
Exact and Heuristic Approaches for the Longest
Common Palindromic Subsequence Problem

Marko Djukanovic1, Günther R. Raidl1, and Christian Blum2

1Institute of Logic and Computation, TU Wien, Vienna, Austria,
2 Artificial Intelligence Research Institute (IIIA-CSIC),

Campus UAB, Bellaterra, Spain
{djukanovic,raidl}@ac.tuwien.ac.at,

christian.blum@iiia.csic.es

Abstract. The longest common palindromic subsequence (LCPS) prob-
lem requires to find a longest palindromic string that appears as subse-
quence in each string from a given set of input strings. The algorithms
that can be found in the related literature are specific for LCPS prob-
lems with only two input strings. In contrast, in this work we consider
the general case with an arbitrary number of input strings, which is NP-
hard. To solve this problem we propose a fast greedy heuristic, a beam
search, and an exact A∗ algorithm. Moreover, A∗ is extended by a simple
diving mechanism as well as a combination with beam search in order to
find good quality solutions already early in the search process. The most
important findings that result from the experimental evaluation include
that (1) A∗ is able to efficiently find proven optimal solutions for smaller
problem instances, (2) the anytime behavior of A∗ can be significantly
improved by incorporating diving or beam search, and (3) beam search
is best from a purely heuristic perspective.

Keywords: Longest common palindromic subsequence problem;
A∗ search; Beam search; hybrid optimization techniques

1 Introduction

In computer science, a string s is defined as a finite sequence of characters from
a (generally finite) alphabet Σ. An important characteristic of a string s is its
length, denoted by |s|. A string is generally used as a data type for representing
and storing sequence information. Words, and even whole texts, may be stored
by means of strings. Strings arise, in particular, in the field of bioinformatics,
because most of the genetic instructions involved in the growth, development,
functioning and reproduction of living organisms are stored in Deoxyribonucleic
acid (DNA) molecules which can be represented by strings over the alphabet
Σ = {A,C, T,G}. A string s is called a palindrome if s = srev, where srev is the
reverse string of s; for example, madam is a palindrome.

Note that, given a string s, any string t that can be obtained from s by
deleting zero or more characters is called a subsequence of s. Palindromic sub-
sequences are especially interesting in the biological context. In many genetic

instructions, such as for example DNA sequences, palindromic motifs are found.
In the context of a research project on genome sequencing it was discovered
that many of the bases on the Y-chromosome are arranged as palindromes [17].
A palindrome structure allows the Y-chromosome to repair itself by bending
over at the middle if one side is damaged. Moreover, it is believed that palin-
dromes are also frequently found in proteins [10], but their role in the protein
function is less understood. Biologists believe that identifying palindromic sub-
sequences of DNA sequences may help to understand genomic instability [7,23].
Palindromic subsequences seem to be important for the regulation, for example,
of gene activity, because they are often found close to promoters, introns and
untranslated regions.

An important way for the comparison of two or more strings is to find long
common subsequences. More specifically, given a set of m non-empty strings S =
{s1, . . . , sm}, a common subsequence of the strings in S is a subsequence that
all strings in S have in common. Moreover, a longest common subsequence of the
strings in S is a common subsequence of maximal length. The so-called Longest
Common Subsequence (LCS) problem [18] is a classical optimization problem
that aims at finding such a longest common subsequence of the strings in S.
Apart from applications in computational biology [16], this problem appears,
for example, in data compression [22] and the production of circuits in field
programmable gate arrays [6]. Finally, a common palindromic subsequence of
a set of strings S is a common subsequence of all strings in S which, at the
same time, is a palindrome. For biologists it is not only of interest to identify
the palindromic subsequences of an individual DNA string, for example, but it
is also important to find longest common palindromic subsequences of multiple
input strings in order to identify relationships among them.

1.1 Related Work

The LCS problem is known to be NP-hard for an arbitrary number (m) of input
strings [18]. Note, however, that for any fixedm the problem is polynomially solv-
able by dynamic programming [11]. Standard dynamic programming approaches
require O(nm) time and space, where n is the length of the longest input string.
Even though this complexity can be reduced to O(nm−1), see Bergoth et al. [1],
dynamic programming becomes quickly impractical when m grows. Concerning
simple approximate methods, the expansion algorithm in [5] and the Best-Next
heuristic [9,14] are probably the best-known techniques. A break-through both
in terms of computation time and solution quality was achieved with the beam
search (BS) approach described by Blum et al. [2]. Beam search is an incom-
plete tree search algorithm which relies on a solution construction mechanism
and bounding information. More specifically, the above BS uses the construction
mechanism of the Best-Next heuristic and just a simple upper bound function.
Nevertheless, this algorithm was able to outperform all existing algorithms at
that time. Later, Mousavi and Tabataba [20] proposed a variant of this BS with
a different heuristic function and a different pruning mechanism.

2

The specific problem tackled in this work—that is, the longest common
palindromic subsequence (LCPS) problem—has so far only been studied for the
case of m = 2 input strings (2-LCPS). Chowdhury et al. [8] propose two dif-
ferent algorithms: a conventional dynamic programming with time and space
complexity O(n4), and a sparse dynamic programming algorithm with time
complexity O(R2 log2 n log log n + n) and space complexity O(R2), where R is
the number of matching position pairs between the two input strings. Further-
more, Hasan et al. [13] solved the 2-LCPS by making use of a so-called palin-
dromic subsequence automaton (PSA). This algorithm has a time complexity
of O(n + R1|Σ| + R2|Σ| + n + R1R2|Σ|), where R1 and R2 denote the num-
bers of states of the two automata constructed for the two input strings and are
bounded by O(n2). Finally, Inenaga and Hyyrö [15] present an algorithm that
runs in O(σR2 +n) time and uses O(R2 +n) space, where σ denotes the number
of distinct characters occurring in both of the input strings.

