
A Branch-and-Cut-and-Price Algorithm for a
Fingerprint-Template Compression Application

Andreas M. Chwatal∗, Corinna Thöni∗, Karin Oberlechner∗, Günther R. Raidl∗
∗Vienna University of Technology, Institute of Computer Graphics and Algorithms

1040 Vienna, Austria
Email: chwatal@ads.tuwien.ac.at, corinnathoeni@gmail.com,

karin.oberlechner@gmail.com, raidl@ads.tuwien.ac.at

Abstract—In this work we present a branch-and-cut-and-
price algorithm for the compression of fingerprint minutiae
templates, in order to embed them into passport images by
watermarking techniques as an additional security feature. For
this purpose the minutiae data, which is a set of characteristic
points of the fingerprint, is encoded by a spanning tree whose
edges are encoded efficiently by a reference to an element in
a dictionary (template arc) and a small correction vector. Our
proposed branch-and-cut-and-price algorithm creates meaningful
template arcs from a huge set of possible ones on demand in
the pricing-procedure. Cutting-planes are separated in order to
obtain connected subgraphs from which spanning trees can then
be easily deduced. Our computational experiments confirm the
superior performance of the algorithm in comparison to previous
approaches for the spanning tree based encoding scheme.

I. INTRODUCTION

This work is based on [7], where the authors introduced a
combinatorial model to perform data compression specifically
for a (small) set of unordered, multidimensional data-points.
The need for such a kind of compression arises for instance
when fingerprint minutiae data should be encoded in a way
permitting this data to be embedded into images by watermark-
ing techniques as additional security feature. For a detailed
description of the application background we refer the reader
to [7].

The compression model is based on a special kind of
tree structure, connecting a subset of certain size of the
given nodes. The nodes themselves correspond to the set of
input data-points, i.e. the fingerprint minutiae. Compression is
achieved by computing a suitable small set of template arcs,
which enable a more efficient encoding of the intended tree
structure. The compression model can thus be seen as a dictio-
nary approach. Decompression is achieved by reconstructing
the according subset of data-points from this particular tree
structure. In section II we review the problem model.

In this work we focus on a more efficient solution of the
underlying combinatorial optimization problem (COP). The
model is actually a combination of two well-known COPs, the
minimum label spanning tree problem [2] and the k-cardinality
minimum spanning tree problem [4]. The resulting problem
is called k-minimum label spanning arborescence (k-MLSA)
problem.

The contribution of this article is a branch-and-cut-and-
price (BCP) framework, detailed in section III, to solve the
k-MLSA problem, and has for the first time been investigated

in the theses [5], [12], [14]. Within this framework we use
cutting-planes to obtain validity of the initially incomplete
model and dynamically create and add new label variables
in the pricing phase. In section III-A we present efficient
methods to solve the according pricing subproblem, and the
experimental results in section IV show that the presented
exact algorithm is able to solve the problem to provable
optimality within a reasonable amount of time for practical
purposes.

II. PROBLEM MODEL

The following general compression model as well as the
underlying combinatorial optimization model have originally
been proposed in [7]. The input data is given as a vector of n d-
dimensional points V = {v1, . . . ,vn} from a discrete domain
D = {0, . . . , ṽ1−1}× . . .×{0, . . . , ṽd−1}, with D ⊆ Nd. In
our application these points correspond to the given minutiae
data, where a single minutia is defined as a 4-tuple (x, y, θ, t)
with x and y beeing the Cartesian coordinates of the point, θ
its orientation and t its type. Within our compression model
we usually only use x and y and eventually θ, and store the
further data unprocessed.

Our aim is to select a subset of exactly k points to be stored
in the compressed fingerprint template; i.e., our compression
is not lossless, but with a suitable selection of k this can
usually be considered sufficient for a reliable verification, i.e.
matching to the features extracted by a fingerprint scanner.
For this purpose we start with a complete directed graph
G = (V,A) with A = {(u, v) | u, v ∈ V, u 6= v} on which
we search for an optimal directed tree (outgoing arborescence),
spanning at least k nodes, by optimization. Thus, all nodes and
arcs in the graph have a topological as well as a geometrical
interpretation. In the following, we emphasize the context we
primarily refer to by denoting these elements in normal and
bold letters, respectively.

Furthermore, we use a small set T of template arcs which
act as dictionary elements for our compression approach.
Instead of directly storing the coorinate values of the mutual
difference vectors of the tree nodes for each tree arc, we en-
code these arcs by a reference to a template arc in combination
with a correction vector from a prespecified small domain.
Compression is achieved by optimizing the selection of the k
points, as well as building up a feasible dictionary of template
arcs T of minimal cardinality.

Consequently, a solution to our problem consists of
1) an ordered set of template arcs T = (t1, . . . , tm) ∈ Dm,

and
2) an outgoing arborescence GT = (VT , AT) with VT ⊆ V

and AT ⊆ A connecting exactly |VT | = k nodes, in
which each tree arc (i, j) ∈ AT has associated
• a template arc index κi,j ∈ {1, . . . ,m} and
• a correction vector δi,j ∈ D′ from a prespecified,

small domain D′ ⊆ D with D′ = {0, . . . , δ̃1 − 1} ×
. . .× {0, . . . , δ̃d − 1}.

