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Abstract. The longest common square subsequence (LCSqS) problem,
a variant of the longest common subsequence (LCS) problem, aims at
finding a subsequence common to all input strings that is, at the same
time, a square subsequence. So far the LCSqS was solved only for two
input strings. We present a heuristic approach, based on randomized local
search and a hybrid of variable neighborhood search and beam search, to
solve the LCSqS for an arbitrary set of input strings. The beam search
makes use of a novel heuristic estimation of the approximated expected
length of a LCS to guide the search.

Keywords: Longest common subsequence problem; Reduced variable
neighborhood search; Beam search; hybrid metaheuristic; expected value.

1 Introduction

A string s is a finite sequence of symbols from a finite alphabet Σ. The length of a
string s, denoted by |s|, is defined as the number of symbols in s. Strings are data
structures for storing words or even complete texts. In the field of bioinformat-
ics, strings are used to represent DNA and protein sequences. As a consequence,
many computational problems in bioinformatics are phrased in terms of so-called
string problems. These problems usually present measures of similarities for dif-
ferent molecular structures. Each string obtained from a string s by removing
zero or more characters is a subseqence of s. A fundamental measure of similarity
among molecules is the length of the longest common subsequence (LCS): given
an arbitrary set of m input strings, S = {s1, . . . , sm}, we aim at finding the
longest subsequence that is common to all input strings [7]. The classical variant
of the LCS for m = 2 has been studied for almost 50 years. The general LCS for
m ≥ 2 has been tackled for the first time by Huang et al. [4], and later by Blum
et al. [1], Mousavi and Tabataba [9], and others.
Recently, the longest common square subsequence (LCSqS) problem, a variant of
the LCS, was proposed by Inoue et al. [5]. It requires that the resulting LCS is
at the same time a square subsequence. A string s is a square iff s = s′ · s′ = s′2,
for some string s′, where “·” denotes the string concatenation. The length of



the LCSqS can be seen as a measure of similarity between disjunctive parts of
each of the compared molecules. Therefore, it can give more insight into the
internal similarity of the compared molecules than when just considering a LCS.
Moreover, the information about those parts of the molecules that are similar to
each other is obtained by identifying a LCSqS. Inoue et al. [5] proved that the
LCSqS problem is NP-hard for an arbitrary set of input strings and proposed
two approaches for the case of two input strings: (1) a Dynamic Programming
(DP) approach running in O(n6) time (n denotes the length of the largest in-
put string), and (2) a sparse DP-based approach, which makes use of a special
geometric data structure. It can be proven that, if m is fixed, the LCSqS is poly-
nomially solvable by DP in O(n3m) time which is not practical already for small
input sizes. To the best of our knowledge, no algorithm has yet been proposed
for solving the LCSqS problem for an arbitrary number m ≥ 2 of input strings.
The main contributions of this paper are as follow:

– A transformation of the LCSqS problem to a series of the standard LCS
problems is described.

– An approach based on a randomized local search and a hybrid of a Reduced
Variable Neighborhood Search (RVNS) [8] and a Beam Search (BS) are pro-
posed for solving the general LCSqS problem.

– An approximation for the expected length of a LCS is derived and incorpora-
ted into the BS framework to guide its search.

Organization of the Paper. The paper is organized as follows. Section 2
describes basic solution approaches for the LCS known from the literature. Sec-
tion 3 gives a basic reduction from the LCSqS to the LCS problem and two
approaches to solve the LCSqS. Section 4 presents computational results, and
Section 5 outlines some research questions and directions for future work.

2 Solution Approaches for the LCS Problem

For i ≤ j, let s[i, j] = s[i] · · · s[j] be a continuous (sub)string of a string s which
starts from index i and ends at index j. If i > j, s[i, j] is the empty string ε.
For pL ∈ Nm, which is called the left position vector, S[pL] := {si[pLi , |si|] | i =
1, . . . ,m} denotes the set of the remaining parts of the input strings of S w.r.t.
pL.

The Best-Next Heuristic (BNH) for the LCS was proposed by Huang et al. [4].
This heuristic starts with an empty partial LCS solution sp = ε which is then
iteratively extended by a feasible letter. If there exists more than one candidate
to extend sp, the decision which one to choose is made by a greedy heuristic,
calculating for each of the candidate letters a greedy value. The BNH works in
detail as follows. We initialize sp to the empty string ε, and the left pointers pL to
(1, . . . , 1), indicating that the complete input strings are still relevant for finding
extensions of sp. Each letter a ∈ Σ which appears at least once in all strings from
S[pL] is considered as a feasible candidate to extend sp. Let us denote by pLa,i
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the position of the first occurrence of letter a in si[p
L
i , |si|]. Among the feasible