By reducing the general LCS problem to the LCPS problem in polynomial
time, it can be shown that the LCPS problem with an arbitrary number of
input strings is NP-hard. To the best of our knowledge, no algorithm has been
published yet for solving this general m-LCPS problem, which is henceforth
simply called LCPS problem. An instance of the LCPS problem is denoted by
(S,Σ), where S is the set of input strings over alphabet Σ.

1.2 Organization of the Paper

The rest of the paper is organized as follows. In Section 2, a fast greedy heuristic
is presented. Moreover, two upper bound functions are proposed. In Section 3
we present two search algorithms that operate on the same search tree: an exact
A∗ search and a heuristic beam search. We further consider a variant of A∗ that
has a simple diving mechanism as well as beam search embedded in order to
obtain promising complete solutions already early during the search process. In
this way, both A∗ and beam search can be used as heuristics to approach large
instances. Experimental results are described in Section 4. Conclusions as well
as an outlook to future work are finally provided in Section 5.

2 A Greedy Heuristic for the LCPS Problem

We first introduce some additional notations. As already mentioned before, let
n = maxsi∈S |si| be the maximum input string length. The j-th letter of a string
s is stated by s[j], with j = 1, . . . , |s|. We further denote the concatenation of
two strings by operator “·”, i.e., s1 ·s2 is the string obtained by appending string
s2 to string s1. Notation s[j, j′], j ≤ j′, refers to the substring of s starting at the
j-th position and ending at position j′. The same notation refers to the empty
string ε if j > j′. Finally, let |s|a be the number of occurrences of letter a ∈ Σ in
string s, and let |s|A =

∑
a∈A |s|a be the total number of occurrences of letters

from set A ⊆ Σ in string s.

3

Inspired by the well-known Best-Next heuristic for the LCS problem [9], we
present in the following a constructive greedy heuristic for the LCPS problem.
Henceforth, a string s is called a valid partial solution concerning input strings
S = {s1, . . . , sm}, if s · srev or s · s[1, |s| − 1]rev is a common palindromic sub-
sequence of the strings in S. The greedy heuristic starts with an empty partial
solution s = ε and extends, at each construction step, the current partial solu-
tion by appending exactly one letter (if possible). During the whole process, the
algorithm makes use of pointers pLi ≤ pRi that indicate for each input string si,
i = 1, . . . ,m, the still relevant substring si[p

L
i , p

R
i] from which the letter for ex-

tending s can be chosen. The choice of a letter with respect to a greedy criterion
is explained below. At the start of the heuristic, i.e., when s = ε, the pointers
are initialized to pLi := 1 and pRi := |si|, referring to the first, respectively, last
letter of each string si, i = 1, . . . ,m. In other words, at each iteration the set of
relevant substrings denoted by S[pL, pR] = {si[pLi , pRi] | i = 1, . . . ,m} forms an
LCPS subproblem, and the current partial solution s is ultimately extended by
appending the solution to this subproblem.

One of the questions that remain is how to determine the subset of letters
from Σ that can be used to extend a current partial solution s. For this purpose,
let ca := mini=1,...,m |si[pLi , pRi]|a be the minimum number of occurrences of letter
a ∈ Σ in the relevant substrings with respect to s, and let Σ(pL,pR) := {a ∈ Σ |
ca ≥ 1} be the set of letters appearing at least once in each relevant substring.
In principle, any letter from Σ(pL,pR) might be used to extend s. However, there
might be dominated letters in this set. In order to introduce the domination
relation between two letters, we use the first and last positions at which each
letter a ∈ Σ(pL,pR) appears in each relevant substring si[p

L
i , p

R
i]:

qLi,a := min {j = pLi , . . . , p
R
i | si[j] = a}

qRi,a := max {j = pLi , . . . , p
R
i | si[j] = a}

A letter a ∈ Σ(pL,pR) is called dominated if there exists a letter b ∈ Σ(pL,pR),

b 6= a, such that qLi,b < qLi,a ∧ qRi,b > qRi,a for i = 1, . . . ,m. Clearly, it is better to
delay the consideration of dominated letters and select a non-dominated letter
for the extension of s. Furthermore, letters a ∈ Σ(pL,pR) with ca = 1, called
singletons, should only be considered when no other letters remain in Σ(pL,pR),
since only one such letter can be chosen as single middle letter in the final
solution. Accordingly, let the set of all non-dominated non-singleton letters from
Σ(pL,pR) with respect to s be denoted by Σnd

(pL,pR). Given a partial solution s,

the selection of the letter to be appended to s and the adaption of the pointers
work as follows:

1. If Σ(pL,pR) is empty, the algorithm terminates with s · srev as resulting com-
mon palindromic subsequence, since no further extension is possible.

2. Otherwise, if Σnd
(pL,pR) is empty, only singletons remain in Σ(pL,pR). The al-

gorithm terminates with the common palindromic subsequence s · a · srev,
where a is the first singleton from Σ(pL,pR) in alphabetic order.