For any two points vi and vj connected by a tree arc (i, j) ∈
AT the relation

vj = (vi + tκi,j + δi,j) mod ṽ, ∀(i, j) ∈ AT , (1)

must hold; i.e. vj can be derived from vi by adding the
corresponding template and correction vectors. We use the
modulo-calculation to avoid negative values and to be able
to cross the domain-border within the arborescence. Our main
objective now is to find a feasible solution with a smallest
possible dictionary size m.

Details about encoding and decoding of the solution and the
calculation and results regarding achieved compression ratios
are given in the preceding work [7]. Here, we focus on an
improved exact solution method, a new branch-and-cut-and-
price algorithm.

A. The k-Minimum Label Spanning Arborescence Problem

Based on the corresponding section in [7], we summarize
the problem formulation in the following. To be able to choose
the root node of the arborescence by optimization we extend
V to V + by adding an artificial root node 0. Further we
extend A to A+ by adding arcs (0, i), ∀i ∈ V . We use the
following variables for modeling the problem as an integer
linear program (ILP):
• For each candidate template arc t ∈ T c, we define a

variable yt ∈ {0, 1}, indicating whether or not the arc is
part of the dictionary T .

• Further we use variables xij ∈ {0, 1}, ∀(i, j) ∈ A+,
indicating which arcs belong to the tree.

• To express which nodes are covered by the tree, we
introduce variables zi ∈ {0, 1}, ∀i ∈ V .

Let A(t) ⊂ A denote the set of tree arcs a template arc
t ∈ T c is able to represent when considering the allowed
domains for the correction vectors, and let T (a) be the set
of template arcs that can be used to represent an arc a ∈ A,
i.e. T (a) = {t ∈ T c | a ∈ A(t)}. Hence, we can consider
the template arcs t ∈ T c as the labels of their corresponding
arcs T (a), revealing the strong relation to the minimum label
spanning tree problem.

We can now formulate the k-MLSA problem as follows:

min
∑
t∈Tc

yt (2a)

s.t.
∑
t∈T (a)

yt ≥ xa ∀a ∈ A (2b)

∑
i∈V

zi = k (2c)∑
a∈A

xa = k − 1 (2d)∑
i∈V

x(0,i) = 1 (2e)∑
(j,i)∈A+

xji = zi ∀i ∈ V (2f)

xij ≤ zi ∀(i, j) ∈ A (2g)
xij + xji ≤ zi ∀(i, j) ∈ A (2h)∑
a∈C

xa ≤ |C| − 1 ∀ cycles C in G, |C| > 2 (2i)

∑
a∈δ−(S)

xa ≥ zi
∀i ∈ V, ∀S ⊆ V,
i ∈ S, 0 /∈ S (2j)

Inequalities (2b) ensure that for each used tree arc a ∈ A
at least one valid template arc t is selected. Equalities (2c)
and (2d) enforce the required number of nodes and arcs to
be selected. Equation (2e) requires exactly one arc from the
artificial root to one of the tree nodes, which will be the actual
root node of the outgoing arborescence.

Equations (2f) state that selected nodes must have in-degree
one. Inequalities (2g) ensure, that an arc may only be selected
if its source node is selected as well. Inequalities (2h) forbid
cycles of length two, and finally inequalities (2i) forbid all
further cycles (|C| > 2).

In order to strengthen the ILP we can additionally add
(directed) connectivity-constraints, given by inequalities (2j),
where δ−(S) represents the ingoing cut of node set S. These
constraints ensure the existence of a path from the root 0 to
any node i ∈ V for which zi = 1, i.e. which is selected for
connection. In principle, equations (2j) render (2f), (2g), (2h)
and (2i) redundant [10], but using them jointly turned out to
be sometimes beneficial in practice.

B. Candidate Template Arcs
The set of candidate template arcs T c used in ILP (2)

is, however, not explicitly given within the input data. The
requirements to T c are that it has to be sufficiently large to per-
mit an overall optimal solution with regard to the pre-specified
correction vector domain δ̃. Let B = {vij = (vj − vi) mod
ṽ | (i, j) ∈ A} = {b1, . . . , b|B|} be the set of different vectors
we eventually have to represent. Let further D(t) ⊆ D be the
subspace of all vectors a particular template arc t ∈ D is able
to represent when considering the restricted domain D′ for
the correction vectors, i.e. D(t) = {t1, . . . , (t1 + δ̃1− 1) mod
ṽ1} × . . . × {td, . . . , (td + δ̃d − 1) mod ṽd}. The subset of
vectors from B that a particular template arc t is able to
represent is denoted by B(t) = {b ∈ B | b ∈ D(t)}. The set
of candidate template arcs T c must have the property that all
possible elements t with mutually different and non-dominated
B(t) should be included. Within this context a template-arc
t′ is said do be dominated by t′′ iff B(t′) ⊂ B(t′′).

