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ABSTRACT
In this paper we present the application of an evolution strategy to
the problem of detecting multi-planet transit events in photomet-
ric time-data series. Planetary transits occur when a planet regu-
larly eclipses its host star, reducing stellar luminosity.The transit
method is amongst the most successful detection methods forexo-
planets and is presently performed by space telescope missions.

The goal of the presented algorithm is to find high quality fitsof
multi-planet transit models to observational data, which is a chal-
lenging computational task. In particular we present a method for
an effective objective function evaluation and show how thealgo-
rithm can be implemented on graphics processing units. Results on
artificial test data with three artificial planets are reported.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence—Prob-
lem Solving, Control Methods, and Search

; G.4 [Mathematics of Computing]: Mathematical Software—
Algorithm design and analysis

; G.4 [Mathematics of Computing]: Mathematical Software—
Parallel and vector implementations

General Terms
Algorithms, Theory

Keywords
Evolution Strategies, Exoplanets, Transits, Model Fitting, Multi-
Planet Systems, GPU

1. INTRODUCTION
Due to the discovery of more than 400 planets around other stars

than our sun the field of exoplanet research attained vast impor-
tance in the last decades. See [14] for a comprehensive summary.
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Whereas most of these planets have been detected by ground-based
radial velocity measurements, thetransit-methodrecently became
more and more important due to space-based missions like CoRoT1

[4, 5] and Kepler [17]. In the course of these missions efficient
transit detection algorithms have been developed, mostly tailored
to the detection of single-planet transit events. Beyond that, also
approaches to detect multi-planet transiting systems havegained
attention recently, as for instance transit-timing variation analysis
due to possibly gravitational interactions of the involvedplanets.
However, so far no system of multiple planets has been detected
within photometric data sets which may have its cause in the in-
ability of current detection algorithms to deal with such scenarios.
Therefore, the development of alternative algorithmic approaches
currently is an attractive and promising field of research.

This work is based on [11], where the approach of simultane-
ously fitting multiple transit-models by metaheuristic algorithms
has been outlined first. As the performance of detection algorithms
is crucial due to large amounts of data to be analyzed, we focus on
a more efficient evaluation of the objective function for thetherein
presented approaches in this work. In addition we pursue an ap-
proach of reducing the parameter space in the case of more than
two planets, and show how the algorithm can be implemented ona
graphics processing unit (GPU). We call the algorithmic framework
presented in this work the ESTEX algorithm (Evolutionary Search
for Transiting EXoplanets).

After an informal problem description in Section 2 and giving
references to the most important previous works in Section 3, our
approach is presented in Sections 4 and 5. Computational results
are discussed in Section 6, and issues regarding the application of
the algorithm to real photometric data instances are addressed in
Section 7. Conclusions are finally drawn in Section 8.

2. PROBLEM DESCRIPTION
A transiting planet periodically shadows some of the light from

its host star for a short time when it moves into our line of sight to
the star. During the transit the luminosity of the star is marginally
reduced. By neglecting the in- and egress phases, the transit-
lightcurve can be well approximated by a periodic rectangular sig-
nal. The corresponding parameters are the periodp the transit oc-
curs with, a phase offsetτ, the lengthl of the transit, and finally the
transit depthd. The latter parameter corresponds to the percentage
of light from the star being shadowed by the transiting planet.

AssumingM planets, the signal of the model at timet is given

1CoRoT: ConvectionRotation and planetaryTransits; European
space telescope



by

φ(t) = f ∗−
M

∑
j=1

χt
jd j , (1)

where f ∗ denotes a further parameter describing the regular flux
(luminosity) of the host star, andχt

j indicates if planetj is transiting
at timet and is given by

χt
j =

{

1 if τ j < t mod p j ≤ τ j + l j
0 otherwise.

(2)

ParameterM needs to be specified, to avoid the danger of overfit-
ting when including it into the optimization process. The observed
data series is given by a list{(ti , fi)},1≤ i ≤ N, whereti denotes
a particular observation time andfi the observed photon flux (i.e.
luminosity) at that given time. Let further

mj = (p j , l j ,d j ,τ j) (3)

and hence~m be the vector of all model parameters (exceptf ∗).
The overall quality of the fit can be characterized by the rootmean
square error

f (~m, f ∗,~t, ~f ) =

√

√

√

√

1
N

N

∑
i=1

( fi −φ(ti))2. (4)

The objective is to find a parameter setup for~m and f ∗ minimiz-
ing Eq. (4), i.e. to find a model with minimal deviation from the
observations.

Due to stellar fluctuations and measurement errors real-world in-
stances contain noisy signals. The signal-to-noise ratioscan be ex-
pected to be very low, i.e. the respective values ofd j will be close
to the order of magnitude as the standard deviationσ f of the input
values.