4

3. Otherwise, select a letter a ∈ Σnd
(pL,pR) that minimizes the greedy function

g(a, pL, pR), which will be discussed in Section 2.1. Ties are broken randomly.
Extend the current partial solution s and adapt the pointers as follows:

s := s · a (1)

pLi := qLi,a + 1 i = 1, . . . ,m (2)

pRi := qRi,a − 1 i = 1, . . . ,m (3)

2.1 Greedy Function

The greedy function that is used to evaluate any possible extension a ∈ Σnd
(pL,pR)

for a given partial solution extends the one used in [3] in a straight-forward man-
ner. It calculates the sum of those fractions of the relevant substrings si[p

L
i , p

R
i]

that will be discarded from further consideration when appending a as next
letter to the partial solution:

g(a, pL, pR) :=
m∑
i=1

qLi,a − pLi + pRi − qRi,a
pRi − pLi + 1

. (4)

The major advantage of this function is its simplicity, as it can be calculated
in time O(m). Obviously, this function also has some weaknesses: (1) it does
not take into account that, when choosing a specific letter, as a result, more or
less letters might be excluded from further consideration, even in cases in which
the chosen letter has a good (low) greedy function value; (2) it does not take
into account that of all singletons at most one can finally be selected. Instead of
improving the above greedy function along these lines, and thereby increasing
its time complexity, we consider it more promising—especially with the type of
algorithm in mind that will be presented in the next section—to develop upper
bound functions for estimating the length of an LCPS. As we will see, these
bounds can also be used as alternative greedy functions to evaluate possible
extensions of partial solutions.

2.2 Upper Bounds for the Length of an LCPS

A first upper bound for the length of any palindromic subsequences obtainable
for a set of strings S can be calculated by

UB1(S) =

2
∑

a∈Σ(pL,pR)

⌊ca
2

⌋+ 1∃a∈Σ(pL,pR)|ca mod 2=1. (5)

The last term considers the fact that at most one singleton letter can be added
at the end of a solution construction, with 1 denoting the unit step function
that yields one iff the condition in the subscript is fulfilled, i.e., there exists a
letter in Σ(pL,pR) with an odd value of ca. Note that UB1(S) can be calculated
in O(mn) time, considering the required re-calculation of the counters ca.

5

A second upper bound can be derived as follows. First, each relevant sub-
string si[p

L
i , p

R
i] is reduced by deleting all letters that are not in Σ(pL,pR). The

resulting strings are denoted by si[p
L
i , p

R
i]red, i = 1, . . . ,m. Then, a longest palin-

dromic subsequence, denoted by LPS(si[p
L
i , p

R
i]red), is calculated for each of these

strings individually. As a longest common palindromic subsequence of all strings
S[pL, pR]red cannot be longer than any individual longest palindromic subse-
quence, we obtain the upper bound

UB2(S) = min
i=1,...,m

|LPS(si[p
L
i , p

R
i]red)|. (6)

A longest palindromic subsequence of a single string can be calculated by
solving the LCS (longest common subsequence) problem for the problem instance
that has as input strings the string itself and its reversal. This can be done by
dynamic programming in O(n2) time. Masek and Paterson [19] presented a more
specific and slightly faster algorithm that runs in O(n2/ log n) time.

Note that none of the two upper bounds dominates the other one. For ex-
ample, for S = {abba, abab} we get UB1(S) = 4 and UB2(S) = 3, whereas for
S = {aba, bab} we get UB1(S) = 1 and UB2(S) = 3. Therefore, it might be bene-
ficial to consider the minimum of both bounds UB3(S) = min(UB1(S),UB2(S)).

Finally, observe that our upper bound functions can also directly be applied
to evaluate any partial solution s with its still relevant substrings S[pL, pR]: While
UBx(S[pL, pR]), for x ∈ {1, 2, 3}, is an upper bound for the length by which smay
still be extended, |s|+UBx(S[pL, pR]) is an upper bound for the overall length of
still achievable solutions. In the greedy heuristic, our upper bound functions can
therefore be used instead of g(a, pL, pR) by temporarily determining the updated
pL and pR when one would accept letter a and calculating UBx(S[pL, pR]).

3 Search Algorithms for the LCPS

In the following we first describe the state graph on which both A∗ and Beam
Search will operate. This state graph is a directed acyclic multi-graph G = (V,A)
in which each node (state) v = (pL,v, pR,v) ∈ V corresponds to a unique LCPS
subproblem, i.e., a set of still relevant substrings indicated by the respective
pointer vectors pL,v and pR,v. Note that one such node will in general represent
multiple different partial solutions in an efficient way. As an example consider
S = (abccdccba, baccdccab), and partial solutions s = ac and s′ = bc. It
holds that pL = (4, 4) and pR = (6, 6) in both cases, and thus, both partial
solutions will be represented by a common node. Here, s and s′ have the same
length, but this need not be the case in general. Our state graph has the root
node r = ((1, . . . , 1), (|s1|, . . . |sm|)) corresponding to the original set of input
strings S and representing the empty partial solution. Each node v ∈ V stores
as additional information the length lv of a so far best—i.e., longest—partial
solution represented by v. Furthermore, each node v ∈ V has an outgoing arc
(v, v′, a) ∈ A for each valid extension of the represented partial solutions by a
non-dominated non-singleton letter a ∈ Σnd

v = Σnd
(pL,v,pR,v).

6

We emphasize that it is not necessary to store actual partial solutions s in
the nodes. As pointed out already in Section 2, this is neither necessary for the
greedy function evaluation, nor for the upper bound calculation. For any node
in the graph a corresponding solution string can finally be efficiently derived in
a backward manner by iteratively identifying predecessors in which the lv-values
always decrease by one.

