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Abstract. In this work we present new metaheuristic algorithms to
a special variant of the two-dimensional bin-packing, or cutting-stock
problem, where a given set of rectangular items (demand) must be pro-
duced out of heterogeneous stock items (bins). The items can option-
ally be rotated, guillotine-cuttable and free layouts are considered. The
proposed algorithms use various packing-heuristics which are embed-
ded in a greedy randomized adaptive search procedure (GRASP) and
variable neighborhood search (VNS) framework. Our results for existing
benchmark-instances show the superior performance of our algorithms,
in particular the VNS, with respect to previous approaches.

1 Introduction

In this work we consider a special variant of a two-dimensional bin packing prob-
lem where a finite number of bins of different dimensions is given (stock objects),
and a set of different two-dimensional rectangular items must be packed into (a
subset of) these bins. This problem obviously has many practical applications,
e.g. in wood, glass and metal production, where a given demand must be pro-
duced from a heterogeneous set of stock items. We consider situations where
the obtained layouts must be guillotine-cuttable, which means that it must be
possible to cut the items from a stock sheet (bin) by only straight slices, as well
as free packing layouts. The items are allowed to be rotated by 90 degrees.

More formally, we are given a set of two-dimensional objects (items) I =
{1, . . . , imax} with dimensions wi × hi, for all i ∈ I and a set of stock objects or
bins B = {1, . . . , bmax} with dimensions wi×hi, for all i ∈ B. For each bin b ∈ B
we are further given costs cb ∈ N. We assume the instances to be feasible, i.e.
a feasible packing exists for the given set of items and bins. The optimization
goal is to find a feasible packing with minimum costs of the used bins. For a
comparison to previous work we also use the utilization percentage, i.e. the total
area of all items compared to the area of all used bins, as optimization criterion.



2 Related Work

The two-dimensional cutting/packing problem defined in Sec. 1 is a natural ex-
tension of the well known (one-dimensional) bin packing (BP), and cutting-stock
(CS) problem. Both problems are closely related to each other, the only difference
is that the assortment of particular items (of a specific size) is usually assumed
to be small in the context of BP problems, whereas it is usually assumed to be
large with regard to CS problems. According to the classification of Dyckhoff [1],
we consider a problem of type 2/V/D/M in this work, meaning that we consider
2-dimensional items and stock objects, the items should be assigned to a selec-
tion of the stock objects, we are given a heterogeneous stock, and many items of
many different shapes are given. According to the extended typology of Wäscher
et al. [2] our problem variant can be classified as type 2/V/Ss/S, i.e. we have a
strongly heterogeneous assortment according to stock objects (bins) and items.
A further recent classification scheme of cutting and packing problems can be
found in [3].

The problem considered in this work is NP-hard, as it is a generalization of
the BP or CS problem, which are both well known to be NP-hard [4]. Surveys
of related work are given in [5, 6].

In [7, 8] the application of metaheuristics to a problem variant similar to the
one considered in this work, however with uniform bin costs, has been investi-
gated. In [9] the authors propose an exact algorithm based on column generation
for the problem variant with variable costs and bin sizes and an unbounded num-
ber of each bin type. Related work can also be found within the cutting-stock
literature, e.g. [10] or [11].

3 Construction Algorithms

For the free packing layout we implemented the algorithm Bottom Left Fill
(BLF) used in [7, 8] which is based on the Bottom-Left algorithm introduced
in [12]. The algorithm iteratively adds the items to the current bin, trying to
place each item bottom-left aligned at the first possible insertion position. For
this purpose the algorithm maintains a list of possible insertion regions, which is
updated after each iteration. These possible insertion regions then are given by
the upper-left and lower-right coordinates of the last added item according to
its position and are ranging to the upper-right corner of the bin. The algorithm
is also capable of filling holes in the layout obtained by previous insertion steps.
This may on the one hand yield denser packings in contrast to the bottom-
left algorithm, but on the other hand the possible insertion regions have to
be checked for feasibility and possibly updated when a new item is inserted.
When a feasible insertion region is found, further alignment operations (shifts)
are performed. Details of the algorithm can be found in [7, 8], an illustrative
example is given in Fig. 1.