3. PREVIOUS WORK
The development of efficient transit detection algorithms has re-

cently gained more interest in the scientific community, as space-
based missions like CoRoT [5] or Kepler [17] provide a great
amount of observational data. For instance, one observation cycle
of CoRoT consists of approximately 10.000 photometric measure-
ments with a resolution of 512 seconds of roughly 12.000 stars. Se-
lected parts can be observed with shorter time windows: the“alarm
mode” provides a higher resolution of 32 seconds. Other missions
like Kepler or the prospectedPLATOmission [8] will provide even
larger data sets. Filtering out a reasonable small subset ofcan-
didate planets for a further detailed analysis (including follow-up
radial velocity measurements) is thus a challenging problem from
a human and computational point of view. The problem is rela-
tively well solved for single planet signals around single host stars
but gets much more challenging for planets around binary stars and
multiple transiting planets, respectively.

Most of the existing approaches are particularly tailored to the
detection of single transit signals. Many algorithms are based on
phase dispersion minimization[25] where the objective is to find
the period in a discretized parameter space that minimizes the scat-
tering of the data folded w.r.t. that period. One of the most popu-
lar approaches is thebox fitting least-square algorithm(BLS) [18].
The search is performed for all periods of a discretized parameter
space, the data is then folded according to each of these periods
and a box shape is then fitted to the data. A comparison of BLS
with a matched-filter approach (see [16] and [7]) is performed in
[26]. In [12] the authors combine BLS performed on a coarse grid

with a subsequent Newton-Raphson refinement. Further compar-
isons and analyses are presented in [2]. In [21] the authors propose
a wavelet-based algorithm, a heuristic Markov Chain Monte Carlo
method has been suggested in [13], and a further alternativemethod
“BAST” can be found in [22]. In the latter approach a box-search
for transit-like events is carried out in the unfolded data.

So far, not much effort has been taken in the direction of the de-
velopment of efficient algorithms for the detection of multi-planet
transiting systems (MTSs). An iterative approach, which purely
sequentially determines planet fits, is described in [15]. Obviously,
such iterative techniques may particularly fail when multiple sig-
nals of the same order of magnitude are involved. The major prob-
lem is when fitting the signal of one individual planet (probably
the one with strongest signals) of a MTS does not allow for the
identification of a clear transit-shape due to the interference of the
remaining planets signals.

As the majority of existing algorithms operate on binned phase-
folded data the remaining signal may be completely vanishedas it
will be blurred over the phase of the first planet. These effects cre-
ate the need for a method to simultaneously fitting multiple signals.

So far, no system with multiple transiting planets has been de-
tected – up to now, such systems have only been revealed by the
radial velocity method. The current goal is to find multiple systems
in the available photometric data. Existing methods are likely to
miss such systems in particular, as they would manifest withmul-
tiple signals of approximately the same order of magnitude.We
therefore deduce the necessity of a fully-automatic procedure be-
ing capable of fitting multi-planet transit models to the observation
data.

Various applications for evolutionary algorithms in the field of
astronomy are outlined in [9] and have since then been successfully
applied for many purposes. Fitting procedures based on Evolution
Strategies have been considered in [10], where parameters of Kep-
lerian models are successfully determined by fitting them toradial
velocity data. In this work we pursue the application of Evolution
Strategies to the problem on photometric data as introducedin Sec-
tion 2. Properties of the search space have been analyzed in [11],
coming to the conclusion, that the search landscape does notcon-
tain much guiding information, as most parameter configurations
do not yield lower values of Eq. 4 than settingφ(t) to the aver-
age value of~f for all t. If the small basin of attraction w.r.t. the
parameters of one particular planet has been found, it is, however,
relatively easy to find the corresponding optimum even without ap-
plication of specialized numeric local optimization methods.

4. IMPROVEMENT AND EVALUATION
OF CANDIDATE SOLUTIONS

The overall search process becomes more efficient, when op-
timal values of depthsd j are automatically derived fromp j , l j ,
and τ j for each planetj . For this purpose we introduce bi-
nary flags(b1, . . . ,bM) ∈ {0,1}M for each observation pointoi =
(ti , fi), i = 1, . . . ,N, indicating which planet is transiting at the given
time according to the current (partial) modelp j , l j ,τ j for each
j = 1, . . . ,M. These flags can be interpreted as integer number
with binary representationb1b2 . . .bM ∈ [0,2M − 1], implying a
partitioning of the setO = {o1, . . . ,oN} of all observation points
O = O0∪O1∪ . . .∪O2M−1. Assuming, for example, two planets
M = 2 we obtain the set of out-of-transit observationsO0, the sets
O1,O2 of transit events of planets one and two respectively, and
the setO3 where planets one and two are transiting simultaneously.



Optimal transit depths can be derived by minimizing

f (~d) =
N

∑
i=1

(

fi −
(

f ∗−
M

∑
j=1

χi
jd j

))2

, (5)

which can be achieved by solving the system of linear equations
resulting from

∂ f (~d)

∂dk
= 2

N

∑
i=1

(

fi− f ∗+
M

∑
j=1

χi
jd j

)

·χi
k = 0 (6)

for all k = 1, . . . ,M. Let

f̂ K = ∑
i∈S

k∈K Ok

fi , K ⊆ {0, . . . ,2M −1} (7)

denote the sum of the observed photon fluxes from groups
S

k∈K Ok, and f̂ = ∑N
i=1 fi . Let furthernK = |Sk∈K Ok| andχ̃i

j , j =

1, . . . ,2M − 1, i = 1, . . . ,N, indicate if observationi belongs to
group j . For the caseM = 2 direct expressions can be derived (see
[11]), whereas the general case (M > 2) requires the solution of the
system of linear equations given by (6). For this purpose we need
to rewrite (6) in order to resolve the values of the coefficients of
dk. Let Γ(.) denote the set of group indices belonging to the planet
indices given as argument(s), i.e. the set of alll = 1, . . . ,2M − 1
where the bitwise logic comparison with all of its argumentsyields
a positive value. We obtain

