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Theory and Practice
• For classical TCS, SAT is hard


• PPSZ [Paturi, Pudlak, Saks, Zane 05]—Algorithm for -variable 3-SAT has running time of 
 

 
For  this gives 2 x age of universe in nanoseconds


• Exponential Time Hypothesis (ETH): 3SAT not solvable in 


• On the other hand…. SAT solvers routinely solve industrial instances with millions of clauses and 
variables… theory-practice gap


• Common wisdom: real-world SAT-instances contain some kind of “hidden structure” which is 
implicitly utilised by solvers 


• Can we utilize or capture structure also in theory?

n
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n = 200

2o(n)
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Two Approaches
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Try to capture structure in a way that provides 
worst-case performance guarantees for SAT 
algorithms 
Parameterized Complexity, decomposability, backdoors, ….

Causation

Try to capture structure in a way that 
statistically correlates with CDCL-solving 
time  
community structure, modularity, centrality, … 
features for hardness prediction  
[Ansótegui, Bonet, Giráldez-Cru, Levy, Simon JAIR’19]

  [Li, Chung, Mukherjee, Vinyals, Fleming, Kolokolova, 
Ganesh SAT’21] 
[Xu, Hutter, Hoos, Leyton-Brown JAIR’08] 

Correlation
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Parameterized Complexity 
Framework
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Framework for Rigorous Models

• runtime guarantee should depend on  
and  
 
 
… but how?

k
|F |
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p(F) = k

|F |

instances

input size

parameter value
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First try: XP

• if  is a constant, then the runtime is 
polynomial 

• this doesn’t scale well in 


• such runtime guarantees are called XP

k

k
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|F |f(k)
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Second Try: FPT

• parameter  contributes a constant 
factor to the polynomial runtime, without 
changing the order of the polynomial 

• allows a better scaling in 


• such runtime guarantees are called FPT or  
fixed-parameter tractable


• well-developed area of TCS 

k

k
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f(k) ⋅ |F |O(1)
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1999 2006 2006 2013 2013

Rich Theory
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Hardness Theory
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XP

W[1]

W[2]

…

FPT

PTIME

ParaNP

in NP but for 
constant k NP-

complete 
(like k-SAT)

in P for 
constant k
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Standard parameter: solution size

10

vertex cover

independent set

dominating set

Given a graph G,

1. find a vertex cover of size k

2. find an independent set of size k

3. find a dominating set of size k

All three problems are NP-complete 
All three problems can be solved in XP-time  

The problems are of different practical hardness 
The problems are of different parameterized 

complexity

O(nk)

FPT

W[1]-complete

W[2]-complete
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How to parameterise by 
“structuredness”
Take SAT as an example 
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FPT-SAT
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F,k A

“SAT”

“UNSAT”

“p(F)>k”

“permissive” or “robust” approach

SAT
“SAT”

“UNSAT”
F,k Ver

explicit 
k-structure

two-phases approach

“p(F) ≤ k”
“p(F) > k”
“p(F) ≤ f(k)” FPT-approx

p(F) ≤ k
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Comparison of SAT-parameters

• General research program: come up with stronger and stronger parameters, 
and draw a detailed map of SAT-parameters and their mutual dominance
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p dominates q if there is a function f such that
                  for all F it holds that p(F) ≤ f(q(F))

[Sz. SAT’03]
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1) Graphical Structure 