3.1 A∗ Search for the LCPS Problem

A∗ is a widely used algorithm belonging to the class of informed search methods
for finding shortest or longest paths [12]. It maintains two sets of nodes: N stores
all so far reached nodes, while Q, the set of open nodes, is the subset of nodes
in N that have not yet been expanded, i.e., whose outgoing arcs and respective
neighbors have not yet been considered. We realize node set N by means of a
hash map in order to be able to efficiently find an already existing node for a
state (pL, pR), or to determine that no respective node exists yet. Moreover, Q
is a priority queue in which nodes are sorted according to decreasing priority
values π(v) = lv + UBx(S[pL,v, pR,v]), where x specifies the used upper bound.

The pseudo-code of our A∗ search is shown in Algorithm 1. It starts with
the root node as unique node in N and Q. At each step, the first node v from
Q—that is, the highest priority node—is chosen and removed from Q. If this
node is non-extensible, it is first checked if a singleton letter can be added, and
afterwards the algorithm stops. Since our priority function is admissible, cf. [12],
we can be sure that an optimal solution has been reached. Otherwise, node v
is extended by considering all possible extensions from Σnd

v . For each obtained
new state it is checked if a respective node exists already in N . If this is the
case, the existing node’s length-value is updated in case the new path to this
node represents a new longest partial solution. Otherwise, a corresponding new
node is created and added to N and Q.

Finally, we remark that both upper bound functions presented in Section 2.2,
i.e., UB1 and UB2, as well as their combination UB3, are monotonic (also called
consistent) because the upper bound value of an extension of a node is always
at most as high as the upper bound value of the originating node. Due to this
property we can be sure that no re-expansions of already expanded nodes will
be necessary, see again [12].

Diving in A∗. One of the main advantages of A∗ is the fact that the search
performs in an asymptotic optimal way with respect to the applied upper bound
function, requiring the least possible number of node expansions in order to
find a proven optimal solution. On the downside, good approximate solutions
are typically only obtained, if at all, very late in the search. To improve this
situation and turn our A∗ into an anytime algorithm, which can be terminated
almost arbitrarily and still yields a reasonable solution, we augment it by switch-
ing in regular intervals to a temporary greedy depth-first search until no further
extensible solution is obtained. We call this extension diving. More specifically,
diving is initiated at the very beginning and after each δ regular A∗ iterations,

7

Algorithm 1 A∗ Search for the LCPS problem

1: Input: an instance (S,Σ)
2: Output: sbsf , an optimal LCPS solution
3: sbsf ← ε
4: Create root node r = ((1, . . . , 1), (|s1|, . . . |sm|)) with lr = 0
5: Add r to the initially empty node set N and priority queue Q
6: optimal ← false
7: while Q 6= ∅ and not optimal do
8: Take the first node v from priority queue Q
9: Determine Σnd

v from pL,v and pR,v

10: if Σnd
v = ∅ then

11: Derive a partial solution s represented by v
12: if Σv 6= ∅ then
13: Choose a singleton a ∈ Σv

14: s← s · a · srev
15: else
16: s← s · srev
17: end if
18: sbsf ← s
19: optimal ← true
20: else
21: for a ∈ Σnd

v do
22: Compute state v′ that results from appending a at state v
23: if v′ ∈ N then
24: if lv + 1 > lv

′
then

25: lv
′
← lv + 1

26: Update entry for v′ in Q with new priority value π(v′)
27: end if
28: else
29: Add new node v′ with lv

′
= lv + 1 to N and Q

30: end if
31: end for
32: end if
33: Remove v from Q
34: end while

where δ is an external parameter. Starting from the first node taken from Q,
i.e., the highest priority node, we always expand as next node a newly generated
immediate successor with highest priority value. This depth-first search is per-
formed until no further newly generated successor exists (i.e., we do not further
follow any already previously created nodes). If a new best solution is obtained
in this way, it is stored in sbsf , which is returned in case of an early termination
due to an imposed time limit. Note that, when extending a node during diving,
the same steps regarding the update of the nodes in N and Q are performed as
in A∗. An important difference is, however, that nodes expanded during diving
may now require a re-expansion at a later time when a longer partial solution is
found for the respective state.

8

3.2 Beam Search for the LCPS Problem

With Beam Search (BS), we further consider an alternative, purely heuristic
way of searching the state graph defined at the beginning of this section. BS [21]
is a breadth-first search algorithm that explicitly limits the nodes examined at
each level, for example, with an explicit upper bound of their number β > 0
called the beam width. Before presenting our specific BS for the LCPS problem,
we define a dominance relation for nodes in the state graph considered at the
same level of BS: Given nodes u, v ∈ V we say u dominates v iff u 6= v and
pL,ui < pL,vi ∧ pR,ui ≥ pR,vi for all i = 1, . . . ,m.

The pseudo-code of our BS is provided in Algorithm 2. The beam B—
that is, the set of nodes considered at each step of the algorithm—is initial-
ized with the root node r. Then, at each step, the nodes of the current beam
are extended in all possible ways, dominated nodes are filtered in function
RemoveDominatedEntries(Vext), and the best β nodes with respect to their pri-
ority values are selected in function Reduce(Vext, β) to obtain the beam for the
next iteration.