In a previous branch-and-cut approach [7] the set of candi-
date template arcs T c has been computed in a relatively time-
consuming preprocessing step. Within the approach presented

in this work, this preprocessing is not necessary anymore.
Suitable candidate template arcs are on demand derived in
the pricing-step, described in Section III.

C. Cutting-plane Separation

The description of the cutting-plane separation again fol-
lows [7]. As there are exponentially many cycle elimination
and connectivity inequalities (2i) and (2j), directly solving the
ILP would be only feasible for very small problem instances.
Instead, we apply branch-and-cut [11], i.e. we just start with
the constraints (2b) to (2h) and add violated cycle elimination
constraints and connectivity constraints only on demand during
the optimization process.

Cycle elimination cuts (2i) can be easily separated by
shortest path computations with Dijkstra’s algorithm. Hereby
we use (1 − xLPij) as the arc weights with xLPij denoting the
current value of the LP-relaxation for (i, j) in the current node
of the branch-and-bound tree. We obtain cycles by iteratively
considering each edge (i, j) ∈ A and searching for the shortest
path from j to i. If the value of a shortest path plus (1−xLPij)
is less than 1, we have found a cycle for which inequality (2i)
is violated. We add this inequality to the LP and resolve it.
In each node of the branch-and-bound tree we perform these
cutting plane separations until no further cuts can be found.

The directed connection inequalities (2j) strengthen our
formulation. Compared to the cycle elimination cuts they lead
to better theoretical bounds, i.e. a tighter characterization of
the spanning-tree polyhedron [10], but their separation usually
is computationally more expensive. We separate them by
computing the maximum flow (and therefore minimum (0, i)-
cut) from the root node to each of the nodes with zi > 0
as target node. If the value of this cut is less than zLPi , we
have found an inequality that is violated by the current LP-
solution. Our separation procedure utilizes Cherkassky and
Goldberg’s implementation of the push-relabel method for the
maximum flow problem [3] to perform the required minimum
cut computations.

The branch-and-cut algorithm has been implemented using
C++ with CPLEX in version 11.2 [9].

III. BRANCH-AND-CUT-AND-PRICE

The former branch-and-cut algorithm presented in [7] has
two major shortcomings. First, the preprocessing method
is quite time-consuming, and second, the large amount of
template-arc-variables yields large LPs to be solved within
every node of the branch-and-bound tree. These observations
support the idea to develop a branch-and-cut-and-price (BCP)
approach, where after starting with a small, very restricted
set of template arcs, further template arcs are dynamically
added on demand. This approach has for the first time been
investigated in the theses [5], [12], [14].

Following the idea of the valid inequalities proposed in [6],
we introduce inequalities∑

t∈T (Γ−(vi))

yt ≥ zi − xri, ∀i ∈ V, (3)

to provide (besides inequalities (2b)) further information for
the pricing step, but also to further strengthen the LP. Inequal-
ities (3) state that for each selected node except the artificial
root node, the sum over the template-arc variables associated
to the nodes ingoing arcs, must be greater or equal than one.

A. Pricing Problem

Let πa denote the dual variables corresponding to inequal-
ities (2b), and µj denote the dual variables corresponding to
inequalities (3). The reduced costs for each template arc t are
then given by

c̄t = 1−

 ∑
a∈A(t)

πa +
∑

j∈{v|(u,v)∈A(t)}

µj

 . (4)

Any template arc with negative reduced costs c̄t may poten-
tially improve the current objective function value; if there are
no such template arcs, the solution cannot be further improved.
We define the pricing problem as finding the template arc with
maximal negative reduced costs.

Definition 1 (Pricing Problem):

t∗ = argmint∈T

1−

 ∑
t∈A(t)

πa +
∑

j∈{v|(,v)∈A(t)}

µj

 (5)

B. Solving the Pricing Problem

A nice geometrical interpretation for the pricing problem
arises, when considering the two-dimensional case. Each tree
arc corresponds to a point in D according to its associated
geometric information. Furthermore, each point in D in the
same way corresponds to a potential template arc. Hence, we
will use the terms tree/template arc and their corresponding
points interchangeably within this section. All template arcs
potentially representing an arbitrary tree arc b must have their
endpoint in the rectangle D(b− δ̃ + e) with b corresponding
to its upper right corner, and e denoting the d-dimensional
vector with all components being one. Let T ′(b) denote this
area whose points correspond to the potential template arcs
able to represent b. To each T ′(b) we now associate the value

ζb =
∑

i∈{a|a∈A∧a=b}

πi +
∑

j∈{v|(u,v)∈A∧(u,v)=b}

µj . (6)

The first term on the right hand side in (6) corresponds to the
sum of all dual values associated to the constraints for the tree
arcs corresponding to b, given by inequalities (2b). The second
term results from the dual values of all nodes according to
constraints (3) which are incident to a tree arc corresponding to
b. We can now imagine these rectangles T ′(b) as transparently
shaded with a color of intensity ζb, where higher values
corresponding to darker shades. See Fig. 1 for an example
of two elements b1 and b2 and their corresponding regions
T ′(b1) and T ′(b2) being drawn in the domain.

