Probabilistic beam search for the longest common subse-
quence problem. In T. Stützle, M. Birratari, and H. H. Hoos, editors, Proceedings of
SLS 2007 – First International Workshop on Engineering Stochastic Local Search
Algorithms, volume 4638 of LNCS, pages 150–161. Springer, 2007.

3. C. Blum, M. J. Blesa, and M. López-Ibáñez. Beam search for the longest common
subsequence problem. Computers & Operations Research, 36(12):3178–3186, 2009.

4. C. Blum and P. Festa. Longest common subsequence problems. In Metaheuristics
for String Problems in Bioinformatics, chapter 3, pages 45–60. Wiley, 2016.

5. P. Bonizzoni, G. Della Vedova, and G. Mauri. Experimenting an approximation
algorithm for the LCS. Discrete Applied Mathematics, 110(1):13–24, 2001.

6. P. Brisk, A. Kaplan, and M. Sarrafzadeh. Area-efficient instruction set synthesis for
reconfigurable system-on-chip design. In Proceedings of the 41st Design Automation
Conference, pages 395–400. IEEE press, 2004.

7. M. Djukanovic, G. Raidl, and C. Blum. Anytime algorithms for the longest common
palindromic subsequence problem. Technical Report AC-TR-18-012, TU Wien,
Vienna, Austria, 2018.

8. T. Easton and A. Singireddy. A large neighborhood search heuristic for the longest
common subsequence problem. Journal of Heuristics, 14(3):271–283, 2008.

9. C. B. Fraser. Subsequences and Supersequences of Strings. PhD thesis, University
of Glasgow, Glasgow, UK, 1995.

10. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Computer Science and
Computational Biology. Cambridge University Press, Cambridge, 1997.

11. K. Huang, C. Yang, and K. Tseng. Fast algorithms for finding the common subse-
quences of multiple sequences. In Proceedings of the IEEE International Computer
Symposium, pages 1006–1011. IEEE press, 2004.

12. M. R. Islam, C. M. K. Saifullah, Z. T. Asha, and R. Ahamed. Chemical reaction
optimization for solving longest common subsequence problem for multiple string.
Soft Computing, 2018. In press.

13. T. Jiang, G. Lin, B. Ma, and K. Zhang. A general edit distance between RNA
structures. Journal of Computational Biology, 9(2):371–388, 2002.

14. J. B. Kruskal. An overview of sequence comparison: Time warps, string edits, and
macromolecules. SIAM review, 25(2):201–237, 1983.

15. M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle, and M. Birat-
tari. The irace package: Iterated racing for automatic algorithm configuration.
Operations Research Perspectives, 3:43–58, 2016.

16. D. Maier. The complexity of some problems on subsequences and supersequences.
Journal of the ACM, 25(2):322–336, 1978.

17. S. R. Mousavi and F. Tabataba. An improved algorithm for the longest common
subsequence problem. Computers & Operations Research, 39(3):512–520, 2012.

18. S. J. Shyu and C.-Y. Tsai. Finding the longest common subsequence for mul-
tiple biological sequences by ant colony optimization. Computers & Operations
Research, 36(1):73–91, 2009.

19. J. Storer. Data Compression: Methods and Theory. Computer Science Press, MD,
USA, 1988.

20. F. S. Tabataba and S. R. Mousavi. A hyper-heuristic for the longest common
subsequence problem. Computational Biology and Chemistry, 36:42–54, 2012.

21. Q. Wang, D. Korkin, and Y. Shang. A fast multiple longest common subse-
quence (mlcs) algorithm. IEEE Transactions on Knowledge and Data Engineering,
23(3):321–334, 2011.

13

	A Beam Search for the Longest Common Subsequence Problem Guided by a Novel Approximate Expected Length Calculation
	Introduction
	State Graph
	Beam Search Framework
	Functions for Evaluating Nodes
	A Heuristic Estimation of the Expected Length of an LCS
	Expressing Existing Approaches in Terms of our Framework

	Experimental Evaluation
	Conclusions and Future Work