Algorithm 2 Beam Search (BS) for the LCPS problem

1: Input: an instance (S,Σ)
2: Output: sbsf , the best solution found
3: sbsf ← ε
4: Create root node r = ((1, . . . , 1), (|s1|, . . . |sm|))
5: Beam B ← {r}
6: while B is not empty do
7: Vext ← ∅
8: for each v ∈ B do
9: Determine Σnd

v from pL,v and pR,v

10: if Σnd
v = ∅ then

11: Derive a partial solution s represented by v
12: if Σv 6= ∅ then
13: Choose a singleton a∗ ∈ Σv

14: s← s · a∗ · srev
15: else
16: s← s · srev
17: end if
18: if |s| > |sbsf | then sbsf ← s end if
19: else
20: for a ∈ Σnd

v do
21: Compute state v′ that results from appending a at state v
22: Vext ← Vext ∪ {v′}
23: end for
24: end if
25: end for
26: Vext ← RemoveDominatedEntries(Vext)
27: B ← Reduce(Vext, β)
28: end while

9

3.3 Embedding Beam Search in A∗

Instead of the simple diving described for A∗ in Section 3.1, we may also apply
above BS embedded within A∗ at regular intervals, always starting with the
first entry of Q as the initial node in beam B. As in simple diving, BS skips
any already earlier encountered nodes (i.e., nodes that are already in N are not
added to Vext) in order to avoid ineffective re-considerations of parts of the state
graph. Therefore, it might happen—just like in the case of simple diving—that
the embedded BS ends without delivering any complete solution. Moreover, as
in simple diving, for all considered extensions of nodes, the same steps regarding
the update of the nodes in N and Q are performed as in A∗, cf. Algorithm 1.
Finally, note that with beam width β = 1 the embedded BS corresponds to
simple diving.

3.4 Tie Breaking

While executing preliminary experiments for A∗, we realized that many ties
occur when ordering the nodes in the priority queue Q with respect to their
priorities in π(v). To guide the search in better ways, we decided to use the
length of a represented longest partial solution as a secondary decision criterion
in such cases. This improved the performance significantly, but still suffered
from a significant number of ties. In order to also break these, it turned out to
be beneficial to additionally consider the p-norm, which is for a node v defined
as

||v||p =

(
m∑
i=1

∣∣∣pR,vi − pL,vi
∣∣∣p)1/p

. (7)

Given two nodes u 6= v with the same priority value and the same maximum
length concerning the represented partial solutions, a node with a lower p-norm is
finally preferred. The inspiration for making use of this norm is that the smallest
still relevant substrings potentially have a higher impact on the final length of
complete solutions than the larger ones. However, considering only the shortest
one of the still relevant substrings—that is, applying the min norm—could be
highly misleading. Therefore, a p value from (0, 1) appears meaningful. Following
further preliminary experiments, we finally chose p = 0.5 for all experiments
discussed in the next section.

4 Experimental Results

The proposed algorithms were implemented in C++ using GCC 4.7.3 and all
experiments were performed as single threads on Intel Xeon E5649 CPUs with
2.53 GHz and a memory limit of 15GB.

The benchmark instances used in this work were initially introduced in [4] in
the context of the LCS problem and are provided at https://www.ac.tuwien.ac.

at/wp/wp-content/uploads/LCPS_instances.zip. This set consists for each combina-
tion of the number of input strings m ∈ {10, 50, 100, 150, 200}, the length of the input

10

https://www.ac.tuwien.ac.at/wp/wp-content/uploads/LCPS_instances.zip
https://www.ac.tuwien.ac.at/wp/wp-content/uploads/LCPS_instances.zip

Table 1. Comparison of BS with UB1 to BS with UB3 on the 150 problem instances
with |Σ| = 4.

m n BS with UB1 BS with UB3 UB1 versus UB2

|s| t[s] |s| t[s] > (%) < (%) = (%) − (avg)

100 28.1 < 0.0 28.5 0.3 74.7 10.0 15.3 5.5
10 500 150.7 0.1 151.5 76.8 95.6 2.0 2.4 54.3

1000 304.7 0.4 304.3 656.1 97.9 1.0 1.2 122.5

100 21.2 0.0 21.4 1.6 53.3 25.3 21.4 1.8
50 500 125.1 0.4 125.4 368.1 93.3 3.4 3.3 42.6

1000 256.5 1.3 – 900.0 100.0 0.0 0.0 214.7

100 19.5 0.1 19.9 3.1 48.8 27.0 24.2 1.3
100 500 118.3 0.7 119.4 174.5 93.4 3.4 3.2 42.6

1000 245.1 2.3 – 900.0 100.0 0.0 0.0 209.4

100 18.5 0.1 18.6 2.9 39.4 35.8 24.8 0.4
150 500 115.7 1.2 116.5 887.2 93.1 3.5 3.4 39.2

1000 240.9 3.1 – 900.0 100.0 0.0 0.0 211.5

100 17.9 0.1 18.1 3.6 39.5 35.6 24.8 0.4
200 500 114.2 1.4 – 900.0 92.0 4.3 3.7 36.5

1000 237.7 4.0 – 900.0 100.0 0.0 0.0 212.4

strings n ∈ {100, 500, 1000} and the alphabet size |Σ| ∈ {4, 12, 20} of 10 randomly
generated instances, yielding a total of 450 problem instances.

4.1 Comparison of Upper Bound Functions

In order to study the differences and mutual benefits of the two upper bound functions
from Section 2.2, BS with β = 10 was applied both using only UB1 and using UB3,
that is, the minimum of UB1 and UB2. The outcome is presented in Table 1. Each row
shows average results over the 10 problem instances for each combination of m and n.
The results of BS with UB1 are presented in terms of the obtained average solution
quality (|s|) and the average required computation time (t[s]) in the third and fourth
table column. The corresponding results of BS with UB3 are listed in the fifth and sixth
table column. The best result per table row is printed bold. The “–” symbol indicates
that no complete solution of length greater than zero was derived within a CPU time
limit of 900 seconds since the bound calculation took already too much time.

