
Favoritenstraße 9-11 / E186, A-1040 Wien, Austria
Tel. +43 (1) 58801-18601, Fax +43 (1) 58801-18699
www.cg.tuwien.ac.at

Forschungsbericht / Technical Report

TECHNISCHE UNIVERSITÄT WIEN
Institut für Computergraphik und Algorithmen

Solving the Minimum Label

Spanning Tree Problem by

Mathematical Programming

Techniques

Andreas M. Chwatal, Günther R. Raidl

TR–186–1–10–03

June, 2010

Solving the Minimum Label Spanning Tree Problem by

Mathematical Programming Techniques

Andreas M. Chwatal, Günther R. Raidla

aVienna University of Technology, Favoritenstraße 9-11, 1040 Vienna, Austria

Abstract

In this work we present exact mixed integer programming approaches including
branch-and-cut and branch-and-cut-and-price for the minimum label spanning tree
problem as well as a variant of it having multiple labels assigned to each edge.
We compare formulations based on network flows and directed connectivity cuts.
Further we show how to use odd hole inequalities and additional inequalities to
strengthen the formulation. Label variables can be added dynamically to the model
in the pricing step. Primal heuristics are incorporated into the framework to speed
up the overall solution process. After a polyhedral comparison of the involved formu-
lations, comprehensive computational experiments are presented in order to compare
and evaluate the underlying formulations and the particular algorithmic building
blocks of the overall branch-and-cut(-and-price) framework.

1. Introduction

The minimum label spanning tree (MLST) problem was first introduced in [4]
and has for instance applications in telecommunication network design and data
compression [8]. For the MLST problem we are given an undirected graph G =
(V, E, l) with nodes (or vertices) v ∈ V and edges e ∈ E connecting pairs of nodes.
In addition a labelling function l : E → L is given, assigning to each edge an element,
called “label”, from a finite set L. The objective is to find a minimum cardinality
label subset L′ ⊆ L inducing a spanning tree in the sense that for each edge in the
spanning tree its corresponding label is selected. We also consider the situation of
l : E → 2L where more than one label can be assigned to an edge.

2. Related Work

The minimum label spanning tree (MLST) problem has been introduced by
Chang and Leu [4] for the first time. In this work the authors showed the MLST
problem to be NP-complete, and proposed an exact and an approximative algorithm
called Maximum Vertex Covering Algorithm (MVCA). Krumke and Wirth [18] pro-
posed a modified construction algorithm and derived a performance guarantee for
it. Moreover it has been shown that the problem cannot be approximated with a

Preprint submitted to Computers & Operations Research August 21, 2010

constant factor. An improved performance bound has been obtained by Wan, Chen
and Xu [25], and a tight bound has then been found by Xiong, Golden and Wasil
[26]. An experimental comparison of further MVCA variations is presented in [13].

Besides approximative methods many metaheuristic algorithms have been pro-
posed and studied in the literature during the last decade. Various genetic algo-
rithms have been developed in [27] and [23]. Methods based on local search have
been treated from a theoretical point of view in [1], and from a more practical one
in [3, 14, 11, 10], and [12]. In particular, the latter publications also cover meta-
heuristics like greedy randomized search procedures, local search, variable neighbor-
hood search and the pilot method.

Less work does exist regarding exact algorithms. An exact algorithm based on
A∗-search has been proposed in [4], a similar approach, however, not using the
guidance function of the A∗-algorithm, has been proposed in [11]. So far, only
two mathematical-programming approaches have been considered in the literature.
The first MIP formulation proposed by Chen et al. [5] is based on Miller-Tucker-
Zemlin inequalities (cf. Section 3.1) which ensure that the decision variables for
the edges induce a connected subgraph covering all nodes of the initial graph. In a
recent work of Captivo et al. [2], the authors propose a MIP formulation based on
single commodity flows, a frequently used modelling technique for spanning trees. A
branch-and-cut algorithm based on directed connection cuts and cycle elimination
cuts for an extension of the MLST problem has been described in [9]. For a general
introduction to integer linear programming (ILP) based algorithms like branch-and-
cut and branch-and-price we refer the reader to [22].

In this work we propose a branch-and-cut(-and-price) (BCP) framework for the
solution of moderately sized problem instances. We present a polyhedral and com-
putational comparison of an underlying flow-formulation to a formulation based
on directed connection cuts. For the latter we show how the cut-separation can
be performed more efficiently than for many other spanning tree problems. New
inequalities are introduced to strengthen the formulations. Optionally also cycle-
elimination cuts are separated. Furthermore we show how to use odd hole inequali-
ties to strengthen the formulation by cutting off fractional values of the label vari-
ables. We further consider branch-and-cut-and-price, where instead of starting the
algorithm with a full model, we start with a restricted set of labels and include fur-
ther (label) variables only on demand. In order to obtain valid integral solutions in
each node of the B&B tree fast, we apply primal heuristics based on the well known
MVCA-heuristic [18]. A detailed description of the formulations and algorithmic
building blocks is given in Section 3. In Section 4 we finally present a comparison
of the described formulations and algorithmic components based on computational
experiments.

2

3. Mixed Integer Programming Framework

In this section we first give a rather abstract formulation of the MLST as mixed
integer program (MIP). For the spanning-tree property we present two concrete in-
stantiations: 1) based on a flow-formulation and 2) a formulation based on directed
connectivity cuts, respectively. Both formulations as well as additional inequalities
to strengthen the formulations and methods for cutting-plane separation and dy-
namic variable generation are described within one generic framework, as they can
be used in different combinations.

We use the following variables: variables zl ∈ {0, 1}, forall l ∈ L indicate if label
l is part of the solution; edge variables xe, forall e ∈ E, denote if edge e is used in
the final spanning tree; variables yi,j, forall i, j ∈ V, denote directed arc variables
used for the cut-based formulation, where we introduce for each edge e = {i, j} ∈ E
two arcs (i, j) and (j, i) ∈ A. For the flow formulation we analogously introduce two
directed flow variables fij, fji ∈ [0, n − 1]. Let further L(e) denote the set of labels
associated to edge e.

3.1. Mixed integer formulation

The basic formulation is given by the following abstract integer linear program:

min.
∑

l∈L

zl (1a)

s.t.
∑

l∈L(e)

zl ≥ xe for all e ∈ E (1b)

x ≡ “spanning tree” (1c)

zl ∈ {0, 1} for all l ∈ L (1d)

The objective function (1a) minimizes the number of required labels, inequalities
(1b) ensure that for each selected edge (at least) one label is selected. For the
abstract condition (1c) we will subsequently introduce alternative formulations.

Fixing the number of selected edges according to a valid spanning tree The
number of selected edges may be fixed according to a valid spanning tree:

∑

e∈E

xe = |V | − 1. (2)

Note, that Equation 2 is however not required for a valid description of the MLST
problem.

Single-Commodity Flow Formulation. A single-commodity flow formulation, also
considered in [2], is given as follows:

∑

(0,i)∈A

f0i = |V | − 1 (3a)

3

∑

(i,t)∈A

fit −
∑

(t,j)∈A

ftj = 1 for all t ∈ V \{0} (3b)

fij ≤ (|V | − 1) · xe for all {i, j} ∈ E and e = {i, j} (3c)

Equation (3a) ensures the correct quantity of flow leaving the (arbitrary) root
node with index 0. For all other nodes flow consumption (3b) must hold, i.e. one
unit of flow is consumed at each node. Inequalities (3c) finally ensure that only
edges with a sufficient amount of flow may be selected. Flow formulations have
the big advantage that they permit to formulate a spanning tree by a polynomial
number of variables and therefore provide a relatively compact model.

Multi-Commodity Flow Formulation. The single-commodity flow formulation’s ma-
jor shortcoming is, however, that it provides a relatively poor LP-relaxation [20].
This is particularly due to the weak coupling of f to x-variables in Inequalities (3c),
the linking constraints. This drawback can be circumvented by the introduction
of multiple commodities k for each node v ∈ V . Again, all flows of commodity k
originate from node 0 and must be delivered to node k. The formulation is given by
the following equalities:

∑

(i,t)∈A

fk
it −

∑

(t,j)∈A

fk
tj =

−1 t = 0,
0 t 6= 0 ∧ t 6= k,
1 t = k,

for all k ∈ V \{0}. (4)

Linkage of flow to edge variables is then given by

xe ≤ fk
ij for all commodities k, for all e = {i, j} ∈ E (5)

This formulation, however, has the drawback of having more variables than the
single commodity flow formulation, i.e. O(|V | · |E|) flow variables in contrast to only
O(|E|).

Directed Cut Formulation. An alternative formulation is given by directed connec-
tion inequalities, stating that to each node a valid (directed) path must exist. In
contrast to the flow model this formulation consists of an exponential number of
inequalities and therefore cannot be directly passed to an ILP-solver for larger in-
stances. However, this formulation provides a better LP-relaxation to many span-
ning tree problems, as it exactly describes the convex hull of the minimum spanning
tree polytope. The corresponding inequalities are given by (6a), linkage to the edge
variables is given by (6b).

∑

(i,j)∈δ−(S)

yij ≥ 1 for all S ⊆ V, 0 /∈ S (6a)

xe ≥ yij for all {i, j} ∈ E and e = {i, j} (6b)

4

Here δ−(S) denotes the set of ingoing arcs to some node set S ⊂ V . Instead of
Inequalities (6b) we could also directly link the labels to the directed arcs. However,
we proceed with Inequalities (6b) for sake of a unified notation. The separation of
these directed-connection inequalities is discussed in Section 3.2.

It is well known to be practically advantageous to initially add the inequalities

yij + yji ≤ 1, for all {i, j} ∈ E (7)

and
∑

(i,j)∈δ−(j)

yij ≥ 1, for all j ∈ V \{0} (8)

to directed (cut-based) formulations, see [7, 19]. Inequalities (7) avoid short cy-
cles corresponding to a single edge, inequalities (8) assure that each node has one
incoming arc. By δ−(i) we denote the set of incoming arcs to node i.

Cycle-Elimination Formulation. We can also ensure feasibility for integer solutions
by cycle-elimination inequalities. These inequalities enforce the resulting graph not
to contain any cycles, which is together with the enforced number of arcs also a
sufficient condition for spanning trees, and are given by the following Inequalities
(9):

∑

e∈C

xe ≤ |C| − 1, for all cycles C ∈ G, |C| > 2. (9)

Miller–Tucker-Zemlin Formulation. A further way for prohibiting cycles are models
based on the well known Miller-Tucker-Zemlin inequalities [21]. Such a model for
the MLST problem has been proposed in [5], however with some differences. Let
ui ∈ R for all i ∈ V denote variables assigning numeric values to teach node. By
inequalities

ui − uj + |V | · yij ≤ |V | − 1 for all (i, j) ∈ A (10a)

ui ≤ |V | for all i ∈ V (10b)

cycles can be inhibited by just using a polynomial number of variables, however
with the drawback, that a large multiplicative factor appears, usually leading to bad
LP-relaxations. Main difference to the formulation proposed in [5] is the meaning of
the variables. Whereas we use distinct variables for labels and edges (O(|E| + |L|)
variables), and link them by Inequalities (3c) which are in total O(|E|) constraints,
they introduce O(|E| · |L|) variables xijk with i, j corresponding to edges {i, j} and
index k corresponding to labels.

In [2] the authors pointed out an important property of the flow formulation:
They showed that the edge variables are not required to be integer in order to obtain
the correct (optimal) objective function value. Furthermore it is easy to derive
a valid MLST solution based on the set of labels provided by the MIP solution.

5

Based on this reasoning, we can establish the following theorem, which extends this
result to further MLST formulations, and also immediately provides an improved
cut formulation with a fast separation method.

Epsilon-Connectivity Formulation.

Theorem 3.1. For any MIP formulation given by equations 1a, 1b and 2, zl ∈
{0, 1}, for all l ∈ L any set of labels corresponding to an optimal solution to this for-
mulation, and additionally meeting the following inequalities (“epsilon-connectivity”)

∑

e∈δ(S)

xe ≥ ǫ for all S ⊂ V, S 6= ∅ (11)

implies a valid MLST. Here, ǫ > 0 denotes some arbitrary small real number.

Proof The number of edges is fixed by (2), but a solution may still contain fractional
edges. However, as the label variables z are integer and required to be greater than
the value of the corresponding edge variables by inequalities (1b), they are always
one if the corresponding edge variable has a value greater than ǫ. Consequently,
fractional edge variables will only appear in the final solution if they do not raise
the objective function value (by requiring additional labels). Due to Inequalities
(11) the labels obtained from the MIP solution facilitate paths between all pairs of
nodes. 2

Given a label set of an optimal MIP solution, a feasible spanning tree can easily
be derived in polynomial time, by determining an arbitrary spanning tree on the
edges induced by the label set, as described in [2]. As a direct consequence of
Theorem 3.1 the domain of the variables x and y need not be restricted to Boolean
values, restricting them to non-negative values by inequalities

xe ≥ 0, for all e ∈ E, (12)

and

yi,j ≥ 0, for all {i, j} ∈ E, (13a)

yj,i ≥ 0, for all {i, j} ∈ E, (13b)

is already sufficient.
Theorem 3.1 also suggests a further formulation for the MLST problem. Al-

though not explicitly containing any constraints describing a valid spanning tree,
equations (1a), (1b), (2) and (11) already provide a complete description to the
MLST problem, and could be further strengthened by (16) and

∑

e∈δ(i)

xe ≥ 1, for all i ∈ V. (14)

6

Inequalities (11) will again be separated on demand as cutting planes, which can,
however, be performed more efficiently than the separation for the directed connec-
tion cuts, which will be discussed in detail in Section 3.2.

Note that epsilon-connectivity as defined by Theorem 3.1 is not guaranteed if
cycle-elimination inequalities (9) are used exclusively to describe a valid spanning
tree. A fractional LP-solution not containing a cycle may still contain a subtour,
i.e. a subgraph where the sum over corresponding edges is larger than the size of
its nodes minus one. Such a situation is depicted in Figure 1. As a consequence,
the domain of the x-variables must be restricted to Boolean values if only cycle-
elimination inequalities are used to describe a valid spanning tree. The same is true
for the Miller-Tucker-Zemlin formulation given by Inequalities (10a).

1

1

1/2

11

1/2 1/21/2

1/2 1/2

1

Figure 1: LP-solution that does not contain a cycle w.r.t. Inequalities (9), but still violates subtour
elimination constraints. Corresponding (integer) label solutions are not necessarily feasible.

We now draw our attention to the special case of having only one single label
assigned to each edge. If we have not fixed the number of edges we can impose
further equalities

∑

l∈L(e)

zl = xe for all e ∈ E, (15)

instead of Inequalities (1b), which provide a more direct link between labels and
their corresponding edges. This approach emphasizes the search for a feasible label
set of minimal cardinality rather then the search for a feasible spanning tree.

3.2. Cutting-Plane Separation

The directed connection Inequalities (6a) can be separated by computing the
maximum flow from the root node r to each nodes i as target node. This provides
a minimum (r, i)-cut. We have found a violated inequality if the value of the corre-
sponding arcs according to the sum of the LP-values is less than 1. Our separation
procedure utilizes Cherkassky and Goldberg’s implementation of the push-relabel
method for the maximum flow problem [6] to perform the required minimum cut
computations.

