Parameterized Complexity of SAT and Related Problems

Stefan Szeider

TECHNISCHE UNIVERSITÄT WIEN Vienna Austria

ac Algorithms and COMPLEXITY GROUP

Theory and Practice

- For classical TCS, SAT is hard
- PPSZ [Paturi, Pudlak, Saks, Zane 05]—Algorithm for *n*-variable 3-SAT has running time of 1.364^{n}

For n = 200 this gives 2 x age of universe in nanoseconds

- Exponential Time Hypothesis (ETH): 3SAT not solvable in $2^{o(n)}$
- On the other hand.... SAT solvers routinely solve industrial instances with millions of clauses and variables... theory-practice gap
- Common wisdom: real-world SAT-instances contain some kind of "hidden structure" which is implicitly utilised by solvers
- Can we utilize or capture structure also in theory?

Two Approaches

Correlation

Causation

Try to capture structure in a way that provides worst-case performance guarantees for SAT algorithms

Parameterized Complexity, decomposability, backdoors,

Stefan Szeider ac ALGORITHMS AND COMPLEXITY GROUP

Informatics

Try to capture structure in a way that statistically correlates with CDCL-solving time

- community structure, modularity, centrality, ...
- features for hardness prediction
- [Ansótegui, Bonet, Giráldez-Cru, Levy, Simon JAIR'19]
- [Li, Chung, Mukherjee, Vinyals, Fleming, Kolokolova, Ganesh SAT'21]
- [Xu, Hutter, Hoos, Leyton-Brown JAIR'08]

Parameterized Complexity Framework

Framework for Rigorous Models

$$p(F) = k$$

parameter value

Finput size

- runtime guarantee should depend on kulletand |F|
 - ... but how?

First try: XP

- this doesn't scale well in k
- such runtime guarantees are called XP

• if k is a constant, then the runtime is polynomial

Second Try: FPT

 $f(k) \cdot |F|^{O(1)}$

• parameter k contributes a constant factor to the polynomial runtime, without changing the order of the polynomial

• allows a better scaling in k

 such runtime guarantees are called FPT or **fixed-parameter tractable**

well-developed area of TCS

Rich Theory

1999

2006

MONOGRAPHS IN COMPUTER SCIENCE

PARAMETERIZED COMPLEXITY

O Springer

R.G. Downey M.R. Fellows OXFORD LECTURE SERIES IN MATHEMATICS AND ITS APPLICATIONS - 31

Invitation to **Fixed-Parameter** Algorithms

Rolf Niedermeier

ни ни на пана на

2006

2013

2013

Jörg Flum Martin Grohe

Parameterized **Complexity Theory**

Marek Cygan - Fedor V. Fomin Łukasz Kowalik - Daniel Lokshtanov Dániel Marx · Marcin Pilipczuk Michał Pilipczuk - Saket Saurabh

Parameterized Algorithms

Texts in Computer Science

Rodney G. Downey Michael R. Fellows

Fundamentals of Parameterized Complexity

D Springer

D Springer

D Springer

Hardness Theory

in P for constant k

in NP but for constant k NPcomplete (like k-SAT)

Standard parameter: solution size

independent set

Given a graph G,

- 2. find an **independent set** of size k
- 3. find a **dominating set** of size k

TU Informatics

I. find a **vertex cover** of size k

All three problems are NP-complete All three problems can be solved in XP-time $O(n^k)$ The problems are of *different* practical hardness The problems are of *different* parameterized complexity

How to parameterise by "structuredness"

Take SAT as an example

FPT-SAT

"permissive" or "robust" approach

Stefan Szeider **ac** Algorithms and COMPLEXITY GROUP

two-phases approach

Comparison of SAT-parameters

TU Informatics

p dominates q if there is a function f such that for all F it holds that $p(F) \leq f(q(F))$

[Sz. SAT'03]

Stefan Szeider ac ALGORITHMS AND COMPLEXITY GROUP

General research program: come up with stronger and stronger parameters, and draw a detailed map of SAT-parameters and their mutual dominance

1) Graphical Structure 2) Syntactical Structure 3) Hybrid Models

Graphical Structure

Common Graphs $F = \{C_1, \dots, C_5\}$ $C_1 = \{u, \overline{v}, y\}, C_2 = \{\overline{u}, z, \overline{y}\}, C_3 = \{v, \overline{w}\}, C_4 = \{w, \overline{x}\}, C_5 = \{x, y, \overline{z}\}$

Stefan Szeider **ac** ALGORITHMS AND COMPLEXITY GROUP

WIEN Informatics

incidence aka CVIG

directed inc

consensus

Graph Decompositions and Width Parms

- tw(G)=min width over all its tree decompositions
- checking $tw(G) \le k$ is FPT

TU Informatics

Stefan Szeider ac ALGORITHMS AND COMPLEXITY GROUP

width = size of largest bag -1

Treewidth of Formulas

we should always specify the graph we're referring to!