For the guillotine-cuttable layouts we implemented a new level-packing algo-
rithm, which we call advanced level packing (ALP). In contrast to many other
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Fig. 1. BLF-packing, with
a sequence sorted w.r.t.
decreasing area. The hole
after the insertion of item
5 is then filled with items
6 and 7.
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Fig. 2. This figure shows how possible insertion regions
are split recursively by ALP after the addition of further
items to obtain a better utilization of the space to the
right of particular items.

level-packing approaches, we do, however, split the remaining space of one level
into two possible insertion regions, each one acting as a new “level” themselves.
This leads to a better utilization of the space to the right of the items which ini-
tialized a level, i.e. which have previously been packed at the left-most position
of the level. The drawback of this approach is a longer running time, as usually
more possible insertion regions have to be checked for each item.

Both construction algorithms can be used with various sortings of the input
sequence, i.e. decreasing height, decreasing area, decreasing perimeter etc. Re-
sults for various settings are shown in Sec. 5. Further both algorithms (try to)
rotate each item by 90 degrees with a probability of 0.5 in order to introduce more
diversity, which generally is of advantage when improving the solutions later on.

4 Metaheuristics

In this section we present our solution approaches based on greedy random-
ized adaptive search procedures (GRASP) [13] and variable neighborhood search
(VNS) [14]. Although minimizing the total bin costs

∑
b∈Bu

cb, where Bu is the
set of used bins, is our primary objective, we use an additional measure denoted
as packing score to also distinguish solutions w.r.t. to their packing, similar to [7,

8]:
(∑

b∈Bu

(
Aitems

b /Abin
b

)2)
/|Bu| , where Aitems

b is the items’ area in bin b, and

Abin
b is the area of bin b itself. Whenever two solutions have equal bin costs

we prefer those yielding a higher packing score, hence favoring solutions with a
denser packing.

4.1 A GRASP-like algorithm

In the first step of GRASP a randomized solution construction is performed,
with the goal to produce good starting-solutions for a subsequent local search.



These steps are then performed iteratively. The randomized construction is usu-
ally performed by utilizing a restricted candidate list (RCL), with the purpose
of limiting the number of meaningful extension candidates in each step to a
small number. In our case, however, there is no need to explicitly use an RCL,
as the construction algorithms consistently find solutions of reasonable quality,
even with random ordering of the items and bins. The placement of the item is
then performed in a deterministic way, into the first feasible, or best available
insertion region. A set of solutions constructed by these randomized construction
heuristics is sufficiently diverse, and furthermore their quality is good enough to
act as reasonable starting point for the subsequent local search.

As local search method we use a variable neighborhood descent (VND) al-
gorithm. VND systematically changes the neighborhoods – usually using a pre-
defined order – since a local optima for a given neighborhood is not necessarily
one for another neighborhood. Whenever an improvement is found the process
starts over beginning with the first neighborhood again, otherwise the next neigh-
borhood is selected. Following three neighborhood structures are applied in the
given order:

1. Use cheaper bin: Consecutively all used bins are considered and an empty
bin having less costs is sought for which offers potentially enough space to
occupy the items. If such a pair of bins is found it is tried to actually re-pack
the items into the newly selected bin.

2. Clear one bin: The used bins are considered in the order of increasing
utilization (i.e. starting with the least-filled bins), one bin is “emptied” via
unassigning the packed items and the latter are re-inserted in the partial
solution.

3. Clear two bins: Similar to the previous neighborhood structure but emp-
tying two bins, whereas the second bin is taken from the bin order currently
in use (one of the pre-defined sorting criteria).

The first neighborhood structure directly aims at replacing improperly chosen
bins, while the successive emptying and re-inserting is expected to yield denser
packed bins and hence occasionally allows using one bin less.