M

∑
j=1

nΓ( j,k) ·d j = nΓ(k) · f ∗− f̂ Γ(k) (8)

for eachk = 1, . . . ,M. To give an example, fork = 2 we obtain
∣

∣O3∪O7
∣

∣ · d1 +
∣

∣O2∪O3∪O6∪O7
∣

∣ · d2 +
∣

∣O6∪O7
∣

∣ · d3 for the
term on the left hand side of (8).

4.1 Speeding up the objective function evalu-
ation

By splitting the sum over all observation points in one sum for
out-of-transit measurements and another one for in-transit events,
we can rewrite (4) as

f (~m,~t, ~f ) =

√

1
N ∑

i∈O0

( fi− f ∗)2 +
1
N ∑

i∈O\O0

( fi−φ(ti))2. (9)

We can speed up the objective function evaluation by not iterating
over allN observation points when evaluating (4), but only iterating
over points where a transit event occurs. To do so we rewrite the
first term in the square root of (9) to

1
N

(

∑
i∈O0

f 2
i +n0 f ∗2−2 f ∗ ∑

i∈O0

fi

)

. (10)

These three terms can now be reformulated such that no pointsfrom
O0 need to be considered for evaluating (4), whenf̂sq = ∑N

i=1 f 2
i

and f̂ are computed in advance. In particular we get

∑
i∈O0

f 2
i = f̂sq− ∑

i∈O\O0

f 2
i , (11a)

f ∗2 = ( f̂ − ∑
i∈O\O0

fi), (11b)

∑
i∈O0

fi = f̂ − ∑
i∈O\O0

fi , (11c)

where all terms from the right hand sides can either be computed
in advance or contain in-transit points exclusively.

However, given the model parameters~m we do not know their
implied index setsOk in advance. In order to avoid iterating over
the whole index set we use the following algorithm for a fast com-
putation of (4), which uses estimations of the start-indices of the
next transit to “jump” over the out-of-transit parts. For this we em-
ploy an arrayScontaining pairs(idx,t) of next transit start indices
and times for each planet at each time. The final outcome is a list
T of index-pairs containing the in-transit intervals.

Algorithm 1: build-transit-indicator()

1 build initial start-listS
2 i←minidx S
3 while (i < N) do
4 istart← i
5 while i < N∧ χ̃i > 0 do i← i +1
6 iend← i
7 T← T ∪ (istart, iend)
8 if i < N then
9 update-start-list(i)

10 i← (argmint S).idx
11 end
12 end

Algorithm 1 shows the main procedure of building upT. In a first
step, start-listS is initialized (line 1) by determining the first transit
event of each planet. In the subsequent loop (line 3) index-pairs
of transit events are successively added by extracting the minimum
index fromS(line 9), incrementing the index as long as staying in-
transit (line 5), and performing respective updates of the start-listS.
Functionχ̃i = ∑2M−1

j=1 j · χ̃i
j indicates which planets are transiting at

time ti , i.e. χ̃i = 0 if there are no transits atti , and for instancẽχi =

2(p−1) + 2(q−1) if planetsp andq are transiting simultaneously at
time ti . Henceχ̃i is the interpretation of the binary flagsb1b2 . . .bM
introduced at the beginning of this section as integer numbers.

Algorithm 2: update-start-list(itcurr)

1 for j = 1, . . . ,M do
2 inew← itcurr

3 while inew≤ itcurr do
4 t← find-next-transit-start-time( j)
5 inew← find-time-index(itcurr,t)
6 end
7 S[ j ].idx← inew
8 S[ j ].t← t
9 end

Algorithm 2 shows the update procedure of start-listS. The
argumentitcurr denotes the current position in the time array, i.e.
we are looking for the next transit-start-times aftertitcurr

. This is
achieved by iteratively searching for the next transit times of each
planet (w.r.t. the current status ofS) as long as it remains smaller
than titcurr

(see lines 3-6 in Algorithm 2). For this purpose func-
tion find-next-transit-start-time(t) (Algorithm 3) is used
to determine the timet on the one hand (line 4), and on the other
hand functionfind-time-index(itcurr) (Algorithm 4) to find the
corresponding index (line 5).

Functionfind-next-transit-start-time( j) (Algorithm 3)
returns the next transit start time for planetj w.r.t. the current status
of S. If Shas already been initialized (line 1) we simply have to add



the periodp j to the current value. Otherwise the first transit start-
time according tot0 has to be determined. In line 7 of Algorithm
3 we assign the relative position in phase of observation time t0
to variablet, taking care of the special caseτ j + l j > p j , which
is necessary for the actual calculation of the transit starttimes in
line 8.