Let us now consider the situation of all b ∈ B and their
corresponding T ′(b), shaded accordingly with ζb, being drawn
in the area corresponding to the two-dimensional domain
D. Due to the transparency of the rectangles, regions of

r1

r2r3

r4
b1

b2
r5

r6

r7 r8

ζ1 = 8

ζ2 = 7

R1

R2

R3 R4

R5

R6

R7

R8

R9

Fig. 1. Example of two elements b1 and b2 and corresponding regions
T ′(b1) and T ′(b2) drawn in the domain D. (Image with minor modifications
taken from [14])

overlapping rectangles will obtain darker colors. Formally we
define for each uniform region R a corresponding value

ζR =
∑

b∈A(t), t∈R

ζb (7)

for some arbitrary t being located in region R. Figure 2
shows an example with two overlapping elements bi. We
can now see that the pricing problem given by Definition 1
exactly corresponds to finding the darkest such area. This
analogy remains valid even in the higher dimensional case
if we use regions of corresponding dimensionality instead
of areas with dimensionality two. The correspondence of the
presented illustration to the pricing problem becomes evident
by considering the correspondence of equation (6) to the two
sums in (5). The only difference is that (6) is formulated in
terms of unique points b and (5) in terms of template arcs t,
which we actually want to determine.

Based on this observation, we now outline an algorithm
to solve the pricing problem. This algorithm was primary
subject of the diploma thesis [14]; for details according to
the implementation of the algorithm, the reader is referred to
this work.

The underlying data structure is a k-d tree [1] which is
used to partition the domain into the corresponding regions
resulting from T ′(b), for all b ∈ B and resulting overlapping
regions. Here k denotes the number of dimensions to be used
within the tree, and should not be mixed up with the number
of nodes to be connected to the arborescence. However, as
the term k-d tree is commonly used for this data structure,
we refrain from referring to it as d-d tree. For convenience,
we briefly review the principles of k-d trees. Their primary
application is to store multidimensional data points and allow
efficient range and nearest neighbor searches. The tree defines
a hierarchical partitioning of the underlying domain. Each
node of the binary tree defines a division of the subspace
in which it is located into exactly two further subspaces.

Within each level l coordinate l mod k is used to define this
subdivision. At the root node the whole domain is subdivided
according to some coordinate of the first dimension. Each child
node then defines a subdivision according to a coordinate of
the second dimension, and so forth. For our purpose we define
each node to have either two children, or to be a leaf node.
In our case, a leaf node may either correspond to a region
that cannot contain a template arc, or otherwise, a region that
contains all possible template arcs representing a unique subset
of elements bi ∈ B.

r1

r2r3

r4
b1

b2
r5

r6

r7

ζ1 = 8

R3

R5

R6

R7

R8

R9

23 ζ7 = 15

b7r9

r10r11

r12

r13

r14
r15

R10

R11

R12

R13

R14

R15
R16

R17

R18

R19

r8

ζ2 = 7

Fig. 2. This illustration shows the situation after the insertion of a further
element (b7) into the segmentation tree shown in Figures 1 and 3. (Image
with minor modifications taken from [14])

Figures 1 and 2 show examples of two and three elements
being drawn in the domain, respectively. These figures illus-
trate how the domain is segmented into subregions according
to T ′(b1) and T ′(b2) (and T ′(b7) in Figure 2). Corresponding
k-d trees, which we will from now on call segmentation
trees, are depicted in Figures 3 and 4. As each node of the
tree subdivides its subspace into two subspaces, it defines a
hyperplane, which we will also call splitting-hyperplane. In
the two-dimensional examples of Figures 1 and 2 these hyper-
planes correspond to lines. In the example of Figure 1 the first
split is performed according to the second coordinate at point
r1 = b1. Nodes ri denote the coordinates corresponding to
each node i of the segmentation tree. The area T ′(b1) is finally
defined by nodes r2, r3 and r4, area T ′(b2) by nodes r5, r6,
r7 and r8. In the figure all points ri correspond to the corner
points of areas T ′(b) for all elements b in the tree, which is,
however, an arbitrary decision for a better illustration. In fact,
only one coordinate is required to define a hyperplane being
orthogonal to the basis vector of the considered dimension,
which is always the case in the segmentation tree. Besides
the intermediate “splitting” nodes, the tree in Figure 3 also
contains the leaf nodes, with corresponding regions depicted
in Figure 1. The second example, given by Figures 2 and
4 shows the resulting tree after the insertion of element b7.
Again, splitting nodes and leafs (corresponding to regions)
are contained in the visualization of the tree, as well as in