The following can be observed. First, when it is not too costly to calculate UB2, as
it is always the case for the instances with n = 100 and mostly when n = 500, BS using
UB3 is able to outperform BS using only UB1. However, the high time complexity for
calculating UB2—that is, O(mn2)—is a major obstacle in the context of larger problem
instances. Because of these limitations, we perform all further experiments for BS, A∗,
and the hybrid using only UB1.

Nevertheless, the additional four columns in Table 1 clearly indicate that the usage
of UB2 can be promising also for larger instances. These columns show the percentages
of nodes for which UB2 dominates UB1 (> (%)), the percentages of nodes for which
UB1 dominates UB2 (< (%)), the percentage of nodes where both bounds are the same
(= (%)), and the average absolute values of subtracting UB2 from UB1 (− (avg)).
Results show that UB2 dominates UB1 especially for long input strings. A promising
idea seems to be to either limit the time for calculating UB2 or to calculate this bound
only for a suitably chosen subset of all nodes. However, these studies are left for future
work.

11

1 5 10 20 50 100 200 400

Beam search

beam width

av
g.

 fi
na

l s
ol

ut
io

n
le

ng
th

60
62

64
66

68
70

72
74

65.22

67.96
68.58

69.19
69.81 70.14 70.49 70.74

1 5 10 20 50 100 200 400

Beam search

beam width

av
g.

 o
f r

un
ni

ng
 ti

m
es

0
5

10
15

20
25

30
35

0.1 0.41 0.77 1.41

3.67

7.47

14.38

28.86

Fig. 1. Average final solution lengths and runtimes of BS with different beam widths β.

4.2 Main Results

We now compare the performance of our four solution approaches: (1) the greedy
algorithm from Section 2, henceforth referred to as Greedy; (2) BS; (3) A∗ with simple
diving, henceforth referred to as A∗+Dive; and (4) A∗ with embedded BS, henceforth
referred to as A∗+BS.

For deciding how to choose the beam width β in the stand-alone BS as well as in
A∗+BS, we applied BS to each of the 450 problem instances. Average final solution
lengths and runtimes are shown in Figure 1. As expected, with increasing beam width β
also the solution quality increases. However, this comes at the cost of an approximately
linear increase of the runtime. Since the solution quality for β = 400 is only slightly
better than that with β = 200, but the required times are about twice as large, we
chose β = 200 for the standalone BS. For the embedded BS, we decided to use β = 10
due to the still relatively good results and small average runtime of only 0.77 seconds
per instance.

The two variants of A∗ further require a setting for δ, the number of regular A∗

iterations between diving/BS. We considered 5, 10, 50, 100, 500, and 1000 iterations
and conducted preliminary experiments in a similar way as for β. Results (not shown)
indicated that for δ = 10, A∗ performs on average slightly but significantly better than
with the other values. Therefore, we adopt this setting in our further tests for A∗+Dive
and A∗+BS.

Results from the comparison of the four solution approaches are presented sepa-
rately for instances of different alphabet sizes in Tables 2–4. Again, shown values are
averages over the 10 instances of the same type, and best results from each row are
printed bold. Optimal solution values (as determined by A∗+Dive and/or A∗+BS) are
marked with an asterisk. For each algorithm, the table shows final average solution
lengths, average runtimes, and additionally, for the algorithms A∗+Dive and A∗+BS
the column tbest[s] which shows the average computation times at which the best found
solutions were obtained. A limit of 900 seconds was imposed per run. The following
observations can be made:

• By far the fastest algorithm is Greedy. However, Greedy also produces the weakest
results in the comparison. Runtimes of the A∗ variants are generally higher, but
of course these partly include proofs of optimality.

• Both A∗+Dive and A∗+BS are able to find optimal solutions for all instances with
input string length n = 100. This corresponds to 15 out of 45 cases (table rows).

12

Table 2. Results for |Σ|=4.

m n Greedy BS A*+Dive A*+BS

|s| t[s] |s| t[s] |s| t[s] tbest[s] |s| t[s] tbest[s]

100 25.6 < 0.1 *28.9 0.3 *28.9 13.2 5.6 *28.9 14.1 0.7
10 500 143.6 < 0.1 157.4 2.7 147.5 900.0 310.8 156.5 900.0 222.1

1000 292.6 < 0.1 316.4 7.1 291.8 900.0 376.3 313.3 900.0 413.8

100 19.4 < 0.1 21.7 0.6 *21.8 6.6 1.9 *21.8 7.4 2.2
50 500 117.6 < 0.1 128.0 7.8 123.8 900.0 148.1 127.8 900.0 137.6

1000 251.0 < 0.1 262.8 22.5 252.4 900.0 227.8 260.9 900.0 176.5

100 18.1 < 0.1 20.0 0.9 *20.1 8.8 2.0 *20.1 9.8 1.0
100 500 112.2 < 0.1 121.4 13.9 118.4 900.0 219.5 121.3 900.0 203.7

1000 240.3 < 0.1 250.9 41.9 242.8 900.0 130.1 249.7 900.0 281.2

100 16.3 < 0.1 *19.0 1.2 *19.0 6.6 0.5 *19.0 7.6 0.2
150 500 108.4 < 0.1 118.1 20.0 115.6 900.0 359.7 118.4 900.0 324.8

1000 234.0 0.1 244.9 58.8 238.5 900.0 176.1 244.4 900.0 251.8

100 16.4 < 0.1 18.4 1.5 *18.5 8.7 2.1 *18.5 9.8 1.1
200 500 107.1 < 0.1 115.9 25.6 113.8 900.0 238.0 116.5 900.0 336.2