The cycle-elimination cuts (9) can be easily separated by shortest path compu-
tations with Dijkstra’s algorithm. Hereby we use 1 − yLP

ij as the arc weights with

7

yLP
ij denoting the current value of the LP-relaxation for arc (i, j) in the current node

of the B&B-tree. We obtain cycles by iteratively considering each arc (i, j) ∈ A and
searching for the shortest path from j to i. If the value of a shortest path plus yLP

ij is
less than 1, we have found a cycle violating Inequalities (9). We add this inequality
to the LP and resolve it. In each node of the B&B-tree we perform these cutting
plane separations until no further cuts can be found.

Theorem 3.1 suggested a formulation not requiring any auxiliary variables (like
flow or arc variables), where validity of the labels is obtained by Inequalities (11)
exclusively. Instead of using the minimum cut based separation routine (which
would also be valid), we can perform a faster separation by a simple depth first
search (DFS). Given an LP-solution, we first select an arbitrary start node for which
we call the DFS procedure. Within this procedure we only consider edges e with
xe ≥ ǫ. Within the DFS we keep track of all visited nodes, if there are unvisited
nodes at the end of the DFS, we have found a valid cut. The DFS can be carried
out in O(|V |+ |E|) time, which is clearly superior to the time of the maximum flow
algorithm running in O(|V | · |E| + |V |2+ε).

3.3. Strengthening the Formulations

As each node must be connected to the spanning tree by one of its incident edges,
we can further impose additional inequalities to strengthen the formulation w.r.t.
the label variables:

∑

l∈L(v)

zl ≥ 1, for all v ∈ V. (16)

Here, L(v), v ∈ V denotes the set of labels being associated to the edges incident
to node v. We will subsequently refer to this set of |V | inequalities as node-label-
inequalities. Figure 2 gives a simple example of an LP solution where the node is
sufficiently connected according to the sum of the LP-values of the ingoing arcs and
therefore its incident edges, but the corresponding sum over the labels associated
to these edges is clearly infeasible w.r.t. Inequalities (16). Therefore Inequalities
(16) strengthen the presented formulations w.r.t. their LP-relaxation. In Section
3.6 we formally prove this property with respect to the particular proposed MIP-
formulations for the MLST. Note, that we will use MIP variables and their corre-
sponding graph-entities equivalently in the the context of subsequent figures and
proofs for simplicity, e.g. we will simply designate a label by a, b, . . . (or la, lb, . . .)
instead of explicitly refering to the MIP variables za, zb,

This basic idea used in Inequalities (16) can be pursued by considering sets of
two nodes, say v1 and v2. Let e12 denote the edge joining v1 and v2. Let further
L(e12) denote the set of labels associated to this edge. For set L(v1)∪L(v2) we can
observe, that at least two labels are required to feasibly connect the nodes v1 and
v2, if L(v1) ∩ L(v2) = ∅. However, if L(v1) ∩ L(v2) = L(e12) we still require two

8

a1 = 1/2

a2 = 1/2

e1 = 1/2

e2 = 1/2

l1 = 1/2

l1 = 1/2

Figure 2: Example of node that is feasible connected w.r.t. its incoming arcs, but not w.r.t.
inequalities (16). Edges e1 = e2 = 1/2 in the current LP-solutions, but as both edges have assigned
the same label l1 = 1/2 the sum over the set of all labels assigned to incident edges of the considered
node is also 1/2. Such situations are forbidden by Inequalities (16).

labels from L(v1) ∪ L(v2). We therefore obtain the following valid inequalities,

∑

l∈L(v1)∪L(v2)

zl ≥ 2, for all v1, v2 ∈ V with L(v1) ∩ L(v2) = L(e12), (17)

which are not directly implied by Inequalities (16). Figure 3 shows an example
where Inequalities (17) dominate Inequalities (16).

le12
= 1/2

v1 v2
e12 = 1/2

∑

l∈L(v1)\le12

l = 1/2
∑

l∈L(v2)\le12

l = 1/2

Figure 3: Example of node-label-constraints for sets of two nodes (17) dominating Inequalities
(16), i.e. the node-label constraints for single nodes. For both nodes vi, i = 1, 2 it holds that
∑

l∈L(vi)
l ≥ 1. Corresponding Inequality (17) is however violated, as

∑

l∈L(v1)∪L(v2)
l = 3/2.

As we can expect a lot of branching on the label variables, in particular for
GMLST instances, further cutting-planes cutting of fractional label solutions may
be helpful. In order to identify such valid inequalities, we consider situations where
fractional label variables lower the objective value of LP solutions. Such a situation is
depicted in Figure 4. If labels a = b = c = 1/2 in the LP solutions the corresponding
arcs can be set to 1/2 as well without violating any directed connectivity inequality.
However, w.r.t. these arc set, at least two labels must be selected in an integer

9

solution. Consequently adding the inequality a+b+c ≥ 2 will cut-off this fractional
solution, but is only valid if no additional arcs/edges are incident to these nodes.

a b b c ca

1 2 3

V \{1,2,3}

Figure 4: Example of fractional label solution

In the following we show how to apply odd hole inequalities to cut-off such and
more general situations. These inequalities are well known from studies of the set-
covering polytope, their application becomes evident by the observation that the
MLST problem can be seen as a set covering problem where each node v needs to be
covered by a label from the set L(v) and the corresponding edges fulfilling further
constraints (i.e. forming a valid spanning tree). In particular we use a MIP based
heuristic to separate valid inequalities for the set-covering problem with coefficients
{0, 1}, which have been proposed in [15].

Let Λ be a |V | × |L| matrix with λij = 1 if node i is labeled with j, λij = 0
otherwise. A |V ′| × |L′| submatrix Λ′ of Λ of odd order is called an odd hole if it
contains exactly two ones per row and column. For the subproblem Λ′

z
′ ≥ 1 the

inequality
∑

l∈L′

zl ≥
|L′| + 1

2
(18)

is valid. In [15] the authors showed that this inequality even remains valid if H ≤
Λ′ ≤ H

∗, where H is an odd hole, and H
∗ being a special matrix closely related

to H . Finding an odd hole H to a given matrix Λ′ is NP-complete, but if we
have found such an odd hole, it is possible to decide in polynomial time whether
H ≤ Λ′ ≤ H

∗ and therefore (18) is valid [15].

3.3.1. Separation-Heuristic for the Odd Hole Inequalities

In order to cut-off fractional label solutions we consider the subset of nodes
V ′′ ⊆ V whose labels are either fractional or zero in the current LP solution. Let

Λ̃
V ′′

denote the matrix where each entry λij represents the current LP value of label

j associated to node i, or −1 if the label j is not associated to node i. Let further ΛV ′′

denote the corresponding matrix representing which labels are assigned to particular
nodes, i.e. its elements λV ′′

ij are one if label j ∈ L(δ(i)), and zero otherwise. Our goal

is to heuristically search for odd holes in ΛV ′′

, based on the information provided

10

by matrix Λ̃
V ′′

, and then transform the related inequality to a valid inequality for
the initial problem by the according lifting steps. We are hence searching for an odd
hole H with H ≤ ΛV ′,L′

with V ′ ⊆ V ′′, L′ ⊆ L′′ and |V ′| = |L′| being odd. By the
procedure of [15] we can now decide if

∑

l∈L′′\L′

γl · zl +
∑

l∈L′

zl ≥
|L′| + 1

2
(19)

is valid for ΛV ′,L′

. The term
∑

l∈L′′\L′ γl · zl results from lifting all labels which are
associated to a node v ∈ V ′ but are not part of the odd hole induced by V ′ and L′.
The lifting-coefficient is denoted by γl, the calculation of its value will be discussed
later on. By the following MIP (20) we aim to find subsets V ′ and L′ forming an odd
hole and for which inequality (19) is violated according to the current LP solution.
For this purpose we define a bipartite directed graph G̃ = (Ṽ = Ṽ1 ∪ Ṽ2, Ã), Ṽ1 =
V ′′, Ṽ2 = L′′, Ã = {(i, j) | i ∈ V ′′ ∧ j ∈ L′′(V ′′)}. Each cycle with length 4 · k + 2
corresponds to an odd cycle w.r.t. the number labels, and is therefore a potential odd
hole. Variables xij ∈ {0, 1} represent the arcs from node i ∈ V ′′ to label j ∈ L′′(V ′′)
and are intended to finally describe a valid odd hole. Variables aij ∈ [0, 1] denote
other arcs which connect nodes i ∈ V ′′ being part of the odd hole (described by the
x variables) and other labels not being part of the odd hole. For each arc a = (i, j)
the coefficient ca is the LP value of label j if j ∈ L′ and zero otherwise.

max k + 1 −
∑

i∈Ã

xi · ci −
∑

i∈Ã

ai · ci (20a)

s.t. k + 1 −
∑

i∈Ã

xi · ci −
∑

i∈Ã

ai · ci ≥ 0 (20b)

∑

i∈Ã

xi = 4 · k + 2 (20c)

∑

(i,j)∈δ−(j)

xij ≤ 1 for all j ∈ L′′ (20d)

∑

(i,j)∈δ+(i)

xij ≤ 1 for all i ∈ V ′′ (20e)

∑

(i,j)∈A

xij −
∑

(j,k)∈A

xjk = 0 for all i ∈ Ṽ (20f)

yi − yj + 1 + |Ṽ | · xij − |Ṽ | · zi ≤ |Ṽ | (20g)
∑

i∈V

zi ≤ 1 (20h)

∑

(k,i)∈δ−(i)

xki −
∑

(j,l)∈δ−(j)

xjl ≤ aij for all (i, j) ∈ Ã (20i)

11

yi ≤ |Ṽ | for all i ∈ Ṽ (20j)

zi ∈ {0, 1} for all i ∈ Ṽ (20k)

xi ∈ {0, 1} for all i ∈ Ã (20l)

0 ≤ ai ≤ 1 for all i ∈ Ã (20m)

From (20c) we can see that |L′|+1
2

= k + 1. As we prefer solutions where (19) is

considerably violated we maximize the difference between |L′|+1
2

and
∑

i∈Ã xi ·ci. The
term

∑

i∈Ã ai · ci gives a lower bound for the sum over all labels we need to lift w.r.t.
some particular x. The correct coefficient which is to be discussed later on, cannot
be formulated by a linear expression. By Equation (20b) this particular expression is
enforced to be larger than zero, as the resulting inequality to be added to the MLST-
MIP would not be violated otherwise. As a consequence all feasible solutions to MIP
(20) fulfill this property which is desirable for the heuristic separation procedure
discussed subsequently. For each node on the cycle the numbers of ingoing and
outgoing arcs are limited to one by equations (20d) and (20e) and flow-conservation
is imposed for each node (20f). The integer variables yi assign numeric values to
the nodes i ∈ V ′′ ∪L′′ and prevent multiple cycles in the solution by Miller-Tucker-
Zemlin-inequalities (20g), i.e. by enforcing for each arc on the cycle (except the one
going out from the node i with zi = 1 (20h)) to have an at least by one smaller
source than target node. By Inequalities (20i) all arcs connecting nodes i ∈ V ′ which
are part of the odd cycle to be determined (by x-variables) to nodes j ∈ L′′(i) not
being part of this cycle. Finally, yi, for all i ∈ Ṽ are enforced to be smaller than
|Ṽ | (20j), and the node selection and arc variables are required to be Boolean (20k,
20l). The a-variables only need to be restricted to 0 ≤ ai ≤ 1, for all i ∈ Ã, as they
are implicitly integer by Inequalities (20i). Figure 5 shows an example for a solution
to the MIP. The arcs selected by x-variables are depicted in red color, the dashed
ones do not contribute to the objective function. The blue arcs correspond to the
“lifting-arcs”, selected by a-variables.

Given a solution to the MIP (20), we still need to check, if (19) is valid for
this particular solution. The z-variables are derived by taking all labels j ∈ L′

selected by xij in (20). For this purpose we use the criterions described in [15] –
here we only provide a rough explanation. An arc connecting two nodes on the odd
cycle determined by (20) which is not part of the cycle itself is called a chord. In
order to fulfill (18), and therefore (19) after the lifting, all chords of the odd cycle
must be compatible. The chord set is called compatible, if 1) no chord induces even
cycles (w.r.t. nodes i ∈ V ′ on the cycle), and 2) every pair of crossing chords is
compatible. Compatibility for crossing chords is defined on the basis of the mutual
distances of their adjacent nodes on the cycle. Let aij = (vi, lj), vi ∈ V ′, lj ∈ L′

and ahk = (vh, lk), vh ∈ V ′, lk ∈ L′ be two crossing chords. We now remove lj and
its two incident arcs from the odd hole. The chords are compatible, if the unique
path from vi to vh has an even distance w.r.t. nodes in V ′ in this graph.

It remains to determine the lifting-coefficients γl. If a lifting-label only covers

12

la

lb

lc
lg

ld

le

lf

v1

v2

v3

v4

Figure 5: Example for a solution to (20). The octagon-shaped cycle constitutes the odd hole. The
dashed arcs do not contribute to the objective function, whereas the solid arcs (which connect
nodes to labels) contribute with the LP-value of the target-label as coefficient. The further arcs
provide a lower bound for the contribution of all labels that need to be lifted in order to obtain a
valid inequality for the initial problem.

one node of the odd hole, the sum over all labels necessary to feasibly cover all nodes
from the odd hole does not change. The label can, however, be used alternatively
for one of the odd hole labels and therefore gets coefficient one. Otherwise, if one
lifting-label covers all odd hole nodes, the coefficient must equal the right hand
side of (19), i.e. γl = |L′|+1

2
in this case. Suppose some lifting-label l covers νl odd

hole nodes, then the size of the remaining odd hole nodes is |L′|+1
2

=
⌈

|L′|
2

⌉

. These

remaining nodes are still adjacent to two labels in the odd hole, pairwise having
one label in common. We can therefore derive the following value for the lifting
coefficient

γl =

⌈

|L′|

2

⌉

−

⌈

|L′| − νl

2

⌉

=
|L′| + 1

2
−

(

|L′| + 1

2
−

⌈νl

2

⌉

)

=
⌈νl

2

⌉

. (21)

During the branch-and-bound MLST solution process the MIP (20) is solved with
very tight runtime-limits. As soon as an incumbent integer solution has been found,
this solution is checked for validity by the mentioned criterions. Obtained valid
MLST-inequalities are added immediately. Then the incumbent integer solution is
rejected to the MIP solver by which we enforce to search for further solutions. This
process continues until the time limit is reached.

13

3.4. Heuristics

In order to improve the overall performance – in particular the ability to gener-
ate feasible integer solutions fast – we embed a primal heuristic into the framework.
For this purpose we adopt the well known MVCA heuristic [4, 18, 13]. This heuris-
tic can create feasible solutions itself, but also complete partial solutions L̃ ⊂ L.
Creating complete solutions is important for the acquisition of strong upper bounds
to efficiently cut-off unprofitable branches of the B&B-tree from the beginning on,
but also to obtain an initial solution for BCP (Section 3.5). On the other hand
the MVCA heuristic can be used to obtain feasible integer solutions and therefore
upper bounds for each B&B-node based upon some variables already fixed to integer
values. Many further fast metaheuristic techniques do exist for this problem, which
could also easily be integrated into this framework. This is however beyond the
scope of this work, as we primarily focus on mathematical programming methods
for the MLST.

3.5. Pricing Problem

Problem formulations with a large (usually exponential) number of variables
are frequently solved by column generation or branch-and-price algorithms. Such
algorithms start with a restricted set of variables and add potentially improving
variables during the solution process on demand. If these algorithms also include
cutting-plane generation we call them branch-and-cut-and-price (BCP). Although
the presented MLST formulation only has a polynomial number of label variables,
these particular variables typically lead to extensive branching on them, requiring a
special treatment. Hence we based a solution approach on BCP, operating on just a
subset of variables. Such approaches follow the same idea as sparse graph techniques
as proposed in [16].