r1

r2

R1
r3

R2

r4

R3 R4

r5

R5

r6

R6
r7

R7
r8

R8 R9

{1, 2}, {}

{2}, {}

{2}, {}

{2}, {}

{2}, {2}

{2}, {}

{}, {}

{}, {}

{}, {}

{}, {}

{}, {}

{1}, {}

{1}, {1}

{1}, {}

{}, {}

{}, {}

{1}, {}

Fig. 3. Segmentation tree corresponding to the example shown in Figure 1. (Image credits: [14])

the corresponding illustration of the fragmented domain. To
build up the whole tree, regions T ′(b) for all b ∈ B are
iteratively inserted. For each such T ′(b) we need to find the
correct position for inserting it into the tree. This is done by
checking at each tree node r if T ′(b) is entirely located in
one of the subspaces defined by r. If a region is entirely
contained in a region defined by a current leaf of the tree,
this leaf is replaced with an according subtree corresponding
to the splitting hyperplanes required to properly define T ′(b).
However, T ′(b) is part of both subspaces defined by the
current node r, we need to split T ′(b) accordingly, and insert
the resulting subregions into both branches of r. Having now
described, how the segmentation tree is created, we focus on
how the tree can be used to efficiently search for the best
template arc.

At this point we assume that the whole segmentation tree
has been created in advance. As we will see later, this is not
a real requirement. Our goal is to find the region R with
maximum ζR, which is the solution to the pricing problem.
As the pricing problem needs to be solved many times, the
search has to be efficient. In particular we want to avoid to
assign ζB to all leafs (corresponding to regions) B in the
tree according to the values ζb derived by the dual values.
Therefore the search is based on upper and lower bounds
used to prune branches at an early stage. Let R(r) denote the
subspace corresponding to node r of the segmentation tree.
Upper and lower bounds for each node r of the tree can be
derived based on the following definitions.

Definition 2 (Upper Bound Set): The upper bound set is
given by all elements b ∈ B which can be represented by
some potential template arc in the subspace corresponding to
tree node r.

UB(r) = {b ∈ B | ∃t ∈ R(r) ∧ b ∈ B(t)}

Definition 3 (Lower Bound Set): The lower bound set is
given by all elements b ∈ B which can be represented by
all potential template arcs in the subspace corresponding to
tree node r.

LB(r) = {b ∈ B | ∀t ∈ R(r) ∧ b ∈ B(t)}

These bound sets are stored for each node of the search
tree. In Figures 1 and 2 these sets are denoted in braces at
each node.

Based on these sets we can immediately derive numeric
bounds, based on the dual values.

Definition 4 (Upper Bound):

ub(r) =
∑

b∈UB(r)

ζb

Definition 5 (Lower Bound):

lb(r) = max
b∈UB(r)

ζb

The search process is performed based on these upper and
lower bounds. Starting at the root node, the set B is divided
into two not necessarily disjoint sets. These sets UB(r)
correspond to the nodes which are representable by some
template arc of the subspaces introduced by the splitting-
hyperplane defined by the current tree node r. With ub(r)
we directly obtain a numeric value being the upper bound for
this particular branch. A lower bound is given by lb(r), i.e.
the element with maximal ζb in this branch. For each node
we check if UB(r) = LB(r) which implies that we have
found a leaf node. A global lower bound lb∗ is used to prune
the search tree, as we do not have to follow branches with
ub(r) < lb∗. Initialization of the global lower bound can be
performed with lb∗ = maxb∈B ζb. The search strategy to be
used is best first search based on the upper bounds ub(r).

Within the description of the algorithm, we have omitted
many implementation issues. One important aspect to be con-
sidered is the fact that regions may cross the domain border.
This needs to be checked in advance, and corresponding
subregions must be inserted in this case. Furthermore a lot of
design issues are involved in order to implement the bounding
procedure efficiently. Also the reconstruction of the coordinate
values of the corner points of each region requires to take care
of some special cases. For a detailed presentation and analysis
of this issues we refer to [14].

A further substantial improvement of the overall process
can be achieved if the entire tree is not completely built in
advance, but rather in a dynamic on demand way during the

r1

r2

r3

r4

R3

r5

R5
r6

R6
r7

R7
r8

R8 R9

{1, 2, 7}, {}

{2}, {}

{2}, {}

{2}, {}

{2}, {2}

{2}, {}

{}, {}

{}, {}

{}, {}

{}, {}

{7}, {}

{1, 7}, {}

{1, 7}, {1}

{1, 7}, {}

{7}, {}

{}, {}

{1, 7}, {}

r9

R10
r10

R11r11

R12 R13
{7}, {7}

r12

R14
r13

R15 R16

r14

R17
r15

R18 R19

{}, {}

{}, {}

{7}, {7}

{7}, {}

{1}, {1} {1, 7}, {1, 7}

{1, 7}, {1}

{1}, {1} {}, {}

{}, {}

{}, {}{7}, {}

{7}, {}

Fig. 4. Segmentation tree corresponding to the example shown in Figure 2. (Image credits: [14])

search process. Each time the search is according to the bounds
directed toward a certain branch of the tree, we check if this
branch has already been created. If this is not the case, it is
expanded as needed. Hence construction and traversing the
tree is performed in an intertwined way. This has not only
the advantage of the initial construction step to be omitted,
but will also result in smaller trees to operate with. As certain
regions of the domain will not contain any useful template
arcs, corresponding branches are unlikely to be created during
the whole BCP solution process, saving space and time.