1000 227.2 0.2 241.4 77.1 235.9 900.0 363.2 241.1 900.0 171.8

Table 3. Results for |Σ|=12.

m n Greedy BS A*+Dive A*+BS

|s| t[s] |s| t[s] |s| t[s] tbest[s] |s| t[s] tbest[s]

100 8.9 < 0.1 *9.6 < 0.1 *9.6 < 0.1 < 0.1 *9.6 < 0.1 < 0.1
10 500 54.1 < 0.1 60.6 2.7 57.6 900.0 273.3 60.3 900.0 17.8

1000 113.8 < 0.1 125.7 6.6 115.1 900.0 396.7 124.0 900.0 270.4

100 4.7 < 0.1 *5.6 < 0.1 *5.6 < 0.1 < 0.1 *5.6 < 0.1 < 0.1
50 500 38.6 < 0.1 43.1 6.1 41.8 900.0 124.0 43.1 900.0 40.1

1000 83.9 < 0.1 90.4 16.1 86.2 900.0 473.1 89.8 900.0 274.0

100 3.9 < 0.1 *4.6 < 0.1 *4.6 < 0.1 < 0.1 *4.6 < 0.1 < 0.1
100 500 35.0 < 0.1 38.7 9.8 37.5 900.0 102.1 39.0 900.0 141.7

1000 77.8 < 0.1 82.9 27.4 79.9 900.0 130.0 82.7 900.0 117.4

100 3.5 < 0.1 *3.8 < 0.1 *3.8 < 0.1 < 0.1 *3.8 < 0.1 < 0.1
150 500 33.2 < 0.1 37.0 13.7 36.0 900.0 61.4 37.0 900.0 105.7

1000 72.7 0.1 79.2 37.2 77.2 900.0 211.8 79.4 900.0 94.0

100 3.1 < 0.1 *3.3 < 0.1 *3.3 < 0.1 < 0.1 *3.3 < 0.1 < 0.1
200 500 31.3 < 0.1 35.4 17.5 35.0 900.0 202.0 35.3 900.0 57.9

1000 71.1 0.2 77.7 50.5 75.3 900.0 208.6 77.3 900.0 159.5

Table 4. Results for |Σ|=20.

m n Greedy BS A*+Dive A*+BS

|s| t[s] |s| t[s] |s| t[s] tbest[s] |s| t[s] tbest[s]

100 5.0 < 0.1 *5.4 < 0.1 *5.4 < 0.1 < 0.1 *5.4 < 0.1 < 0.1
10 500 32.7 < 0.1 38.3 2.8 36.6 900.0 107.0 38.4 900.0 166.6

1000 70.4 < 0.1 79.3 6.6 73.7 900.0 213.7 78.5 900.0 163.5

100 2.3 < 0.1 *2.5 < 0.1 *2.5 < 0.1 < 0.1 *2.5 < 0.1 < 0.1
50 500 21.7 < 0.1 24.9 5.5 24.5 900.0 70.4 24.9 900.0 3.8

1000 48.7 < 0.1 54.3 15.8 51.6 900.0 159.1 53.7 900.0 115.8

100 *1.3 < 0.1 *1.3 < 0.1 *1.3 < 0.1 < 0.1 *1.3 < 0.1 < 0.1
100 500 18.5 < 0.1 21.9 9.1 21.0 900.0 1.5 21.8 900.0 62.0

1000 44.0 0.1 48.7 26.7 47.0 900.0 46.5 48.4 900.0 40.1

100 *1.1 < 0.1 *1.1 < 0.1 *1.1 < 0.1 < 0.1 *1.1 < 0.1 < 0.1
150 500 17.8 < 0.1 20.5 11.6 20.1 900.0 46.9 20.6 900.0 165.5

1000 40.1 0.1 46.0 37.6 44.9 900.0 201.4 45.8 900.0 81.5

100 *1.1 < 0.1 *1.1 < 0.1 *1.1 < 0.1 < 0.1 *1.1 < 0.1 < 0.1
200 500 16.9 < 0.1 19.1 14.9 19.0 900.0 6.3 19.4 900.0 79.1

1000 39.8 0.2 44.7 46.8 43.1 900.0 60.3 44.6 900.0 213.6

13

• In most of those cases in which the A∗ variants cannot find optimal solutions,
A∗+BS outperforms A∗+Dive. This shows the benefit of using BS as embedded
heuristic as opposed to simple diving.

• In those cases where the A∗ versions are able to find optimal solutions and prove
their optimality, BS is most of the time also able to find solutions of equal qual-
ity. However, this seems to become more difficult for BS when the alphabet size
decreases. In particular, BS failed to find all optimal solutions in three out of five
cases with |Σ| = 4.

• From a pure heuristic point of view, BS outperforms A∗+BS more and more when
the length of the input strings increases. More specifically, while the results ob-
tained by BS and the A∗+BS are comparable for instances with n = 500, BS
generally outperforms A∗+BS for instances with n = 1000.