Algorithm 3: find-next-transit-start-time(j)

1 if S[ j ].t not uninitializedthen
2 // this is not the first entry
3 //→ simply add period
4 return t + p j

5 else
6 // first transit

7 t←
{

t0 mod p j + p j if τ j + l j > p j ∧ t < τ j

t0 mod p j otherwise

8 t+←
{

t0 +(τ j − t) if t < τ j + l j

t0 +(τ j + p j − t) otherwise

9 return t+

10 end

Given these transit start times, the corresponding indicesof~t still
need to be determined. Although the input-data is mostly equally
sampled, there may be missing points or even sequences. Thus
we use functionfind-time-index (Algorithm 4) to search for the
correct start-index. This procedure is based on iterative predictions
of the position in~t (line 6 and 7) by dividing the interval from the
current time to the search-time by∆tavg, the average time interval
(ti+1− ti).

Algorithm 4: find-time-index(itcurr,t)

1 tcurr← titcurr

2 ∆t← t− tcurr
3 iest← itcurr +∆t/∆tavg
4 while¬(tiest≤ t ∧ tiest+1 > t) do
5 tcurr← tiest

6 ∆t← t− tcurr
7 iest← iest+∆t/∆tavg

8 end
9 return iest

Note that the calculation of transit depths according to (6)re-
quires an additional iteration over all in-transit data-points, whereas
using it together with the transit-indicator does not implya further
additional iteration, as the information for calculating the transit
depths is already gathered by building up the transit-indicatorT.

4.2 Parallelization by Utilization of the
Graphics Processing Unit (GPU)

Population based metaheuristics typically provide the possibility
for easy parallelization, as operations like variation or evaluation
usually have to be performed for many candidate solution. Inour
case there is an additional potential for parallelization,as for each
fitness function evaluation a huge amount of data points needs to
be compared to the model, comprising identical operations for each
such point. This aspect has already been successfully exploited in
other contexts, see e.g. [23].

Such situations are usually classified asSingle Instruction, Mul-
tiple Data(SIMD). Over the recent years, the deployment ofgraph-

ics processing units(GPUs) became very popular for general com-
puting purposes possibly subject to parallelization, as they are espe-
cially designed for high parallelism. Due to open application pro-
gramming interfaces it is relatively comfortable to use thestream-
ing multiprocessors (SMs) of a graphics card forgeneral pur-
pose computing on GPUs(GPGPU); see for instance [20] for a
broad overview. For our implementation we specifically usedthe
NVIDIA CUDA interface [1]. If parallelization is performedon
the level of whole candidate solutions(coarse-grained approach),
we usually do not fully load the GPU. As a consequence the gain
is only moderate. In order to exploit the capabilities of theGPU
in a better way, an additional parallelization on data-level is more
fruitful (fine-grained approach).

As first step when evaluating a candidate model, we need to cal-
culate the optimal transit depths for each planet. In order to solve
Eqs. (8) we need to iterate over all data points to computef̂ K .
These operations can be carried out in parallel for equally sized
groups of data, merging the results afterwards. Having calculated
d j , j = 1, . . . ,M, we need to compute the result of Eq. (4), again
requiring to iterate over all data points. The algorithms described
in Section 4.1 by-pass the iterations over the whole index set for
the execution on CPUs, which can however not be transfered to
the GPU, as the resulting code provides no direct way for paral-
lelization. So the same splitting and merging steps as done for the
calculation ofd j are carried out again. To fully benefit from the
GPU’s computational power it needs to be carefully decided which
entities (blocks of data, groups of candidate solutions) ofwhich
size are assigned to the SMs. This issue is addressed in more detail
in Section 6.1, where corresponding results are also presented.

5. GLOBAL OPTIMIZATION BY EVOLU-
TION STRATEGIES

To solve the global parameter optimization problem, we use an
Evolution Strategy(ES) [3], as this particular metaheuristic turned
out to be adequate for this problem in a preceding comparison[11].
The ES can be classified as a(µ,λ)-ES with self-adaptation of strat-
egy parameters [24], whereµ denotes the size of the population
andλ the number of offsprings created in each iteration. For each
parameterxk of each individual in the population, mutation is per-
formed in the following, usual way,

x′k = xk +Nk(0,σ′k), (12)

where N(0,σ) denotes the Gaussian distribution having a mean
value of zero and a standard deviationσ. The valuesσ′k ∈ [10−5,∞]
are used as strategy parameters which themselves undergo the pro-
cess of mutation, given by

σ′k = σk ·eN(0,τ0)+Nk(0,τ). (13)

This self-adaptive process attempts to exploit propertiesof the fit-
ness landscape and thus facilitates an efficient search process. It
turned out to be advantageous to use a variant of elitist-selection
which creates the new population by deterministically taking the
bestµ individuals from theµ parents andλ offsprings, but tak-
ing at mostµ̂ individuals from the parents. Hence, our selection
is in fact in-between(µ+ λ)-selection and(µ,λ)-selection. The
reason behind this approach is to support exploitation of the re-
gions around the best solutions found so far, which is ratherim-
portant, as the basins of attraction are relatively small. Not exclu-
sively using the(µ+ λ)-strategy reduces the risk of getting stuck
to local optima. Following the suggestions in [24], we set parame-

tersτ =
(

√

2
√

4·M +1
)−1

andτ0 =
(

√

2(4·M +1)
)−1

. If some



Table 1: Test-instances (no. 100-111) with corresponding suc-
cess ratios and average running times for signals with one arti-
ficial planet.