Corresponding pseudocodes are omitted within this presen-
tation, as they would require a more detailed formal descrip-
tion and notation. In the following section we show how this
algorithmic framework for solving the pricing problem can be
used within a branch-and-cut-and-price approach.

C. Branch-and-Cut-and-Price Algorithm

The first step of the entire branch-and-cut-and-price (BCP)
is to determine a feasible starting solution. Any connected
subgraph of k nodes is sufficient for this purpose. Hence, we
determine a starting solution by connecting arbitrary k nodes
by a star-shaped spanning tree, assign big values to the dual
variables corresponding to this set of arcs, and use the pricing
algorithm to determine a feasible starting solution.

The restricted master problem (RMP) is defined according
to the ILP from Section II-A, however the entire set T c is
replaced by T p denoting the set of template arc variables that
have already been priced in. Within each node of the branch-
and-bound-tree directed connection cuts and cycle elimination
cuts are separated to obtain a feasible LP-relaxation. After-
wards new template arc variables are priced in as long as such
variables with negative reduced costs according to Equation (5)
can be found and no further cutting-planes can be added. It
turned out to be advantageous to add all variables with negative
reduced costs within each pricing iteration.

IV. RESULTS

In this section we present the results of our computational
experiments with the outlined branch-and-cut-and-price algo-
rithm. For this purpose two different data sets have been
used. The first set of 20 instances was provided by the
Fraunhofer Institute Berlin and is in the following referred to
as Fraunhofer Templates. Furthermore 14 randomly selected
instances from the U.S. National Institute of Standards and
Technology [8] have been used.

All test runs have been performed on an Intel Core 2 Quad
running at 2.83 GHz with 8 GB RAM and Ubuntu 11.04. The
branch-and-cut-and-price algorithm has been implemented in
C++ within the SCIP framework [13]. and CPLEX in version
11.2 [9], which is also used for the comparison to the branch-
and-cut (BC) algorithm from [7]

For each run a time-limit of two hours has been imposed.
Table I shows average solution values for various parameter
settings (k, δ̃) and groups of instances. These averages are
taken over all instances that have been solved within the time
limit (indicated in the last column). The Fraunhofer instances
with |V | < 30 are not included in the corresponding groups
with k = 30. Column “pit” reports the average numbers
of pricing iterations, column “pvar” the average numbers of
priced in variables, and column “bbn” the average branch and
bound nodes. Column “cuts” reports the numbers of applied
cuts, which consist of directed connection cuts (“DCC”) and
cycle elimination cuts (“CEC”).

Table II shows the comparison of the new BCP algorithm
to the branch-and-cut algorithm presented in [7]. The average
running times of the BC algorithm do not include the prepro-
cessing step. The reported average running times and numbers
of branch-and-bound nodes are not directly comparable, as not
always the same number of instances has been solved by both
algorithms. The BCP method is, however, clearly superior to
the BC algorithm w.r.t. the number of solved instances, and
also yields to significantly lower average running times and
numbers of branch-and-bound nodes.

TABLE I
RESULTS OF THE BRANCH-AND-CUT-AND-PRICE ALGORITHM. AVERAGE VALUES FOR ALL SOLVED INSTANCES IN THE PARTICULAR GROUP ARE

REPORTED.

