Scaling SAT/MaxSAT encodings to large instances with SLIM

Stefan Szeider

TECHNISCHE UNIVERSITÄT WIEN Vienna Austria

ac Algorithms and COMPLEXITY GROUP

WIEN

Motivation

- SAT encodings often blow up the instance size by a polynomial of order 3 or 4
- $60^4 > 12$ Mio
- Hence there is a certain hard limit on instance size for SAT encodings
- SAT-based Local Improve Method (SLIM) tries to overcome this limit
- Idea: use a heuristic to compute an initial solution, then repeatedly apply SAT-encodings (or Max-SAT encodings) to local parts, to improve the initial solution
- SLIM is related to the LNS meta-heuristic, but SLIM defines the neighbourhood in a very structured way

The SLIM Loop

initial solution

- global solver
- local Solver
- local selection strategy
- **budget**: size of the local instance
- local timeout: time allotted for the local solver

Informatics

Stefan Szeider algorithms and COMPLEXITY GROUP

• challenge: ensure that the new local solution fits into the global solution

SLIM Showcases

Problem	local solver	
Branchwidth	SAT	
Treewidth	SAT	
Treedepth	MaxSAT	
BN Structure Learning	MaxSAT	
Decision Trees	SAT	

Paper

[Lodha, Ordyniak, Sz. (SAT'17, ToCL'19)]

[Fichte, Lodha, Sz. (SAT'17)]

[Peruvemba Ramaswamy, Sz (CP'20)]

[Peruvemba Ramaswamy, Sz (AAAI'21)]

[Schidler, Sz. (AAAI'21)]

Bayesian Network Structure Learning

Bayesian Network Structure Learning

SPRINKL

- Т
- Т

ER RAIN	Т	F
F	0.0	1.0
Т	0.8	0.2
F	0.9	0.1
Т	0.99	0.01

Bayesian Network Structure Learning

- Reasoning on BNs is #P-complete
- but fixed-parameter tractable in the treewidth of the network's moral graph

one of the few examples outside theory where treewidth is actually used

Score-Based Structure Learning

Sample data

а	b	С	d	e	f	
1	0	0	1	1	0	
1	1	1	1	1	1	
0	0	0	1	0	0	
1	0	1	1	0	1	
1	0	0	1	0	0	
1	0	0	0	0	0	
1	0	0	1	0	0	
1	0	1	1	0	1	
1	0	0	1	0	1	
	•••					

Score-Based Structure Learning

Sample data

а	b	C	d	e	f
1	0	0	1	1	0
1	1	1	1	1	1
0	0	0	1	0	0
1	0	1	1	0	1
1	0	0	1	0	0
1	0	0	0	0	0
1	0	0	1	0	0
1	0	1	1	0	1
1	0	0	1	0	1
			••		

node	parent set	score
а	Ø	0.12
а	{b}	0.1
а	{a,b}	0
b	Ø	0.11
b	{a}	0.27
b	{a,c}	0.33
С	Ø	0.01
С	{b}	0.33
С	{a,b}	0.45

Score function cache

Stefan Szeider algorithms and COMPLEXITY GROUP

TU Informatics

Score-Based Structure Learning BN DAG

Sample data

а	b	С	d	е	f	
1	0	0	1	1	0	
1	1	1	1	1	1	
0	0	0	1	0	0	
1	0	1	1	0	1	
1	0	0	1	0	0	
1	0	0	0	0	0	
1	0	0	1	0	0	
1	0	1	1	0	1	
1	0	0	1	0	1	
	•••					

node	parent set	score
а	Ø	0.12
а	{b}	0.1
а	{a,b}	0
b	Ø	0.11
b	{a}	0.27
b	{a,c}	0.33
С	Ø	0.01
С	{b}	0.33
С	{a,b}	0.45

Score function cache

Stefan Szeider algorithms and COMPLEXITY GROUP

Informatics

+ moral edges

Score-Based Structure Learning

Sample data

а	b	С	d	е	f	
1	0	0	1	1	0	
1	1	1	1	1	1	
0	0	0	1	0	0	
1	0	1	1	0	1	
1	0	0	1	0	0	
1	0	0	0	0	0	
1	0	0	1	0	0	
1	0	1	1	0	1	
1	0	0	1	0	1	
	•••					

node	parent set	score
а	Ø	0.12
а	{b}	0.1
а	{a,b}	0
b	Ø	0.11
b	{a}	0.27
b	{a,c}	0.33
С	Ø	0.01
С	{b}	0.33
С	{a,b}	0.45

Score function cache

Stefan Szeider algorithms and COMPLEXITY GROUP

TU Informatics

BN DAG + moral edges

tree decomposition width 2

Score-Based Structure Learning

Sample data

а	b	С	d	е	f	
1	0	0	1	1	0	
1	1	1	1	1	1	
0	0	0	1	0	0	
1	0	1	1	0	1	
1	0	0	1	0	0	
1	0	0	0	0	0	
1	0	0	1	0	0	
1	0	1	1	0	1	
1	0	0	1	0	1	
	•••					

node	parent set	score
а	Ø	0.12
а	{b}	0.1
а	{a,b}	0
b	Ø	0.11
b	{a}	0.27
b	{a,c}	0.33
С	Ø	0.01
С	{b}	0.33
С	{a,b}	0.45