Parameters (% opt.) tavg[s]
p l d τ σN : 0 100 300 0 100 300

1.0 0.10 100.0 0.5 100 98 82 13 20 118
1.0 0.10 500.0 0.5 100 100 100 12 9 18
2.0 0.10 100.0 0.5 100 100 72 6 6 146
2.0 0.10 500.0 0.5 100 100 100 7 6 6
2.0 0.10 100.0 0.5 100 100 100 7 6 6
2.0 0.05 500.0 0.5 100 100 n/a 6 8 n/a
1.0 0.05 500.0 0.5 98 100 80 23 21 81
1.0 0.05 300.0 0.5 96 98 64 33 27 161
1.0 0.05 100.0 0.5 100 94 n/a 22 50 n/a
1.0 0.02 500.0 0.5 80 82 32 82 63 302
1.0 0.02 300.0 0.5 74 46 8 95 154 421
1.0 0.02 100.0 0.5 60 44 n/a 121 257 n/a

depth is set to 0.0 – implying that this particular planet-model does
not improve the quality of the fit at all – a new random planet is
created on this position, which might increase diversity among the
population. Prior to mutation, recombination is applied with prob-
ability PR ∈ [0,1]. We use the intermediate recombination, given
by

x′k = αk ·x1
k +(1−αk)x

2
k, (14)

wherex1
k and x2

k denote the parameters of the parents andαk is
a uniform random number from the interval[−β,1+ β] for each
parameterk, whereβ = 1

2 turned out to be most successful.

6. RESULTS
For a comprehensive evaluation of the presented algorithmswe

created artificial test-instances with up to three planets.Stellar jit-
ter and measurement errors of real data instances are simulated by
adding Gaussian random values to each data point in the artificial
signal. For each configuration three instances with different noise-
levels are created,σN = 0,σN = 100 andσN = 300.

For our computational experiments we use the following param-
eter setting that has been determined in preliminary tests:µ =
100,λ = 500, µ̂ = 50. Prior to mutation we perform intermediate
recombination for the strategy parameters and parameters with a
probability ofPR= 0.8, which showed the overall best performance
within preliminary tests. The maximum number of iterationswas
set to 2000 and no time limit has been imposed, but the runs have
been stopped as soon as the correct solution has been found. All
tests have been performed on a cluster consisting of Intel Xeon
E5540 processors operating at 2.53 GHz and having 24 GB for to-
tally 8 cores.

Let~m′ = (~m, f ∗), and f (~m′g) denote, as shorthand forf (~m′g,~t, ~f ),
the objective function value of thegeneratedsignal with parame-
ters~m′g. We call all solutions withf (~m′) ≤ f (~m′g)+ ε “optimal”,

for our experiments we usedε = 10−5. It is important to note, that
for noisy signals more than one solution~m′ with f (~m′)≤ f (~m′g)+ε
will exist, as the noise added to the generated signal will render~m′g
subobtimal. Our experiments showed that typically all of these so-
lutions closely correspond to the parameters used for signal gener-
ation, i.e. no significant deviations have been observed. Inpractice,
finding any of these solutions would be sufficient for the detection
of the planetary system.

Tables 1 and 2 show results for test instances containing oneand
two artificial signals, respectively. We report the percentage of runs

Table 2: Test-instances (no. 210-219) with corresponding suc-
cess ratios and average running times for signals with two arti-
ficial planets.

Parameters (% opt.) tavg[s]
p l d τ σN : 0 100 300 0 100 300

1.0 0.10 500.0 0.5 88 94 80 251 161 318
2.2 0.10 500.0 1.0
1.0 0.10 500.0 0.5 100 100 78 92 91 332
2.2 0.10 300.0 1.0
1.0 0.10 300.0 0.5 56 54 14 532 501 917
2.2 0.10 500.0 1.0
1.0 0.05 500.0 0.5 86 70 20 227 377 655
2.2 0.05 500.0 1.0
1.0 0.05 400.0 0.5 70 76 60 312 276 378
7.5 0.20 500.0 1.0
1.0 0.10 400.0 0.5 64 70 84 487 430 244
7.5 0.50 500.0 1.0
1.0 0.05 400.0 0.5 28 26 14 615 705 841
3.1 0.10 500.0 1.0
1.0 0.05 500.0 0.5 64 76 34 410 313 660
3.1 0.10 400.0 1.0
1.0 0.05 500.0 0.5 90 88 44 228 207 608
3.1 0.10 300.0 1.0
1.0 0.05 500.0 0.5 94 88 56 215 244 525
3.1 0.10 200.0 1.0

where “optimal” solutions have been obtained and average running
times for three different noise levelsσN. Fifty independent runs
have been performed for each such case. For some instances with
σ = 300 no results are available (indicated by “n/a”), as the algo-
rithm stopped prematurely because of solutions having lower fit-
ness values than the intended optimal solution corresponding to the
original artificial signal. We can observe, that the algorithm is able
to find the original signal with high probability, in particular for
the case of one planet with a probability close to one for almost
all instances. As expected, the detection efficiency decreases sig-
nificantly in the case the noise exaggerates the signal power. In
the case of two artificial signals, the probability of signaldetection
is still high enough to provide a satisfactory detection probability
when the algorithm is executed two or three times on the particular
data instance.