We obtain the restricted master problem by replacing the complete set of labels
L by a subset L′ ⊆ L in (1a). The set L′ is required to imply a feasible solution
and is obtained by the MVCA heuristic. Then, new variables and therefore columns
potentially improving the current objective function value in the simplex tableau are
created during the B&B process. These new variables are obtained from the solution
of the pricing problem which is based upon the dual variables. Let πi denote the dual
variables corresponding to constraints (1b), and µi the ones corresponding to (16).
They reflect a measure for the costs of some particular edge e w.r.t. the currently
selected labels (πe), and the costs of connecting some node v w.r.t. the currently
selected labels (µv). The pricing problem is to find a variable with negative reduced
costs

c̄l = 1 −
∑

(i,j)∈A(l)

πij −
∑

i∈V (l)

µi, (22)

within the set of all labels L. Here A(l) denotes all arcs having label l, V (l) denotes
the set of nodes incident to arcs with label l. Finding such a variable or even the
one with maximal reduced costs can be done by enumeration. Although only a

14

polynomial number of labels is involved, we may benefit from the pricing scheme as
we only need to solve smaller LPs within the B&B procedure.

3.6. Polyhedral Comparison

In this section we compare various formulations resulting from combining the
equations and inequalities from Section 3 as listed in Table 1. The only formula-
tion just requiring a polynomial number of constraints is the flow-formulation with
roughly O(|L| + 3 · |E|) variables and O(|L| + |V | + |E|) constraints. The directed
cut-formulation requires O(|L|+3 · |E|) variables and an exponential number of con-
straints. Also the modified “epsilon” cut-formulation requires exponentially many
constraints, but only has O(|L| + |E|) variables.

Table 1: MLST formulations resulting from combining the equations and inequalities from Section
3. Further variants are given by the use of the components listed in the second part of the table,
to be used as index for the formulation to be used with.

abbrevation involved equations and inequalities

SCF (1a), (1b), (3a) - (3c)
MCF (1a), (1b), (2), (4), (3c)
DCut (1a), (1b), (2), (6a), (6b), (7), (8)
EC (1a), (1b), (2), (14), (11)
MTZ (1a), (1b), (10a)
CEF (1a), (1b), (9)
n node-label-constraints (16)
ñ extended node-label-constraints (17)
t tree search, i.e. fixed number of edges (2)
s strong linkage (15)
c cycle elimination inequalities (9)
o odd-hole inequalities
p variable pricing

In the following we use the graph depicted in Figure 6 to show the properties of
the polyhedra defined by the formulations listed in Table 1.

Proposition 3.2.

P SCFtno (P SCFtn (P SCFt (P SCF (23)

Proof As P SCFtn contains the same equations and inequalities as P SCFt , but ad-
ditionally Inequalities (16); thus we have P SCFtn ⊆ P SCFt . Figure 7 shows an LP
solution of P SCFt that is not contained in P SCFtn , which implies P SCFtn (P SCFt .
Such an LP solution may still contain fractional labels due to odd holes, as shown
in Figure 5, by which we obtain P SCFtno (P SCFtn .

15

1

2

3

4

5

b

d

a
eb

c

c

c

Figure 6: Example graph used in the following to show the properties of the formulations listed in
Table 1. The set of labels is given by L = {a, b, c, d, e}, the optimal solution value is f = 3.

If the values of the edge and label variables in Figure 7 are decreased as much
as possible for SCF, we obtain la = 1/4, lb = 3/8 and lc = 1/8 implying f lp = 3/4. As
SCFt contains the additional Inequality (2), we can conclude that P SCFt (P SCF. 2

1

2

3

4

5

b

d

a
eb

c

c

c

1

3/2

1/2

1
1/4

3/8

1

1

1

3/2

3/8

Figure 7: LP solution of SCFt with objective value f lp = 1 + 5/8 (la = 1/4, lb = 3/8, lc = 1). The
blue arcs depict the flow variables with their according LP-values. This solution is not valid for
SCFtn, as the sum over the set of labels adjacent to node v2 is smaller than one.

Proposition 3.3.

PDCuttno (PDCuttn (PDCutt (PDCut (24)

Proof The proof of PDCuttno (PDCuttn (PDCutt follows by the same reasoning
as for the proof of theorem 3.2. Figure 8 shows that PDCuttn (PDCutt . However,
the requirement that each directed cut must have a value greater than one already
implies that

∑

e∈δ(v) xe ≥ 1, for all v ∈ V . This implies
∑

e∈E xe ≥ |V |−1. An LP-
solution to DCut may contain more edges than an LP-solution to DCutt, which does,
however, due to the minimality not affect the objective value of the LP-relaxation,
i.e. PDCutt

z = PDCut
z . 2

Let PS denote the projection of some polyhedron P to a subspace S.

16

1

2

3

4

5

b

d

a
eb

c

c

c

1

1/2

1/2

1/2

1/2

2/3

2/3

1/2

1/2

1

2/3

Figure 8: LP solution of DCutt with objective value f lp = 2 + 1/6 (lb = 1/2, lc = 2/3, a + d + e ≥
1, w.l.o.g. la = 1). The green arcs depict the arc variables with their according LP values. The
solution is not valid for DCuttn, as the sum over the set of labels adjacent to node v5 is smaller
than one.

Proposition 3.4.

PECtno
x (PECtn

x (PECt
x (PEC

x (25)

Proof By applying the same reasoning as for the proofs of the last two theorems,
we can prove Proposition 3.4. Figure 9 gives an example for PECtn (PECt . 2

1

2

3

4

5

b

d

a
eb

c

c

c
1

1 − ǫ

1

1/2

ǫ

1/2

Figure 9: LP solution of ECt with objective value f lp = 3/2 + ǫ (la = ǫ, lb = 1/2, lc = 1). The
solution is not valid for ECtn, as the sum over the set of labels adjacent to nodes v1 and v2 are
smaller than one.

In the following we will show the relations between the formulations SCFt, DCutt

and ECt.

Theorem 3.5.

PDCutt
x (P SCFt

x (PECt
x (26)

Proof Figures 8, 7 and 9 already showed that the polyhedrons are not equal. To
prove that PDCutt

x (P SCFt
x we show a procedure to transform all x-variables of any

valid LP-solution of DCutt to a valid x-solution in SCFt. For all i, j ∈ V there
exists at least one path from i to j with all edges (k, l) having LP-values xlp

kl greater
than zero. If we consider a network with source i and target j, only containing

17

edges e being part of one of these paths and having capacities xlp
e there exists a flow

of at least one unit from s to t. We now arbitrarily select a root node r (w.l.o.g.
r = 0) and show how to construct a valid flow permitting the same x-configuration
for SCFt as in DCutt. For an edge e to have LP value xlp

e a corresponding flow
variable must be larger than xlp

e /(n − 1). We start by setting all flow variables to
zero. Then for each node ti, i = 1, . . . , n − 1 we construct all paths from r to t,
considering all edges with xlp

e > 0. Summing up xlp
e > 0 for all edges e on these

paths may not exceed n − 1, as the number of edges is fixed by (2) when i = 2.
However, this sum may usually be smaller than n − 1, say λl, but integer. Now we
backtrack all these paths and set their flow values to minimal values according to
flow conservation (3b) and LP-values for the edges. Note that

∑

i∈δ(r) fri = λ1 after
this first step. We then continue this procedure for all further ti, i = 2, . . . , n − 1.
According to (2) in step tk at most (n− 1)−

∑

l<k λk not yet considered edges need
to be added, possibly increasing

∑

i∈δ(r) fri by exactly this amount. We finally end

up with all nodes being feasibly connected and
∑

i∈δ(r) fri = (n − 1) fulfilling (3a)

and flow conservation (3b) being fulfilled at each node.
It is trivial to see that the x-variables of a valid LP-solution of SCFt is also valid

for ECt. 2

Theorem 3.6.

PDCuttn
x (P SCFtn

x (PECtn
x (27)

Proof In the proof of Theorem 3.5 we already showed how each projection of a
solution of DCutt to the subspace defined by the x-variables can be transformed
into a solution of SCFt, and likewise SCFt to ECt. The only difference of the
polyhedrons considered in Theorem 3.6 are the constraints (16), which clearly do
not affect this transformation. It needs to be shown, that the polyhedrons are not
equal, which is done by the example in Figure 10. The depicted ECtn solution is
not valid for SCFtn or DCutn respectively, although the node-label constraints (16)
are fulfilled. However, the value of edge {3, 4} can be increased to 1/5 (implying the
need to decrease the values of edges {1, 4} and {3, 6} accordingly), which makes the
solution feasible to SCFtn. Nevertheless, this solution remains infeasible to DCuttn,
by which we have shown the theorem. 2

4. Results

In this section we present a comprehensive computational comparison of the
presented formulations and separation strategies, and compare our methods to other
work. Three different data sets are used for our computational tests. We start by a
description of the test instances used for our experiments and tests.

18

1

2

3

4

5

b

d

a a

e

c

c

c

6
a

(1+ǫ)/2

(1+ǫ)/2

1

1

1

1 ǫ

Figure 10: Valid LP-solution of ECtn with f lp = 2 + ǫ (la = 1, lb = ǫ, lc = 1) that is not valid for
SCFtn. It can however be transformed to such, by increasing x3,4 to 1/5, yielding f lp = 2 + 1/5. It
is easy to see, that this solution is still not valid for DCuttn.

4.1. Test Instances

The first set is the publicly available benchmark set used in [13, 11, 10, 3]. We
refer to this data set as Set-I. It consists of graphs with 100 to 500 nodes and various
densities d ∈ {0.2, 0.5, 0.8}, defined by |E| = d · |V |·(|V |−1)

2
, and different numbers

of labels |L| = l/4, l ∈ {1, 2, 4, 5}. The instances are organized in groups of ten for
each configuration of d and |L| for each |V |. So far, primarily metaheuristics have
been applied to this instance set, but also an exact algorithm based on A∗-search,
as reported in [11].

The second test set Set-II is created following the specification of the instances
used in [2], in order to obtain comparable results to the MIPs presented therein.
This set is organized in four groups. In contrast to Set-I, the instances of the first
two groups just contain very few labels, i.e. |L| ∈ {5, 10, 20}. The number of nodes
ranges from 20 to 1000, network densities are set to |E| = 4 · |V | Moreover, this set
contains various grid-graphs (group 3) of sizes 2 × 10, 4 × 5, 2 × 18, 3 × 12, and
6 × 6. The fourth group contains instances with |V | ∈ {20, 50} and |L| = |V | and
various network densities d ∈ {0.2, 0.5, 0.8}.

In addition to Set-I and Set-II we created a further test set Set-III contain-
ing also instances with multiple labels assigned to the edges. The construction is
performed by first creating a spanning tree and assigning labels from set L∗ ⊆ L to
its edges. Usually L∗ = L if not stated otherwise, but |L∗| ≪ |L| is used to study
the effect of having optimal solutions with significantly less labels than for com-
pletely random label assignment for the particular graph properties. Next further
edges are added until a specified density d · n·(n−1)

2
, 0 < d ≤ 1 or specified number

of edges m := |E| is reached. Then we randomly assign all labels not used yet. In
the final step we iterate over all edges and assign further labels by uniform random
decision. Parameter a specifies how many labels can be assigned to each edge, if
not stated otherwise a = 1. Instead of directly using |L| as a parameter, we may

also specify the size of the label set by parameter r = |L|
|E|

, 0 < r ≤ 1. In contrast
to the other instances, the instances of Set-III have relatively high values of r, i.e.
r = 1/4 and r = 3/4. Although such instances are less likely to occur within practical

19

applications regarding telecommunication network design, they may be relevant for
other scenarios, as for instance the compression model based on the MLST problem
presented in [9]

4.2. Test environment

The generic framework presented in Section 3 has been implemented in C++
(gpp-4.3) within the SCIP framework [24]. The standard-plugins have been used for
all computational tests unless explicitly stated otherwise. In addition some branch-
and-cut algorithms (not involving any pricing procedures) have been implemented
within the ILOG CONCERT framework [17] for comparison purposes. As LP solver
ILOG CPLEX (in version 12.0) [17] has been used for both frameworks.

All computational tests have been performed on an Intel Xeon E5540 proces-
sor operating at 2.53 GHz and having 24 GB for totally 8 cores. The operation
system is Ubuntu 9.10 with Linux-kernel 2.6.31. All runs have been performed in
single-threaded mode, CPU times have been limited to 7200 seconds, unless stated
otherwise.

4.3. Comparison of Described Methods

In this section we present a comparison of the described formulations based on
computational tests. Furthermore we analyze the impact of particular “components”
to each of the formulations. These components consist of the node-label-inequalities
(16), the extended node-label-inequalities (17), the strong linkage of the edges to
the edges (15), which can however only be used if only one label is assigned to the
edges and the number of edges is not fixed by Equation (2). Table 1 provides an
overview of these components and corresponding notation. After the comprehensive
analysis and comparison of the particular methods in this section, we compare the
results of the newly proposed methods to previous work in Section 4.4.

4.3.1. MIP formulations

In this section we primarily focus on the comparison of formulations EC, DCut
and SCF. However, particularities like node-label-constraints (16), or fixed number
of edges (2), or the direct linkage of labels to edges (15), may significantly change the
picture regarding the superiority of one method over another one. For this reason we
present the results not only for three formulations, but rather four to five variants
of each formulation. Recall, that directly linking the labels to edges by Equations
(15) is only possible for instances with one label assigned to each edge (15), i.e.
a = 1 and is generally not possible for flow-formulations. In order not to be biased
towards some particular class of instances we report these results for each of the
three instance sets.

