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Motivation

• SAT encodings often blow up the instance size by a polynomial  
of order 3 or 4


• 


• Hence there is a certain hard limit on instance size for SAT encodings 


• SAT-based Local Improve Method (SLIM) tries to overcome this limit


• Idea: use a heuristic to compute an initial solution, then repeatedly apply 
SAT-encodings (or Max-SAT encodings) to local parts, to improve the 
initial solution


• SLIM is related to the LNS meta-heuristic, but SLIM defines the 
neighbourhood in a very structured way

604 > 12 Mio
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The SLIM Loop

• global solver 

• local Solver 

• local selection strategy 

• budget: size of the local instance


• local timeout: time allotted for the local solver 


• challenge: ensure that the new local solution fits into the global solution 
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SLIM Showcases
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Problem local solver Paper

Branchwidth SAT [Lodha, Ordyniak, Sz. (SAT’17, ToCL’19)]

Treewidth SAT [Fichte, Lodha, Sz. (SAT’17)]

Treedepth MaxSAT [Peruvemba Ramaswamy, Sz (CP’20)]

BN Structure Learning MaxSAT [Peruvemba Ramaswamy, Sz (AAAI’21)]

Decision Trees SAT [Schidler, Sz. (AAAI’21)]
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Bayesian Network Structure Learning
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Bayesian Network Structure Learning

• Reasoning on BNs is #P-complete 


• but fixed-parameter tractable in the treewidth of the network’s moral graph


• one of the few examples outside theory where treewidth is actually used
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Score-Based Structure Learning
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Sample data
a b c d e f

1 0 0 1 1 0

1 1 1 1 1 1

0 0 0 1 0 0

1 0 1 1 0 1

1 0 0 1 0 0

1 0 0 0 0 0

1 0 0 1 0 0

1 0 1 1 0 1

1 0 0 1 0 1

…
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Score-Based Structure Learning
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Sample data
a b c d e f
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Score function 
 cache

node parent set score

a ∅ 0.12

a {b} 0.1

a {a,b} 0

b ∅ 0.11

b {a} 0.27

b {a,c} 0.33

c ∅ 0.01

c {b} 0.33

c {a,b} 0.45

…
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Score-Based Structure Learning
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Score-Based Structure Learning
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SAT-based Local Improvement Method (SLIM) 

SAT-Based Local Improvement for BN Structure Learning (BN-SLIM)
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We start with a bounded treewidth BN  
obtained by a heuristic method



Stefan Szeider

SAT-Based Local Improvement (SLIM)
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select a subtree of the tree decomposition, small 
enough so that the number variables in the subtree 

stays within a given budget
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SAT-Based Local Improvement (SLIM)
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SAT-Based Local Improvement (SLIM)
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“boundary bags”
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SAT-Based Local Improvement (SLIM)
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SAT-Based Local Improvement (SLIM)
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virtual edges
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SAT-Based Local Improvement (SLIM)
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virtual edges
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SAT-Based Local Improvement (SLIM)
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virtual edges
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SAT-Based Local Improvement (SLIM)
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virtual edges

virtual arcs
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SAT-Based Local Improvement (SLIM)
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virtual edges

virtual arcs

local instance
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SAT-Based Local Improvement (SLIM)
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virtual edges

virtual arcs

local instance

Max-SAT 
 encoding
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SAT-Based Local Improvement (SLIM)
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SAT-Based Local Improvement (SLIM)
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SAT-Based Local Improvement (SLIM)
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SAT-Based Local Improvement (SLIM)
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SAT-Based Local Improvement (SLIM)
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SAT-Based Local Improvement (SLIM)
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SAT-Based Local Improvement (SLIM)
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we repeat this process 
for other selected 
subtrees, until no 

improvement is possible 
or a global timeout is 

reached
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Experimental Setup
• Instances: up to 4000 variables 

• k-MAX algorithm [Scanagatta et al. 2018] 

• anytime algorithm, we take the initial solution after 30 minutes


• Treewidth bounds: we use tw=2, tw=5, and tw=8 as in 


• MAX-SAT solver: UWrMaxSat [Piotrow 2019] because of its anytime behaviour, 
good performance in 2019 MaxSAT evaluation. We don’t run it until termination


• Local timeout: 2 seconds


• Budget: 10 tree nodes

24
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SLIM Turbocharging k-MAX
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SLIM Turbocharging k-MAX
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SLIM Turbocharging k-MAX
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SLIM Turbocharging k-MAX
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• k-MAX+SLIM outperforms kMAX on a significant number of instances 
• and on all instances with tw=2 bound
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Side-by-Side Comparison 
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Figure 2: CDF plots showing the number of significantly improved data sets (�BIC � 10) across 94 data sets

this end, we run BN-SLIM for 60 minutes on top of the
initial solution provided by k-MAX, ETLd, and ETLp and
measure the time required for BN-SLIM to obtain a solution
that counts as extremely positive evidence with respect to the
initial solution. The initial solution by k-MAX is the solution
captured at the 30-minute mark, whereas the initial solution
by ETL is the final solution obtained upon termination. The
maximum time required for computing the initial solution on
any individual instance, by both ETLd and ETLp, is around
3.5 hours. For comparison, we let k-MAX continue running
for 60 more minutes after it has produced the initial solution.

Fig. 2 shows the results of this analysis. We consider a
data set to be significantly improved if BN-SLIM is able to
improve by at least 10 BIC points over the initial heuristic
solution. We observe that BN-SLIM improves over k-MAX
much more efficiently as over ETL. Giving k-MAX more
time for computing the initial solution increases this dis-
crepancy even further, as the improvement rate of k-MAX
rapidly slows down after 30 minutes. Averaging over all the
heuristics, BN-SLIM can produce a solution with extremely
positive evidence for 95%, 79%, and 78% of instances for
treewidth bounds 2, 5, and 8, respectively.