The only algorithmic parameter for the GRASP-like algorithm is the number
of iterations itG, i.e. independent solution construction and improvement phases.

4.2 Variable Neighborhood Search

VNS applies random steps in neighborhoods of increasing size for diversification
in order to escape local optima, referred to as shaking, and uses an embedded
local search component for intensification. Over time it has been successfully ap-
plied to a wide range of combinatorial optimization problems. We apply a general
VNS, i.e. we utilize the proposed VND for performing the local improvement.
We use two different neighborhood structures for shaking:

– Swap items: For two randomly selected used bins it is tried to swap a given
number of items. We proceed by selecting the item sets s.t. an exchange move



Table 1. Detailed shaking neighborhood order used in the VNS.

k Nk

1 exchange one item (or clear one bin as fallback)
2 clear one bin
3 exchange two items (or clear two bin as fallback)
4 clear two bins
5 exchange three items (or clear three bins as fallback)
6 clear three bins

is potentially possible (w.r.t. the area offered by the bins). If such sets are
found several re-packing trials are performed (consistent limit of 20).

– Clear bins: Similar to the variants used in the VND, except that the bins
to be emptied are selected at random.

The actually applied shaking neighborhoods based on these neighborhood
structures are given in Tab. 1. Since swapping of items might not yield a feasible
packing (either because it is not possible at all and/or the heuristic is unable to
find it) as a fallback strategy clearing of bins is applied otherwise.

5 Experimental Results

The algorithms have been implemented in C++, compiled with gcc-4.4 and exe-
cuted on a single core of an Intel i7 860 @ 2.80 GHz computer with 8 GB of RAM.
The test instances are from [7, 8] and made available via the OR-Library3. These
instances basically feature bins having uniform costs since the area of the bins
directly corresponds to its cost, in this case minimizing the costs equals maximiz-
ing the utilization. To also investigate the interesting case of dealing with non-
uniform costs we modified the bins’ data to reflect this (denoted by the subscript
NUC). Thereby the modified costs are not chosen completely random but lie on
average within 20% of the initial costs. For each setting of bin sizes (unregarded
the costs) there are five different item sets which will, however, in the following be
treated as one problem setting. The number of items as well as bins are the follow-
ing: 100 and 16 for setting 1, 100 and 18 for setting 2, and 150 and 20 for setting 3.

In order to also compare our CPU runtimes to those of [7, 8] we used a fac-
tor of 1/100 according to http://www.cpubenchmark.net for their Pentium II
350 MHz processor. For the construction heuristics we performed 1000 runs, for
all other methods 100 runs. The results on the instances with uniform cost bins
are shown in Tab. 2, those for non-uniform cost bins in Tab. 3. We state the
maximal and average bin utilization as well as the minimal and average bin
costs for the corresponding setting. Also the average runtime is given in millisec-
onds. In the upper half of the tables results for free packing layouts are shown,
those for the guillotine-cuttable variant in the lower half. For BLF and ALP

3 http://people.brunel.ac.uk/~mastjjb/jeb/orlib/binpacktwoinfo.html



Table 2. Average results on instances with bins having uniform costs.

M1 M2 M3

max avg
avg time

max avg
avg time

max avg
avg time

[ms] [ms] [ms]
BLF-R,R [7, 8] 92.7 – – 88.0 – – 90.7 – –
BLF-DA,R [7, 8] 97.8 – 39 93.3 – 44 94.6 – 153
Sim. Ann. [7, 8] – 97.9 8560 – 94.8 9360 – 95.0 18640

BLF-R,R 93.5 85.2 2 90.9 82.4 3 92.3 85.8 5
BLF-DA,R 98.4 92.3 2 95.7 88.9 2 96.3 90.8 5
BLF-DA,DA 91.6 91.6 2 93.1 92.4 2 92.6 92.1 5