Table 3 shows results for three-planet signals, average compu-
tational times for a full run are roughly 2000 seconds. What can
already be observed from the one- and two-planet results is (the
obvious) property that detection efficiency is highly dependent on
the signal power, which is given by the parametersd and l . To
study this effect in more detail, we systematically vary theparam-
etersd and l and keep the other parameters fixed to the values
p1 = 1.0, p2 = 3.3, p3 = 7.7,τ1 = 0.5,τ2 = 1.0,τ3 = 2.5. A sys-
tematic study of the detection efficiency in dependence of the other
parameters is beyond the scope of this work. However, preliminary
results indicate that their variation has less impact than the variation
of d andl . It can be observed that signals containing more noise are
often detected more frequently, which is due to the particular stop-
ping criterion and our definition of optimal solutions mentioned
in the last paragraph. Most notably, the results show that even a
relatively large amount ofwhite noise in general does not have a
substantial negative impact on detection efficiency.

All results have been computed by using the parameter-space
reduction and advanced fitness-function evaluation methodas de-
scribed in Section 4. The optimal calculation of the depths signif-
icantly improves the ability of the algorithm to improve existing



solutions fast. The advanced fitness function evaluation procedure
improves the overall running times of up to a factor of four.

The results indicate that the algorithm is a promising tool for
multi-planet transit detection, as, at least for the considered kinds
of instances, optimal solutions can be obtained with relatively high
probability and reasonable running times.

6.1 GPU Results
In this section we present results and hardware specific param-

eter settings regarding our GPU-implementation of the ESTEX al-
gorithm. As test platform we used an AMD Athlon 64 3200+ PC
with 2000 MHz with aGeForce 9600 GTGPU with eight stream-
ing multiprocessors (SMs). Each of these SMs can execute 32
threads, calledwarps. It is usually a good practice to pass larger
blocks (groups of threads) to the GPU as particular threads of a
warp may be stalled due to relatively time consuming instructions,
such as memory access instructions [1]. In our case, the number
of SM registers is the limiting factor. There are 8192 registers
available on each SM, but each thread is assigned its own physi-
cal registers, which then cannot be used by other threads until the
considered block is finished. As each of these threads require 23
registers to perform its instructions, we obtain an upper bound of
8192/23 = 356 for the number of threads to be assigned to one
SM. It is however only possible to specify numbers of threadscor-
responding to powers of two, so we obtain 8192/32 = 256 as the
number of threads assigned to one SM. From this we can see, that
within the coarse grained approach we do not fully load the GPU,
even if the number of individuals corresponds to the number of
threads that can be executed in parallel on the GPU. This expected
behaviour is also confirmed by the experiments summarized inTa-
ble 4.

We therefore group the input-data (of usually 104 points) indata-
blocksand evaluate 256 candidate models on one SM. Using a data-
block size of 1250 therefore fully loads the eight availableSMs.
Table 4 gives an overview of the running-times achieved by var-
ious data-block sizes for a typical two-planet instance. The best
considered assignment to the eight available SMs yields a speedup
factor of almost forty, and we can expect this factor to grow al-
most linearly with the number of available SMs. For three-planet
systems the situation gets more complicated, as we are required to
solve a system of linear equations (8). Nevertheless, we arecon-
fident to be able to nearly conserve the speedup factor, by using
GPU-implementations of solvers for systems of linear equations
like [6].

Compared to the CPU variant using the improved objective func-
tion evaluation methods from Section 4.1 (which probably cannot
be reasonably implemented on GPUs) we still have a speedup of
a factor more than eight. Hence the GPU approach makes partic-
ularly sense for the application on modern workstations forappli-
cation scenarios when scientists want to compute fits for specifi-
cally selected instances. On recently emerging GPU clusters this
approach is also auspicious for the processing of large-scale data
sets.

7. REAL DATA INSTANCES
Although many single planet fitting-algorithms use box-shaped

models, more accurate models significantly improve the algorithms
ability to find multiple planetary systems. As real transit signatures
deviate from the simple box shape, residuals resulting fromsub-
tracting an (optimal) box shape remain in the signal and willdue
to their periodicity likely obscure further planetary signals. This
is particularly true for heuristic search processes as suchartifacts
might introduce strong local optima possibly attracting many solu-

Table 4: Running times of instance art-215-j when using GPU
with various parameter settings compared to CPU version
(with and without transit indicator). Parameter settings: µ =
50,λ = 230, itmax = 500.