Fig. 4 shows the �BIC values from comparing the
BN-SLIM(ETL) solution after 30 minutes to the correspond-
ing initial solution by ETL. We can see that BN-SLIM(ETL)
can secure extremely positive evidence for a significant num-
ber of data sets across all tested treewidth bounds, with a
smaller treewidth being more favorable.

Due to the anytime nature of k-MAX, we can compare
it against BN-SLIM(k-MAX) in a “race.” We run both si-
multaneously for one hour, where out of the time allotted
to BN-SLIM(k-MAX), 30 minutes are used to generate the
initial solution, and the remaining 30 minutes are used to
improve this initial solution. Fig. 3 shows the �BIC val-
ues of comparing k-MAX and BN-SLIM(k-MAX) at the
one hour mark. Similar to BN-SLIM(ETL) we observe that
BN-SLIM(k-MAX) outperforms k-MAX on a significant
number of instances, and on all instances for treewidth 2.

The experimental evaluation demonstrates BN-SLIM ap-
proach’s effectiveness and the combined power as a heuristic
method of BN-SLIM(k-MAX) and BN-SLIM(ETL).

6 Conclusion
With BN-SLIM, we have presented a novel method for im-
proving the outcome of treewidth-bounded BN structure

Figure 3: Comparison between BN-SLIM(k-MAX) and
k-MAX over 94 data sets

Figure 4: Comparison between BN-SLIM(ETL) and ETL
over 97 data sets

learning heuristics. We have demonstrated its robustness and
performance by applying BN-SLIM to the solution provided
by the state-of-the-art heuristics k-MAX, ETLd, and ETLp.
The approach of BN-SLIM is based on exact reasoning via
MaxSAT, which is fundamentally different from the men-
tioned heuristics. Consequently, both approaches comple-
ment each other, and their combination provides significantly
better solutions than any of the heuristics alone. Simultane-
oulsy, the combination still scales to large instances with
thousands of random variables, which are far out of reach for
exact methods alone. Thus, BN-SLIM combines the best of
both worlds.

The highly encouraging experimental outcome suggests
several avenues for future work, which include the develop-
ment of more sophisticated subinstance selection schemes,
the inclusion of variable fidelity sampling (crude for the
global solver, fine-grained for the local solver), as well as
more complex collaboration protocols between local and
global solver in a distributed setting.

∆BIC(A,B)

Since BN-SLIM needs an initial heuristic solution, we
enlist either k-MAX, ETLd, or ETLp for this purpose.
We denote by BN-SLIM(X), the algorithm which applies
BN-SLIM on an initial solution provided by X where X 2
{k-MAX, ETLd, ETLp}. We run all our experiments with
treewidth bounds 2, 5, 8 for each data set following Scana-
gatta et al. (2018). All reported BN-SLIM results are averages
over three random seeds (see supp. material for details).

5.1 Setup
We run all our experiments on a 4-core Intel Xeon E5540
2.53 GHz CPU, with each process having access to 8GB
RAM. We use UWrMaxSat as the MaxSAT-solver primarily
due to its anytime nature (available at the 2019 MaxSAT Eval-
uation webpage1). We tried other solvers but found that UWr-
MaxSat works best for our use case. We use the BNGenerator
package (Ide 2015) in conjunction with the BBNConvertor
tool (Guo 2002) to generate and reformat random Bayesian
Networks. We also use the implementation of the k-MAX
algorithm available as a part of the BLIP package (Scanagatta
2015). For the ETL algorithms we use the software made
available2 by Benjumeda, Bielza, and Larrañaga (2019). We
implement the local improvement algorithm in Python 3.6.9,
using the NetworkX 2.4 graph library (Hagberg, Schult, and
Swart 2008). The source code is attached as supplementary
material, and we intend to make it publicly available.

We first conducted a preliminary analysis on 20 data sets
to find out the best values for the budget (maximum number
of random variables in a subinstance) and the timeout (per
MaxSAT call) of BN-SLIM. We tested out budget values
7, 10, and 17, and timeout values 1s, 2s, and 5s, and finally
settled on a budget of 10 and a timeout of 2 seconds for our
experiments.

5.2 Data sets
We consider 99 data sets for our experiments. 84 of these
come from real-world benchmarks. These are based on
the benchmarks introduced by Lowd and Davis (2010);
Van Haaren and Davis (2012); Bekker et al. (2015);
Larochelle, Bengio, and Turian (2010), a subset of which
has been used by Scanagatta et al. (2018). These benchmarks
are publicly available3 in the form of pre-partitioned data
sets. There are three data sets corresponding to each of the
28 benchmarks (see Table 1).

The remaining 15 data sets are classified as synthetic as
they are obtained by drawing 5000 samples from known BNs
(see Table 2). Five of these BNs are commonly used in the
literature as benchmarks4, and we generated the remaining
10 BNs randomly using the BNGenerator tool with more
random variables than the previously mentioned data sets.
Overall, the collection of data sets provides a wide variety of
the data’s nature and the different parameters.

Both k-MAX and BN-SLIM take a score function cache
as input, while ETL requires the samples themselves and

1https://maxsat-evaluations.github.io/2019/descriptions.html
2https://github.com/marcobb8/et-learn
3https://github.com/arranger1044/DEBD
4https://www.bnlearn.com/bnrepository/

computes the required scores on-the-fly. We thus compute
the score function cache using the scoring module provided
as a part of ETL’s source code. More specifically, we first
obtain the parent set tuples using independence selection
(available in the BLIP package), and then we recompute the
scores for these tuples using ETL’s scoring module. This
cache is used as input to both BN-SLIM and k-MAX. This
provides a level playing field and improves comparability
between the different algorithms.

While computing these score function caches, the scoring
function module was unable to process two data sets and
hence we discarded these two data sets. The final list of data
sets is shown in Tables 1 and 2. Further, k-MAX crashes for
3 data sets and hence we disregard these for any experiments
involving k-MAX or BN-SLIM(k-MAX).

