
Solving the Minimum Label Spanning Tree Problem by
Ant Colony Optimization

A. M. Chwatal1, G. R. Raidl1
1Institute of Computer Graphics and Algorithms,
Vienna University of Technology, Vienna, Austria

Email: {chwatal|raidl}ads.tuwien.ac.at

Keywords: Ant Colony Optimization, Minimum Label Spanning
Tree Problem, Metaheuristics, Combinatorial Optimization
Abstract— The Minimum Label Spanning Tree Problem
is a well known combinatorial optimization problem, hav-
ing applications in telecommunication network design and
data compression. The problem is NP-hard and cannot
be approximated within a constant factor. In this work
we present the application of ant colony optimization to
this problem. Different pheromone models and construction
mechanisms are introduced and local improvement methods
are considered. An experimental investigation of the out-
lined components and a comparison to existing work are
presented.

1. Introduction
The Minimum Label Spanning Tree (MLST) problem is a

well known combinatorial optimization problem, defined as
follows. We are given a graph G = (V,E) and a labelling
function l : E → L assigning to each edge e ∈ E an element
from a discrete set L, whose elements are usually called
labels or colors. The objective is to determine a spanning
tree whose edges induce a least cardinality set L∗ ⊂ L. The
problem may also be formulated in terms of a connected
subgraph instead of the spanning tree as a requirement,
as any spanning tree derived from a connected subgraph
spanning all vertices is equal w.r.t. the objective function.

The MLST problem was first introduced in [4] where its
NP-completeness has been shown by reduction from the
set covering problem. Furthermore the non-existence of a
constant-factor approximation has been shown therein. The
approximation bound has been further improved in [12] and
[15]. So far, many heuristic and metaheuristic methods have
been applied to the MLST problem.

A constructive heuristic, called MVCA-heuristic, has been
first introduced in [4], and further studied in [12], [15], and
[8]. Its principle is to start with an empty set of labels, and
then iteratively add labels and their corresponding edges that
reduce the number of connected components of the graph
until the graph is connected. Various genetic algorithms
have been developed in [16] and [13]. Methods based on
local search have been treated from a theoretical point of
view in [1], and from a more practical one in [3], [9],

[7], and [6]. In particular, the latter publications also cover
metaheuristics like greedy randomized search procedures,
local search, variable neighborhood search and the pilot
method.

In [4] the authors also introduce an exact method based on
the A*-algorithm. This method is very effective for instances
with very few labels within the optimal solution, but im-
practicable for instances with many labels or higher optimal
objective function values. Further exact methods are based
on mathematical programming techniques: A mixed integer
programming formulation based on single commodity flow
has been proposed in [2], a branch-and-cut algorithm for a
directed variant of the problem has been proposed in [5].

In this work, we primarily focus on ant colony optimiza-
tion, a metaheuristic technique which has not been applied
to the MLST problem so far. Algorithmic details, as well as
new neighborhood structures to be used within the algorithm
are presented in Section 2. Computational results are then
presented in Section 3, and conclusive remarks are given in
Section 4.

2. Ant Colony Optimization
Many metaheuristic techniques are based on parallel con-

struction or modification of a pool of candidate solutions and
frequently are inspired by nature. Ant colony optimization
(ACO) is based on the foraging behaviour of ants. Despite
the ants disability to survey the region around the anthill,
or to make educated decisions, almost all ants run on near-
optimal paths from the anthill to the food source and back.
This “optimization task” is mainly achieved by stigmergy,
i.e. communication by means of modification of the common
environment. Along their way, each ant deposits pheromone,
a volatile chemical factor, further ants follow trails of high
pheromone concentration with high probability, but may also
leave this trails to explore further ones. The latter mechanism
is important to retain flexibility as well as to avoid premature
convergence to a local optimum, i.e. all ants walking on a
suboptimal path.

Ant Colony Optimization is a stochastic model-based
search procedure, where construction steps are influenced
by local information and global pheromone values. The
correspondence to ants are artificial agents constructing the

solution, mostly by traversing some kind of construction
graph. Various algorithmic variations with minor differ-
ences according to pheromone deposition and evaporation
do exist, like MAX −MIN Ant System, Ant Colony
System, Elitist Ant System or Rank-based Ant System. For a
comprehensive introduction to ACO see [11]. The algorithm
proposed within this work does not directly fit into one of
the mentioned categories, but contains elements from all of
them. The general algorithmic template works as specified
by Algorithm 1.