Tables 2 and 3 show the results for instances of Set-I with |V | = 100 and
|V | = 200. These instances include graphs with various densities d ∈ {0.2, 0.5, 0.8},

where |E| = d· |V |·(|V |−1)
2

, and different numbers of labels, i.e. |L| = 1/2·|V |, |L| = |V |,
and |L| = 5/4 · |V |. In these tables, as well as in the following ones, we report the

20

Table 2: Comparison of selected variants of formulations EC, DCut and SCF on the instances from
Set-I with |V | = 100.

|L| = 50 |L| = 100 |L| = 125
d alg cnt opt obj t bbn cuts cnt opt obj t bbn cuts cnt opt obj t bbn cuts

0.2

EC 10 10 6.7 7 234 65 10 10 9.7 62 3876 1072 9 9 11.2 123 9365 2843
ECt 10 10 6.7 8 347 196 10 10 9.7 25 2482 414 9 9 11.2 34 3769 871
ECtn 10 10 6.7 4 100 173 10 10 9.7 11 857 339 9 9 11.2 16 1401 402
ECn 10 10 6.7 0 24 3 10 10 9.7 9 1298 179 9 9 11.2 33 2648 594
ECsn 10 10 6.7 0 31 3 10 10 9.7 6 1127 34 9 9 11.2 12 2570 89

DCut 10 10 6.7 80 1167 691 10 10 9.7 1013 14378 7798 9 8 11.2 1470 19646 11403
DCutt 10 10 6.7 125 1458 954 10 10 9.7 478 6676 3919 9 9 11.2 740 10273 6450
DCuttn 10 10 6.7 21 127 116 10 10 9.7 86 1021 729 9 9 11.2 115 1426 1017
DCutn 10 10 6.7 11 90 96 10 10 9.7 57 1157 599 9 9 11.2 176 3186 1868
DCutsn 10 10 6.7 12 94 89 10 10 9.7 51 1190 516 9 9 11.2 129 3086 1536
SCF 10 2 6.8 7028 136930 -1 10 0 10.3 7200 19854 -1 9 0 12.4 7200 17296 -1
SCFt 10 1 6.7 7133 143226 -1 10 0 10.3 7200 101319 -1 9 0 11.7 7200 119683 -1
SCFtn 10 10 6.7 15 83 -1 10 10 9.7 67 673 -1 9 9 11.2 85 1033 -1
SCFn 10 10 6.7 15 83 -1 10 10 9.7 63 673 -1 9 9 11.2 84 1033 -1

0.5

EC 10 10 3.0 17 46 5 10 10 4.7 374 5584 282 10 10 5.2 446 5307 630
ECt 10 10 3.0 14 69 148 10 10 4.7 175 5039 330 10 10 5.2 129 3249 382
ECtn 10 10 3.0 9 7 136 10 10 4.7 34 524 165 10 10 5.2 39 452 277
ECn 10 10 3.0 0 2 0 10 10 4.7 8 221 4 10 10 5.2 9 127 4

ECsn 10 10 3.0 0 2 0 10 10 4.7 9 173 4 10 10 5.2 11 370 12
DCut 10 10 3.0 217 488 272 10 8 4.8 3858 15810 7214 10 10 5.2 3150 9316 4187
DCutt 10 10 3.0 190 465 256 10 9 4.7 3471 11770 6246 10 10 5.2 1794 5366 3175
DCuttn 10 10 3.0 56 13 28 10 10 4.7 401 1133 450 10 10 5.2 305 633 342
DCutn 10 10 3.0 27 12 28 10 10 4.7 261 1597 518 10 10 5.2 250 1179 401
DCutsn 10 10 3.0 27 23 55 10 10 4.7 216 1539 390 10 10 5.2 225 1234 362
SCF 10 10 3.0 850 1475 -1 10 0 5.0 7200 11453 -1 10 0 5.8 7200 7586 -1
SCFt 10 10 3.0 722 1597 -1 10 6 4.7 5319 23618 -1 10 0 5.5 7200 18169 -1
SCFtn 10 10 3.0 22 1 -1 10 10 4.7 211 617 -1 10 10 5.2 171 298 -1
SCFn 10 10 3.0 20 1 -1 10 10 4.7 203 617 -1 10 10 5.2 176 298 -1

0.8

EC 10 10 2.0 12 2 12 10 10 3.0 161 848 98 10 10 4.0 999 4310 20
ECt 10 10 2.0 11 7 196 10 10 3.0 36 142 179 10 10 4.0 135 2344 130
ECtn 10 10 2.0 14 4 102 10 10 3.0 24 11 187 10 10 4.0 44 394 83
ECn 10 10 2.0 0 1 0 10 10 3.0 1 3 2 10 10 4.0 17 102 0

ECsn 10 10 2.0 0 1 0 10 10 3.0 2 4 1 10 10 4.0 17 51 0

DCut 10 10 2.0 255 97 65 10 9 3.1 2367 2440 1286 10 0 4.0 7200 6958 3525
DCutt 10 10 2.0 198 127 131 10 9 3.1 1997 2702 1635 10 9 4.0 5083 6363 3410
DCuttn 10 10 2.0 87 7 19 10 10 3.0 314 370 216 10 10 4.0 923 1193 408
DCutn 10 10 2.0 40 5 22 10 10 3.0 418 932 457 10 10 4.0 780 1853 546
DCutsn 10 10 2.0 33 3 29 10 10 3.0 128 161 93 10 10 4.0 740 2154 668
SCF 10 10 2.0 274 103 -1 10 0 3.6 7200 2826 -1 10 0 4.0 7200 2752 -1
SCFt 10 10 2.0 33 5 -1 10 0 4.0 7200 3035 -1 10 0 4.0 7200 2849 -1
SCFtn 10 10 2.0 28 1 -1 10 10 3.0 29 2 -1 10 10 4.0 243 349 -1
SCFn 10 10 2.0 28 1 -1 10 10 3.0 29 2 -1 10 10 4.0 230 349 -1

following entities for each method and group of instances: Columns “cnt” contain
the number of instances within each group, which is 10 in most of the cases. The
reason for less than ten instances reported is not being able to finish some instances

21

Table 3: Comparison of selected variants of formulations EC, DCut and SCF on the instances from
Set-I with |V | = 200.

|L| = 100 |L| = 200 |L| = 250
d alg cnt opt obj t bbn cuts cnt opt obj t bbn cuts cnt opt obj t bbn cuts

0.2

EC 10 8 8.0 3770 52682 16621 10 0 12.9 7200 42289 22303 10 0 15.4 7200 32009 18669
ECt 10 7 8.0 4541 43756 7665 10 0 13.6 7200 43298 8007 10 0 16.0 7200 43792 7293
ECtn 10 10 7.9 1296 14254 539 10 2 13.3 6878 60643 1436 10 1 14.9 6761 46296 1658
ECn 10 10 7.9 201 8379 5 10 5 12.2 5146 189033 973 10 3 13.8 6387 144597 5207
ECsn 10 10 7.9 191 8322 4 10 7 12.1 4331 182237 81 10 3 13.9 6153 250129 158

DCut 10 0 8.8 7200 10929 8971 10 0 14.5 7200 3850 3632 10 0 18.9 7200 3681 3548
DCutt 10 0 9.0 7200 4392 4036 10 0 14.5 7200 2896 2866 10 0 16.1 7200 2653 2622
DCuttn 10 7 8.1 5487 13056 8036 10 0 13.0 7200 5588 4763 10 0 15.7 7200 3982 3552
DCutn 10 9 8.0 3398 14653 8637 10 0 12.9 7200 15877 12200 10 0 14.9 7200 11207 9494
DCutsn 10 9 8.0 2996 14937 7658 10 0 12.7 7200 19280 13569 10 0 14.7 7200 13712 10837
SCF 10 0 9.3 7200 1017 -1 10 0 14.5 7200 634 -1 10 0 16.8 7200 559 -1
SCFt 10 0 8.9 7200 3204 -1 10 0 13.5 7200 4733 -1 10 0 15.8 7200 5326 -1
SCFtn 10 8 8.0 3353 9362 -1 10 0 12.4 7200 6854 -1 10 0 14.1 7200 4343 -1
SCFn 10 8 8.0 3498 8308 -1 10 0 12.4 7200 6468 -1 10 0 14.1 7200 4099 -1

0.5

EC 10 10 3.4 769 2082 69 10 0 5.8 7200 8603 539 10 0 6.5 7200 5380 456
ECt 10 10 3.4 1452 2744 558 10 0 5.8 7200 10307 647 10 0 6.4 7200 9084 1024
ECtn 10 10 3.4 570 469 678 10 7 5.5 4249 6550 908 10 0 6.5 7200 15870 861
ECn 10 10 3.4 25 126 1 10 9 5.4 1291 14284 12 10 8 6.4 4323 57715 31
ECsn 10 10 3.4 19 92 1 10 9 5.4 1176 14653 6 10 9 6.4 4049 62371 18

DCut 9 0 4.1 7200 1086 728 10 0 7.2 7200 323 265 10 0 7.9 7200 272 215
DCutt 9 0 4.3 7200 613 469 10 0 7.9 7200 298 290 10 0 8.2 7200 335 307
DCuttn 10 8 3.5 5135 954 481 10 0 6.6 7200 557 349 10 0 7.4 7200 420 282
DCutn 10 8 3.5 3132 1079 507 10 0 6.2 7200 1795 929 10 0 7.1 7200 1097 564
DCutsn 10 9 3.4 2054 979 412 10 0 6.0 7200 2072 912 10 0 6.7 7200 1432 671
SCF 10 0 4.3 7200 124 -1 10 0 7.0 7200 69 -1 10 0 7.8 7200 54 -1
SCFt 10 0 3.9 7200 207 -1 10 0 6.5 7200 166 -1 10 0 7.3 7200 150 -1
SCFtn 10 10 3.4 1102 270 -1 10 0 5.7 7200 828 -1 10 0 6.5 7200 839 -1
SCFn 10 10 3.4 1204 270 -1 10 0 5.7 7200 749 -1 10 0 6.4 7200 728 -1

0.8

EC 10 10 2.6 2803 2968 16 10 0 4.0 7200 1132 16 10 0 5.0 7200 1640 48
ECt 10 10 2.6 3040 3650 505 10 0 4.0 7200 2146 656 10 2 4.4 7064 6763 757
ECtn 10 9 2.7 2739 103 613 10 10 4.0 5038 6819 634 10 9 4.1 2902 1331 776
ECn 10 10 2.6 76 2 73 10 10 4.0 1122 5975 1 10 10 4.0 609 3324 3
ECsn 10 10 2.6 28 1 1 10 10 4.0 911 4845 1 10 10 4.0 301 777 1

DCut 4 0 3.0 7200 152 134 10 0 8.2 7201 105 110 10 0 7.1 7200 69 70
DCutt 10 0 3.9 7200 151 171 10 0 5.2 7202 110 112 10 0 6.8 7200 111 112
DCuttn 10 3 3.3 6344 142 67 10 0 4.6 7200 177 102 10 0 5.5 7200 120 98
DCutn 10 3 2.7 6528 1103 444 10 0 4.2 7200 329 170 10 0 4.9 7200 158 126
DCutsn 10 6 2.6 5135 799 292 10 0 4.0 7200 556 227 10 0 5.0 7200 226 140
SCF 10 0 2.9 7200 69 -1 10 0 4.9 7200 35 -1 10 0 5.5 7200 33 -1
SCFt 10 2 2.8 5923 54 -1 10 0 4.3 7200 58 -1 10 0 5.1 7201 35 -1
SCFtn 10 9 2.6 4177 74 -1 10 1 4.0 6929 391 -1 10 3 4.7 6712 264 -1
SCFn 10 9 2.6 4183 79 -1 10 1 4.0 6973 375 -1 10 2 4.7 6871 229 -1

with particular formulations due to high memory requirements. Columns “opt”
report the number of instances that have been solved and proved to be optimal
within the timelimit. In columns “obj” the average objective value for all instances
in the group is reported. If not all instances have been solved to optimality, this
value corresponds to the average value of feasible solutions that have been found
within the timelimit. Average running times in seconds are then reported in columns

22

“t”. The average number of branch-and-bound nodes is listed in columns “bbn”, the
average number of generated cuts in column “cuts”. Results of the fastest method(s)
for each group are emphasized with bold letters.

From Tables 2 and 3 we can already observe that the difficulty of solving these
instances is strongly correlated to the objective function values of the instances.
Higher values, in particular those larger than ten, require significantly more B&B-
nodes, and the separation of more cuts. This also implies longer average running
times. This property holds for all of the considered formulations. The results in
Tables 2 and 3 show that formulation ECsn consistently gives the best results for
these instances. The single commodity flow formulations show a slightly better
performance than the directed cut formulations for most of the instances.

The strength of the node-label-inequalities (16) is also demonstrated by the re-
sults in Tables 2 and 3. Their addition to the plain formulations does not only yield
a significant speedup, but also enables to solve more instances regarding the set
with |V | = 200. The difference between Inequalities (16) and their extended form,
given by Inequalities (17) is examined in Section 4.3.2. Regarding Equation (2) no
clear conclusion can be drawn from these instances. If, however, combinations of
these components are considered, the variants only using the node-label-constraints
are superior in most of the cases. For formulations EC and DCut it is also possible
to directly link the edges to the labels by Equations (15). In most of the cases,
this yields the best results, when combined with the node-label-inequalities for both
formulations, and in particular in combination with EC the overall best results.

Table 4 reports the results for the same formulations for the instances of Set-II.
These instances have the major difference to contain only graphs of extremely low
density d and just very few labels. Again, we can observe a clear superiority of
formulations ECsn and ECn, which are able to solve all these instances with average
running times of less than a half second.

In Tables 5, 6, and 7 results for the instances from Set-III are reported. Table
5 shows the results for instances with |V | = 100 and a = 1, i.e. one single label
assigned to the edges. As already mentioned in Section 4.1, this instances differ
from the previous ones in the way that they contain a higher number of labels, i.e.
r = 1/4 and r = 3/4 with r = |L|

|E|
. It can be observed that it is beneficial to limit

the number of edges to |V | − 1 by Equation (2) in this case. Thus, the stronger
LP-relaxation implied by this restriction is beneficial in the case of higher values of
r. For instances with r = 1/4 formulation EC still shows the best performance, but
DCut provides better results in the case of r = 3/4. Hence, the strong LP-relaxation
becomes even more important if |L| is in the same order of magnitude as |E|.

With a single exception the same effect can be observed for the instances with
a ∈ {2, 5} reported in Table 6. The effect of more than one label being assigned
to the edges seems to make the problem easier to solve, but the effect is relatively
small. It is important to note, that directly linking the labels to the edges, which
was beneficial for the instances with a = 1, cannot be applied to instances with

23

Table 4: Comparison of selected variants of formulations EC, DCut and SCF on the instances from
Set-II.

|L| = 5 |L| = 10 |L| = 20
|V |, |E| alg cnt opt obj t bbn cuts cnt opt obj t bbn cuts cnt opt obj t bbn cuts

200, 800

EC 10 10 3.0 0 1 0 10 10 5.0 0 3 0 10 10 7.9 0 13 2
ECt 10 10 3.0 0 2 236 10 10 5.0 0 8 315 10 10 7.9 2 47 582
ECtn 10 10 3.0 0 2 157 10 10 5.0 0 6 249 10 10 7.9 1 20 515
ECn 10 10 3.0 0 1 0 10 10 5.0 0 1 0 10 10 7.9 0 6 2
ECsn 10 10 3.0 0 1 0 10 10 5.0 0 1 0 10 10 7.9 0 6 1
DCut 10 10 3.0 1 6 38 10 10 5.0 4 14 63 10 10 7.9 14 127 171
DCutt 10 10 3.0 3 6 26 10 10 5.0 7 18 37 10 10 7.9 18 161 173
DCuttn 10 10 3.0 0 4 29 10 10 5.0 2 7 36 10 10 7.9 8 21 63
DCutn 10 10 3.0 0 2 24 10 10 5.0 0 6 49 10 10 5.0 0 6 49
DCutsn 10 10 3.0 0 1 0 10 10 5.0 0 1 0 10 10 7.9 0 6 1
SCF 10 10 3.0 2 2 -1 10 10 5.0 9 32 -1 10 10 7.9 69 800 -1
SCFt 10 10 3.0 3 2 -1 10 10 5.0 9 32 -1 10 10 7.9 71 800 -1
SCFtn 10 10 3.0 0 1 -1 10 10 5.0 1 3 -1 10 10 7.9 6 16 -1
SCFn 10 10 3.0 0 1 -1 10 10 5.0 1 3 -1 10 10 7.9 6 16 -1