Name n Name n Name n

NLTCS 16 Connect 4 126 EachMovie 500
MSNBC 17 OCR Letters 128 WebKB 839
KDDCup2k 65 RCV-1 150 Reuters-52 889
Plants 69 Retail 135 20 NewsGroup 910
Audio 100 Pumsb-star 163 Movie reviews 1001
Jester 100 DNA 180 BBC 1058
Netflix 100 Kosarek 190 Voting 1359
Accidents 111 MSWeb 294 Ad 1556
Mushrooms 112 NIPS 500
Adult 123 Book 500

Table 1: Real data sets (n is the number of random variables,
the number of samples ranges from 100 to 291326)

Name n Name n Name n

andes 223 r0 2000 r5 4000
diabetes 413 r1 2000 r6 4000
pigs 441 r2 2000 r7 4000
link 724 r3 2000
munin 1041 r4 2000

Table 2: Synthetic data sets (n is the number of random
variables, 5000 samples from each network)

5.3 Evaluation metric

For evaluating our algorithm’s performance, we use the same
metric as Scanagatta et al., i.e., �BIC, which is the difference
between the BIC scores of two solutions. Given a DAG D, the
BIC score approximates the logarithm of the marginal likeli-
hood of D. Thus, given two DAGs D1 and D2, the difference
in their BIC scores approximates the ratio of their respec-
tive marginal likelihoods which is the Bayes Factor (Raftery
1995). A positive �BIC score signifies positive evidence
towards D1 and a negative �BIC score signifies positive
evidence towards D2. The �BIC values can be mapped to a
scale of qualitative categories (Raftery 1995) as follows:

Category �BIC Category �BIC

extremely neg. (�1, �10) extremely pos. (10, 1)
strongly neg. (�10, �6) strongly pos. (6, 10)
negative (�6, �2) positive (2, 6)

• The BIC score approximates the logarithm of the marginal 
likelihood of a DAG, i.e., the Bayes Factor [Raftery 1995]
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Decision Tree Induction
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Design Trees
• Established tool for the description, 

classification, and generalization of 
data.  

• Easy to interpret: the path from root 
to leaf provides an explanation. 
Important in the context of 
explainable AI.  

• The depth of the tree determines the 
maximum length of explanations.  

• Smaller decision trees usually 
generalize better.  

30

cally obtained decision trees in almost all cases, in some cases
significantly. For instance, the decision tree for benchmark
set “australian” computed by the standard heuristic Weka has
a depth of 53, which DT-SLIM reduces to a depth of 22.

We also compare the test accuracy of the decision trees, be-
fore and after local improvement. The principle of Occam’s
Razor suggests that a decision tree of lower depth generalizes
better to additional data. Our results affirm this suggestion.
In a vast majority of the cases, deep decision trees general-
ize worse than their depth-improved counterparts. In several
cases, DT-SLIM significantly increases the test accuracy; for
instance, reducing the decision tree depth for benchmark set
“objectivity” from 36 to 10 increases the test accuracy from
55% to 78%.

2 Preliminaries

Classification problems. An example (or sample or fea-

ture vector) e is a function e : feat(e) ! {0, 1} defined on a
finite set feat(e) of features (or attributes). For a set E of sam-
ples, we put feat(E) =

S
e2E feat(e). We say that two sam-

ples e1, e2 agree on a feature f if f 2 feat(e1)\ feat(e2) and
e1(f) = e2(f). If f 2 feat(e1)\feat(e2) but e1(f) 6= e2(f),
then we say that the samples disagree on f .

A classification instance I is a pair (E,C) where E is a set
of samples, for all e1, e2 2 E we have feat(e1) = feat(e2),
and C is a mapping that assigns each sample e 2 E an
integer C(e), the classification of e. For a set E0

✓ E we let
C(E0) = {C(e) : e 2 E

0
}.

An important special case are binary classification in-
stances I = (C,E) with C(E) = {0, 1}; here we call an
e 2 E negative if C(e) = 0 and positive if C(e) = 1.

A set E0
✓ E of samples of a classification instance (C,E)

is uniform if |C(E0)|  1, otherwise, E0 is non-uniform.
A classification instance (C 0

, E
0) is a subinstance of

(C,E) if E0
✓ E and C

0 is the restriction of C to E
0.

Given a classification instance (E,C), a subset F ✓

feat(E) is a support set of E if any two samples e1, e2 2 E

with C(e1) 6= C(e2) disagree in at least one feature of F .
Finding a smallest support set is an NP-hard task, even for

binary classification instances (Ibaraki, Crama, and Hammer
2011, Theorem 12.2).

Decision trees. A (binary) decision tree, or DT, for short,
is a rooted tree T with vertex set V (T ) and arc set A(T ),
where each non-leaf node v 2 V (T ) is labeled with a feature
feat(v) and has exactly two outgoing arcs, a left arc and a
right arc. We write feat(T ) = { feat(v) : v 2 V (T ) }. The
depth d(T ) of a decision tree T is the length of a longest path
from the root to a leaf. PT (v) denotes the path from the root
to the node v and PT,i(v) denotes the i+ 1-th node on this
path, where P0(v) is the root. We also define the depth of a

node v 2 V (T ) in T , denoted dT (v), as the length of PT (v);
clearly dT (v)  d(T ).

Consider a classification instance (E,C) and a decision
tree T with feat(T ) ✓ feat(E). For each node v of T we
define ET (v) as the set of all samples e 2 E such that
for each left (right, respectively) arc (u,w) on PT (v) we
have e(f) = 1 (e(f) = 0, respectively) for the feature f =
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e4 0 0 1 0 0 1 0 0 1
e5 1 0 0 1 0 0 0 0 1
e6 0 1 0 1 0 0 1 0 0
e7 0 1 0 1 0 0 1 1 1
e8 0 0 1 0 1 0 1 1 1
e9 1 0 0 1 0 0 1 1 0
e10 1 0 0 0 0 1 0 1 1
e11 0 0 1 1 0 0 1 0 1
e12 1 0 0 0 1 0 1 0 0

humid?

sunny? 1
golf

0
no golf

rain?