Algorithm 1: Generic-ACO

for it iterations do1

for each ant m, 1 ≤ m ≤M do2

solution construction (of ant m)3

optional local search4

end5

pheromone update6

end7

For our considered problem, in step “solution construc-
tion”, line 3 of Algorithm 1, further labels are added
iteratively, starting from an empty set of labels. The decision
which label to take next is based on a probability distribution
defined over all labels reducing the number of components
implied by the labels (and corresponding edges) of the
current partial solution, parametrized by pheromone values τ
and local information η, to be defined in detail subsequently.
In the following we describe the algorithm in detail, starting
with the description of underlying pheromone models.

2.1 Pheromone Models
The most natural or obvious formulation is to introduce

a pheromone value for each label l ∈ L, i.e. τl, l ∈ L
(model P-I). This representation has the advantage of being
very compact, but however, mutual dependencies are not
represented very accurately. This might be a problem as
within this simple pheromone model the algorithm cannot
gather information of particular labels being of high potential
importance w.r.t. some constructed subset L′ ⊂ L, but
being unimportant regarding other subsets L′′ ⊂ L. Such
information can be better reflected by the following larger
pheromone model (P-II). Let τij denote the entries of a
|L| × |L| matrix. Let us again assume, we already have
constructed label set L′ and are about to decide which label
to take next. The desire to add label l is then given by

τ(L′, l) :=
∑
i∈L′

τil. (1)

A third alternative arises, when considering the main purpose
of pheromones as biasing the solution process of the MVCA-
heuristic (P-III). Hence we can introduce a |Lmvca| × |L|
matrix, were Lmvca denotes the set of labels constructed by

the MVCA-heuristic. Each row i of this matrix then provides
a probability distribution for all labels to be used in the i-th
construction step of each ant.

2.2 Solution Construction
In each iteration M ants construct solutions based on

pheromones and local information. Let τ(L′, l) := τl for
pheromone model (P-I), and τ(L′, l) := τ|L′|,l for (P-III).
Having constructed labels L′ the probability for ant m of
adding label l is given by

pmL′,l =
{
p(L′, l) if c(L′ ∪ l) < c(L′),
0 otherwise, (2)

with

p(L′, l) =
τ(L′, l)α · η(L′, l)β∑

l′∈{l∈L|c(L′∪l)<c(L′)}

τ(L′, l′)α · η(L′, l′)β
, (3)

and c(L′) denoting the number of connected components
of graph G = (V,E′) where E′ denotes the set of edges
with a label from set L′. The balance between pheromone
information τ(L′, l) and local information η(L′, l′) is con-
trolled by parameters α and β. Let E(L′) ⊂ E denote the
subset of edges having associated to a label l ∈ L′, and
let c(L′) denote the number of connected components of
the subgraph G′ = (V,E(L′)). Local information is then
defined by expression

η(L′, l) = c(L′)− c(L′ ∪ l). (4)

Hence, if setting α = 0 we obtain a randomized greedy
heuristic, essentially following the greedy criterion from the
MVCA-heuristic. In general, parameters α and β balance
between following the already gathered global information
provided by pheromone trails and the local information
resulting from direct improvements of the label w.r.t. the
current partial solution. Using simpler models for the local
information, like simply considering the number of edges
associated to the particular label turned out not to work well
in preliminary tests.

The most obvious way to perform the construction process
is to add further labels to an initially empty set L′ until
a feasible solution is obtained (C-I). However, solutions
having more labels than the best-so-far solution likely do not
contain any useful information with regard to finding further
improvements and should therefore deposit no pheromone
values. Even solutions having the same number of labels as
the best-so-far solution may not contain such information, as
possible lower cardinality solutions might have significant
differences or even be completely disjoint to many or all
higher cardinality solutions (without redundant labels). This
observation suggests an alternative solution construction
process (C-II) which limits the number of constructed labels
to the size of the best-so-far solution decreased by one.
This approach intends to minimize the number of connected

components and at the same time maximize the number of
additional arcs being represented within these fixed cardinal-
ity label sets. This strategy aims to increase the likelihood
of ending up with connected feasible solutions after the
addition of the last label. The overall construction process
can also be performed in a combined way, i.e. one half of
the ants constructing feasible, the other one infeasible ones
(C-III).