500, 2000

EC 10 10 3.5 0 1 0 10 10 5.9 0 2 0 10 10 9.9 0 12 0
ECt 10 10 3.5 3 2 621 10 10 5.9 6 7 833 10 10 9.9 16 44 1129
ECtn 10 10 3.5 2 1 541 10 10 5.9 5 6 763 10 10 9.9 16 25 1385
ECn 10 10 3.5 0 1 0 10 10 5.9 0 1 0 10 10 9.9 0 8 0
ECsn 10 10 3.5 0 1 0 10 10 3.5 0 1 0 10 10 9.9 0 7 0
DCut 10 10 3.5 5 5 34 10 10 5.9 14 14 76 10 10 9.9 48 152 184
DCutt 10 10 3.5 13 7 25 10 10 5.9 28 15 34 10 10 9.9 68 181 144
DCuttn 10 10 3.5 2 3 16 10 10 5.9 9 8 33 10 10 5.9 9 8 33
DCutn 10 10 3.5 1 2 46 10 10 5.9 3 6 67 10 10 9.9 20 20 139
DCutsn 10 10 3.5 1 2 82 10 10 5.9 3 6 60 10 10 9.9 20 19 129
SCF 10 10 3.5 10 3 -1 10 10 5.9 28 18 -1 10 10 9.9 372 661 -1
SCFt 10 10 3.5 11 3 -1 10 10 5.9 29 18 -1 10 10 9.9 384 661 -1
SCFtn 10 10 3.5 0 1 -1 10 10 5.9 4 3 -1 10 10 9.9 20 20 -1
SCFn 10 10 3.5 0 1 -1 10 10 5.9 3 3 -1 10 10 9.9 18 20 -1

1000, 4000

EC 10 10 4.1 0 1 0 10 10 6.6 0 1 0 10 10 11.3 0 13 0
ECt 10 10 4.1 20 1 1182 10 10 6.6 46 6 1762 10 10 11.3 121 54 3514
ECtn 10 10 4.1 300 1 3823 10 10 6.6 234 6 2660 10 10 11.3 108 26 2909
ECn 10 10 4.1 0 1 0 10 10 6.6 0 1 0 10 10 11.3 0 7 0
ECsn 10 10 4.1 0 1 0 10 10 6.6 0 1 0 10 10 11.3 0 6 0
DCut 10 10 4.1 16 5 40 10 10 6.6 47 13 259 10 10 11.3 144 191 275
DCutt 10 10 4.1 54 6 22 10 10 6.6 90 20 36 10 10 11.3 240 189 150
DCuttn 10 10 4.1 7 3 23 10 10 6.6 26 7 26 10 10 11.3 103 36 47
DCutn 10 10 4.1 12 1 184 10 10 6.6 13 5 195 10 10 11.3 64 26 355
DCutsn 10 10 4.1 11 1 178 10 10 6.6 47 6 495 10 10 11.3 57 24 253
SCF 10 10 4.1 30 2 -1 10 10 6.6 99 14 -1 10 10 11.3 1243 416 -1
SCFt 10 10 4.1 31 2 -1 10 10 6.6 96 14 -1 10 10 11.3 1303 416 -1
SCFtn 10 10 4.1 1 1 -1 10 10 6.6 12 3 -1 10 10 11.3 52 31 -1
SCFn 10 10 4.1 1 1 -1 10 10 6.6 12 3 -1 10 10 11.3 48 31 -1

larger a.
Table 7 shows the result for grid-graphs with 100 and 400 nodes and |L| ∈

{30, 50, 80}. The average optimal objective value on these graphs is relatively high,

24

Table 5: Comparison of selected variants of formulations EC, DCut and SCF on the instances from
Set-III with |V | = 100, a = 1.

|L| = 1/4 · |E| |L| = 3/4 · |E|
d alg cnt opt obj t bbn cuts cnt opt obj t bbn cuts

0.05

EC 10 10 19.6 2 1892 1722 10 0 61.6 7200 108393 124719
ECt 10 10 19.6 23 6887 6026 10 1 51.3 6480 178187 195559
ECtn 10 10 19.6 14 4944 4486 10 2 51.2 5760 163875 182801
ECn 10 10 19.6 2 1491 1246 10 0 62.5 7200 103413 119245
ECsn 10 10 19.6 1 1313 966 10 0 55.5 7200 133833 151889
DCut 10 10 19.6 35 5214 3026 10 0 50.7 7200 367146 337417
DCutt 10 10 19.6 34 4174 2487 10 4 49.8 4381 76629 55867
DCuttn 10 10 19.6 12 1148 759 10 6 49.8 3195 87152 60318
DCutn 10 10 19.6 13 1437 941 10 0 50.4 7200 337882 315950
DCutsn 10 10 19.6 1 1313 966 10 0 50.4 7200 360801 343056
SCF 10 3 19.6 5576 987720 -1 10 0 51.5 7200 1815207 -1
SCFt 10 9 19.6 1354 513872 -1 10 5 50.0 3823 3081605 -1
SCFtn 10 10 19.6 31 5160 -1 10 8 49.9 1508 800971 -1

SCFn 10 10 19.6 49 9415 -1 10 0 50.6 7200 894051 -1

0.2

EC 10 1 15.1 7099 208082 117362 10 0 45.1 7200 62300 63102
ECt 10 10 14.8 675 54742 23790 10 4 36.5 6326 138547 137549
ECtn 10 10 14.8 344 36386 16745 10 2 37.1 6450 120465 121687
ECn 10 2 15.3 6369 136657 94927 10 0 46.0 7200 40163 41557
ECsn 10 4 14.8 4894 231148 95062 10 0 39.2 7200 65167 63256
DCut 10 0 16.3 7200 48073 35316 10 0 38.9 7200 119789 87861
DCutt 10 6 14.8 3196 55169 37144 10 6 35.8 3706 61762 47626
DCuttn 10 10 14.8 835 13677 8698 10 7 35.8 2432 36099 27852

DCutn 10 0 15.7 7200 39132 29700 10 0 38.5 7200 48576 40239
DCutsn 10 1 15.6 7134 78339 57546 10 0 38.0 7200 88645 73235
SCF 10 0 17.0 7200 14435 -1 10 0 40.5 7200 39472 -1
SCFt 10 0 15.5 7200 173479 -1 10 0 37.8 7200 480980 -1
SCFtn 10 9 14.8 2401 31073 -1 10 1 36.1 6495 152260 -1
SCFn 10 0 15.2 7200 63078 -1 10 0 38.4 7200 29479 -1

0.5

EC 10 0 15.8 7200 69554 36260 10 0 38.8 7200 54153 55751
ECt 10 8 13.3 2570 62487 30425 10 5 30.7 4064 51442 50552
ECtn 9 8 13.2 1400 34106 18769 10 4 31.0 5038 59605 57375
ECn 10 0 16.2 7200 35944 18323 10 0 38.9 7200 28984 31127
ECsn 10 0 13.7 7200 296782 88962 10 0 33.8 7200 63430 64801
DCut 10 0 15.4 7200 7645 4291 10 0 36.0 7200 31008 19324
DCutt 10 6 13.5 5152 9463 9036 10 6 30.3 4331 16003 13285
DCuttn 10 5 13.5 4557 9195 8543 10 7 30.2 3552 12337 9780

DCutn 10 0 15.4 7200 5807 3785 10 0 36.6 7200 6935 5131
DCutsn 10 0 14.4 7200 12834 8154 10 0 32.4 7200 14108 9913
SCF 10 0 16.4 7200 1345 -1 10 0 34.5 7200 3160 -1
SCFt 10 0 14.6 7200 19313 -1 10 0 32.3 7200 35869 -1
SCFtn 10 5 13.5 4756 9842 -1 10 2 30.7 5842 16960 -1
SCFn 10 0 14.5 7200 6765 -1 10 0 33.1 7200 2327 -1

which makes them difficult to solve. However, all instances with |L| ∈ {30, 50}
could be solved to optimality by formulation ECsn, which showed the overall best
performance on this class of instances.

25

Table 6: Comparison of selected variants of formulations EC, DCut and SCF on the instances from Set-III with |V | = 100, a ∈ {2, 5}.

|L| = 1/4 · |E|, a = 2 |L| = 3/4 · |E|, a = 2 |L| = 1/4 · |E|, a = 5 |L| = 3/4 · |E|, a = 5
d alg cnt opt obj t bbn cuts cnt opt obj t bbn cuts cnt opt obj t bbn cuts cnt opt obj t bbn cuts

0.05

EC 10 10 16.6 7 3222 3277 10 0 42.8 7200 112158 123363 10 10 10.5 0 152 452 10 0 21.4 7200 111275 106501
ECt 10 10 16.6 63 11657 9901 10 7 35.0 2558 113102 106934 10 10 10.5 0 362 400 10 4 20.8 4763 178547 160611
ECtn 10 10 16.6 12 4707 4080 10 7 35.0 2375 102179 93532 10 10 10.5 0 306 359 10 6 20.6 3467 143690 125295
ECn 10 10 16.6 2 1883 1956 10 0 42.4 7200 116472 124838 10 10 10.5 0 158 426 10 0 21.5 7200 107718 103093
DCut 10 10 16.6 31 4173 2409 10 0 35.1 7200 374197 286064 10 10 10.5 7 247 238 10 0 20.5 7200 375009 236293
DCutt 10 10 16.6 36 3523 2114 10 10 34.7 112 6725 4842 10 10 10.5 10 350 301 10 9 20.5 1066 75587 46230
DCuttn 10 10 16.6 16 1162 787 10 10 34.7 61 4661 3696 10 10 10.5 5 115 134 10 10 20.5 698 45870 25073

DCutn 10 10 16.6 11 1026 694 10 0 35.0 7200 376389 268567 10 10 10.5 3 95 115 10 7 20.5 4126 215290 129837
SCF 10 1 16.7 7153 896512 -1 10 0 37.1 7200 701281 -1 10 9 10.5 2318 507224 -1 10 0 21.8 7200 276624 -1
SCFt 10 7 16.6 4038 1339695 -1 10 1 35.0 7046 3581766 -1 10 10 10.5 1580 440888 -1 10 0 21.0 7200 1707957 -1
SCFtn 10 10 16.6 29 3894 -1 10 10 34.7 609 239014 -1 10 10 10.5 4 284 -1 10 9 20.5 2218 462195 -1
SCFn 10 10 16.6 67 11755 -1 10 0 35.8 7200 666248 -1 10 10 10.5 5 329 -1 10 0 20.9 7200 720521 -1

0.2

EC 10 3 12.3 6521 268240 117079 10 0 31.8 7200 72720 69345 10 10 7.8 3364 236585 34987 10 0 19.5 7200 159231 107082
ECt 10 8 12.1 1840 81598 40109 10 3 26.2 5845 141568 127229 10 10 7.8 265 39875 773 10 3 15.1 5184 171490 89976
ECtn 10 10 11.9 629 42052 20637 10 3 26.3 5242 119550 107358 10 10 7.8 128 12441 651 10 3 15.1 5140 139983 90176
ECn 10 7 12.1 4285 166054 79457 10 0 34.0 7200 49859 50940 10 10 7.8 1041 56147 8166 10 0 19.0 7200 115188 89434
DCut 10 0 13.4 7200 43412 32497 10 0 27.3 7200 72779 48772 10 1 7.9 6892 70690 36507 10 0 16.6 7200 33350 23851
DCutt 10 10 11.9 1477 17841 13183 10 7 25.6 2957 55433 38121 10 5 7.8 5653 67754 42560 10 4 14.9 5423 55800 43216
DCuttn 10 10 11.9 681 5906 5180 10 9 25.6 1489 24931 17663 10 10 7.8 1628 15222 9552 10 6 14.8 4406 44628 32312

DCutn 10 0 13.2 7200 39599 30225 10 0 27.4 7200 31085 23420 10 7 7.8 4679 65415 25812 10 0 15.8 7200 15761 11375
SCF 10 0 14.3 7200 13282 -1 10 0 30.0 7200 19389 -1 10 0 8.8 7200 22933 -1 10 0 18.1 7200 12399 -1
SCFt 10 0 12.9 7200 105555 -1 10 0 27.0 7200 320786 -1 10 0 8.1 7200 107916 -1 10 0 15.8 7200 109149 -1
SCFtn 10 8 12.1 1909 18528 -1 10 4 25.9 5338 87496 -1 10 10 7.8 1669 11756 -1 10 2 15.1 6327 44397 -1
SCFn 10 0 12.8 7200 47542 -1 10 0 27.6 7200 15439 -1 10 9 7.8 4151 59801 -1 10 0 16.0 7200 10494 -1

0.5

EC 10 0 11.5 7200 98257 38000 10 0 28.4 7200 93989 77494 10 1 6.9 6785 101172 7242 10 0 14.5 7200 50518 29040
ECt 10 10 10.9 632 42951 5268 10 1 23.4 6487 85485 71003 10 10 6.9 612 27936 785 9 5 13.1 3804 100666 38284
ECtn 10 10 10.9 506 22467 6432 10 3 26.3 5242 119550 107358 10 10 6.9 255 6604 532 9 6 13.0 3472 72582 38165

ECn 10 0 11.3 7200 37858 18365 10 0 29.0 7200 44406 39926 10 0 7.0 7200 29141 2143 10 0 16.2 7200 11751 6165
DCut 10 0 11.8 7200 9769 5503 10 0 30.4 7200 15852 9516 10 0 7.1 7200 11487 5995 10 0 15.2 7200 5742 3186
DCutt 10 0 11.3 7200 13089 11560 10 8 22.5 4745 9585 8851 10 0 7.4 7200 7977 6213 10 0 13.8 7200 7827 7958
DCuttn 10 5 11.2 5664 11813 9786 10 5 22.8 4259 8850 8481 10 6 7.1 5089 5318 3529 10 4 13.1 5743 7934 7389
DCutn 10 0 11.9 7200 7129 4426 10 0 27.1 7200 4738 2996 10 1 7.1 6717 7337 3172 10 0 15.2 7200 2682 1652
SCF 10 0 13.2 7200 1477 -1 10 0 26.8 7200 1628 -1 10 0 8.0 7200 2606 -1 10 0 16.2 7200 923 -1
SCFt 10 0 12.1 7200 13970 -1 10 0 24.3 7200 26439 -1 10 0 7.6 7200 6757 -1 10 0 14.3 7200 10634 -1
SCFtn 10 6 10.9 4841 6975 -1 10 0 23.4 7200 12529 -1 10 7 7.0 4238 3003 -1 10 2 13.3 5923 6203 -1
SCFn 10 0 11.8 7200 9232 -1 10 0 25.0 7200 3000 -1 10 0 7.0 7200 21470 -1 10 0 14.4 7200 4668 -1

26

Table 7: Comparison of selected variants of formulations EC, DCut and SCF on the grid graph
instances from Set-III with |E| ≈ 4 · |V |.

|V | = 10 × 10 |V | = 20 × 20
|L| alg cnt opt obj t bbn cuts cnt opt obj t bbn cuts

30

EC 10 10 9.2 4 2041 1540 10 10 11.5 61 7496 400
ECt 10 10 9.2 6 2641 1843 10 10 11.5 183 7547 5819
ECtn 10 10 9.2 4 1639 1544 10 10 11.5 91 3757 4231
ECn 10 10 9.2 1 1369 656 10 10 11.5 17 3602 200

ECsn 10 10 9.2 1 1281 601 10 10 11.5 17 3558 175

DCut 10 10 9.2 61 4948 3240 2 2 11.0 5224 6233 37505
DCutt 10 10 9.2 93 6196 4135 10 10 11.5 3029 22956 19238
DCuttn 10 10 9.2 34 1892 1710 10 10 11.5 627 4058 10961
DCutn 10 10 9.2 18 1512 1364 1 0 12.0 7200 39 24766
DCutsn 10 10 9.2 19 1356 2314 1 0 13.0 7200 26 23113
SCF 10 10 9.2 815 118270 -1 10 0 11.8 7200 22192 -1
SCFt 10 10 9.2 641 90448 -1 10 0 11.7 7200 22091 -1
SCFtn 10 10 9.2 17 1280 -1 10 10 11.5 251 3127 -1
SCFn 10 10 9.2 12 1008 -1 10 10 11.5 218 3076 -1