1
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1
golf

0
no golf

yes no

Figure 1: Left: A classification instance with 12 samples and
8 features, the last column indicating whether the sample is
positive or negative. Right: a decision tree of depth 4 for the
classification instance on the left.

sunny?

humid? rain?

0 1 windy? 1

1 0

yes no

Figure 2: A decision tree of depth 3 for the classification
instance in Fig. 1.

feat(u). We say that T classifies (E,C) (or simply that T is
a decision tree for E) if ET (v) is uniform for each leaf v of
T . If T classifies (E,C), then, slightly abusing notation, we
write C(v) = c if v is a leaf of T with C(ET (v)) = {c}.

For a decision tree T and a node v 2 V (T ), we denote
by Tv the decision tree formed by the subtree of T rooted
at v. If T classifies a classification instance (E,C), then Tv

classifies the subinstance (ET (v), C 0).
Figure 1 shows an example for a classification problem

and a corresponding decision tree. Figure 2 shows a decision
tree of smallest depth for the same instance.

3 Local Improvement

Assume we are given a classification instance I = (E,C),
which is too large to compute a decision tree of smallest depth
for it using an exact method such as a SAT encoding. We can
use a heuristic method to compute a non-optimal decision
tree T for I . The idea of local improvement is to repeatedly
select subtrees T

0 of T that induce a local instance I
0 that

is small enough (possibly after further simplification and
reduction) to be solved by an exact method. Once we have
found a decision tree T

00 for I 0 of smallest depth (or at least
a depth that is smaller than the depth of T 0), we can replace

T
0 in T with the new T

00, obtaining a new decision tree T
⇤
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cally obtained decision trees in almost all cases, in some cases
significantly. For instance, the decision tree for benchmark
set “australian” computed by the standard heuristic Weka has
a depth of 53, which DT-SLIM reduces to a depth of 22.

We also compare the test accuracy of the decision trees, be-
fore and after local improvement. The principle of Occam’s
Razor suggests that a decision tree of lower depth generalizes
better to additional data. Our results affirm this suggestion.
In a vast majority of the cases, deep decision trees general-
ize worse than their depth-improved counterparts. In several
cases, DT-SLIM significantly increases the test accuracy; for
instance, reducing the decision tree depth for benchmark set
“objectivity” from 36 to 10 increases the test accuracy from
55% to 78%.

2 Preliminaries

Classification problems. An example (or sample or fea-

ture vector) e is a function e : feat(e) ! {0, 1} defined on a
finite set feat(e) of features (or attributes). For a set E of sam-
ples, we put feat(E) =

S
e2E feat(e). We say that two sam-

ples e1, e2 agree on a feature f if f 2 feat(e1)\ feat(e2) and
e1(f) = e2(f). If f 2 feat(e1)\feat(e2) but e1(f) 6= e2(f),
then we say that the samples disagree on f .

A classification instance I is a pair (E,C) where E is a set
of samples, for all e1, e2 2 E we have feat(e1) = feat(e2),
and C is a mapping that assigns each sample e 2 E an
integer C(e), the classification of e. For a set E0

✓ E we let
C(E0) = {C(e) : e 2 E

0
}.

An important special case are binary classification in-
stances I = (C,E) with C(E) = {0, 1}; here we call an
e 2 E negative if C(e) = 0 and positive if C(e) = 1.

A set E0
✓ E of samples of a classification instance (C,E)

is uniform if |C(E0)|  1, otherwise, E0 is non-uniform.
A classification instance (C 0

, E
0) is a subinstance of

(C,E) if E0
✓ E and C

0 is the restriction of C to E
0.

Given a classification instance (E,C), a subset F ✓

feat(E) is a support set of E if any two samples e1, e2 2 E

with C(e1) 6= C(e2) disagree in at least one feature of F .
Finding a smallest support set is an NP-hard task, even for
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2011, Theorem 12.2).
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path, where P0(v) is the root. We also define the depth of a

node v 2 V (T ) in T , denoted dT (v), as the length of PT (v);
clearly dT (v)  d(T ).

Consider a classification instance (E,C) and a decision
tree T with feat(T ) ✓ feat(E). For each node v of T we
define ET (v) as the set of all samples e 2 E such that
for each left (right, respectively) arc (u,w) on PT (v) we
have e(f) = 1 (e(f) = 0, respectively) for the feature f =
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feat(u). We say that T classifies (E,C) (or simply that T is
a decision tree for E) if ET (v) is uniform for each leaf v of
T . If T classifies (E,C), then, slightly abusing notation, we
write C(v) = c if v is a leaf of T with C(ET (v)) = {c}.

For a decision tree T and a node v 2 V (T ), we denote
by Tv the decision tree formed by the subtree of T rooted
at v. If T classifies a classification instance (E,C), then Tv

classifies the subinstance (ET (v), C 0).
Figure 1 shows an example for a classification problem

and a corresponding decision tree. Figure 2 shows a decision
tree of smallest depth for the same instance.

3 Local Improvement

Assume we are given a classification instance I = (E,C),
which is too large to compute a decision tree of smallest depth
for it using an exact method such as a SAT encoding. We can
use a heuristic method to compute a non-optimal decision
tree T for I . The idea of local improvement is to repeatedly
select subtrees T

0 of T that induce a local instance I
0 that

is small enough (possibly after further simplification and
reduction) to be solved by an exact method. Once we have
found a decision tree T

00 for I 0 of smallest depth (or at least
a depth that is smaller than the depth of T 0), we can replace

T
0 in T with the new T

00, obtaining a new decision tree T
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cally obtained decision trees in almost all cases, in some cases
significantly. For instance, the decision tree for benchmark
set “australian” computed by the standard heuristic Weka has
a depth of 53, which DT-SLIM reduces to a depth of 22.