letters, dominated ones may occur. We say that letter a dominates letter b iff
pLa,i ≤ pLb,i, ∀i = 1, . . . ,m. Non-dominated letters are preferred, since the choice
of a dominated letter will lead to a suboptimal solution. Denote a set of feasible,
non-dominated letters by Σnd

pL ⊆ Σ. The letter given by

a∗ = arg min
a∈Σnd

pL

(
g(pL, a) =

m∑
i=1

pLa,i − pLi
|si| − pLi + 1

)

is chosen to extend sp, and we update sp := sp · a∗, and pLi := pLa∗,i + 1, i =

1, . . . ,m, accordingly. We repeat the steps with the new sp and pL until Σnd
pL = ∅

is met, constructing a complete greedy solution sp. Let us label this procedure
by BNH(S), taking an instance S as input and returning the derived greedy
solution.

Beam Search is known as an incomplete tree search algorithm which expands
nodes in a breadth-first search manner. It maintains a collection of nodes called
beam. The β > 0 most promising nodes of these expansions are further used to
create the beam of the next level. This step is repeated level by level until the
beam is empty. We will consider several ways to determine the most promising
nodes to be kept at each step in Section 2.1. A BS for the LCS has been proposed
by Blum et al. [1]. Each node v of the LCS is defined by a left position vector
pL,v which corresponds to the set S[pL,v] relevant for further extension of v,
and an lv-value, denoting the length of the partial solution represented by the
node. Initially, the beam contains the (root) node r := ((1, . . . , 1), 0). In order
to expand a node v, the corresponding set S[pL,v] is used to find all feasible,

non-dominated letters Σnd
pL,v , and for each a ∈ Σnd

pL,v , the positions pL,va,i are

determined, and further used to create all successor nodes v′ = (pL,va + 1, lv + 1)

of v, where pL,va + 1 = {pL,va,i + 1 | i = 1, . . . ,m}. If Σnd
pL,v = ∅, a complete node

has been reached. If the lv-value of a complete node is greater than the length
of the current incumbent solution, we derive the respective solution and store
it as the new incumbent. We emphasize that directly storing partial solutions
within the nodes is not necessary. For any node of the search tree, the respective
partial solution can be derived in a backward manner by iteratively identifying
predecessors in which the lv-values always decrease by one. Let us denote this
procedure by BS(S, β), taking a set S and a beam size β as input and returning
the best solution found by the BS execution.

2.1 Estimating the Length of the LCS Problem

For each node of the search tree, an upper bound on the number of letters
that might further be added—i.e., the length of a LCS of S[pL,v]—is given by

UB(v) = UB(S[pL,v]) =
∑m
i=1 ca, where ca = min{|si[pL,vi , |si|]|a | i = 1, . . . ,m},

and |s|a is the number of occurrences of letter a in s; see [10]. Unfortunately,
this upper bound is not tight in practice.
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We develop here a novel estimation based on the approximated expected length
for uniform random strings. Mousavi and Tabataba [9] came up with a recur-
sion which calculates the probability that a specific string s of length k is a
subsequence of a uniform random string t of length q in the form of a table
P(|s|, |t|) = P(k, q). Let us assume that the following holds: (1) all strings from
S are mutually independent and (2) for any sequence of length k over Σ, the
event that the sequence is a subsequence common to all strings in S is indepen-
dent of the corresponding events for other sequences. By making use of the table
P and some basic laws from probability theory, we can derive the estimation for
the expected length as

EX(v) = EX(S[pL,v]) = lmax −
lmax∑
k=1

(
1−

m∏
i=1

P(k, |si| − pL,vi + 1)

)|Σ|k
, (1)

where lmax = mini=1,...,m{|si| − pL,vi + 1}. EX provides, in practice, a much bet-
ter approximation than the afore-mentioned upper bound UB or the heuristic
from [9] which is also of limited use since it cannot be used to compare nodes
from different levels of the search tree. Formula (1) is numerically calculated by
decomposing the power |Σ|k = |Σ|p · · · |Σ|p︸ ︷︷ ︸

bk/pc

·|Σ|(k mod p), since intermediate val-

ues would otherwise be too large for a commonly used floating point arithmetic.
Moreover, the calculation of (1) can be run in O(m log(n)) on average by deter-

mining vk =
(

1−
∏m
i=1 P(k, |si| − pR,vi + 1)

)|Σ|k
∈ (ε, 1 − ε) using the divide-

and-conquer principle exploiting the fact that {vk}lmax

k=1 is a monotonic sequence.
We set ε = 10−10 in our implementation. If the product which appears in (1) is
close to zero, it can cause stability issues resolved by replacing vk by an approx-
imation derived from the Taylor expansion (1 − x)α ≈ 1 − αx +

(
α
2

)
x2 + o(x2)

which approximates vk well. This estimation was developed by following the
same idea for the palindromic case of the LCS problem; see [3] for more details.