To counteract stagnation we optionally perform
pheromone smoothing, similar to the approach presented in
[14]. Hence, we replace each τ(L′, l) in Eq. (3) by

τ(L′, l) + λ′ ·
(

max
l∈L\L′

τ(L′, l)− min
l∈L\L′

τ(L′, l)
)
, (5)

where λ′ is controlling the amount of smoothing. It is
initially set to zero, and in case of stagnation, indicated by
no improvement within itλ iterations, successively increased
in steps of λ/itλ until the maximum value λ is reached. If
no improvement occurs for 2 · itλ iterations, we reinitialize
pheromones entirely.

2.3 Pheromone Update
Pheromone update, which takes place after each iteration

basically consists of two components: evaporation and de-
position. Whereas pheromone evaporation provides a mean
for escaping local optima and enables to direct the search
towards other regions of the solution space, pheromone
deposition is the main mean to guide the search process
towards regions appearing attractive as a result of solutions
created so far.

Pheromone evaporation is governed by parameter ρ, the
evaporation rate. The update rule is given by

τi ← (1− ρ′) · τi, (6)

where index i refers to all elements of the pheromone vector
or matrix respectively. For (P-I) and (P-III) we directly use
parameter ρ for ρ′, in the case of (P-II) we set ρ′ = ρ/|L| in
order to obtain a comparable evaporation for each particular
label.

Afterwards, pheromone deposition is performed based
upon certain solutions. Various strategies do exist regarding
to which solutions are selected for this purpose, which we
leave unspecified for the moment. However, all update rules
have in common, that an amount ∆L′ is added to the
pheromone values corresponding to the labels of solution L′.
Regarding (P-I) the update is straightforwardly performed by

τl ← τl + ∆L′, for all l ∈ L′. (7)

As pheromone model (P-III) also accounts for the position
at which a certain label has been added we have to consider
L′ as an ordered set and refer to the label constructed in
step i by L′[i]. The pheromone update is then performed by

τil ← τil + ∆L′, for each L′[i]. (8)

For model (P-II) the update is performed in the following
way:

τij ← τij + ∆L′, for all i, j ∈ L′. (9)

Following the approach of MAX −MIN Ant System
we introduce upper and lower bounds for the pheromone
values τmax and τmin. Pheromone values are initialized by
the arithmetic mean of these two values.

The value ∆L′ is calculated differently for the two pro-
posed construction methods. If only feasible solutions are
constructed, we only deposit pheromone for solutions having
no more labels then the best-so-far solution.

In order to evaluate constructed candidate solutions we
need to develop a function f(L′) which discriminates be-
tween solutions with equal |L′|. An evaluation function
f(L′) can be built by considering function

h(L′) = 1− |E(L′)|
|E|

, (10)

which accounts for additional edges being represented by
labels L′. Feasible solutions can thus be evaluated by
f(L′) = |L|+ h(L′).

If, on the other hand, infeasible solutions are constructed,
we primarily have to account for the number of connected
components induced by L′. We therefore use f(L′) =
c(L′) + h(L′) in this case. In addition to the best-so-
far feasible solution we also globally store the best-so-far
created infeasible solution.

The pheromone deposition is performed by the best-so-
far as well as the iteration-best ant in each iteration. If
mixed construction (C-III) is performed, a total of four ants
deposit pheromone. For both construction mechanisms we
use ∆L′ = 1 when pheromone models (P-I) or (P-III)
are used, and ∆L′ = 1/|L′| in the case of model (P-III),
which compensates the fact that for each label totally |L′|
pheromone values are increased. A further differentiation re-
garding the amount of pheromones to be deposited seems not
to be reasonable within this context. In order to not implicitly
limit pheromone values, we perform the evaporation step
after the pheromone deposition.