We also compare the test accuracy of the decision trees, be-
fore and after local improvement. The principle of Occam’s
Razor suggests that a decision tree of lower depth generalizes
better to additional data. Our results affirm this suggestion.
In a vast majority of the cases, deep decision trees general-
ize worse than their depth-improved counterparts. In several
cases, DT-SLIM significantly increases the test accuracy; for
instance, reducing the decision tree depth for benchmark set
“objectivity” from 36 to 10 increases the test accuracy from
55% to 78%.

2 Preliminaries

Classification problems. An example (or sample or fea-

ture vector) e is a function e : feat(e) ! {0, 1} defined on a
finite set feat(e) of features (or attributes). For a set E of sam-
ples, we put feat(E) =

S
e2E feat(e). We say that two sam-

ples e1, e2 agree on a feature f if f 2 feat(e1)\ feat(e2) and
e1(f) = e2(f). If f 2 feat(e1)\feat(e2) but e1(f) 6= e2(f),
then we say that the samples disagree on f .

A classification instance I is a pair (E,C) where E is a set
of samples, for all e1, e2 2 E we have feat(e1) = feat(e2),
and C is a mapping that assigns each sample e 2 E an
integer C(e), the classification of e. For a set E0

✓ E we let
C(E0) = {C(e) : e 2 E

0
}.

An important special case are binary classification in-
stances I = (C,E) with C(E) = {0, 1}; here we call an
e 2 E negative if C(e) = 0 and positive if C(e) = 1.

A set E0
✓ E of samples of a classification instance (C,E)

is uniform if |C(E0)|  1, otherwise, E0 is non-uniform.
A classification instance (C 0

, E
0) is a subinstance of

(C,E) if E0
✓ E and C

0 is the restriction of C to E
0.

Given a classification instance (E,C), a subset F ✓

feat(E) is a support set of E if any two samples e1, e2 2 E

with C(e1) 6= C(e2) disagree in at least one feature of F .
Finding a smallest support set is an NP-hard task, even for

binary classification instances (Ibaraki, Crama, and Hammer
2011, Theorem 12.2).

Decision trees. A (binary) decision tree, or DT, for short,
is a rooted tree T with vertex set V (T ) and arc set A(T ),
where each non-leaf node v 2 V (T ) is labeled with a feature
feat(v) and has exactly two outgoing arcs, a left arc and a
right arc. We write feat(T ) = { feat(v) : v 2 V (T ) }. The
depth d(T ) of a decision tree T is the length of a longest path
from the root to a leaf. PT (v) denotes the path from the root
to the node v and PT,i(v) denotes the i+ 1-th node on this
path, where P0(v) is the root. We also define the depth of a

node v 2 V (T ) in T , denoted dT (v), as the length of PT (v);
clearly dT (v)  d(T ).

Consider a classification instance (E,C) and a decision
tree T with feat(T ) ✓ feat(E). For each node v of T we
define ET (v) as the set of all samples e 2 E such that
for each left (right, respectively) arc (u,w) on PT (v) we
have e(f) = 1 (e(f) = 0, respectively) for the feature f =
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feat(u). We say that T classifies (E,C) (or simply that T is
a decision tree for E) if ET (v) is uniform for each leaf v of
T . If T classifies (E,C), then, slightly abusing notation, we
write C(v) = c if v is a leaf of T with C(ET (v)) = {c}.

For a decision tree T and a node v 2 V (T ), we denote
by Tv the decision tree formed by the subtree of T rooted
at v. If T classifies a classification instance (E,C), then Tv

classifies the subinstance (ET (v), C 0).
Figure 1 shows an example for a classification problem

and a corresponding decision tree. Figure 2 shows a decision
tree of smallest depth for the same instance.

3 Local Improvement

Assume we are given a classification instance I = (E,C),
which is too large to compute a decision tree of smallest depth
for it using an exact method such as a SAT encoding. We can
use a heuristic method to compute a non-optimal decision
tree T for I . The idea of local improvement is to repeatedly
select subtrees T

0 of T that induce a local instance I
0 that

is small enough (possibly after further simplification and
reduction) to be solved by an exact method. Once we have
found a decision tree T

00 for I 0 of smallest depth (or at least
a depth that is smaller than the depth of T 0), we can replace
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cally obtained decision trees in almost all cases, in some cases
significantly. For instance, the decision tree for benchmark
set “australian” computed by the standard heuristic Weka has
a depth of 53, which DT-SLIM reduces to a depth of 22.

We also compare the test accuracy of the decision trees, be-
fore and after local improvement. The principle of Occam’s
Razor suggests that a decision tree of lower depth generalizes
better to additional data. Our results affirm this suggestion.
In a vast majority of the cases, deep decision trees general-
ize worse than their depth-improved counterparts. In several
cases, DT-SLIM significantly increases the test accuracy; for
instance, reducing the decision tree depth for benchmark set
“objectivity” from 36 to 10 increases the test accuracy from
55% to 78%.

2 Preliminaries

Classification problems. An example (or sample or fea-

ture vector) e is a function e : feat(e) ! {0, 1} defined on a
finite set feat(e) of features (or attributes). For a set E of sam-
ples, we put feat(E) =

S
e2E feat(e). We say that two sam-

ples e1, e2 agree on a feature f if f 2 feat(e1)\ feat(e2) and
e1(f) = e2(f). If f 2 feat(e1)\feat(e2) but e1(f) 6= e2(f),
then we say that the samples disagree on f .

A classification instance I is a pair (E,C) where E is a set
of samples, for all e1, e2 2 E we have feat(e1) = feat(e2),
and C is a mapping that assigns each sample e 2 E an
integer C(e), the classification of e. For a set E0

✓ E we let
C(E0) = {C(e) : e 2 E

0
}.

An important special case are binary classification in-
stances I = (C,E) with C(E) = {0, 1}; here we call an
e 2 E negative if C(e) = 0 and positive if C(e) = 1.

A set E0
✓ E of samples of a classification instance (C,E)

is uniform if |C(E0)|  1, otherwise, E0 is non-uniform.
A classification instance (C 0

, E
0) is a subinstance of

(C,E) if E0
✓ E and C

0 is the restriction of C to E
0.