3 Algorithms for Solving the LCSqS Problem

Let us denote by P := {(q1, . . . , qm) : 1 ≤ qi ≤ |si|} ⊂ Nm all possibil-
ities for partitioning the strings from S each one into two consecutive sub-
strings. For each q ∈ P, we define the left and right partitions of S by SL,q=
{s1[1, q1], . . . , sm[1, qm]} and SR,q = {s1[q1+1, |s1|], . . . , sm[qm+1, |sm|]}, respec-
tively. Let Sq := SL,q ∪SR,q be the joint set of these partitions. Finding an opti-
mal solution s∗lcsqs to the LCSqS problem can then be done as follows. First, an
optimal LCS s∗lcs,q must be derived for all Sq, q ∈ P. Let s∗lcs = arg max{|s∗lcs,q| :
q ∈ P} Then, s∗lcsqs = s∗lcs · s∗lcs. Unfortunately, the LCS problem is already
NP–hard [7], and the size of P grows exponentially with the instance size. This
approach is, therefore, not practical. However, we will make use of this decom-
position approach in a heuristic way as shown in the following.
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3.1 Randomized Local Search Approach

In this section we adapt and iterate BNH in order to derive approximate LCSqS
solutions in the sense of a randomized local search (RLS).

We start with the q =
(
b |s1|2 c, . . . , b

|sm|
2 c
)

and execute BNH on the corre-

sponding set Sq to produce an initial approximate LCSqS solution slcsqs =
(BNH(Sq))2. At each iteration, q is perturbed by adding to each qi, i = 1, . . . ,m,
a random offset sampled from the discretized normal distribution dN (0, σ2)e
with a probability destr ∈ (0, 1), where the standard deviation is a parameter of
the algorithm. BNH is applied to the resulting string set Sq for producing a new
solution. A better solution is always accepted as new incumbent solution slcsqs.
The whole process is iterated until a time limit tmax is exceeded. Note that if slcsqs
is the current incumbent, only values in {|slcsqs|/2 + 1, . . . , |si| − |slcsqs|/2 − 1}
for qi can lead to better solutions. We therefore iterate the random sampling of
each qi until a value in this range is obtained.

3.2 RVNS&BS Approach

As an alternative to the RLS described above we consider a variable neighbor-
hood search approach [8]. More precisely, we use a version of the VNS with no
local search method included, known as Reduced VNS (RVNS).
For a current vector q ∈ P, we define a move in the k-th neighborhood, k =
1, . . . ,m, by perturbing exactly k randomly chosen positions as above by adding
a discretized normally distributed sampled random offset. Again, we take care
not to choose meaningless small or larges values. We then evaluate q by the fol-
lowing 3-step process. We first calculate ubq = 2 · UB(Sq), and if ubq ≤ |slcsqs|,
q cannot yield an improved incumbent solution and q is discarded. Otherwise,
we perform a fast evaluation of q by applying BNH which yields a solution
s = (BNH(Sq

′
))2. If |s| > α · |slcsqs|, where α ∈ (0, 1) is a threshold param-

eter of the algorithm, we consider q promising and further execute BS on Sq,
yielding solution sbs = (BS(Sq

′
, β))2. Again, the incumbent solution slcsqs is up-

dated by any obtained better solution. If an improvement has been achieved, the
RVNS&BS always continues with the first neighborhood, i.e. k := 1, otherwise
with the next neighborhood, i.e. k := k + 1 until k = m + 1 in which case k is
reset to 1. To improve the performance, we store all partitionings evaluated by
BS, together with their evaluations, in a hash map and retrieve these values in
case the corresponding partitionings are re-encountered.

4 Computational Experiments

The algorithms are implemented in C++ and all experiments are performed on
a single core of an Intel Xeon E5-2640 with 2.40GHz and 8 GB of memory.
We used the set of benchmark instances provided in [2] for the LCS problem. This
instance set consists of ten randomly generated instances for each combination
of the number of input strings m ∈ {10, 50, 100, 150, 200}, the length of the input
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Table 1: Selected results for the LCSqS problem.

n m |Σ| RVNS&BS RLS&BS RVNS&Dive RLS

|s| tbest[s] |s| tbest[s] |s| tbest[s] |s| tbest[s]
100 10 4 27.08 67.71 26.54 44.94 26.96 51.20 26.42 34.40

10 20 3.84 0.02 4.00 1.66 3.96 0.05 4.00 4.44
50 4 18.54 10.53 18.16 24.12 18.54 45.81 18.04 19.43
50 20 0.20 0.01 0.46 4.77 0.20 0.00 0.40 0.01