50

EC 9 8 13.0 1018 54653 41036 10 9 17.1 4341 464602 31132
ECt 9 7 13.1 1959 99397 73687 10 0 17.0 7200 301858 167539
ECtn 9 8 13.0 1578 83996 67834 10 10 17.0 3834 212265 107170
ECn 9 9 12.9 129 25299 16378 10 10 17.0 1347 208221 11217
ECsn 9 9 12.9 66 22339 13131 10 10 17.0 1087 193213 8470

DCut 9 9 12.9 867 67360 37873 7 0 17.3 7200 29390 47832
DCutt 9 9 12.9 1032 74718 42088 10 0 17.2 7200 32248 33668
DCuttn 9 9 12.9 302 20596 12907 10 0 17.0 7200 86172 64236
DCutn 9 9 12.9 336 28974 17613 7 0 16.3 7200 3345 36785
DCutsn 9 9 12.9 207 20951 13323 7 0 15.7 7200 648 23682
SCF 9 0 13.3 7200 368322 -1 10 0 18.5 7200 13103 -1
SCFt 9 0 13.2 7200 741954 -1 10 0 18.5 7200 19592 -1
SCFtn 9 9 12.9 215 21632 -1 10 0 17.1 7200 131296 -1
SCFn 9 9 12.9 299 34004 -1 10 8 17.1 5532 169723 -1

80

EC 10 0 19.5 7200 134608 118377 10 0 25.0 7200 199143 139246
ECt 10 0 19.9 7200 231789 208661 10 0 24.9 7200 143214 104486
ECtn 10 0 19.6 7200 229619 202787 10 0 24.8 7200 146616 112030
ECn 10 0 19.5 7200 162192 138904 10 0 24.6 7200 305748 138953
ECsn 10 0 18.9 7200 228167 176741 10 0 24.6 7200 299188 134344
DCut 10 0 18.8 7200 252826 225273 10 0 25.5 7200 31756 32402
DCutt 10 0 18.9 7200 248123 216513 9 0 19.8 7200 24121 25391
DCuttn 9 0 18.7 7200 283625 220940 10 0 25.2 7200 43604 44755
DCutn 10 0 18.8 7200 239489 197073 8 0 24.6 7200 54226 62124
DCutsn 10 0 18.9 7200 248966 213157 7 0 25.1 7200 25262 46754
SCF 10 0 19.7 7200 285092 -1 10 0 27.0 7200 9767 -1
SCFt 10 0 19.2 7200 948572 -1 10 0 28.0 7200 22180 -1
SCFtn 10 0 19.0 7200 689593 -1 10 0 25.3 7200 68435 -1
SCFn 10 0 18.8 7200 863039 -1 10 0 25.2 7200 99643 -1

Having now analyzed the main variations of the discussed formulations we draw

27

our attention to further approaches and enhancements that have been proposed in
Section 3.

4.3.2. Further Methods

In Section 4.3.1 the node-label-inequalities (16) have been shown to be of utter
importance for a strong formulation. In Section 3.3 we have also presented an
extension of this idea, where two nodes are considered instead of just one. This led
to the class of Inequalities (17). Table 8 shows a comparison of formulations ECt

and DCutt with on the one hand the node-label-inequalities (16) and on the other
hand additional Inequalities (17). In particular for formulation ECt these further
inequalities turn out to be useful in many cases. They do not only speedup the
solution process, but moreover frequently enable to solve more instances to provable
optimality. However, also the opposite is often the case. It is therefore not possible
to decide which approach is superior over the other based on the available data. On
grid-graphs Inequalities (17) have not been beneficial at all.

Further formulations, considered in Section 3, are based on the property, that
a tree must not contain a cycle by definition. Formulation MTZtn requires just
a polynomial number of variables, but contains constraints with infamous “Big-
M” constants, as the SCF formulation does. On the contrary CEF contains an
exponential number of Inequalities (9), which need to be separated as cutting-planes
as for the DCut or EC formulation. Due to their fast separation by a simple shortest-
path computation, also other formulations may benefit from additionally using cycle-
elimination cuts. Corresponding results are reported in Table 9, column “cec” lists
the average number of separated cycle-elimination cuts. Whereas MTZtn and CEFtn

show a relatively weak performance on the instances with r = 1/4, they provide good
results in the case of r = 3/4. In particular for the low density graphs CEFtn could
solve all instances to optimality, which no other method was able to. For the dense
graphs best results are obtained by DCuttnc and ECtnc.

Table 10 shows the results that have been obtained by including primal heuris-
tics into the branch-and-bound algorithm. Formulations ECtn, ECsn, DCuttn, and
DCutsn are considered for this purpose. As indicated by preliminary experiments it
turned out to be advantageous only to use the primal heuristics in the root node,
as they were generally not able to find improved solutions based on the information
provided by the LP-solution in other B&B-nodes. Embedding MVCA in B&B has a
positive effect w.r.t. the variants “tn” of formulations EC and DCut, but a negative
impact concerning variants “ts”.

4.3.3. Odd-Hole Inequalities

We now draw our attention to the odd-hole inequalities. Within preliminary tests
we determined a tight timelimit of 10−3 seconds for solving the MIP (20) to show a
generally good performance. Two algorithmic variants are considered for the results
reported in Table 11. The first version (denoted with index o) simply adds the found
valid cutting-planes to the MIP. Alternatively, the set of labels corresponding to the

28

obtained odd-hole can also be used to deduce a branching rule. This was motivated
by the observation that many lifted odd-hole cutting planes, found by MIP (20),
were not strong enough to define facets w.r.t. the involved label variables. As a
consequence, these variables remained fractional after the cutting-plane was added
to the MIP. However, odd-holes provide an important information and references
to situations where special configurations of label-variables artificially reduce the
LP-relaxation. Hence it is likely that immediately branching over these variables
may be beneficial. This is done by inserting all labels of the odd-hole into a global
queue, and always branch over such a variable unless the queue is empty. Index ob
denotes this approach in Table 11. Odd-hole cuts are separated with lowest priority
amongst the user-defined cutting-planes, and are only separated in levels of the
B&B-tree which are multiples of ten.

The results in Table 11 show that the odd-hole inequalities are beneficial in many
cases, in particular when used to deduce branching-rules from the corresponding
label-variables. For instances from Set-I and Set-II almost no odd-holes have been
found with the described parameter settings. For dense graphs it is less likely to find
odd-holes that are violated by the current LP-solution, as each node is incident to
many edges. Hence |L(v)| is in the same order of magnitude as |V | in the expected
case. This implies many non-zero lifting coefficients in Inequalities (19), reducing
the chance of finding a valid inequality that is actually violated by the current LP-
solution. Hence, the separation of odd-hole inequalities is most beneficial for sparse
graphs. Also the number of labels compared to the number of edges has an impact
on the efficiency of the odd-hole separation. If the number of labels is relatively
low, the expected label frequency νl will be high. This implies high values for the
lifting coefficients γl, which in turn reduces the chance of finding violated odd-hole
inequalities. If, on the other hand, the number of edges is too high, odd-holes are
generally less likely to occur, as the sets L(v)∩L(u), for all v, u ∈ V can be expected
to be very small or even empty.

4.3.4. Branch-and-Cut-and-Price

Additionally using the column generation approach within the B&C framework,
i.e. branch-and-cut-and-price (BCP) is only beneficial for a very special class of
instances. For most of the instances almost all variables are priced in during the
solution process. The computational overhead for solving the pricing problem and
resolving the MIP implies significantly higher running times in this case. However, if
the instances consist of a high number of labels, and have an optimal solution that is
significantly lower than the average optimal solution value when assigning the labels
to the edges randomly in the instance construction process, BCP shows a superior
performance. To study this effect, special instances have been created containing
single optima having a relatively low number of labels. The computational results
for these instances are reported in Table 12. In particular for the larger instances
a clear superiority of the BCP approach w.r.t. the corresponding B&C algorithm
can be observed. For this special class of instances, the percentage of created label

29

variables is always less than 30% of the total number of labels (reported in column
“priced”). Although the importance of such instances may be quite limited for
many purposes, the instances used for the data compression approach presented in
[9] exhibit comparable properties. For the data-compression application presented
therein, the BCP approach is thus a valuable and important mean for exactly solving
large instances.

4.3.5. Summary

In Table 13 we finally report the best method for each group of instances from
the three instance sets. For this purpose, also variations including primal heuristic
and using cycle-elimination cut separation are considered. In the case a variant
including a primal heuristic yields the best performance, we additionally report the
best method not using primal heuristics. Formulations ECsn and ECsnh are the
best formulations for almost all instances of Set-I, with the primal heuristic often
yielding small improvements. The same is true for the instances of Set-II, where
almost all variations of formulation EC are able to solve the considered instances in
less than a second. For Set-III formulation DCut is superior for many instances
with |L| = 3/4 · |E|, whereas EC is better for instances with |L| = 1/4 · |E|. In contrast
to Set-I it is beneficial to restrict the number of edges to |V | − 1 as indicated
with index “t”. Additionally separating cycle-elimination cuts frequently yields the
overall best method, in particular for instances with |L| = 3/4 · |E|. Furthermore it
can be observed that variants using separation of odd-hole inequalities are frequently
the overall best methods for this group.

4.4. Comparison to Other Work

In this section we present direct comparisons to existing work, in particular
[2]. Table 14 shows the results presented in [2], running times have been rounded
to integers. Formulation “MLSTb” corresponds to formulation SCF of this work.
Formulation “MLSTc” only uses a weaker coupling of labels to edges, given by the
following inequalities

∑

(i,j)∈A

xij ≤ min{|V | − 1, A(l)}zl, for all l ∈ L. (28)

Table 14 furthermore reports results for the implementation of the exact backtrack-
ing method from [4], labelled with “MLST-CL”. Table 15 shows the running times
of selected MIP variants in comparison to our reimplementation of the flow formu-
lation “MLSTb” from [2] (SCF). Formulation ECtn is clearly superior to the others,
all instances have been solved in less than one second. Higher running times of SCF
as opposed to “MLSTb” can be explained due to the fact that the SCIP framework
[24] has been used for the implementation of SCF, whereas “MLSTb” has been
implemented with the ILOG CONCERT framework [17].

Table 16 shows the results of selected MIP variants in comparison to the exact
A∗ backtracking-search procedure used in [11]. The A∗-algorithm is very effective

30

for instances with small optimal objective value, but instances with larger objective
values or large sets of labels cannot be solved. The time limit imposed by the authors
of [11] was three hours. It is important to note that the running times listed in Table
16 are not directly comparable, as the authors of [11] list the computation time at
which the best solution was obtained, and also different hardware has been used. For
some groups, where A∗ could not solve all instance (indicated by “NF”), the MIP
method was able to do so. Furthermore, it is reported if the MIP method could solve
some but not all instances within some group. In any case the average objective
value for the ten instances of each group is reported in column “avg(|LT |)”, also
considering the best feasible solutions that have been found within the time limit of
two hours. If not all instances have been solved to optimality, this is indicated with
“(*)” in this particular columns.

In general it can be observed that relatively small instances could be solved
efficiently by the MIP approach, but for larger instances with |V | = 400 and |V | =
500 it generally fails to produce provable optimal solutions within the allowed time
limit.

4.5. Summary

For all formulations the node-label-constraints (16) significantly improved running-
times and reduced the number of branch-and-bound nodes. Despite its relatively
poor LP-relaxation, formulation ECtn turned out to be superior to the other ones
for a broad class of test instances, which is mainly to the fast cut separation and
the low number of involved variables. Amongst the other considered formulations
DCuttn is superior over ECtn for dense graphs with a huge number of labels.

The odd-hole cuts (19) significantly improved running-times and number of
branch-and-bound nodes for some classes of instances, in particular when branching-
rules are deduced from the label sets corresponding to the found odd-holes. Using
BCP for dynamically adding new labels during the solution process turned out to
be only beneficial in the case where the input instances significantly deviate from
random label assignments, i.e. where the optimal solution is much lower than the
expectation value of randomly assigned labels. However, such solutions may likely
easily be found also by heuristic methods. Nevertheless, this could remain the only
way to prove optimality for “easy” large-scale instances.

5. Conclusions

In this work we presented a branch-and-cut(-and-price) framework for solving
MLST instances exactly. We gave a comparison of an underlying flow-formulation
in comparison to the (better) directed cut-based formulations. Furthermore, a new
connectivity formulation permitting a fast cutting-plane separation has been pre-
sented. We further introduced the application of odd-hole inequalities to this prob-
lem. To separate cutting-planes based on these odd-hole inequalities, a separation

31

heuristic based on a mixed integer program using Miller-Tucker-Zemlin inequalities
has been proposed.

Moreover, a detailed comparison of the contribution of the presented algorithmic
building blocks has been presented. Our results show that the presented framework
is able to solve small to medium sized instances to optimality within a relatively short
amount of time. Existing benchmark instances could be solved within a significantly
shorter computation time than before and new (larger) instances could be solved to
proven optimality for the first time.

References

[1] T. Brüggemann, J. Monnot, and G. J. Woeginger. Local search for the mini-
mum label spanning tree problem with bounded color classes. Oper. Res. Lett.,
31(3):195–201, 2003.

[2] M. Captivo, J. C. Cĺımaco, and M. M. Pascoal. A mixed integer linear formu-
lation for the minimum label spanning tree problem. Computers & Operations
Research, 36(11):3082 – 3085, 2009.

[3] R. Cerulli, A. Fink, M. Gentili, and S. Voß. Metaheuristics comparison for the
minimum labelling spanning tree problem. In Operations Research/Computer
Science Interfaces Series, volume 29, pages 93–106. Springer US, 2005.

[4] R.-S. Chang and S.-J. Leu. The minimum labeling spanning trees. Information
Processing Letters, 63(5):277–282, 1997.

[5] Y. Chen, N. Cornick, A. O. Hall, R. Shajpal, J. Silberholz, I. Yahav, and B. L.
Golden. Operations Research/Computer Science Interfaces, chapter Compar-
ison of Heuristics for Solving the Gmlst Problem, pages 191–217. Springer,
2008.

[6] B. V. Cherkassky and A. V. Goldberg. On implementing the push-relabel
method for the maximum flow problem. Algorithmica, 19(4):390–410, 1997.

[7] M. Chimani, M. Kandyba, I. Ljubić, and P. Mutzel. Obtaining optimal k-
cardinality trees fast. J. Exp. Algorithmics, 14:2.5–2.23, 2009.

[8] A. M. Chwatal, G. R. Raidl, and O. Dietzel. Compressing fingerprint templates
by solving an extended minimum label spanning tree problem. In Proceedings of
the Seventh Metaheuristics International Conference (MIC), Montreal, Canada,
2007.

[9] A. M. Chwatal, G. R. Raidl, and K. Oberlechner. Solving a k-node minimum
label spanning arborescence problem to compress fingerprint templates. Journal
of Mathematical Modelling and Algorithms, 8:293–334, 2009.

32

[10] S. Consoli, K. Darby-Dowman, N. Mladenovic, and J. Moreno-Pérez. Solv-
ing the minimum labelling spanning tree problem using hybrid local search.
Technical report, Brunel University, 2007.