Given a classification instance (E,C), a subset F ✓

feat(E) is a support set of E if any two samples e1, e2 2 E

with C(e1) 6= C(e2) disagree in at least one feature of F .
Finding a smallest support set is an NP-hard task, even for

binary classification instances (Ibaraki, Crama, and Hammer
2011, Theorem 12.2).

Decision trees. A (binary) decision tree, or DT, for short,
is a rooted tree T with vertex set V (T ) and arc set A(T ),
where each non-leaf node v 2 V (T ) is labeled with a feature
feat(v) and has exactly two outgoing arcs, a left arc and a
right arc. We write feat(T ) = { feat(v) : v 2 V (T ) }. The
depth d(T ) of a decision tree T is the length of a longest path
from the root to a leaf. PT (v) denotes the path from the root
to the node v and PT,i(v) denotes the i+ 1-th node on this
path, where P0(v) is the root. We also define the depth of a

node v 2 V (T ) in T , denoted dT (v), as the length of PT (v);
clearly dT (v)  d(T ).

Consider a classification instance (E,C) and a decision
tree T with feat(T ) ✓ feat(E). For each node v of T we
define ET (v) as the set of all samples e 2 E such that
for each left (right, respectively) arc (u,w) on PT (v) we
have e(f) = 1 (e(f) = 0, respectively) for the feature f =
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8 features, the last column indicating whether the sample is
positive or negative. Right: a decision tree of depth 4 for the
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Figure 2: A decision tree of depth 3 for the classification
instance in Fig. 1.

feat(u). We say that T classifies (E,C) (or simply that T is
a decision tree for E) if ET (v) is uniform for each leaf v of
T . If T classifies (E,C), then, slightly abusing notation, we
write C(v) = c if v is a leaf of T with C(ET (v)) = {c}.

For a decision tree T and a node v 2 V (T ), we denote
by Tv the decision tree formed by the subtree of T rooted
at v. If T classifies a classification instance (E,C), then Tv

classifies the subinstance (ET (v), C 0).
Figure 1 shows an example for a classification problem

and a corresponding decision tree. Figure 2 shows a decision
tree of smallest depth for the same instance.

3 Local Improvement

Assume we are given a classification instance I = (E,C),
which is too large to compute a decision tree of smallest depth
for it using an exact method such as a SAT encoding. We can
use a heuristic method to compute a non-optimal decision
tree T for I . The idea of local improvement is to repeatedly
select subtrees T

0 of T that induce a local instance I
0 that

is small enough (possibly after further simplification and
reduction) to be solved by an exact method. Once we have
found a decision tree T

00 for I 0 of smallest depth (or at least
a depth that is smaller than the depth of T 0), we can replace

T
0 in T with the new T
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cally obtained decision trees in almost all cases, in some cases
significantly. For instance, the decision tree for benchmark
set “australian” computed by the standard heuristic Weka has
a depth of 53, which DT-SLIM reduces to a depth of 22.

We also compare the test accuracy of the decision trees, be-
fore and after local improvement. The principle of Occam’s
Razor suggests that a decision tree of lower depth generalizes
better to additional data. Our results affirm this suggestion.
In a vast majority of the cases, deep decision trees general-
ize worse than their depth-improved counterparts. In several
cases, DT-SLIM significantly increases the test accuracy; for
instance, reducing the decision tree depth for benchmark set
“objectivity” from 36 to 10 increases the test accuracy from
55% to 78%.

2 Preliminaries

Classification problems. An example (or sample or fea-

ture vector) e is a function e : feat(e) ! {0, 1} defined on a
finite set feat(e) of features (or attributes). For a set E of sam-
ples, we put feat(E) =
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e2E feat(e). We say that two sam-

ples e1, e2 agree on a feature f if f 2 feat(e1)\ feat(e2) and
e1(f) = e2(f). If f 2 feat(e1)\feat(e2) but e1(f) 6= e2(f),
then we say that the samples disagree on f .

A classification instance I is a pair (E,C) where E is a set
of samples, for all e1, e2 2 E we have feat(e1) = feat(e2),
and C is a mapping that assigns each sample e 2 E an
integer C(e), the classification of e. For a set E0

✓ E we let
C(E0) = {C(e) : e 2 E

0
}.

An important special case are binary classification in-
stances I = (C,E) with C(E) = {0, 1}; here we call an
e 2 E negative if C(e) = 0 and positive if C(e) = 1.

A set E0
✓ E of samples of a classification instance (C,E)

is uniform if |C(E0)|  1, otherwise, E0 is non-uniform.
A classification instance (C 0

, E
0) is a subinstance of

(C,E) if E0
✓ E and C

0 is the restriction of C to E
0.

Given a classification instance (E,C), a subset F ✓

feat(E) is a support set of E if any two samples e1, e2 2 E

with C(e1) 6= C(e2) disagree in at least one feature of F .
Finding a smallest support set is an NP-hard task, even for

binary classification instances (Ibaraki, Crama, and Hammer
2011, Theorem 12.2).

Decision trees. A (binary) decision tree, or DT, for short,
is a rooted tree T with vertex set V (T ) and arc set A(T ),
where each non-leaf node v 2 V (T ) is labeled with a feature
feat(v) and has exactly two outgoing arcs, a left arc and a
right arc. We write feat(T ) = { feat(v) : v 2 V (T ) }. The
depth d(T ) of a decision tree T is the length of a longest path
from the root to a leaf. PT (v) denotes the path from the root
to the node v and PT,i(v) denotes the i+ 1-th node on this
path, where P0(v) is the root. We also define the depth of a

node v 2 V (T ) in T , denoted dT (v), as the length of PT (v);
clearly dT (v)  d(T ).