Processing Unit Ind. per SM Data-blocks t[s]
1 SM 256 coarse 77
2 SM 128 coarse 72
4 SM 64 coarse 72
8 SM 32 coarse 70
2 SM 256 5000 40
4 SM 256 2500 22
8 SM 256 1250 14
CPU (transit indicator) n/a n/a 119
CPU (no transit indicator) n/a n/a 528

tion candidates and therefore leading to convergence to a subopti-
mal solution even in the case these artifacts have less powerthan
the real further planetary signals. We are hence interestedin a very
accurate description of the real transit shape. A reasonable accurate
transit model is determined by the relative size of the planet to the
star as well as theimpact parameter, which is the distance of the
transiting line to the center of the host star, and the stellar limb dark-
ening. Exact transit models have been developed in [19] and can be
easily integrated into the presented algorithms by the instruction of
further model parameters. For preliminary experiments with real
photometric data we applied the following simpler transit model
by introducing one further parametersj ∈ [0,1],1 ≤ j ≤ M. We
therefore redefinemj = (p j , l j ,d j ,τ j ,sj). The following sigmoid-
shaped functions can be used to obtain a more accurate description
of the transit shape:

u1(t) =
(

1+eξ−2·ξ·t
)−1

, (15)

u2(t) =
(

1+e−ξ+2·ξ·t
)−1

. (16)

Within these formulas the constantξ used as a factor fort in the ex-
ponent determines the slope of the sigmoid shape, the additive term
ξ transforms the sigmoid shape in interval[0,1]. Reasonable val-
ues are 5≤ ξ≤ 10. Withu1(t) andu2(t) we can use the following
functions to describe the ingress and egress phase of the transit.

ũ1(t,mj) = u1

(

2(t mod p j − τ j)

sj · l j

)

, (17)

ũ2(t,mj ) = u2

(

2(t mod p j − τ j − l j +
sj
2 l j )

sj · l j

)

. (18)

The whole transit-shape is then given by

χ j (s,t) =















ũ1(t,mj ) if τ j < t mod p j < τ j +
sj
2 l j

ũ2(t,mj ) if τ j + l j − sj

2 l j < t mod p j < τ j + l j

1 if τ j +
sj
2 l j < t mod p j ≤ τ j + l j − sj

2 l j
0 otherwise.

(19)
instead of Eq. (2) used for the box-model, and now provides con-
tinuous values indicating the percentage of total transit depth for
planet j at timet.

Small values ofs approximate a V-shaped transit, whereas inter-
mediate values correspond to a typical (planetary) U-shaped signal.



Table 3: Success ratios for three-planet artificial test instances (no. 300-363). All of these instances have in common the parameters
p1 = 1.0, p2 = 3.3, p3 = 7.7,τ1 = 0.5,τ2 = 1.0,τ3 = 2.5.

Parameters (% opt.) Parameters (% opt.) Parameters (% opt.)
l1, l2, l3 d1,d2,d3 σN : 0 100 300 l1, l2, l3 d1,d2,d3 σN : 0 100 300 l1, l2, l3 d1,d2,d3 σN : 0 100 300

0.05, 0.15, 0.40 400, 400, 400 30 14 46 0.10, 0.15, 0.80 400, 200, 400 56 40 64 0.10, 0.30, 0.40 400, 200, 200 40 30 26
0.10, 0.15, 0.40 400, 400, 400 28 30 74 0.10, 0.30, 0.80 400, 200, 400 30 28 70 0.05, 0.30, 0.80 400, 200, 200 8 20 20
0.05, 0.30, 0.40 400, 400, 400 36 34 56 0.05, 0.15, 0.40 400, 400, 200 22 56 50 0.10, 0.15, 0.80 400, 200, 200 22 42 28
0.05, 0.15, 0.80 400, 400, 400 26 30 24 0.10, 0.15, 0.40 400, 400, 200 46 52 92 0.10, 0.30, 0.80 400, 200, 200 20 8 22
0.10, 0.30, 0.40 400, 400, 400 44 34 68 0.05, 0.30, 0.40 400, 400, 200 28 58 58 0.05, 0.15, 0.40 200, 400, 200 40 30 2
0.05, 0.30, 0.80 400, 400, 400 24 26 38 0.05, 0.15, 0.80 400, 400, 200 14 24 8 0.10, 0.15, 0.40 200, 400, 200 40 64 70
0.10, 0.15, 0.80 400, 400, 400 32 36 74 0.10, 0.30, 0.40 400, 400, 200 36 48 82 0.05, 0.30, 0.40 200, 400, 200 36 44 36
0.10, 0.30, 0.80 400, 400, 400 44 26 70 0.05, 0.30, 0.80 400, 400, 200 10 40 58 0.05, 0.15, 0.80 200, 400, 200 24 8 22
0.05, 0.15, 0.40 200, 400, 400 24 28 28 0.10, 0.15, 0.80 400, 400, 200 6 16 22 0.10, 0.30, 0.40 200, 400, 200 54 64 68
0.10, 0.15, 0.40 200, 400, 400 38 36 58 0.10, 0.30, 0.80 400, 400, 200 30 26 84 0.05, 0.30, 0.80 200, 400, 200 24 44 42
0.05, 0.30, 0.40 200, 400, 400 48 50 16 0.05, 0.15, 0.40 200, 200, 400 44 36 18 0.10, 0.15, 0.80 200, 400, 200 24 36 56
0.05, 0.15, 0.80 200, 400, 400 36 32 28 0.10, 0.15, 0.40 200, 200, 400 46 56 46 0.10, 0.30, 0.80 200, 400, 200 50 80 66
0.10, 0.30, 0.40 200, 400, 400 56 68 56 0.05, 0.30, 0.40 200, 200, 400 36 30 44 0.05, 0.15, 0.40 200, 200, 200 38 46 36
0.05, 0.30, 0.80 200, 400, 400 36 38 28 0.05, 0.15, 0.80 200, 200, 400 40 22 20 0.10, 0.15, 0.40 200, 200, 200 68 68 50
0.10, 0.15, 0.80 200, 400, 400 46 38 66 0.10, 0.30, 0.40 200, 200, 400 40 30 62 0.05, 0.30, 0.40 200, 200, 200 44 52 14
0.10, 0.30, 0.80 200, 400, 400 50 44 30 0.05, 0.30, 0.80 200, 200, 400 26 42 38 0.05, 0.15, 0.80 200, 200, 200 28 36 30
0.05, 0.15, 0.40 400, 200, 400 28 22 60 0.10, 0.15, 0.80 200, 200, 400 46 52 74 0.10, 0.30, 0.40 200, 200, 200 44 52 64
0.10, 0.15, 0.40 400, 200, 400 52 40 60 0.10, 0.30, 0.80 200, 200, 400 46 50 85 0.05, 0.30, 0.80 200, 200, 200 16 44 28
0.05, 0.30, 0.40 400, 200, 400 26 34 66 0.05, 0.15, 0.40 400, 200, 200 16 18 54 0.10, 0.15, 0.80 200, 200, 200 32 46 68
0.05, 0.15, 0.80 400, 200, 400 24 20 62 0.10, 0.15, 0.40 400, 200, 200 44 20 76 0.10, 0.15, 0.80 200, 200, 200 44 34 72
0.10, 0.30, 0.40 400, 200, 400 40 32 50 0.05, 0.30, 0.40 400, 200, 200 26 28 68
0.05, 0.30, 0.80 400, 200, 400 26 24 54 0.05, 0.15, 0.80 400, 200, 200 4 4 22