VND-1 98.4 97.6 4 95.4 94.8 5 95.7 95.3 8
VND-2 98.4 97.6 16 95.9 95.0 20 96.3 95.4 46
VND-3 98.4 97.7 102 95.9 95.1 130 96.3 95.5 480

GRASP-1 98.4 97.8 46 95.4 95.4 64 95.7 95.7 69
GRASP-2 98.4 97.8 186 95.9 95.6 235 96.3 95.8 409
GRASP-3 98.4 97.8 1270 96.1 95.6 1448 96.3 95.8 4779

VNS-1 98.4 97.6 346 95.9 95.0 270 96.0 95.4 532
VNS-2 98.4 97.7 510 96.5 95.1 405 96.8 95.6 862
VNS-3 98.4 97.7 2563 96.5 95.5 2264 96.8 96.1 8433

ALP-R,R 92.2 83.0 2 89.9 80.6 2 90.3 83.6 5
ALP-DA,R 97.6 91.2 2 95.4 87.7 2 96.0 90.1 5
ALP-DA,DA 91.6 91.6 2 93.1 90.9 2 92.6 91.6 4

VND-1 97.6 97.3 3 95.2 93.9 6 95.7 94.6 7
VND-2 97.6 97.4 15 95.6 94.1 23 95.7 94.8 45
VND-3 98.4 97.4 85 95.6 94.2 136 96.0 95.0 446

GRASP-1 98.4 97.7 45 95.4 95.0 86 95.7 95.5 81
GRASP-2 98.4 97.8 202 96.1 95.1 304 96.3 95.6 518
GRASP-3 98.4 97.7 1182 96.1 95.1 1802 96.6 95.6 4516

VNS-1 97.6 97.3 309 95.4 94.0 293 96.0 94.7 471
VNS-2 98.4 97.5 427 95.6 94.3 395 96.0 95.0 795
VNS-3 98.4 97.6 2085 95.9 94.7 2123 97.1 95.8 7230

we explicitly state the applied sorting criteria for the items as well as the bins:
R=random (shuffle), DA=decreasing area, IC=increasing costs, IRC=increasing
relative costs (i.e. cb/A

bin
b ), where the latter two are only applicable for bins and

are used in case of non-uniform bin costs. VND-x, GRASP-x, as well as VNS-x
are the corresponding variants only using the VND neighborhoods up to x as
stated in Section 4.1. For GRASP we set itG = 10. Preliminary results suggested
to always use the first feasible region for insertion.

In Tab. 2 we also contrast our results of the free packing layouts to those
of [7, 8] where the simulated annealing performed best, also stating their BLF
results for completeness. Unfortunately they did not report all relevant data for
all methods. However, it is clear that our solution approaches outperform them in
all aspects but the average utilization for setting M1 where a small gap remains.
Anyway, probably most important from a potential users perspective is that the
maximal utilization (corresponding to minimal costs) is improved in all cases.
Looking at the average performance of BLF and ALP we decided to use the
sorting combination (DA, DA) for uniform costs and (DA, IRC) for non-uniform



Table 3. Average results on instances with bins having non-uniform costs.

M1NUC M2NUC M3NUC

min avg
avg time

min avg
avg time

min avg
avg time

[ms] [ms] [ms]
BLF-DA,DA 2972.0 2972.3 2 2880.0 2905.2 2 4872.0 4893.2 5
BLF-DA,IC 2700.0 2775.1 2 2974.0 3048.2 3 5086.0 5259.8 5
BLF-DA,IRC 2720.0 2737.0 2 2880.0 2884.3 3 4302.0 4305.1 5

VND-1 2544.0 2598.3 5 2880.0 2880.8 3 4262.0 4269.6 6
VND-2 2544.0 2586.6 14 2790.0 2860.1 13 4262.0 4269.5 51
VND-3 2544.0 2570.9 159 2754.0 2823.3 240 4250.0 4267.4 775