2.4 Local improvement
Typically used neighborhoods for the MLST problem

consist of the replacement of k labels within the current
solution. Using f(L′) = |L′| + h(L′) again allows for
a better discrimination of solutions of equal cardinality.
Regarding the solution construction process restricted to
the cardinality of the incumbent solution minus one (see
Section 2.2), we might also consider local search procedures
working on infeasible solutions. Within such a process,
solutions are evaluated by f(L′) = c(L′) + h(L′). Besides
the specification of the size k of the neighborhood, we may
consider various reinsertion strategies after having removed
k labels. Completely traversing the whole neighborhood
w.r.t. to some solution with already having k labels removed,

is impracticable, in particular for larger k. Hence we follow
the strategy to consider all extension candidates for the first
k′ places, and add the remaining k−k′ labels following the
greedy MVCA strategy, similar to the approach used in [7].

A further local improvement method consists of simply
checking the labels for redundancy, by removing each label
of the solution, and then test for connectivity. In particular
for solutions which labels induce many additional edges, this
method is more likely to be successful.

2.5 Implementation Aspects
In order to compute the number of components induced

by a certain set of labels L′ we use a disjoint set (also called
union find) datastructure (see for instance [10]), as also
suggested in [12]. If we are considering edge set E′, all the
operations on the union find data structure can be carried out
in a total time of O(|E′| · α(|E′|, |V |)), where α(|E′|, |V |)
denotes the inverse Ackermann function. For all reasonably
occurring |E′| and |V | it holds, that α(|E′|, |V |)) ≤ 4. In
comparison, a depth-first search (DFS) procedure would take
time O(|V |+ |E′|). Within local search algorithms but also
the MVCA-heuristic and therefore also the computation of
the local information within the ACO algorithm, we often
face the situation of tentatively adding some label for evalua-
tion, and then removing it immediately. Hence we can further
benefit from disjoint set datastructures supporting a rollback
mechanism. The major benefit of this approach is that we
can evaluate all further labels w.r.t. some considered partial
solution in quasi-constant time. Let us further consider the
situation where we want to remove some label l′ from a
partial solution L′, which also occurs within the local search
procedure. In this case we need to rebuild the disjoint set
datastructure which takes O(|E(L′\l′)| ·α(|E(L′\l′)|, |V |))
time. In this situation DFS allows for an incremental com-
putation by first removing |E(l′)| edges from the graph, and
then running DFS (O(|V |+|E(L′\l′)|)). However, compared
to the time required to rebuild the disjoint set datastructure
O(|E(L′\l′)| ·α(|E(L′\l′)|, |V |)), this is no real drawback.
Consequently we consider the disjoint set datastructure to
be overall more appropriate for the given task.

3. Computational Results
Within comprehensive preliminary testing we determined

a generally well-working configuration of the presented
algorithmic components. Table 1 gives a summary of the
determined parameter settings used for the subsequently
presented computational results. Relatively high values of β
are required, to give the labels mostly reducing the number
of connected components a reasonable high chance of being
selected. On average, in particular in the first construction
steps, almost all labels will provide comparable reductions in
the number of connected components, but higher reductions
provide significant information that should be exploited.

Table 1: Parameter settings
Description Parameter Value
minimum pheromone value τmin 10−3

maximum pheromone value τmax 10
pheromone-contribution α 2
local-information-contribution β 12
evaporation rate ρ 0.1
pheromone-smoothing parameter λ 0.2
iterations for pheromone smoothing itλ 20

For our computational experiments we used the instance
set from [7]. All tests have been performed on a Intel
Nehalem E5540 (2,53 GHz) CPU, under Linux with Kernel
2.6.31.

Table 2 shows our results obtained for the instances with
|V | = 200 and |V | = 500. Results have been computed
with the parameter settings listed in Table 1 and it = 100
iterations and M = 20 ants. Columns VNS contain the
results of the variable neighborhood search presented in [7],
being the best method therein. For a certain number of nodes,
groups with various ratios of number of labels compared
to the number of nodes as well as various graph densities
|E| = d · |V |·(|V |−1)

2 exist. For each group ten different
instances do exist. Reported objective values (column “obj.”)
and running times tb at which the best solution was found,
are average values over these ten instances. In columns ACO
we report our results for 30 independent runs. Objective
function values are listed in column “obj.”, corresponding
standard-deviations in column σ̄obj. By tavg we denote the
average total running times, and by tb the average times at
which the best solutions of the individual runs have been
obtained. Corresponding standard-deviations are listed in
colums σ̄t and σ̄tb. With this particular parameter settings
it is possible to obtain good solutions relatively fast, but
however, in particular for the low density instances the
average objective function values are generally higher than
the ones obtained by VNS.