Instances Parameters avg t[s] pit pvar bbn cuts DCC CEC inst.solved

Fraunhofer δ̃
>

= (10, 10, 10), k = 20 7.7 134 86 39 113 100 13 20/20
Fraunhofer δ̃

>
= (10, 10, 10), k = 30 4.7 90 65 18 188 167 21 18/18

NIST δ̃
>

= (10, 10, 10), k = 40 2945.0 20006 311 19636 1150 1061 89 5/15
NIST δ̃

>
= (10, 10, 10), k = 80 886.6 11950 174 11616 8032 7625 407 12/15

NIST δ̃
>

= (10, 10, 10), k = |V | 237.1 1665 162 1464 3702 3400 302 11/14

Fraunhofer δ̃
>

= (20, 20, 20), k = 20 23.0 304 174 120 164 134 30 20/20
Fraunhofer δ̃

>
= (20, 20, 20), k = 30 14.4 253 162 79 280 224 56 18/18

NIST δ̃
>

= (20, 20, 20), k = 40 890.0 1067 632 399 1192 972 220 6/15
NIST δ̃

>
= (20, 20, 20), k = 80 987.8 691 412 257 1532 1356 177 14/15

NIST δ̃
>

= (20, 20, 20), k = |V | 232.7 496 353 125 1653 1493 159 14/14

Fraunhofer δ̃
>

= (30, 30, 30), k = 20 132.3 1379 594 762 410 305 105 20/20
Fraunhofer δ̃

>
= (30, 30, 30), k = 30 28.0 537 311 207 552 447 105 18/18

NIST δ̃
>

= (30, 30, 30), k = 40 2970.0 2647 960 1591 3724 2995 729 6/15
NIST δ̃

>
= (30, 30, 30), k = 80 2219.3 1873 767 988 8688 7608 1079 12/15

NIST δ̃
>

= (30, 30, 30), k = |V | 2318.3 3032 986 1997 4580 4124 457 11/14

Fraunhofer δ̃
>

= (40, 40, 40), k = 20 163.3 2069 1119 936 212 167 44 20/20
Fraunhofer δ̃

>
= (40, 40, 40), k = 30 148.3 1195 709 474 273 220 53 18/18

NIST δ̃
>

= (40, 40, 40), k = 40 3139.8 3556 1124 2223 9304 7193 2111 4/15
NIST δ̃

>
= (40, 40, 40), k = 80 1808.5 2598 982 1492 9535 8368 1166 6/15

NIST δ̃
>

= (40, 40, 40), k = |V | 2844.3 5258 1265 3919 5940 5154 786 5/14

Fraunhofer δ̃
>

= (50, 50, 50), k = 20 47.5 547 451 88 118 97 21 18/20
Fraunhofer δ̃

>
= (50, 50, 50), k = 30 83.6 886 645 230 285 223 62 18/18

NIST δ̃
>

= (50, 50, 50), k = 40 2996.8 3566 1477 1901 7411 5832 1579 2/15
NIST δ̃

>
= (50, 50, 50), k = 80 1313.5 3546 1089 2397 4589 3995 594 2/15

NIST δ̃
>

= (50, 50, 50), k = |V | 4190.9 7542 1747 5645 13019 11098 1921 1/14

Fraunhofer δ̃
>

= (60, 60, 60), k = 20 588.4 1869 1656 202 173 134 39 16/20
Fraunhofer δ̃

>
= (60, 60, 60), k = 30 65.5 791 574 199 472 358 114 18/18

NIST δ̃
>

= (60, 60, 60), k = 40 5177.2 5740 1951 3712 2725 2091 634 1/15
NIST δ̃

>
= (60, 60, 60), k = 80 2039.9 3928 1450 2469 659 583 76 3/15

NIST δ̃
>

= (60, 60, 60), k = |V | 4066.7 6836 2083 4709 3764 3292 472 4/14

The results clearly show that the new BCP approach is able
to solve a significantly larger number of instances and also
requires shorter running times on average for most classes of
instances.

V. CONCLUSIONS

In this work we have presented a branch-and-cut-and-price
framework to solve the problem of compressing a relatively
small unordered set of multidimensional points with the ap-
plication background of embedding fingerprint minutiae data
into passport images by watermarking techniques as an addi-
tional security feature. Compared to a previously used exact
branch-and-cut algorithm, a significant speedup of solving
the underlying combinatorial optimization problem (k-MLSA
problem) could be achieved. Furthermore the preprocessing
step beeing necessary for the preceding approach needs not
to be performed anymore. As a result more instances can be

solved to proven optimality within the considered time limit
by the new method.

Although the overall compression ratios achieved by our
particular model are rather limited, they are clearly superior
to other popular compression mechanisms, which cannot per-
form any compression on the considered data at all. Further
improvements regarding compression ratios can possibly be
achieved by devising refined models and algorithms. However,
in consideration of being a new approach to data compression
by combinatorial optimization techniques, as well as being
a novel approach of directly exploiting the property that the
order of the underlying data needs not to be preserved, our
approach can be regarded a successful proof-of-concept to
be able to compress weakly structured data sets and appears
to be a promising origin for further research in the field of
combinatorial optimization based compression methods.

TABLE II
COMPARISON OF THE RESULTS ACHIEVED BY BRANCH-AND-CUT-AND-PRICE AND THE BRANCH-AND-CUT.

Instances Parameters branch-and-cut branch-and-cut-and-price
avg t[s] bbn inst.solved avg t[s] bbn inst.solved