GRASP-1 2516.0 2545.6 51 2862.0 2879.1 36 4262.0 4262.0 64
GRASP-2 2544.0 2548.0 153 2760.0 2809.5 139 4262.0 4262.0 516
GRASP-3 2544.0 2544.0 1839 2754.0 2773.4 2834 4246.0 4258.4 7721

VNS-1 2524.0 2574.9 185 2734.0 2821.5 187 4212.0 4270.4 362
VNS-2 2524.0 2547.3 347 2734.0 2782.2 408 4142.0 4254.8 921
VNS-3 2506.0 2525.8 2519 2688.0 2749.3 3509 4094.0 4172.2 10876

ALP-DA,DA 2972.0 2972.0 2 2880.0 2955.0 2 4872.0 4916.7 4
ALP-DA,IC 2700.0 2885.6 2 2974.0 3079.0 3 5086.0 5347.6 5
ALP-DA,IRC 2720.0 2755.7 2 2880.0 2925.5 2 4302.0 4363.1 5

VND-1 2544.0 2643.3 6 2880.0 2889.0 5 4262.0 4321.1 7
VND-2 2544.0 2629.5 15 2790.0 2853.1 15 4262.0 4310.8 52
VND-3 2544.0 2594.8 149 2772.0 2819.6 215 4246.0 4286.1 635

GRASP-1 2544.0 2557.4 41 2880.0 2880.0 30 4262.0 4264.8 68
GRASP-2 2544.0 2549.4 132 2772.0 2818.0 124 4262.0 4264.7 555
GRASP-3 2544.0 2545.9 1431 2736.0 2772.5 2139 4236.0 4258.3 6968

VNS-1 2524.0 2606.4 189 2744.0 2832.7 187 4246.0 4317.8 366
VNS-2 2524.0 2577.5 377 2732.0 2797.8 385 4186.0 4281.1 846
VNS-3 2524.0 2529.3 2487 2704.0 2759.2 3255 4110.0 4204.2 9498

costs within the metaheuristics. It is observable that generally it pays off to
use one of the metaheuristics instead of only the construction heuristics, and the
runtimes are still acceptable. VNS with full VND yields the best results in general
for both cost types, followed by the GRASP-like approach which performs similar
in case of uniform bin costs. Hence it seems that shaking is beneficial when
dealing with non-uniform cost bins. Also notable is the overall marginal difference
for the respective objective between free layout and guillotine-cuttable packing,
although the latter imposes a considerably constraint in principle. Finally, also a
statistical comparison of the methods is given in Tab. 4 applying a Wilcoxon rank
sum test with an error level of 5%; basically confirming what was reported before.

6 Conclusions

In this work we presented new metaheuristic algorithms for a special variant
of the two-dimensional bin-packing problem. Several configurations including
different packing-heuristics, neighborhoods and parameters of VNS and GRASP
have been experimentally tested on existing benchmark-instances. On these data-
sets improved results regarding average solution quality and running-times have
been obtained. Hence, these algorithms, in particular the VNS, are found to be
very suitable for the considered packing problem, and can likely also successfully
be applied to many other variations.



Table 4. Results of pairwise statistical significance tests on all 30 instances (6×5) with
free layout packing stating how often method 1 (row) is significantly better/worse than
method 2 (column).

VND-1 VND-2 VND-3 GRASP-1 GRASP-2 GRASP-3 VNS-1 VNS-2 VNS-3

BLF 0/24 0/29 0/30 0/26 0/29 0/30 0/30 0/30 0/30
VND-1 – 0/7 0/12 0/18 0/24 0/25 0/10 0/21 0/26
VND-2 – 1/9 4/16 0/22 0/24 0/8 0/18 0/25
VND-3 – 5/15 1/20 0/24 7/4 1/17 0/24
GRASP-1 – 1/8 0/13 16/6 12/12 4/18
GRASP-2 – 0/9 21/2 13/8 4/17
GRASP-3 – 23/1 18/4 4/16
VNS-1 – 0/18 0/24
VNS-2 0/25
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