In Table 3 we report the results for various configurations
of the ACO algorithm for a selected subset of low density
graphs, i.e. the hardest instances within the sample. Again,
we performed 30 independent runs for each instance and
used the parameter settings from Table 1, but 200 iterations
and M = 50 ants. If local search is applied (indicated in
column “LS”), we set it = 100 and M = 30 to compensate
for the longer computational time required for each local im-
provement. The best objective value obtained for each group
of instances is highlighted in the table. Unfortunately it is not
possible to draw a clear conclusion which pheromone model
is overall superior. Model (P-II) yields the best results for
instances with |V | = 200, |L| ∈ {100, 250}, but is generally
worse for larger instances. For these instances (P-I) and (P-
III) yield comparable results. The construction method (C-I)
generally shows the worst performance on these instances,

Table 2: Results for instances with |V | = 200 and |V | = 500.

Parameters VNS ACO
|V | |L| d obj. tb[s] obj. σ̄obj tavg[s] σ̄t tb[s] σ̄tb

200 50 0.8 2.0 0.0 2.00 0.00 136.09 23.51 0.00 0.00
0.5 2.2 0.03 2.20 0.00 15.21 6.59 0.07 0.26
0.2 5.2 0.23 2.20 0.00 15.21 6.59 0.07 0.26

200 100 0.8 2.6 0.14 2.60 0.00 107.10 83.67 1.16 2.66
0.5 3.4 0.16 3.40 0.00 23.48 7.93 2.41 5.07
0.2 7.9 2.9 8.09 0.16 15.52 2.23 2.09 3.71

200 200 0.8 4.0 0.08 4.00 0.00 39.54 6.26 0.00 0.00
0.5 5.4 0.88 5.40 0.00 33.56 5.10 7.58 8.25
0.2 12.0 33.7 12.35 0.13 26.38 3.64 3.70 5.21

200 250 0.8 4.0 1.5 4.02 0.04 42.56 7.17 9.32 13.20
0.5 6.3 2.3 6.37 0.05 35.87 5.34 4.53 6.48
0.2 13.9 1.5 13.98 0.11 34.12 4.80 4.96 6.32

500 125 0.8 2 0.05 2.00 0.00 81.70 6.18 0.00 0.00
0.5 2.6 0.56 2.61 0.01 109.32 18.48 6.10 20.25
0.2 6.2 3.7 6.25 0.07 103.22 17.26 14.93 24.58

500 250 0.8 3 0.49 3.00 0.00 188.46 4.40 0.00 0.00
0.5 4.1 26.9 4.26 0.08 196.18 57.65 7.52 32.97
0.2 9.9 10.2 10.16 0.18 160.47 19.12 22.96 41.19

500 500 0.8 4.7 8.6 5.0 0.00 403.84 27.57 6.26 51.01
0.5 6.5 110.2 7.30 0.20 365.20 47.80 20.02 70.72
0.2 15.8 50.3 16.63 0.30 356.08 55.81 55.06 90.68

500 625 0.8 5.1 0.97 5.56 0.12 487.07 29.38 5.67 57.24
0.5 7.9 33.9 8.39 0.08 629.85 62.70 41.04 101.34
0.2 18.3 60.0 19.37 0.33 593.66 71.82 60.10 133.56

(C-II) and (C-III) show a similar average performance.
Various configurations regarding the subordinate local

search method have been evaluated in preliminary experi-
ments. However, due to longer running times, no configu-
ration could outperform ACO without local improvement.
To limit the time requirements for the local search, it turned
out to be advantageous only to apply it for the best solutions
regarding number of labels and number of components for
feasible and infeasible solutions respectively. The neigh-
borhood size was set to k = 2, as smaller neighborhoods
did not yield sufficient improvements, and traversing larger
neighborhoods turned out to be too time-consuming.