Values close to zero correspond to a box like shape, which is typical
for relatively small planets producing central transits.

In order to determine the optimal transit depths we do, however,
still implicitly use the rectangular shape, as it enables totake aver-
age values over the particular index setsOi , i ∈ [0,2M ], as a basis
for the calculations given by Eqs. (8). However, by this procedure
we systematically underestimate the transit depths in roughly linear
dependence of parametersj . We therefore approximately correct
the depths according to the following formula

d′j = d j · (1+sj ), (20)

which turned out to work well by computational experiments.
First experiments with real photometric data series already

showed that this transit model already overcomes the discussed is-
sues of the box-shape and therefore significantly improves conver-
gence properties.

A further important issue regarding the application to realpho-
tometric data is how to identify promising planetary candidates
amongst the huge set of computed fits. Having computed fits for
particular data instances we need to discriminate between just hav-
ing adjusted the model parameters to noise and artifacts, orhaving
found plausible transit signals. The primary parameter forsuch dis-
criminative test is the signal-to-noise ratio in the particular transit-
phases compared to the signal power (i.e. transit length anddepth)
of the model, e.g. see [16, 18]. As a first simple approach we can
for each planet consider the ratio of the standard deviations within
each transit phase of the residual signal, i.e. the obtainedfit sub-
tracted from the data, to the corresponding transit depth. For a
plausible fit the depth must be significantly larger than the order of
magnitude of scattering within the transit phase. Having found a
plausible fit, there still is the chance of just facing stellar variability
or eclipsing binary stars. Many of these cases can likely be elim-
inated by checking the parameters for plausibility, see [27]. The
development of more sophisticated and reliable methods to iden-
tify promising candidates, however, remains future work, as this
work primarily deals with optimization aspect of the problem.

8. CONCLUSIONS AND FUTURE WORK
The computational experiments presented in Section 6 clearly

show that the ESTEX algorithm performs quite well on the consid-
ered test instances. In the course of our computational experiments
the methods to speed up the objective function evaluation inSec-
tion 4.1 turned out to reduce the overall computation time ofup to
a factor of four. This method, as well as the parameter space reduc-
tion by the calculation of optimal depths according to some given
partial solution is not only applicable to the ESTEX algorithm, but
also to any other metaheuristic global optimization procedure. A
further improvement can be obtained by parallelizing the computa-
tions by using graphics processing units. A speedup of a factor up
to forty compared to the naive implementation, and more thaneight
compared to the algorithm using the improved evaluation method
can be already achieved on current medium-class GPUs.

In order to process large data sets as provided by space telescopes
like CoRoT or Kepler, a single computer will not be able to perform
the computations within a reasonable amount of time like days or
weeks. This is however no limitation, as (CPU) computing clusters
are available at many academic institutions. The most appropriate
computing environment would though be a GPU-grid supporting
a highly parallelized execution of the algorithms. However, such
GPU-grids are currently not as prevalent as CPU-grids, justifying
the CPU-variant of the ESTEX algorithm. Furthermore it is cur-
rently the only way to handle models of more than two planets.

To our best knowledge, the presented algorithms are the first
fully-automatic methods for fitting multi-planet transit models to
photometric time-data series. Hence these algorithms might be a
useful tool for the discovery of the first planetary system with mul-
tiple transiting planets.
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