Consider a classification instance (E,C) and a decision
tree T with feat(T ) ✓ feat(E). For each node v of T we
define ET (v) as the set of all samples e 2 E such that
for each left (right, respectively) arc (u,w) on PT (v) we
have e(f) = 1 (e(f) = 0, respectively) for the feature f =
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feat(u). We say that T classifies (E,C) (or simply that T is
a decision tree for E) if ET (v) is uniform for each leaf v of
T . If T classifies (E,C), then, slightly abusing notation, we
write C(v) = c if v is a leaf of T with C(ET (v)) = {c}.

For a decision tree T and a node v 2 V (T ), we denote
by Tv the decision tree formed by the subtree of T rooted
at v. If T classifies a classification instance (E,C), then Tv

classifies the subinstance (ET (v), C 0).
Figure 1 shows an example for a classification problem

and a corresponding decision tree. Figure 2 shows a decision
tree of smallest depth for the same instance.

3 Local Improvement

Assume we are given a classification instance I = (E,C),
which is too large to compute a decision tree of smallest depth
for it using an exact method such as a SAT encoding. We can
use a heuristic method to compute a non-optimal decision
tree T for I . The idea of local improvement is to repeatedly
select subtrees T

0 of T that induce a local instance I
0 that

is small enough (possibly after further simplification and
reduction) to be solved by an exact method. Once we have
found a decision tree T

00 for I 0 of smallest depth (or at least
a depth that is smaller than the depth of T 0), we can replace
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cally obtained decision trees in almost all cases, in some cases
significantly. For instance, the decision tree for benchmark
set “australian” computed by the standard heuristic Weka has
a depth of 53, which DT-SLIM reduces to a depth of 22.

We also compare the test accuracy of the decision trees, be-
fore and after local improvement. The principle of Occam’s
Razor suggests that a decision tree of lower depth generalizes
better to additional data. Our results affirm this suggestion.
In a vast majority of the cases, deep decision trees general-
ize worse than their depth-improved counterparts. In several
cases, DT-SLIM significantly increases the test accuracy; for
instance, reducing the decision tree depth for benchmark set
“objectivity” from 36 to 10 increases the test accuracy from
55% to 78%.
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of samples, for all e1, e2 2 E we have feat(e1) = feat(e2),
and C is a mapping that assigns each sample e 2 E an
integer C(e), the classification of e. For a set E0

✓ E we let
C(E0) = {C(e) : e 2 E
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An important special case are binary classification in-
stances I = (C,E) with C(E) = {0, 1}; here we call an
e 2 E negative if C(e) = 0 and positive if C(e) = 1.

A set E0
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is uniform if |C(E0)|  1, otherwise, E0 is non-uniform.
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feat(E) is a support set of E if any two samples e1, e2 2 E

with C(e1) 6= C(e2) disagree in at least one feature of F .
Finding a smallest support set is an NP-hard task, even for

binary classification instances (Ibaraki, Crama, and Hammer
2011, Theorem 12.2).

Decision trees. A (binary) decision tree, or DT, for short,
is a rooted tree T with vertex set V (T ) and arc set A(T ),
where each non-leaf node v 2 V (T ) is labeled with a feature
feat(v) and has exactly two outgoing arcs, a left arc and a
right arc. We write feat(T ) = { feat(v) : v 2 V (T ) }. The
depth d(T ) of a decision tree T is the length of a longest path
from the root to a leaf. PT (v) denotes the path from the root
to the node v and PT,i(v) denotes the i+ 1-th node on this
path, where P0(v) is the root. We also define the depth of a

node v 2 V (T ) in T , denoted dT (v), as the length of PT (v);
clearly dT (v)  d(T ).

Consider a classification instance (E,C) and a decision
tree T with feat(T ) ✓ feat(E). For each node v of T we
define ET (v) as the set of all samples e 2 E such that
for each left (right, respectively) arc (u,w) on PT (v) we
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feat(u). We say that T classifies (E,C) (or simply that T is
a decision tree for E) if ET (v) is uniform for each leaf v of
T . If T classifies (E,C), then, slightly abusing notation, we
write C(v) = c if v is a leaf of T with C(ET (v)) = {c}.

For a decision tree T and a node v 2 V (T ), we denote
by Tv the decision tree formed by the subtree of T rooted
at v. If T classifies a classification instance (E,C), then Tv

classifies the subinstance (ET (v), C 0).
Figure 1 shows an example for a classification problem

and a corresponding decision tree. Figure 2 shows a decision
tree of smallest depth for the same instance.

3 Local Improvement

Assume we are given a classification instance I = (E,C),
which is too large to compute a decision tree of smallest depth
for it using an exact method such as a SAT encoding. We can
use a heuristic method to compute a non-optimal decision
tree T for I . The idea of local improvement is to repeatedly
select subtrees T

0 of T that induce a local instance I
0 that

is small enough (possibly after further simplification and
reduction) to be solved by an exact method. Once we have
found a decision tree T

00 for I 0 of smallest depth (or at least
a depth that is smaller than the depth of T 0), we can replace

T
0 in T with the new T

00, obtaining a new decision tree T
⇤
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SAT encodings for DT learning
• First SAT encoding for decision trees did not scale to even small 

instances [Bessiere, Hebrard, O’Sullivan CP’09]


• First encoding that scaled to small instances  [Narodytska, Ignatiev, 
Pereira, Marques-Silva IJCAI’18]


• Depth-based encoding that scales to larger instances [Avellaneda 
AAAI’20]. 