Although the running times of the configurations reported
in Table 3 are higher than the ones with less iterations
and ants reported in Table 2, they are still reasonable for
many purposes. With these configurations improved average
solution values compared to [7] could be obtained for some
groups of instances.

4. Conclusions
Within this work we presented a description of the appli-

cation of ant colony optimization to the minimum label span-
ning tree problem. Various pheromone models have been

discussed, as well as different approaches to the solution
construction steps of the artificial ants. Here, it turned out
to be advantageous to also construct incomplete rather than
feasible solutions. This particular idea has also been pursued
to the introduced neighborhood structures. Computational
results show the algorithm to be an attractive alternative to
existing metaheuristic approaches. In particular when data
instances do not contain single isolated optimums, but rather
numerous optimal solutions, the method reliably finds the
global optimum within relatively short computational time.

References
[1] T. Brüggemann, J. Monnot, and G. J. Woeginger. Local search for

the minimum label spanning tree problem with bounded color classes.
Oper. Res. Lett., 31(3):195–201, 2003.

[2] M. Captivo, J. C. Clímaco, and M. M. Pascoal. A mixed integer linear
formulation for the minimum label spanning tree problem. Computers
& Operations Research, 36(11):3082 – 3085, 2009.

[3] R. Cerulli, A. Fink, M. Gentili, and S. Voß. Metaheuristics comparison
for the minimum labelling spanning tree problem. In Operations
Research/Computer Science Interfaces Series, volume 29, pages 93–
106. Springer US, 2005.

[4] R.-S. Chang and S.-J. Leu. The minimum labeling spanning trees.
Information Processing Letters, 63(5):277–282, 1997.

Table 3: Comparison of different pheromone models and construction mechanisms for instances with |V | = 200 and
|V | = 500; M = 50, it = 200.

|V | |L| d Pheromones Construction LS obj. ¯σobj tavg[s] σ̄t tb[s] σ̄tb

200 100 0.2

P-I C-I − 8.17 0.07 80.49 12.43 3.68 11.98
P-I C-II − 8.00 0.14 173.93 142.17 28.99 77.59
P-I C-III − 8.03 0.15 75.30 14.18 7.56 17.24
P-II C-I − 8.02 0.14 96.09 14.82 9.62 18.07
P-II C-II − 7.91 0.03 49.75 5.15 5.14 10.29
P-II C-III − 7.93 0.06 75.03 9.95 8.80 17.01
P-III C-I − 8.16 0.12 92.19 14.40 5.46 14.03
P-III C-II − 7.95 0.10 108.51 76.15 17.86 40.03
P-III C-III − 8.10 0.16 102.63 34.08 8.66 24.93
P-III C-I X 8.09 0.18 165.99 123.16 26.10 60.07

200 200 0.2

P-I C-I − 12.27 0.07 116.88 14.70 6.62 13.35
P-I C-II − 12.14 0.10 205.14 153.83 19.96 53.90
P-I C-III − 12.19 0.13 103.74 27.96 8.63 18.18
P-II C-I − 12.30 0.14 177.24 26.89 18.86 33.27
P-II C-II − 12.14 0.16 89.54 11.64 11.96 21.39
P-II C-III − 12.24 0.18 136.87 18.49 11.70 24.25
P-III C-I − 12.28 0.12 155.74 21.49 12.41 18.89
P-III C-II − 12.10 0.10 113.32 55.58 11.01 22.86
P-III C-III − 12.17 0.12 131.43 34.58 12.34 24.48
P-III C-I X 12.25 0.15 199.75 176.59 50.82 53.48

200 250 0.2

P-I C-I − 13.90 0.02 132.10 20.27 6.08 8.82
P-I C-II − 13.89 0.03 191.20 110.09 3.78 17.94
P-I C-III − 13.90 0.02 114.24 17.90 3.74 7.65
P-II C-I − 13.93 0.07 213.18 29.64 25.45 35.18
P-II C-II − 13.89 0.05 118.40 15.71 5.64 10.17
P-II C-III − 13.89 0.03 166.75 22.85 10.68 19.93
P-III C-I − 13.90 0.02 178.46 23.16 14.24 16.11
P-III C-II − 13.90 0.00 133.80 39.43 3.96 3.07
P-III C-III − 13.90 0.00 150.73 26.62 6.16 7.72
P-III C-I X 13.91 0.05 161.63 92.77 44.68 48.69