- prim-tw(F), dual-tw(F), inc-tw(F), cons-tw(F), conf-tw(F)
- SAT is FPT parameterized by all the above parameters, except for confl-tw.

When we talk about the treewidth of a formula,

Width Parameter Zoo

width parameters: usually, when decision is FPT, then also counting, optimization etc are FPT as well

Informatics

Ver/SAT

Syntactic Structure

Tractable Classes or Islands of Tractability

Parameterize by the distance to a class

where the class is syntactical defined

(e.g., Horn or 2CNF)

strong **Distance = size of smallest backdoor set**

- Fix a base class C (e.g., Horn)
- B is a C-backdoor of F if for all assignments t:B \rightarrow {0,1} we have $F[t] \in C$.

Backdoor Parameter Zoo

Deletion backdoor sets

- B is a C-deletion backdoor if $F-B \in C$.
- Instead of looking at all partial assignments t:B \rightarrow {0,1} we delete the backdoor variables from F (notation F-B)
- Fact: if C is clause-induced, (F' ⊆ F ∈ C then F' ∈ C) then each deletion C-backdoor set is also a C-backdoor set (but not necessarily the other way around)

Deletion Backdoor Sets

Informatics

Avoid the 2^k assignments: Backdoor Trees:

- 2^k
- smallest backdoor sets ≠ backdoor trees with smallest number of leaves!
- subset-minimal backdoor sets \neq backdoor trees with smallest number of leaves

[Samer Sz. AAAI'08]

Stefan Szeider ac ALGORITHMS AND COMPLEXITY GROUP

TU Informatics

k + 1

size of backdoor tree = number of leaves

Finding backdoor trees with k leaves is FPT for Horn, dHorn, and 2CNF

> one can even mix Horn with 2CNF (or dHorn with 2CNF)

- Partial assignments at the leaves of a backdoor tree give rise to a DNF
- The DNF is a tautology
- Backdoor DNF: take any such tautological DNF
- Backdoor DNFs are more succinct than backdoor trees

Finding backdoor DNFs with k leaves is FPT for Horn, dHorn, and 2CNF

one can even mix Horn with 2CNF (or dHorn with 2CNF)

Informatics

[Ordyniak, Schidler, Sz IJCAl'21]

Stefan Szeider ac ALGORITHMS AND COMPLEXITY GROUP

Hybrid parameters

large incidence treewidth constant Horn-bd size

large Horn-bd size constant incidence treewidth

backdoor treewidth

backdoor

[Ganian, Ramanujan, Sz. **STACS'17**, **SAT'17**]

- **C-backdoor treewidth** is the minimum treewidth over the torso graphs of all the Cbackdoors.
- C-backdoor treewidth \leq min{ primal treewidth, C-backdoor size}

C-backdoor treewidth is FPT for $C \in \{Horn, dHorn, 2CNF\}$

backdoor treewidth

backdoor

torso graph

[Ganian, Ramanujan, Sz. **STACS'17**, **SAT'17**]

- C-backdoor treewidth is the minimum treewidth over the torso graphs of all the Cbackdoors.
- C-backdoor treewidth \leq min{ primal treewidth, C-backdoor size}

C-backdoor treewidth is FPT for $C \in \{Horn, dHorn, 2CNF\}$

Parameter Zoo

Stefan Szeider ac ALGORITHMS AND COMPLEXITY GROUP

Informatics

FPT reductions to SAT

Parameterised Complexity where SAT is easy

- Combines the advantages of FPT and SAT
- parameters can be less restrictive
- breaks through barriers of classical complexity

TU Informatics

Stefan Szeider ac ALGORITHMS AND

[Pfandler, Rümmele, Sz. IJCAI'13] [Fichte, Sz. TOCL'15]]

TU Informatics

Compendium [de Haan, Sz. Algorithms'19]

Summary

- Capturing structure in instances: correlational approach and causal approach
- Parameterized Complexity as a suitable framework for the causal approach for SAT and related reasoning problems
- Parameters: decompositions, backdoors, hybrid (backdoor treewidth)
- Dominance allows us to explore the subject systematically, relate parameters to teach other
- FPT-reductions to SAT for problems beyond NP

Stefan Szeider algorithms and COMPLEXITY GROUP

Informatics

Handbook of Satisfiability, 2nd Edition

ac ALGORITHMS AND COMPLEXITY GROUP

Informatics

Stefan Szeider

http://www.ac.tuwien.ac.at/files/tr/ac-tr-21-004.pdf

Extended and revised Chapter 17 "Fixed-parameter Tractability"