• New partition-based encoding and SLIM approach [Schidler, Szeider 
AAAI’21]


• Survey paper [Ignatiev, Marques-Silva, Narodytska, Stuckey IJCAI’21]  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DT-SLIM 
• Can be used to combine any DT heuristics (like C4.5, ITI) with 

an exact method (like SAT encoding)


• Requirement for the SAT encoding is that its can deal with 
more than 2 classification labels


• Scales virtually to any size or depth
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Improvement Step
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Improvement Step
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r

Local Instance: 
all samples that end up in r, 

reclassify those that end up in a 
special leaf 
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Improvement Step
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Improvement Step
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Improvement Step

38

r

Find better tree T’’ for Local 
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Improvement Step
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Improvement Step
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Improvement Step
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Results

42

Depth Test Acc.
Parameters Av. Var. Av. Var. Imp Best
Weka 22.63 436.76 0.67 0.10 – –

SL
IM

d60, c60 13.64 244.42 0.75 0.06 36 1
d300, c300 13.45 261.29 0.76 0.05 36 6
d800, c800 14.33 318.01 0.76 0.05 35 15

Table 1: DT-SLIM(Weka): Comparison of the changes regard-
ing depth and test accuracy based on the choice of timeout
and corresponding limits. Imp shows how many of the 37
decision trees could be improved, and Best shows for how
many instances DT-SLIM found the lowest depth using this
setting. The first row shows the baseline.

Depth Test Acc.
Parameters Av. Var. Av. Var. Imp Best
ITI 10.75 28.80 0.77 0.45 – –

SL
IM

d60, c60 8.55 22.99 0.77 0.04 36 1
d300, c300 8.35 22.35 0.78 0.03 36 6
d800, c800 8.59 29.60 0.77 0.03 35 15

Table 2: DT-SLIM(ITI): As in Table 1.

have 34% lower depth. The difference between decision trees
found by DT-SLIM(ITI) and DT-SLIM*(ITI) is less definite.
While the average difference in depth between decision trees
is only 2% in favor of DT-SLIM(ITI), on a per instance level,
DT-SLIM(ITI) generates trees with between 2% higher and
20% lower depth than the trees generated by DT-SLIM*(ITI).
Discussion. The trees generated by Weka and ITI vary
greatly in depth: Weka-induced trees are, on average, twice
as deep as ITI-induced trees. This relationship does not show
in the tree size, where Weka-induced trees have, on average,
367 nodes, which is similar to the average size of 320 nodes
for ITI-induced trees.

This difference in depth explains the difference in gains
seen in Tables 3 and 4. Here, Weka-induced trees provide
more possibilities for depth reduction. In terms of test accu-
racy, the gains for ITI-induced trees are usually small, while
for Weka-induced trees, there are several instances where

Instance Weka DT-SLIM
Name |F | |E| d a d a

australian 1163 552 53.00 0.14 22.00 0.14
ccdefault 211 23955 96.60 0.71 80.00 0.71
haberman 92 240 71.20 0.66 63.80 0.62
hiv schilling 40 2617 18.80 0.81 11.80 0.79
hungarian 330 235 27.00 0.19 9.40 0.59
ida 2195 59998 61.00 1.00 51.00 1.00
objectivity 316 796 36.60 0.55 10.60 0.78

Table 3: Comparison of depth and accuracy on selected in-
stances before and after DT-SLIM(Weka) with d800, c800.

Instance ITI DT-SLIM
Name |F | |E| d a d a

australian 1163 552 14.00 0.42 12.60 0.48
ccdefault 211 23955 22.20 0.71 18.40 0.71
hiv 1625 40 1300 13.20 0.85 10.00 0.83
hungarian 330 235 14.00 0.38 9.60 0.59
ida 2195 59998 19.00 1.00 18.00 1.00
kr-vs-kp 37 2556 14 0.98 10.20 0.97
mammog 19 513 13.20 0.68 8.80 0.64

Table 4: Comparison of depth and accuracy on selected in-
stances before and after DT-SLIM(ITI) with d800, c800.

the test accuracy significantly improved with DT-SLIM. This
suggests that without pruning, the Weka-induced trees suffer
more from overfitting. Independent of the tree’s source, DT-
SLIM improved the depth of almost all trees and often by a
significant amount.

The results appear robust. We observe only a small influ-
ence of the parameter settings. In general the shortest timeout
performs worst, while it depends on the instance which of
the other two timeout settings perform better. The overall
timeout for the whole instance has more impact. For the large
instances, DT-SLIM did not reach a plateau within 12 hours,
hence a longer timeout enables further improvements.

The new encoding does indeed provide significant addi-
tional reduction in the decision tree’s depth. As expected,
the gains are higher for Weka-induced trees, as the higher
depths make DT pb more applicable. Nonetheless, even for
the more shallow ITI trees, the difference in depth is up to
20%, which is a significant gain.

7 Conclusion

We have presented the new approach DT-SLIM to learning
decision trees of small depth, combining standard heuristic
methods with exact methods. We facilitated this with (i) a
general replacement scheme utilizing new classification cate-
gories, (ii) a subtree selection strategy, (iii) a feature reduc-
tion heuristic, and (iv) a new partition-based SAT encoding,
specifically designed to support non-binary classification and
to scale to larger depths.

We have experimentally evaluated this approach on an
extensive set of standard benchmark instances, using two
different standard heuristics for the initial decision tree, yield-
ing two instantiations of our new approach, DT-SLIM(Weka)
and DT-SLIM(ITI). Our experiments show that in almost all
cases, a depth reduction is possible, often the reduction is
substantial. Our experiments confirm the expectation that, on
average, decision trees of lower depth provide higher accu-
racy. For future work, we propose to extend the DT-SLIM
approach to work directly with non-binary features without
binarization, or even continuous-valued features by utilizing
SMT-encodings.
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New results with pruning (maintain accuracy)
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Spambase 3 Data Set

1243 nodes 

17 nodes 
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Questions
• how to select the local 

instances?


• good tradeoff between 
budget and timeout 
dedicated to the local 
solver?


• Other applications?

44

Problem local 
solver Paper

Branchwidth SAT [Lodha, Ordyniak, Sz. (SAT’17, ToCL’19)]

Treewidth SAT [Fichte, Lodha, Sz. (SAT’17)]

Treedepth MaxSAT [Peruvemba Ramaswamy, Sz (CP’20)]

BN Structure 
Learning MaxSAT [Peruvemba Ramaswamy, Sz (AAAI’21)]

Decision 
Trees SAT [Schidler, Sz. (AAAI’21)]