[11] S. Consoli, K. Darby-Dowman, N. Mladenovic, and J. Moreno-Pérez. Heuris-
tics based on greedy randomized adaptive search and variable neighbourhood
search for the minimum labelling spanning tree problem. European Journal of
Operational Research, 196(2):440–449, 2009.

[12] S. Consoli, N. Darby-Dowman, K.and Mladenovic, and J. Moreno-Pèrez. Vari-
able neighbourhood search for the minimum labelling steiner tree problem.
Annals of Operations Research, 174(1):71–96, 2009.

[13] S. Consoli, J. A. Moreno, N. Mladenovic, and K. Darby-Dowman. Construc-
tive heuristics for the minimum labelling spanning tree problem: a preliminary
comparison. Technical report, DEIOC Technical Report, 2006.

[14] S. Consoli, J. A. Moreno, N. Mladenovic, and K. Darby-Dowman. Mejora de
la exploración y la explotación de las heuŕısticas constructivas para el mlstp.
In Spanish Meeting on Metaheuristics 2007, 2007.

[15] G. Cornuéjols and A. Sassano. On the 0, 1 facets of the set covering polytope.
Math. Program., 43(1):45–55, 1989.

[16] M. Grötschel and O. Holland. Solving matching problems with linear program-
ming. Mathematical Programming, 1985.

[17] ILOG Concert Technology, CPLEX. ILOG. http://www.ilog.com. Version
12.0.

[18] S. O. Krumke and H.-C. Wirth. On the minimum label spanning tree problem.
Information Processing Letters, 66(2):81–85, 1998.

[19] I. Ljubić. Exact and Memetic Algorithms for Two Network Design Problems.
PhD thesis, Technische Universität Wien, 2004.

[20] T. Magnanti and L. Wolsey. Optimal trees. Handbook in Operations Research
and Management Science, Network Models:503–615, 1995.

[21] C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer programming formulation
of traveling salesman problems. J. ACM, 7(4):326–329, 1960.

[22] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
Wiley-Interscience, November 1999.

33

[23] J. Nummela and B. A. Julstrom. An effective genetic algorithm for the
minimum-label spanning tree problem. In GECCO ’06: Proceedings of the 8th
annual conference on Genetic and evolutionary computation, pages 553–558,
New York, NY, USA, 2006. ACM.

[24] SCIP – Solving Constraint Integer Programs. Konrad-Zuse-Zentrum für Infor-
mationstechnik Berlin. http://scip.zib.de/. Version 1.2.

[25] Y. Wan, G. Chert, and Y. Xu. A note on the minimum label spanning tree.
Information Processing Letters, 84(2):99–101, 2002.

[26] Y. Xiong, B. Golden, and E. Wasil. A one-parameter genetic algorithm for the
minimum labeling spanning tree problem. IEEE Transactions on Evolutionary
Computation, 9(1):55–60, 2 2005.

[27] Y. Xiong, B. Golden, and E. Wasil. Improved heuristics for the minimum label
spanning tree problem. In IEEE TRANSACTIONS ON EVOLUTIONARY
COMPUTATION, volume 10, December 2006.

34

Table 8: Comparison of formulations ECt and DCutt with Inequalities (16), indicated with index
n, and with additional Inequalities (17), indicated with index ñ.

ECtn/DCuttn ECtñ/DCuttñ

|V |, |E|, a, |L| cnt opt obj t bbn cuts cnt opt obj t bbn cuts

100, 247, 1, 61 10 10 19.6 14 4944 4486 10 10 19.6 0 499 492

10 10 19.6 12 1148 759 10 10 19.6 19 1577 1034
100, 247, 1, 185 10 2 51.2 5760 163875 182801 10 7 50.0 2174 65781 68723

10 6 49.8 3195 87152 60318 10 5 49.8 4284 86769 62183
100, 900, 1, 247 10 10 14.8 344 36386 16745 10 10 14.8 177 18352 6741

10 10 14.8 835 13677 8698 10 10 14.8 1949 26973 16494
100, 900, 1, 742 10 2 37.1 6450 120465 121687 10 7 35.8 2403 48038 45398

10 7 35.8 2432 36099 27852 10 8 35.7 1822 20522 15153

100, 2475, 1, 618 10 8 13.2 1400 34106 18769 9 8 13.2 1801 46469 22363
10 5 13.5 4557 9195 8543 10 4 13.6 5417 10773 9933

100, 2475, 1, 1856 10 4 31.0 5038 59605 57375 10 7 30.3 2506 27241 24957

10 7 30.2 3552 12337 9780 10 8 30.2 2907 3715 3689

100, 247, 2, 61 10 10 16.6 12 4707 4080 10 10 16.6 1 601 498

10 10 16.6 16 1162 787 10 10 16.6 21 1348 907
100, 247, 2, 185 10 7 35.0 2375 102179 93532 10 10 34.7 9 3269 3274

10 10 34.7 61 4661 3696 10 10 34.7 19 1425 1226

100, 900, 2, 247 10 10 11.9 629 42052 20637 10 10 11.9 912 55106 20864
10 10 11.9 681 5906 5180 10 10 11.9 1523 16435 12011

100, 900, 2, 742 10 3 26.3 5242 119550 107358 10 7 25.8 3265 69685 53785

10 9 25.6 1489 24931 17663 10 9 25.6 1583 17076 12240
100, 2475, 2, 618 10 10 10.9 506 22467 6432 10 10 10.9 558 37153 3921

10 5 11.2 5664 11813 9786 10 1 11.7 7050 12503 11444
100, 2475, 2, 1856 10 4 23.2 5213 61908 53294 10 3 23.2 5757 73145 57657

10 5 22.8 4259 8850 8481 10 8 22.5 3649 4185 4254

100, 247, 5, 61 10 10 10.5 0 306 359 10 10 10.5 0 248 306

10 10 10.5 5 115 134 10 10 10.5 11 316 321
100, 247, 5, 185 10 6 20.6 3467 143690 125295 10 9 20.5 1202 60571 49983

10 10 20.5 698 45870 25073 10 10 20.5 498 36774 20977

100, 900, 5, 247 10 10 7.8 128 12441 651 10 10 7.8 288 39324 825
10 10 7.8 1628 15222 9552 10 5 7.8 5675 66499 42125

100, 900, 5, 742 10 3 15.1 5140 139983 90176 9 4 15.0 4344 155589 73198

10 6 14.8 4406 44628 32312 10 4 14.9 5171 50434 38692
100, 2475, 5, 618 10 10 6.9 255 6604 532 10 10 6.9 624 27936 785

10 6 7.1 5089 5318 3529 10 0 7.4 7200 8303 6431
100, 2475, 5, 1856 10 6 13.0 3472 72582 38165 10 6 13.0 3848 103635 41651

10 4 13.1 5743 7934 7389 10 1 13.6 7191 8419 8617
10 × 10, 360, 1, 30 10 10 9.2 4 1639 1544 10 10 9.2 6 2641 1843

10 10 9.2 34 1892 1710 10 10 9.2 90 6196 4135
10 × 10, 360, 1, 50 9 8 13.0 1578 83996 67834 9 8 13.0 1877 102421 75692

9 9 12.9 302 20596 12907 9 9 12.9 1034 74718 42088
10 × 10, 360, 1, 80 10 0 19.6 7200 229619 202787 10 0 19.9 7200 251957 226941

10 0 18.7 7200 283625 220940 9 0 18.8 7200 283288 241399
20 × 20, 1520, 1, 30 10 10 11.5 91 3757 4231 10 10 11.5 176 7547 5819

10 10 11.5 627 4058 10961 10 10 11.5 2866 22956 19238
20 × 20, 1520, 1, 50 10 10 17.0 3834 212265 107170 10 1 17.0 7194 326051 178058

10 0 17.0 7200 86172 64236 10 0 17.2 7200 34742 35779
20 × 20, 1520, 1, 80 10 0 24.8 7200 146616 112030 10 0 24.9 7200 150529 110120

10 0 25.2 7200 43604 44755 10 0 20.6 7200 25718 26997

35

Table 9: Comparison of various formulations based on cycle elimination, i.e. the Miller-Tucker-
Zemlin formulation MTZ and the CEF on the instances from Set-III with |V | = 100, a =
1. Furthermore results for connectivity-based formulations (EC and DCut), enhanced by cycle
elimination inequalities are reported.

|L| = 1/4 · |E| |L| = 3/4 · |E|
d alg cnt opt obj t bbn cuts cec cnt opt obj t bbn cuts cec

0.05
MTZtn 10 5 19.7 3931 502063 -1 -1 10 7 49.9 3112 721279 -1 -1
CEFtn 10 6 19.6 3000 135407 -1 16638 10 10 49.8 901 94205 -1 6389
CEFtñ 10 5 19.6 3998 155632 -1 17642 10 7 49.9 2208 208113 -1 14321
ECnc 10 10 19.6 14 1353 121 59 10 0 50.3 7200 532836 170798 1783
ECtnc 10 10 19.6 12 915 153 96 10 7 49.8 2566 62656 44607 5502
DCutnc 10 10 19.6 13 1433 931 55 10 0 50.4 7200 376649 351288 1630
DCuttnc 10 10 19.6 13 1029 700 94 10 7 49.8 2291 36745 27748 2859

0.2
MTZtn 10 7 15.0 4276 45276 -1 -1 10 5 35.8 4272 87003 -1 -1
CEFtn 10 7 14.9 3217 36913 -1 3298 10 7 35.7 2313 91215 -1 5422
CEFtñ 10 3 15.2 5307 61399 -1 5690 10 7 35.7 2668 40566 -1 2478
ECnc 10 0 15.6 7200 31835 143 118 10 0 37.8 7200 59337 1533 30
ECtnc 10 10 14.8 701 10687 196 670 10 8 35.7 1871 51079 15544 3426
DCutnc 10 0 15.9 7200 39225 29755 171 10 0 39.4 7200 47294 39206 3
DCuttnc 10 10 14.8 737 11214 7212 581 10 8 35.7 1537 21721 13795 1400

0.5
MTZtn 10 5 13.5 5555 7818 -1 -1 10 3 30.9 5658 13851 -1 -1
CEFtn 10 5 13.6 5038 8686 -1 763 10 7 30.1 4444 19156 -1 1653
CEFtñ 10 3 13.6 5791 8399 -1 1063 10 5 30.5 5570 6646 -1 711
ECnc 10 0 14.1 7200 3463 26 35 10 0 32.7 7200 6497 118 25
ECtnc 10 7 13.5 3865 8772 116 913 10 9 30.1 2112 9120 1344 665
DCutnc 10 0 15.6 7200 5353 3395 24 10 0 38.2 7200 6964 5357 6
DCuttnc 10 8 13.5 3394 7452 6433 675 10 9 30.0 2427 7475 5918 576

36

Table 10: Comparison of best formulations used without and with primal heuristics, i.e. MVCA
and ACO.

|L| = 1/4 · |E| |L| = 3/4 · |E|
d alg cnt opt obj t bbn cuts cnt opt obj t bbn cuts

0.05
ECtn 10 10 19.6 14 4944 4486 10 2 51.2 5760 163875 182801
ECsn 10 10 19.6 1 1313 966 10 0 55.5 7200 133833 151889
DCuttn 10 10 19.6 12 1148 759 10 6 49.8 3195 87152 60318
DCutsn 10 10 19.6 10 1336 895 10 6 49.8 3195 87152 60318
ECtn + MVCA 10 10 19.6 12 5474 4866 10 2 51.3 5771 145352 166307
ECsn + MVCA 10 10 19.6 2 1635 1255 10 0 52.3 7200 137776 154933
DCuttn + MVCA 10 10 19.6 11 1056 714 10 6 49.8 2902 57282 41009
DCutsn + MVCA 10 10 19.6 12 1530 993 10 0 50.4 7200 371927 343330
ECtn + ACO 10 10 19.6 12 4425 3916 8 4 49.6 3600 107155 110775
ECsn + ACO 10 10 19.6 2 1339 978 10 0 49.9 7200 134930 151941
DCuttn + ACO 10 10 19.6 10 937 627 9 4 49.8 4019 74506 52846
DCutsn + ACO 10 10 19.6 11 1303 828 10 0 50.4 7200 371927 343330

0.2
ECtn 10 10 14.8 344 36386 16745 10 2 37.1 6450 120465 121687
ECsn 10 4 14.8 4894 231148 95062 10 0 39.2 7200 65167 63256
DCuttn 10 10 14.8 835 13677 8698 10 7 35.8 2432 36099 27852
DCutsn 10 10 14.8 835 13677 8698 10 0 38.0 7200 88645 73235
ECtn + MVCA 10 10 14.8 767 52496 28531 10 2 36.9 6004 120042 120862
ECsn + MVCA 10 4 14.8 4904 212222 89873 10 0 38.7 7200 63308 60554
DCuttn + MVCA 10 10 14.8 799 12503 8284 10 8 35.7 2169 34219 25835
DCutsn + MVCA 10 1 15.5 7067 72658 54894 10 0 38.1 7200 82575 67712
ECtn + ACO 10 10 14.8 345 31157 14313 9 5 36.0 4135 67362 66292
ECsn + ACO 10 3 14.9 5323 228273 94410 10 0 36.1 7200 64340 60405
DCuttn + ACO 10 10 14.8 640 11034 7149 9 6 35.8 2524 35560 26632
DCutsn + ACO 10 2 15.0 6977 80725 54925 10 0 36.2 7200 83553 69016

0.5
ECtn 9 8 13.2 1400 34106 18769 10 4 31.0 5038 59605 57375
ECsn 10 0 13.7 7200 296782 88962 10 0 33.8 7200 63430 64801
DCuttn 10 5 13.5 4557 9195 8543 10 7 30.2 3552 12337 9780
DCutsn 10 0 14.4 7200 12834 8154 10 7 30.2 3552 12337 9780
ECtn + MVCA 10 8 13.3 1991 40440 23995 10 5 30.5 4274 53202 50948
ECsn + MVCA 10 0 13.7 7200 279895 79633 10 0 32.4 7200 67026 66888
DCuttn + MVCA 10 7 13.3 3321 6462 5852 10 9 30.0 2728 8479 7236
DCutsn + MVCA 10 0 14.3 7200 11154 7224 10 0 32.2 7200 14878 10082
ECtn + ACO 9 7 13.3 2261 44962 25718 6 2 31.3 5419 61481 59297
ECsn + ACO 10 0 13.7 7200 345358 80054 10 0 31.1 7200 64469 63099
DCuttn + ACO 10 7 13.4 3534 7659 6933 8 5 30.5 3374 10577 8304
DCutsn + ACO 10 0 13.8 7200 12035 7319 10 0 31.2 7200 13919 9175

37

Table 11: Comparison of formulations ECt and DCutt with and without using odd-hole inqualities.
Index o denotes if odd-hole inequalities are separated, index b indicates that odd-hole inequalities
have been used to induce branching over related label variables.

