
A Heuristic Approach for Solving the Longest
Common Square Subsequence Problem?

Marko Djukanovic1, Günther R. Raidl1, and Christian Blum2

1Institute of Logic and Computation, TU Wien, Vienna, Austria,
2 Artificial Intelligence Research Institute (IIIA-CSIC),

Campus UAB, Bellaterra, Spain
{djukanovic,raidl}@ac.tuwien.ac.at,

christian.blum@iiia.csic.es

In the field of bioinformatics, strings are used to represent DNA and protein
sequences. Given a string s, any string which can be obtained from s by deleting
zero or more characters is called a subsequence of s. The relatedness of molecules
can be characterized by finding a longest subsequence that all respective strings
have in common. The length of this subsequence is a well-known string compari-
son measure [4] which implies to solve the Longest Common Subsequence (LCS)
problem in general on an arbitrary set of strings S = {s1, . . . , sm},m ∈ N.

Inoue et al. [3] recently proposed a variant of it called the Longest Com-
mon Square Subsequence (LCSqS) problem, which asks for the longest common
subsequence that is a square. A string s is called a square if it consists of two
identical concatenated parts, i.e., s = s′ ·s′ = s′2 for some string s′, where the “·”
operator indicates the concatenation. The problem is motivated by measuring
the similarity of DNA molecules under the consideration of similar disjunctive
parts in each molecule. The LCSqS can give more insight on the similarities of
molecules than taking the traditional LCS as similarities between internal parts
of molecules also play a role, and more can be learned about the structure of
compared molecules.

Inoue et al. [3] proposed two approaches for solving LCSqS, but just for two
input strings. The first one is a basic Dynamic Programming (DP) approach
running in O(n6) time, where n is the length of the largest string while the
second one is a sparse DP approach which makes use of a special geometric data
structure. The authors proved that the LCSqS with an arbitrary set of m input
strings S is NP-hard. To the best of our knowledge, no algorithm for solving the
LCSqS for m > 2 has yet been proposed.

We suggest a heuristic approach to tackle the general LCSqS problem. First,
note that an LCSqS instance can be transformed into a series of standard LCS
instances by the following mapping. For each partition vector p = (p1, . . . , pm)
with pi ∈ {1, . . . , |si|} for i = 1, . . . ,m, let us consider splitting each string si
into the two substrings s′i and s′′i with si = s′i · s′′i , s′i ending with position pi of
si and s′′i starting with position pi + 1 of si. Hence, each vector p maps an input
set S with m = |S| into a set Sp of 2m strings. Solving the LCS for Sp yields

? This project is partially funded by the Doctoral Program Vienna Graduate School on
Computational Optimization, Austrian Science Foundation Project No. W1260-N35.

an LCS sp, and the corresponding string sp · sp is a feasible common square
subsequence for S. Taking a longest sp · sp over all possible partition vectors p
would yield the LCSqS. Unfortunately, already solving the classical LCS problem
is NP-hard and challenging in practice, and thus a naive enumeration over all
partition vectors and determining the corresponding LCSs is out of question, as
the number of possible partition vectors is exponential in the problem size.

However, we make use of the underlying idea of this decomposition as follows.
A Variable Neighborhood Search (VNS) algorithm [5] is used as framework for
deriving promising partition vectors p. Each candidate partition vector is at the
first place rather crudely evaluated by a fast estimation of the length of the LCS
for Sp. Only more promising candidate partition vectors are then also more pre-
cisely considered by solving the LCS problem for set Sp with a Beam Search (BS)
heuristic [7]. This BS is inspired by the work of Mousavi and Tabataba [6] and
incorporates a novel heuristic guidance that approximates the expected length
of LCS subproblems.

As a fast alternative, we consider a simpler strategy for choosing the partition
vector and use the well-known best-next heuristic for the LCS from [2] to obtain
a solution for the LCSqS problem. We further randomize and iterate this fast
heuristic in order to obtain an iterated greedy approach, which we compare to
the above VNS & BS hybrid.

Experiments are performed using the LCS benchmark instances from [1] and
detailed results will be presented at the conference. They illustrate the clear
advantages of the proposed VNS & BS hybrid over the iterated greedy method
in terms of the quality of obtained solutions.

References

1. M. Djukanovic, G. Raidl, and C. Blum. Exact and heuristic approaches for the
longest common palindromic subsequence problem. In Proceedings of LION12 –
12th International Conference on Learning and Intelligent Optimization, Lecture
Notes in Computer Science. Springer, 2018. In press.

2. K. Huang, C.-B. Yang, K.-T. Tseng, et al. Fast algorithms for finding the common
subsequence of multiple sequences. In Proceedings of the International Computer
Symposium, pages 1006–1011. IEEE press, 2004.

3. T. Inoue, S. Inenaga, H. Hyyrö, H. Bannai, and M. Takeda. Computing longest
common square subsequences. In G. Navarro et al., editors, Annual Symposium on
Combinatorial Pattern Matching (CPM 2018), volume 105 of Leibniz International
Proceedings in Informatics, pages 15:1–15:13, Dagstuhl, Germany, 2018.

4. D. Maier. The complexity of some problems on subsequences and supersequences.
Journal of the ACM., 25(2):322–336, 1978.

5. N. Mladenović and P. Hansen. Variable neighborhood search. Computers & Oper-
ations research, 24(11):1097–1100, 1997.

6. S. R. Mousavi and F. Tabataba. An improved algorithm for the longest common
subsequence problem. Computers & Operations Research, 39(3):512–520, 2012.

7. P. S. Ow and T. E. Morton. Filtered beam search in scheduling. International
Journal of Production Research, 26:297–307, 1988.

2

	A Heuristic Approach for Solving the Longest Common Square Subsequence Problem