2) Syntactical Structure 

3) Hybrid Models
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Graphical Structure
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Common Graphs
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 F = {C1, …, C5}
C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x}, C5 = {x, y, z}
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Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x},
C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
joined by an edge if the variable occurs in the clause. (d) The conflict graph has as vertices the clauses of
the formula, two clauses are joined by an edge if they do contain a complementary pair of literals. (e) The
consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.
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primal aka VIG
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Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x},
C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
joined by an edge if the variable occurs in the clause. (d) The conflict graph has as vertices the clauses of
the formula, two clauses are joined by an edge if they do contain a complementary pair of literals. (e) The
consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.
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dual aka CIG
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Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x},
C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
joined by an edge if the variable occurs in the clause. (d) The conflict graph has as vertices the clauses of
the formula, two clauses are joined by an edge if they do contain a complementary pair of literals. (e) The
consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.
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incidence aka CVIG
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Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x},
C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
joined by an edge if the variable occurs in the clause. (d) The conflict graph has as vertices the clauses of
the formula, two clauses are joined by an edge if they do contain a complementary pair of literals. (e) The
consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.
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Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x},
C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
joined by an edge if the variable occurs in the clause. (d) The conflict graph has as vertices the clauses of
the formula, two clauses are joined by an edge if they do contain a complementary pair of literals. (e) The
consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.
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Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x},
C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
joined by an edge if the variable occurs in the clause. (d) The conflict graph has as vertices the clauses of
the formula, two clauses are joined by an edge if they do contain a complementary pair of literals. (e) The
consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.
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Figure 1: The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d) and consensus graph (e)
of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y}, C3 = {v, w}, C4 = {w, x},
C5 = {x, y, z)}. (a) The primal graph has as vertices the variables of the given formula, two variables
are joined by an edge if they occur together in a clause. (b) The dual graph has as vertices the clauses, two
clauses are joined by an edge if they share a variable. (c) The incidence graph is a bipartite graph where
one vertex class consists of the clauses and the other consists of the variables; a clause and a variable are
joined by an edge if the variable occurs in the clause. (d) The conflict graph has as vertices the clauses of
the formula, two clauses are joined by an edge if they do contain a complementary pair of literals. (e) The
consensus graph has as vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.
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Graph Decompositions and Width Parms

• tw(G)=min width over all its tree decompositions

• checking tw(G) ≤ k  is FPT
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Discrete Reasoning Methods 33
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Conditions: covering and connectedness.

6.3 Tree decomposition (more formally)

• Let G be a graph, T a tree, and � a labeling of the vertices of T by sets of vertices of G.

• We refer to the vertices of T as “nodes”, and we call the sets �(t) “bags”.

• The pair (T, �) is a tree decomposition of G if the following three conditions hold:

1. For every vertex v of G there exists a node t of T such that v 2 �(t).

2. For every edge vw of G there exists a node t of T such that v, w 2 �(t) (“covering”).

3. For any three nodes t1, t2, t3 of T , if t2 lies on the unique path from t1 to t3, then �(t1) \
�(t3) ✓ �(t2) (“connectedness”).

• The width of a tree decomposition (T, �) is defined as the maximum |�(t)| � 1 over all nodes t of
T .

• The treewidth tw(G) of a graph G is the minimum width over all its tree decompositions.

6.4 Basic Facts

• Trees have treewidth 1.

• Cycles have treewidth 2.

• The complete graph on n vertices has treewidth n � 1.

• If a graph G contains a clique Kr, then every tree decomposition of G contains a node t such that
Kr ✓ �(t) (Helly property of subtrees of trees).

6.5 Complexity of Treewidth

• Determining the treewidth of a graph is NP-hard.

• For every fixed k, one can check for a graph G in linear time whether tw(G)  k. (Bodlaender’s
Theorem)

a graph G

Discrete Reasoning Methods 33
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Conditions: covering and connectedness.

6.3 Tree decomposition (more formally)

• Let G be a graph, T a tree, and � a labeling of the vertices of T by sets of vertices of G.

• We refer to the vertices of T as “nodes”, and we call the sets �(t) “bags”.

• The pair (T, �) is a tree decomposition of G if the following three conditions hold:

1. For every vertex v of G there exists a node t of T such that v 2 �(t).

2. For every edge vw of G there exists a node t of T such that v, w 2 �(t) (“covering”).

3. For any three nodes t1, t2, t3 of T , if t2 lies on the unique path from t1 to t3, then �(t1) \
�(t3) ✓ �(t2) (“connectedness”).