ECtn/DCuttn ECtno/DCuttno
ECtnob/DCuttnob

|V |, |E|, a, |L| cnt opt obj t bbn cuts opt obj t bbn cuts ohopt obj t bbn cuts oh

100, 247, 1, 61 10 1019.6 14 4944 4486 10 19.6 25 5692 5141 23 10 19.6 17 5226 4701 19
10 1019.6 12 1148 759 10 19.6 13 1163 772 1 10 19.6 13 1121 733 1

100, 247, 1, 185 10 251.25760163875182801 2 51.2 5760 144151 159964 194 2 51.1 5760 143562 159321 173
10 649.83195 87152 60318 6 49.8 3214 83347 58322 11 6 49.8 3197 85997 60585 13

100, 900, 1, 247 10 10 14.8 344 36386 16745 10 14.8 417 37993 18284 134 1014.8 343 34639 15817 120

10 1014.8 835 13677 8698 10 14.8 892 14659 9364 1 10 14.8 987 15816 10131 2
100, 900, 1, 742 10 2 37.1 6450 120465 121687 336.863771268191289241251 2 36.7 6007 119218 119667 1308

10 7 35.8 2432 36099 27852 735.82369 34717 26348 77 7 35.8 2371 33757 26083 61
100, 2475, 1, 618 10 813.21400 34106 18769 8 13.3 2499 48599 28883 174 8 13.3 1820 35479 21775 138

10 5 13.5 4557 9195 8543 713.54261 8305 7615 9 7 13.3 4318 8322 7769 8
100, 2475, 1, 1856 10 4 31.0 5038 59605 57375 530.84133 53079 52191 709 4 31.0 4499 54945 54254 614

10 7 30.2 3552 12337 9780 9 30.0 2827 8780 6809 51 930.02778 8061 6898 39

100, 247, 2, 61 10 1016.6 12 4707 4080 10 16.6 14 5148 4496 23 10 16.6 13 4987 4363 20
10 1016.6 16 1162 787 10 16.6 17 1161 788 0 10 16.6 16 1146 775 1

100, 247, 2, 185 10 735.02375102179 93532 6 35.1 3485 137028 125999 272 7 35.0 2431 102595 90520 178
10 10 34.7 61 4661 3696 10 34.7 69 5073 4081 8 1034.7 22 1758 1630 4

100, 900, 2, 247 10 1011.9 629 42052 20637 9 12.0 997 48954 22866 137 10 11.9 857 41933 21903 129
10 1011.9 681 5906 5180 10 11.9 891 8242 6868 6 10 11.9 1000 8936 7734 11

100, 900, 2, 742 10 3 26.3 5242 119550 107358 3 26.2 5395 118483 104341 1312 426.34841107072 945931220

10 9 25.6 1489 24931 17663 9 25.6 1603 24112 18031 82 925.61443 23837 16801 67

100, 2475, 2, 618 10 10 10.9 506 22467 6432 10 10.9 748 28917 9107 44 1010.9 388 17770 3684 14

10 5 11.2 5664 11813 9786 5 11.2 5736 10958 9467 7 611.15727 11155 9316 8

100, 2475, 2, 1856 10 423.25213 61908 53294 1 23.8 6490 74525 64822 822 2 23.5 6298 72256 62059 754
10 5 22.8 4259 8850 8481 7 22.6 3642 7480 7073 22 822.53479 7831 7173 20

100, 247, 5, 61 10 1010.5 0 306 359 10 10.5 0 306 359 1 10 10.5 1 267 338 1
10 1010.5 5 115 134 10 10.5 5 115 134 0 10 10.5 5 115 134 0

100, 247, 5, 185 10 6 20.6 3467 143690 125295 4 20.7 4461 157779 137051 937 620.63047116829103068 673

10 1020.5 698 45870 25073 9 20.5 787 43883 24921 12 9 20.5 783 45144 25575 10
100, 900, 5, 247 10 10 7.8 128 12441 651 10 7.8 134 12521 631 2 10 7.8 157 13710 862 3

10 10 7.8 1628 15222 9552 10 7.81513 15071 9222 1 10 7.8 1540 15153 9365 0
100, 900, 5, 742 10 3 15.1 5140 139983 90176 4 15.0 4838 132756 83094 702 415.04458125665 78327 651

10 614.84406 44628 32312 5 14.9 4520 45818 33172 22 5 14.9 4392 44435 32267 18
100, 2475, 5, 618 10 10 6.9 255 6604 532 10 6.9 253 6581 519 0 10 6.9 262 6701 577 0

10 6 7.15089 5318 3529 6 7.0 5092 5503 3685 0 6 7.0 5093 5447 3608 0
100, 2475, 5, 1856 10 6 13.0 3472 72582 38165 7 12.9 3132 62473 33275 255 712.92343 50106 24087 158

10 413.15743 7934 7389 3 13.3 6505 8896 8420 9 3 13.1 6213 8259 7770 8
10 × 10, 360, 1, 30 10 10 9.2 4 1639 1544 10 9.2 5 1427 1350 10 10 9.2 5 1427 1384 11

10 10 9.2 34 1892 1710 10 9.2 32 1685 1510 5 10 9.2 34 1711 1576 6
10 × 10, 360, 1, 50 9 8 13.0 1578 83996 67834 8 13.0 1550 81112 66089 310 912.9 619 54900 42488 145

9 9 12.9 302 20596 12907 9 12.9 387 25142 16180 23 912.9 298 19938 12261 8

10 × 10, 360, 1, 80 10 0 19.6 7200 229619 202787 0 19.8 7200 211903 186885 1086 019.572002115611888121102

10 018.77200283625220940 0 18.8 7200 232626 190432 403 0 19.0 7200 223970 188832 381
20 × 20, 1520, 1, 30 10 1011.5 91 3757 4231 10 11.5 107 3749 4310 0 10 11.5 106 3799 4249 0

10 1011.5 627 4058 10961 10 11.5 753 4028 11567 0 10 11.5 705 4112 11261 0
20 × 20, 1520, 1, 50 10 1017.03834212265107170 9 17.0 4232 209923 105755 32 9 17.0 4324 210003 107385 39

10 017.07200 86172 64236 0 17.0 7200 77221 60603 6 0 17.0 7200 80453 59244 4
20 × 20, 1520, 1, 80 10 024.87200146616112030 0 24.8 7200 133250 102086 626 0 24.9 7200 131641 101479 577

10 025.27200 43604 44755 0 25.2 7200 39262 41704 21 0 25.2 7200 39451 42952 19

38

Table 12: Branch-and-cut-and-price results for a special class of instances containing many labels
and isolated optima with a relatively low number of labels.

|V |, |E|, a, |L| method cnt opt obj t bbn cuts priced
100, 247, 2, 61 ECtn 10 10 5.0 0 1 32 -1

DCuttn 10 10 5.0 0 1 7 -1
ECtnp 10 10 5.0 0 1 64 14
DCuttnp 10 10 5.0 0 1 13 17

100, 247, 2, 185 ECtn 10 10 10.0 0 1 1 -1
DCuttn 10 10 10.0 0 1 2 -1
ECtnp 10 10 10.0 0 1 2 11
DCuttnp 10 10 10.0 0 1 3 7

100, 900, 2, 247 ECtn 10 10 5.0 0 1 30 -1
DCuttn 10 10 5.0 1 1 15 -1
ECtnp 10 10 5.0 0 1 72 29
DCuttnp 10 10 5.0 0 2 19 28

100, 900, 2, 742 ECtn 10 10 10.0 0 14 42 -1
DCuttn 10 10 10.0 8 13 25 -1
ECtnp 10 10 10.0 2 497 328 30
DCuttnp 10 10 10.0 12 32 41 25

100, 2475, 2, 618 ECtn 10 10 5.0 1 2 46 -1
DCuttn 10 10 5.0 19 4 15 -1
ECtnp 10 10 5.0 1 6 51 27
DCuttnp 10 10 5.0 11 4 19 26

100, 2475, 2, 1856 ECtn 10 10 10.0 2 15 48 -1
DCuttn 10 10 10.0 40 11 23 -1
ECtnp 10 10 10.0 10 237 174 24
DCuttnp 10 10 10.0 36 23 26 16

300, 22425, 2, 1856 ECtn 10 10 10.0 228 1 273 -1
DCuttn 10 10 10.0 617 1 6 -1
ECtnp 10 10 10.0 105 1 257 2
DCuttnp 10 10 10.0 459 1 13 2

300, 35880, 2, 8970 ECtn 9 6 6.7 3846 1 600 -1
DCuttn 9 8 8.9 4113 1 17 -1
ECtnp 9 9 10.0 880 1 674 14
DCuttnp 9 9 10.0 1131 1 20 12

300, 35880, 2, 26910 ECtn 10 10 10.0 627 1 254 -1
DCuttn 10 10 10.0 2735 1 10 -1
ECtnp 10 10 10.0 259 1 262 2
DCuttnp 10 10 10.0 1212 1 18 3

39

Table 13: Overview of all test instances from Set-I, Set-II and Set-III and corresponding best
formulations.

Set |V | d/|E| |L| a Best Formulation
Set-I 100 0.2 50 1 ECsn

100 ECsn, ECsnh

125 ECsn

0.5 50 ECsn, ECn, ECsnh

100 ECn, ECsnh

125 ECn, ECsnh

0.8 50 ECsn, ECn

100 ECn, ECsnh

125 ECsn, ECn, ECsnh

200 0.2 100 ECsn, ECsnh

200 ECsn

250 ECsn, ECsnh

0.5 100 ECsn

200 ECsn

250 ECsn, ECsnh

0.8 100 ECsn

200 ECsn, ECsnh

250 ECsn, ECsnh

Set-II 1000 4000 5 EC∗ (several variants having same performance)
10 EC∗ (several variants having same performance)
20 EC∗ (several variants having same performance)

Set-III 100 0.05 1/4 · |E| several methods having same performance
3/4 · |E| CEFtn

0.2 1/4 · |E| ECtñ

3/4 · |E| DCuttnc

0.5 1/4 · |E| ECtño

3/4 · |E| ECtnc

0.05 1/4 · |E| 2 EC∗ (several variants having same performance)
3/4 · |E| ECtñob, ECtnc

0.2 1/4 · |E| ECtñob, ECtnh

3/4 · |E| DCuttñobc

0.5 1/4 · |E| ECtnob

3/4 · |E| ECtnoc

0.05 1/4 · |E| 5 several methods having t ≤ 0
3/4 · |E| DCuttñc

0.2 1/4 · |E| ECtn

3/4 · |E| DCuttnco

0.5 1/4 · |E| ECtn, ECtnh

3/4 · |E| ECtnob, ECtnh

10 × 10 30 1 EC∗ (several variants having same performance)
50 ECsnob

80 DCutsñob (best relaxation)
20 × 20 30 ECsn, ECn

50 ECsn

80 DCuttñ (best relaxation)

40

Table 14: Running times in seconds reported in [2], rounded to integers.

l 5 10 20 5 10 20 5 10 20
n 20 50 100
MLSTb 0 0 0 0 0 1 0 1 3
MLSTc 0 0 0 0 0 1 0 1 7
MLST-CL 0 0 0 0 0 0 0 0 1

l 5 10 20 5 10 20 5 10 20
n 200 500 1000
MLSTb 0 3 15 1 9 136 2 43 621
MLSTc 1 6 34 4 38 371 5 132 1994
MLST-CL 0 0 6 0 0 71 0 0 360

l 5 10 20 5 10 20 5 10 20
n 20 50 - - -
MLSTb 0 0 0 10 9 8 - - -
MLSTc 0 0 0 6 9 4 - - -
MLST-CL 0 0 0 45 0 0 - - -

41

Table 15: Running times for instances that have been created according to specification from [2].
The first column lists the method for the corresponding row. In parenthesis the corresponding
method from [2] is reported.

l 5 10 20 5 10 20 5 10 20
n 20 50 100
avg(|LT |) 2.0 2.5 3.8 2.4 3.3 5.0 3.0 4.1 6.6
SCF (MLSTb) 0 0 0 0 0 0 0 0 19
SCFtn 0 0 0 0 0 0 0 0 1
DCuttn 0 0 0 0 0 0 0 0 1
ECtn 0 0 0 0 0 0 0 0 0
ECsn 0 0 0 0 0 0 0 0 0
A* (MLST-CL) 0 0 0 0 0 0 0 0 1

l 5 10 20 5 10 20 5 10 20
n 200 500 1000
avg(|LT |) 3.0 5.0 7.9 3.5 5.9 9.9 4.1 6.6 11.3
SCF (MLSTb) 3 3 9 71 29 384 31 96 1303
SCFtn 0 1 6 0 4 19 1 13 51
DCuttn 0 0 4 1 3 21 12 13 67
ECtn 0 0 0 0 0 0 0 0 0
ECsn 0 0 0 0 0 0 0 0 0
A* (MLST-CL) 0 0 13 0 0 159 0 0 609

d 0.2 0.5 0.8 0.2 0.5 0.8 - - -
n 20 50 - - -
avg(|LT |) 7.1 3.5 2.2 3.0 3.9 7.6 - - -
SCF (MLSTb) 0 0 0 23 40 25 - - -
SCFtn 0 0 0 3 0 1 - - -
DCuttn 0 0 0 5 2 2 - - -
ECn 0 0 0 0 0 0 - - -
ECsn 0 0 0 0 0 0 - - -
A* (MLST-CL) 0 0 0 67 0 0 - - -

42

Table 16: Comparison to results reported in [11] for the A∗-algorithm. Columns MLSTECn list the average total running times for each group
of this particular MIP in seconds, columns A∗ list the running times in seconds (rounded to integers) reported in [11], at which the best
solution was found.

|V | |L| d avg(|LT |) A∗ MLSTECtn opt |V | |L| d avg(|LT |) A∗ MLSTECtn opt
100 25 0.8 1.8 0 0 10 400 100 0.8 2.0 n/a 60 10
100 25 0.5 2.0 0 0 10 400 100 0.5 2.2 n/a 61 10
100 25 0.2 4.5 0 0 10 400 100 0.2 5.8 (*) n/a NF 8
100 50 0.8 2.0 0 0 10 400 200 0.8 3.0 n/a 817 10
100 50 0.5 3.0 0 0 10 400 200 0.5 NA n/a NA NA
100 50 0.2 6.7 10 0 10 400 200 0.2 9.3 (*) n/a NF 0
100 100 0.8 3.0 0 2 10 400 400 0.8 - n/a NF 0
100 100 0.5 4.7 2 9 10 400 400 0.5 6.2 (*) n/a NF 0
100 100 0.2 9.7 NF 6 10 400 400 0.2 14.6 (*) n/a NF 0
100 125 0.8 4.0 0 17 10 400 500 0.8 - n/a NF 0
100 125 0.5 5.2 180 11 10 400 500 0.5 7.3 (*) n/a NF 0
100 125 0.2 11.0 NF 12 10 400 500 0.2 17.1 (*) n/a NF 0
200 50 0.8 2.0 0 3 10 500 125 0.8 2.0 0 157 10
200 50 0.5 2.2 0 2 10 500 125 0.5 2.6 0 196 10
200 50 0.2 5.2 5 10 10 500 125 0.2 6.3 (*) NF NF 2
200 100 0.8 2.6 0 28 10 500 250 0.8 3.0 5 2192 10
200 100 0.5 3.4 0 19 10 500 250 0.5 4.3 (*) NF NF 1
200 100 0.2 7.9 NF 191 10 500 250 0.2 10.3 (*) NF NF 0
200 200 0.8 4.0 23 911 10 500 500 0.8 4.8 (*) NF NF 0
200 200 0.5 - NF NF 9 500 500 0.5 6.9 (*) NF NF 0
200 200 0.2 - NF NF 7 500 500 0.2 16.4 (*) NF NF 0
200 250 0.8 4.0 21 301 10 500 625 0.8 5.1 (*) NF NF 0
200 250 0.5 - NF NF 9 500 625 0.5 8.4 (*) NF NF 0
200 250 0.2 - NF NF 3 500 625 0.2 19.0 (*) NF NF 0

43