5 Conclusions and Future Work

We proposed different algorithms for solving the LCPS problem with an arbitrary
number of strings heuristically as well as exactly. A general state graph was defined
that can be searched by different strategies. With BS we provided a pure heuristic
search that scales well to also large instances. With A∗ we provided an efficient method
for solving instances with up to 200 strings of lengths up to 100 to proven optimality.
Since for instances with even larger strings, A∗ search cannot find a complete solution
in a reasonable time, it is upgraded to an anytime algorithm by embedding either the
simple diving or the more advanced BS. For the instances where our hybrid algorithms
do not find optimal solution, the optimality gaps between final (heuristic) solutions
and the corresponding upper bounds produced by A∗ are not so tight. The reason for
this is that UB1 partly provides only rather weak bounds. Using UB1 in combination
with UB2, i.e., UB3, would clearly be beneficial from the quality point-of-view, but the
larger time complexity of UB2 makes this approach prohibitive for larger instances.
In future work the strengthening of the upper bounds seems to be most promising.
We believe that this can be achieved by applying UB2 only for subproblems up to a
certain size or by finding an approximation of UB2 that can be calculated in a faster
way. Testing the algorithms with real world instances, e.g., coming from protein, DNA
and virus structure sequences, would also be interesting, since such instances may have
special structures on which the algorithms might perform differently or which might
be further exploited.

Acknowledgments. We gratefully acknowledge the financial support of this project
by the Doctoral Program “Vienna Graduate School on Computational Optimization”
funded by the Austrian Science Foundation (FWF) under contract no. W1260-N35.

References

1. L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence
algorithms. In Proceedings of SPIRE 2000 – 7th International Symposium on String
Processing and Information Retrieval, pages 39–48. IEEE press, 2000.

2. C. Blum, M. J. Blesa, and M. López-Ibáñez. Beam search for the longest common
subsequence problem. Computers & Operations Research, 36(12):3178–3186, 2009.

14

3. C. Blum and P. Festa. Longest common subsequence problems. In Metaheuristics
for String Problems in Bioinformatics, chapter 3, pages 45–60. Wiley, 2016.

4. C. Blum and G. R. Raidl. Hybrid Metaheuristics: Powerful Tools for Optimization.
Springer, 2016.

5. P. Bonizzoni, G. Della Vedova, and G. Mauri. Experimenting an approximation
algorithm for the LCS. Discrete Applied Mathematics, 110(1):13–24, 2001.

6. P. Brisk, A. Kaplan, and M. Sarrafzadeh. Area-efficient instruction set synthesis for
reconfigurable system-on-chip design. In Proceedings of the 41st Design Automation
Conference, pages 395–400. IEEE press, 2004.

7. C. Q. Choi. DNA palindromes found in cancer. Genome Biology, 6:1–3, 2005.
spotlight-20050216-01.

8. S. R. Chowdhury, M. M. Hasan, S. Iqbal, and M. S. Rahman. Computing a
longest common palindromic subsequence. Fundamenta Informaticae, 129(4):329–
340, 2014.

9. C. B. Fraser. Subsequences and Supersequences of Strings. PhD thesis, University
of Glasgow, Glasgow, UK, 1995.

10. M. Giel-Pietraszuk, M. Hoffmann, S. Dolecka, J. Rychlewski, and J. Barciszewski.
Palindromes in proteins. Journal of Protein Chemistry, 22(2):109–113, 2003.

11. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Computer Science and
Computational Biology. Cambridge University Press, Cambridge, 1997.

12. P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics,
4(2):100–107, 1968.

13. M. M. Hasan, A. S. M. Sohidull Islam, M. Sohel Rahman, and A. Sen. Palindromic
subsequence automata and longest common palindromic subsequence. Mathemat-
ics in Computer Science, 11:219–232, 2017.

14. K. Huang, C. Yang, and K. Tseng. Fast algorithms for finding the common subse-
quences of multiple sequences. In Proceedings of the IEEE International Computer
Symposium, pages 1006–1011. IEEE press, 2004.

15. S. Inenaga and H. Hyyrö. A hardness result and new algorithm for the longest com-
mon palindromic subsequence problem. Information Processing Letters, 129:11–15,
2018. Supplement C.

16. T. Jiang, G. Lin, B. Ma, and K. Zhang. A general edit distance between RNA
structures. Journal of Computational Biology, 9(2):371–388, 2002.

17. S. Larionov, A. Loskutov, and E. Ryadchenko. Chromosome evolution with naked
eye: Palindromic context of the life origin. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 18(1), 2008.

18. D. Maier. The complexity of some problems on subsequences and supersequences.
Journal of the ACM, 25(2):322–336, 1978.

19. W. J. Masek and M. S. Paterson. A faster computing string edit distances. Theo-
retical Computer and System Sciences, 20:18–31, 1980.

20. S. R. Mousavi and F. Tabataba. An improved algorithm for the longest common
subsequence problem. Computers & Operations Research, 39(3):512–520, 2012.

21. P. S. Ow and T. E. Morton. Filtered beam search in scheduling. International
Journal of Production Research, 26:297–307, 1988.

22. J. Storer. Data Compression: Methods and Theory. Computer Science Press, MD,
USA, 1988.

23. H. Tanaka, D. A. Bergstrom, M.-C. Yao, and S. J. Tapscott. Large DNA palin-
dromes as a common form of structural chromosome aberrations in human cancers.
Human Cell, 19(1):17–23, 2006.

15

	Exact and Heuristic Approaches for the Longest Common Palindromic Subsequence Problem
	Introduction
	Related Work
	Organization of the Paper

	A Greedy Heuristic for the LCPS Problem
	Greedy Function
	Upper Bounds for the Length of an LCPS

	Search Algorithms for the LCPS
	A* Search for the LCPS Problem
	Beam Search for the LCPS Problem
	Embedding Beam Search in A*
	Tie Breaking

	Experimental Results
	Comparison of Upper Bound Functions
	Main Results

	Conclusions and Future Work