• The width of a tree decomposition (T, �) is defined as the maximum |�(t)| � 1 over all nodes t of
T .

• The treewidth tw(G) of a graph G is the minimum width over all its tree decompositions.

6.4 Basic Facts

• Trees have treewidth 1.

• Cycles have treewidth 2.

• The complete graph on n vertices has treewidth n � 1.

• If a graph G contains a clique Kr, then every tree decomposition of G contains a node t such that
Kr ✓ �(t) (Helly property of subtrees of trees).

6.5 Complexity of Treewidth

• Determining the treewidth of a graph is NP-hard.

• For every fixed k, one can check for a graph G in linear time whether tw(G)  k. (Bodlaender’s
Theorem)

a tree decomposition of G

width = size of largest bag -1  
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Treewidth of Formulas

• prim-tw(F), dual-tw(F), inc-tw(F), 
cons-tw(F), conf-tw(F)


• SAT is FPT parameterized by all 
the above parameters, except for 
confl-tw.

18

When we talk about the treewidth of a formula, 
we should always specify the graph we’re 
referring to!

dual-twprim-tw

inc-tw

confl-tw

cons-tw

W[1]

FPT
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Width 
Parameter Zoo

19

prim-tw

inc-tw

branch-width

dir-inc-cwd

inc-cwd

hypertree-width

FPT/FPT

FPT/XP

XP/paraNP

Ver/SAT

(also #SAT)dir-rank-wd

dual-tw

confl-tw

cons-tw

width parameters: 
usually, when 
decision is FPT, 
then also 
counting, 
optimization etc 
are FPT as well
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Syntactic Structure
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Tractable Classes or Islands of Tractability

21

Parameterize by the 
distance to a class 

where the class is 
syntactical defined  

(e.g., Horn or 2CNF)

easy
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Distance = size of smallest backdoor set

• Fix a base class C (e.g., Horn)

• B is a C-backdoor of F if for all 

assignments t:B →{0,1} we 
have F[t] ∈ C.

22

F

2k

x=0 x=1

y=0 y=0y=1 y=1

z=0 z=1 z=0 z=1 z=0 z=1 z=0 z=1

∈C ∈C ∈C ∈C ∈C ∈C ∈C ∈C

B={x,y,z}

strong
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Backdoor Parameter Zoo
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Horn-bd dHorn-bd 2CNF-bd

dHorn ⋃ 2CNF-bdHorn ⋃ 2CNF-bd

Horn ⋃ dHorn-bd

Horn ⋃ dHorn ⋃ 2CNF-bd RHorn-bd

QHorn-bd

F

∈Horn ∈2CNF ∈2CNF ∈Horn

FPT

W[2]-hard
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Deletion backdoor sets
• B is a C-deletion backdoor if F—B ∈ C.


• Instead of looking at all partial assignments t:B →{0,1} we 
delete the backdoor variables from F (notation F—B)


• Fact: if C is clause-induced, (F’ ⊆ F ∈ C then F’ ∈ C ) then 
each deletion C-backdoor set is also a C-backdoor set 
(but not necessarily the other way around)

24
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Deletion Backdoor Sets

25

Horn-bd dHorn-bd 2CNF-bd

dHorn⋃2CNF-bdHorn⋃2CNF-bd

Horn⋃dHorn-bd

Horn⋃dHorn⋃2CNF-bdRHorn-bd

QHorn-bd

FPT

W[2]-hard

deletion-QHorn-bd
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Avoid the 2k assignments: Backdoor Trees:

• smallest backdoor sets ≠ 
backdoor trees with 
smallest number of leaves!