200 4 14.00 4.88 14.00 8.68 14.00 1.36 13.94 24.12
200 20 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00

500 10 4 156.58 143.70 156.14 146.08 149.78 160.69 149.24 110.09
10 20 35.78 53.31 35.12 48.07 34.54 50.42 34.56 71.16
50 4 124.30 52.66 124.12 160.39 120.32 86.33 120.12 109.37
50 20 21.14 78.62 20.52 34.12 20.64 66.00 20.68 61.19

200 4 109.86 152.55 108.78 102.03 106.22 66.72 104.94 90.66
200 20 14.48 62.08 14.26 35.50 14.04 3.51 14.10 12.82

1000 10 4 321.14 206.16 320.94 193.50 304.48 186.65 304.34 161.08
10 20 76.84 126.40 76.66 141.40 73.80 118.86 73.72 76.98
50 4 261.52 127.81 260.82 135.14 252.94 131.88 249.84 153.18
50 20 49.78 116.89 49.76 188.74 48.12 54.48 48.70 74.04

200 4 235.50 213.72 234.44 202.34 230.10 135.37 222.66 145.99
200 20 38.04 132.86 38.12 165.15 38.00 59.74 38.02 24.07

strings n ∈ {100, 500, 1000}, and the alphabet size |Σ| ∈ {4, 12, 20}. This makes
a total of 450 problem instances. We apply each algorithm ten times to each
instance, with a time limit of 600 CPU seconds.
From preliminary experiments we noticed that the behavior of our algorithms
mostly depends on the length n of the input strings. Therefore, we tuned the
algorithms separately for instances with string length 100, 500, and 1000. The
irace tool [6] was used for this purpose. For RLS, we obtained destr = 0.2 and
σ = 5 (for n = 100), destr = 0.3 and σ = 10 (for n = 500), and destr = 0.3
and σ = 20 (for n = 1000). For RVNS&BS, we obtained α = 0.9 and β = 100
(for n = 100), α = 0.9 and β = 200 (for n = 500), and α = 0.9 and β = 200
(for n = 1000). For σ of the RVNS&BS, irace yielded the same values as for the
RLS. Moreover, EX was preferred over UB as a guidance for BS.
We additionally include here results for RVNS&Dive, which is RVNS&BS with
β = 1. In this case BS reduces to a simple greedy heuristic (or dive). This was
done for checking the impact of a higher beam size. Moreover, RLS&BS refers
to a version of RLS in which BNH is replaced by BS with the same beam size as
in RVNS&BS. Selected results are shown in Table 1. For each of the algorithms
we present the avg. solution quality and the avg. median time when the best
solution was found. From the results we conclude the following:

– RVNS&BS produces solutions of significantly better quality then the other
algorithms on harder instances.

– The rather high beam size is apparently useful for finding approximate so-
lutions of higher quality.
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Fig. 1: The impact of parameter σ on the solution quality of RVNS&BS.
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Fig. 2: Improvements of solution quality when using EX instead of UB for guiding BS
in RVNS&BS.

– Concerning the computation time for harder instances, the times of the
RVNS&BS are usually higher than those of the RLS. It seems harder for
BNH to help to improve solution quality in later stages of the RLS than for
the BS in RVNS&BS.

– From Figure 1 we can see that, for smaller instances with larger alphabet
sizes, stronger jumps in the search space are in essence preferred. This is
because a small number of feasible solutions is distributed over the search
space, and to find them it is convenient to allow large, random jumps in
the search. When n is larger, choosing to do larger jumps in the space is
not a good option (see the bar plot on the right). This can be explained
by the fact that already the vector q that is defined by the middle of all
input strings (which are generated uniformly at random) yields a promising
solution, and many promising partitions are clustered around this vector. By
allowing larger jumps, we move further away from this middle vector quickly,
which yields usually in weaker solutions.

Figure 2 provides box plots showing the relative differences between the quality
of the solutions obtained by RVNS&BS using EX and RVNS&BS using UB
(β = 200). The figure shows a clear advantage of several percent when using EX
over the classical upper bound UB as search guidance.

7



5 Conclusions and Future Work

This article provides the first heuristic approaches to solve the LCSqS problem
for an arbitrary set of input strings. We applied a reduction of the LCSqS prob-
lem to a series of standard LCS problems by introducing a partitioning of the
input strings as a first-level decision. Our RVNS framework explores the space of
partitionings, which are then tackled by BNH and, if promising, by BS. Hereby,
BS is guided by a heuristic which approximates the expected length of a LCS.
Overall, RVNS&BS yields significantly better solutions that the also proposed,
simpler RLS.
In future work we want to solve smaller instances of the LCSqS problem to
optimality. To achieve this, we aim for an A∗ search that is also based on the
described reduction to the classical LCS problem.
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