Fraunhofer δ̃
>

= (10, 10, 10), k = 20 3.8 27 20/20 7.7 39 20/20
Fraunhofer δ̃

>
= (10, 10, 10), k = 30 4.4 253 18/18 4.7 18 18/18

NIST δ̃
>

= (10, 10, 10), k = 40 2889.4 1574 1/15 2945.0 19636 5/15
NIST δ̃

>
= (10, 10, 10), k = 80 1416.4 6371 4/15 886.6 11616 12/15

NIST δ̃
>

= (10, 10, 10), k = |V | 498.7 623 3/14 237.1 1464 11/14

Fraunhofer δ̃
>

= (20, 20, 20), k = 20 28.0 579 20/20 23.0 120 20/20
Fraunhofer δ̃

>
= (20, 20, 20), k = 30 11.3 191 18/18 14.4 79 18/18

NIST δ̃
>

= (20, 20, 20), k = 40 2220.7 1691 8/15 890.0 399 6/15
NIST δ̃

>
= (20, 20, 20), k = 80 537.2 157 13/15 987.8 257 14/15

NIST δ̃
>

= (20, 20, 20), k = |V | 322.4 69 13/14 232.7 125 14/14

Fraunhofer δ̃
>

= (30, 30, 30), k = 20 76.6 1513 20/20 132.3 762 20/20
Fraunhofer δ̃

>
= (30, 30, 30), k = 30 98.7 2657 18/18 28.0 207 18/18

NIST δ̃
>

= (30, 30, 30), k = 40 2922.5 3860 4/15 2970.0 1591 6/15
NIST δ̃

>
= (30, 30, 30), k = 80 1291.0 880 9/15 2219.3 988 12/15

NIST δ̃
>

= (30, 30, 30), k = |V | 2281.8 2515 8/14 2318.3 1997 11/14

Fraunhofer δ̃
>

= (40, 40, 40), k = 20 241.4 5471 20/20 163.3 936 20/20
Fraunhofer δ̃

>
= (40, 40, 40), k = 30 256.4 3493 18/18 148.3 474 18/18

NIST δ̃
>

= (40, 40, 40), k = 40 2712.3 4218 2/15 3139.8 2223 4/15
NIST δ̃

>
= (40, 40, 40), k = 80 1071.6 1296 5/15 1808.5 1492 6/15

NIST δ̃
>

= (40, 40, 40), k = |V | 2762.4 4232 3/14 2844.3 3919 5/14

Fraunhofer δ̃
>

= (50, 50, 50), k = 20 292.4 2246 13/20 47.5 88 18/20
Fraunhofer δ̃

>
= (50, 50, 50), k = 30 604.1 6606 9/18 83.6 230 18/18

NIST δ̃
>

= (50, 50, 50), k = 40 3681.7 5030 1/15 2996.8 1901 2/15
NIST δ̃

>
= (50, 50, 50), k = 80 1611.7 5991 2/15 1313.5 2397 2/15

NIST δ̃
>

= (50, 50, 50), k = |V | 1711.7 3633 1/14 4190.9 5645 1/14

Fraunhofer δ̃
>

= (60, 60, 60), k = 20 864.7 2425 12/20 588.5 202 16/20
Fraunhofer δ̃

>
= (60, 60, 60), k = 30 710.1 5504 11/18 65.5 199 18/18

NIST δ̃
>

= (60, 60, 60), k = 40 1854.6 5652 1/15 5177.2 3712 1/15
NIST δ̃

>
= (60, 60, 60), k = 80 3073.4 4121 1/15 2039.9 2469 3/15

NIST δ̃
>

= (60, 60, 60), k = |V | 3069.7 4544 1/14 4066.7 4709 4/14

REFERENCES

[1] J. L. Bentley. Multidimensional binary search trees used for associative
searching. Commununications of the ACM, 18(9):509–517, 1975.

[2] R.-S. Chang and S.-J. Leu. The minimum labeling spanning trees.
Information Processing Letters, 63(5):277–282, 1997.

[3] B. V. Cherkassky and A. V. Goldberg. On implementing the push-relabel
method for the maximum flow problem. Algorithmica, 19(4):390–410,
1997.

[4] M. Chimani, M. Kandyba, I. Ljubić, and P. Mutzel. Obtaining optimal
k-cardinality trees fast. Journal of Experimental Algorithmics, 14:5.1–
5.23, 2010.

[5] A. M. Chwatal. On the Minimum Label Spanning Tree Problem: Solution
Methods and Applications. PhD thesis, Vienna University of Technology,
2010.

[6] A. M. Chwatal and G. R. Raidl. Solving the minimum label spanning
tree problem by mathematical programming techniques. Advances in
Operations Research, 2011. (in press).

[7] A. M. Chwatal, G. R. Raidl, and K. Oberlechner. Solving a k-node
minimum label spanning arborescence problem to compress fingerprint
templates. Journal of Mathematical Modelling and Algorithms, 8:293–
334, 2009.

[8] Garris M. D. and McCabe R. M. NIST special database 27: Fingerprint
minutiae from latent and matching tenprint images. Technical report,
National Institute of Standards and Technology, 2000.

[9] ILOG Concert Technology, CPLEX. ILOG. http://www.ilog.com.
Version 11.0.

[10] T. Magnanti and L. Wolsey. Optimal trees. Handbook in Operations
Research and Management Science, Network Models:503–615, 1995.

[11] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial
Optimization. Wiley-Interscience, November 1999.

[12] K. Oberlechner. Solving a k-node minimum label spanning arborescence
problem with exact and heuristic methods. Master’s thesis, Vienna
University of Technology, Vienna, Austria, 2010.

[13] SCIP – Solving Constraint Integer Programs. ILOG. http://scip.zib.de/.
Version 1.2.

[14] C. Thöni. Compressing fingerprint templates by solving the k-node
minimum label spanning arborescence problem by branch-and-price.
Master’s thesis, Vienna University of Technology, Vienna, Austria, 2010.