• subset-minimal  backdoor 
sets ≠ backdoor trees with 
smallest number of leaves

26

F

2k

F

k + 1

Finding backdoor trees with k leaves 
is FPT for Horn, dHorn, and 2CNF

one can even mix Horn with 2CNF  
(or dHorn with 2CNF)

size of backdoor 
tree = number of 

leaves

[Samer Sz. AAAI’08]
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Avoid the 2k assignments: Backdoor DNFs
• Partial assignments at the leaves of a backdoor tree give rise to a DNF

• The DNF is a tautology

• Backdoor DNF: take any such tautological DNF

• Backdoor DNFs are more succinct than backdoor trees

27

Finding backdoor DNFs with k leaves 
is FPT for Horn, dHorn, and 2CNF

one can even mix Horn with 2CNF  
(or dHorn with 2CNF)

bd-set bd-tree bd-DNF

DNF

F

[Ordyniak, Schidler, Sz ĲCAI’21]
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Hybrid parameters

28

INCOMPARABLE
large incidence treewidth 

constant Horn-bd size
large Horn-bd size 

constant incidence treewidth
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backdoor treewidth

• C-backdoor treewidth is the minimum 
treewidth over the torso graphs of all the C-
backdoors.


• C-backdoor treewidth  
  ≤ min{ primal treewidth, C-backdoor size}

29

C C C

backdoor

C-backdoor treewidth is FPT 
for C ∈ {Horn,dHorn,2CNF}[Ganian, Ramanujan, Sz. 

STACS’17, SAT’17]
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backdoor treewidth

• C-backdoor treewidth is the minimum 
treewidth over the torso graphs of all the C-
backdoors.


• C-backdoor treewidth  
  ≤ min{ primal treewidth, C-backdoor size}

30

backdoor

torso graph

C-backdoor treewidth is FPT 
for C ∈ {Horn,dHorn,2CNF}[Ganian, Ramanujan, Sz. 

STACS’17, SAT’17]
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Parameter Zoo
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Horn-bd dHorn-bd 2CNF-bd prim-tw

inc-tw

dir-inc-cwd

dual-tw

2CNF-bd-twdHorn-bd-twHorn-bd-tw

TW[1]-bd

TW[2]-bd

TW[3]-bd

TW[t]-bd

…
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FPT reductions to SAT
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Parameterised Complexity where SAT is easy

• Combines the advantages of FPT and SAT

• parameters can be less restrictive

• breaks through barriers of classical complexity
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SATFPT
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[Pfandler, Rümmele, Sz. ĲCAI’13] 
[Fichte, Sz. TOCL’15]] 
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Results
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Theoretical tools: a picture

para-⌃P
2 para-⇧P

2

9⇤8k -W[P]

9⇤8k -W[1]

para-NP

8⇤9k -W[P]

8⇤9k -W[1]

para-co-NP

para-�P
29k8⇤ 8k9⇤

W[P] co-W[P]

W[1] co-W[1]

para-P = FPT

? ?

D-ASP(backdoor to Normal)

P-Abduction(backdoor to Horn/Krom)

∃∀-SAT(∀-incidence-tw)

QBF-SAT(#∀-vars)

D-ASP(#disjunctive rules)

DNF-minimization(reduction size)

Robust CSP(robustness)

Compendium [de Haan, Sz. Algorithms’19]
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Summary
• Capturing structure in instances: correlational approach 

and causal approach

• Parameterized Complexity as a suitable framework for 

the causal approach for SAT and related reasoning 
problems


• Parameters: decompositions, backdoors,  
hybrid (backdoor treewidth)


• Dominance allows us to explore the subject 
systematically, relate parameters to teach other


• FPT-reductions to SAT for problems beyond NP
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Handbook of Satisfiability, 2nd Edition

36

Extended and revised Chapter 17 
“Fixed-parameter Tractability”

http://www.ac.tuwien.ac.at/files/tr/ac-tr-21-004.pdf

http://www.ac.tuwien.ac.at/files/tr/ac-tr-21-004.pdf