Score function cache

Stefan Szeider ac ALGORITHMS AND COMPLEXITY GROUP

Informatics

BN DAG + moral edges

tree decomposition width 2

Hard clauses for acyclicity, bounded treewidth Soft clauses for score maximisation **Partial Max-SAT**

SAT-Based Local Improvement for BN Structure Learning (BN-SLIM)

We start with a bounded treewidth BN obtained by a heuristic method

Stefan Szeider algorithms and COMPLEXITY GROUP

select a subtree of the tree decomposition, small enough so that the number variables in the subtree stays within a given **budget**

Stefan Szeider ac ALGORITHMS AND COMPLEXITY GROUP

WIEN Informatics

we repeat this process for other selected subtrees, until no improvement is possible or a global timeout is reached

Experimental Setup

- **Instances:** up to 4000 variables
- k-MAX algorithm [Scanagatta et al. 2018]
 - anytime algorithm, we take the initial solution after 30 minutes
- **Treewidth bounds**: we use tw=2, tw=5, and tw=8 as in
- MAX-SAT solver: UWrMaxSat [Piotrow 2019] because of its anytime behaviour, good performance in 2019 MaxSAT evaluation. We don't run it until termination
- Local timeout: 2 seconds
- **Budget:** 10 tree nodes

Stefan Szeider ac ALGORITHMS AND COMPLEXITY GROUP

SLIM Turbocharging k-MAX

SLIM Turbocharging k-MAX

 k-MAX+SLIM outperforms kMAX on a significant number of instances • and on all instances with tw=2 bound

Stefan Szeider ac Algorithms and COMPLEXITY GROUP

Side-by-Side Comparison

$\Delta BIC(A,B)$

Number of data sets

Category	ΔBIC	Category	ΔBIC
extremely neg.	$(-\infty, -10)$	extremely pos.	$(10,\infty)$
strongly neg.	(-10, -6)	strongly pos.	(6, 10)
negative	(-6, -2)	positive	(2,6)

Informatics

Stefan Szeider **ac** Algorithms and COMPLEXITY GROUP

The **BIC score** approximates the logarithm of the marginal likelihood of a DAG, i.e., the Bayes Factor [Raftery 1995]

Decision Tree Induction

Design Trees

- Established tool for the description, classification, and generalization of data.
- Easy to interpret: the path from root to leaf provides an explanation. Important in the context of explainable AI.
- The depth of the tree determines the maximum length of explanations.
- Smaller decision trees usually generalize better.

Design Trees

Stefan Szeider **ac** Algorithms and COMPLEXITY GROUP

- Established tool for the description, classification, and generalization of data.
- Easy to interpret: the path from root to leaf provides an explanation. Important in the context of explainable AI.
- The depth of the tree determines the maximum length of explanations.
- Smaller decision trees usually generalize better.

Design Trees

Stefan Szeider ac ALGORITHMS AND COMPLEXITY GROUP

SAT encodings for DT learning

- First SAT encoding for decision trees did not scale to even small instances [Bessiere, Hebrard, O'Sullivan CP'09]
- First encoding that scaled to small instances [Narodytska, Ignatiev, Pereira, Marques-Silva IJCAI'18]
- Depth-based encoding that scales to larger instances [Avellaneda] AAAI'20].
- New partition-based encoding and SLIM approach [Schidler, Szeider **AAAI'21]**
- Survey paper [Ignatiev, Marques-Silva, Narodytska, Stuckey IJCAI'21]

DT-SLIM

- Can be used to combine any DT heuristics (like C4.5, ITI) with an exact method (like SAT encoding)
- Requirement for the SAT encoding is that its can deal with more than 2 classification labels
- Scales virtually to any size or depth

Local Instance: all samples that end up in r, reclassify those that end up in a special leaf

Find better tree T" for Local Instance using SAT

Find better tree T" for Local Instance using SAT

Find better tree T" for Local Instance using SAT

replace T' with T"

Results

Instance			Weka		DT-SLIM	
Name	F	E	d	a	d	a
australian	1163	552	53.00	0.14	22.00	0.14
ccdefault	211	23955	96.60	0.71	80.00	0.71
haberman	92	240	71.20	0.66	63.80	0.62
hiv schilling	40	2617	18.80	0.81	11.80	0.79
hungarian	330	235	27.00	0.19	9.40	0.59
ida	2195	59998	61.00	1.00	51.00	1.00
objectivity	316	796	36.60	0.55	10.60	0.78

Comparison of depth and accuracy on selected instances before and after DT-SLIM

Informatics

Stefan Szeider ac Algorithms and COMPLEXITY GROUP

New results with pruning (maintain accuracy)

1243 nodes

Spambase 3 Data Set

43

Questions

- how to select the local instances?
- good tradeoff between budget and timeout dedicated to the local solver?
- Other applications?

Problem	local solver	Paper		
Branchwidth	SAT	[Lodha, Ordyniak, Sz. (SAT'17, ToCL'		
Treewidth	SAT	[Fichte, Lodha, Sz. (SAT'17)]		
Treedepth	MaxSAT	[Peruvemba Ramaswamy, Sz (CP'20		
BN Structure Learning	MaxSAT	[Peruvemba Ramaswamy, Sz (AAAI'		
Decision Trees	SAT	[Schidler, Sz. (AAAI'21)]		