500 125 0.2

P-I C-I − 6.23 0.05 491.23 81.82 14.91 27.67
P-I C-II − 6.20 0.00 542.53 91.33 16.08 31.82
P-I C-III − 6.20 0.00 466.21 74.85 18.61 37.56
P-II C-I − 6.20 0.00 538.08 89.72 24.36 44.55
P-II C-II − 6.20 0.00 342.43 50.45 19.82 36.25
P-II C-III − 6.20 0.00 487.29 86.41 26.15 50.40
P-III C-I − 6.25 0.07 589.74 112.51 22.20 53.69
P-III C-II − 6.21 0.03 537.69 256.29 29.22 82.07
P-III C-III − 6.20 0.00 543.99 98.21 23.05 48.80
P-III C-I X 6.21 0.03 551.19 247.50 121.28 223.48

500 250 0.2

P-I C-I − 9.93 0.12 494.51 77.73 53.44 91.76
P-I C-II − 9.87 0.10 393.68 70.28 49.23 84.44
P-I C-III − 9.89 0.10 445.86 67.57 59.85 102.39
P-II C-I − 10.05 0.14 587.90 98.54 79.25 135.14
P-II C-II − 10.03 0.18 460.34 86.31 65.70 111.33
P-II C-III − 10.05 0.19 491.29 82.24 73.31 126.40
P-III C-I − 9.89 0.11 537.09 87.52 75.80 108.99
P-III C-II − 9.91 0.10 384.20 68.47 47.06 70.65
P-III C-I X 10.03 0.18 612.77 289.21 190.16 267.34

[5] A. M. Chwatal, G. R. Raidl, and K. Oberlechner. Solving a k-node
minimum label spanning arborescence problem to compress finger-
print templates. Journal of Mathematical Modelling and Algorithms,
8:293–334, 2009.

[6] S. Consoli, K. Darby-Dowman, N. Mladenovic, and J. Moreno-Pérez.
Solving the minimum labelling spanning tree problem using hybrid
local search. Technical report, n/a, 2007.

[7] S. Consoli, K. Darby-Dowman, N. Mladenovic, and J. Moreno-
Pérez. Heuristics based on greedy randomized adaptive search and
variable neighbourhood search for the minimum labelling spanning
tree problem. European Journal of Operational Research, 196:440–
449, 2009.

[8] S. Consoli, J. A. Moreno, N. Mladenovic, and K. Darby-Dowman.
Constructive heuristics for the minimum labelling spanning tree prob-
lem: a preliminary comparison. Technical report, DEIOC Technical
Report., 2006.

[9] S. Consoli, J. A. Moreno, N. Mladenovic, and K. Darby-Dowman.
Mejora de la exploración y la explotación de las heurísticas construc-
tivas para el mlstp. In Spanish Meeting on Metaheuristics 2007, 2007.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. The MIT Press, 2nd edition, 2001.

[11] M. Dorigo and T. Stützle. Ant Colony Optimization. The MIT Press,
2004.

[12] S. O. Krumke and H.-C. Wirth. On the minimum label spanning tree
problem. Information Processing Letters, 66(2):81–85, 1998.

[13] J. Nummela and B. A. Julstrom. An effective genetic algorithm
for the minimum-label spanning tree problem. In GECCO ’06:
Proceedings of the 8th annual conference on Genetic and evolutionary
computation, pages 553–558, New York, NY, USA, 2006. ACM.

[14] T. Stützle and H. H. Hoos. Max-min ant system. Future Gener.
Comput. Syst., 16(9):889–914, 2000.

[15] Y. Wan, G. Chert, and Y. Xu. A note on the minimum label spanning
tree. Information Processing Letters, 84(2):99–101, 2002.

[16] Y. Xiong, B. Golden, and E. Wasil. Improved heuristics for the
minimum label spanning tree problem. In IEEE TRANSACTIONS
ON EVOLUTIONARY COMPUTATION, volume 10, December 2006.

