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ABSTRACT

In this paper we present the application of an evolutioriagrato
the problem of detecting multi-planet transit events intphwet-
ric time-data series. Planetary transits occur when a plaggi-
larly eclipses its host star, reducing stellar luminosite transit
method is amongst the most successful detection metho@sder
planets and is presently performed by space telescopeomsssi
The goal of the presented algorithm is to find high qualitydits
multi-planet transit models to observational data, which chal-
lenging computational task. In particular we present a oeflor
an effective objective function evaluation and show howdly-
rithm can be implemented on graphics processing units. |[Resu
artificial test data with three artificial planets are repdrt
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1. INTRODUCTION

Due to the discovery of more than 400 planets around othes sta
than our sun the field of exoplanet research attained vastrimp
tance in the last decades. See [14] for a comprehensive syymma
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Whereas most of these planets have been detected by grasad-b
radial velocity measurements, thransit-methodrecently became
more and more important due to space-based missions like CoR
[4, 5] and Kepler [17]. In the course of these missions efficie
transit detection algorithms have been developed, masillgréd
to the detection of single-planet transit events. Beyorad, thlso
approaches to detect multi-planet transiting systems paused
attention recently, as for instance transit-timing vaoiatanalysis
due to possibly gravitational interactions of the involy@enets.
However, so far no system of multiple planets has been astect
within photometric data sets which may have its cause inthe i
ability of current detection algorithms to deal with suclersarios.
Therefore, the development of alternative algorithmicrapphes
currently is an attractive and promising field of research.

This work is based on [11], where the approach of simultane-
ously fitting multiple transit-models by metaheuristic @ighms
has been outlined first. As the performance of detectionribgos
is crucial due to large amounts of data to be analyzed, wesfonu
a more efficient evaluation of the objective function for therein
presented approaches in this work. In addition we pursuepan a
proach of reducing the parameter space in the case of mane tha
two planets, and show how the algorithm can be implemented on
graphics processing unit (GPU). We call the algorithmiofesvork
presented in this work thedg Ex algorithm (Evolutionary Search
for Transiting EXoplanets).

After an informal problem description in Section 2 and givin
references to the most important previous works in SectjauB
approach is presented in Sections 4 and 5. Computationadtges
are discussed in Section 6, and issues regarding the ajpmhicH
the algorithm to real photometric data instances are adedem
Section 7. Conclusions are finally drawn in Section 8.

2. PROBLEM DESCRIPTION

A transiting planet periodically shadows some of the ligbtrf
its host star for a short time when it moves into our line ohsimg
the star. During the transit the luminosity of the star is giraally
reduced. By neglecting the in- and egress phases, the ttransi
lightcurve can be well approximated by a periodic rectaagsig-
nal. The corresponding parameters are the pepitte transit oc-
curs with, a phase offset the length of the transit, and finally the
transit depthd. The latter parameter corresponds to the percentage
of light from the star being shadowed by the transiting plane
AssumingM planets, the signal of the model at timés given

1CoRoT: Convection Rotation and planetarifransits; European
space telescope
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where f* denotes a further parameter describing the regular flux

(luminosity) of the host star, ar)q indicates if planef is transiting

at timet and is given by

th:{

ParameteM needs to be specified, to avoid the danger of overfit-
ting when including it into the optimization process. Theetved
data series is given by a lig(t;, fi)},1 < i < N, wheret; denotes

a particular observation time arfgdthe observed photon flux (i.e.
luminosity) at that given time. Let further
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if 1y <t modpj <Tj+1j
otherwise.
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mj = (pj,lj,dj,Tj) ®)

and hencem be the vector of all model parameters (excépy.
The overall quality of the fit can be characterized by the rean
square error

-,
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The objective is to find a parameter setup foand f* minimiz-

ing Eq. (4), i.e. to find a model with minimal deviation frometh

observations.

Due to stellar fluctuations and measurement errors redthior
stances contain noisy signals. The signal-to-noise ratiaose ex-
pected to be very low, i.e. the respective valued;ofill be close
to the order of magnitude as the standard deviatipof the input
values.

3. PREVIOUS WORK

The development of efficient transit detection algorithras te-
cently gained more interest in the scientific community, [zecs-
based missions like CoRoT [5] or Kepler [17] provide a great
amount of observational data. For instance, one observayice
of CoRoT consists of approximately D00 photometric measure-
ments with a resolution of 512 seconds of roughly0DD stars. Se-
lected parts can be observed with shorter time windows:aaem
mode” provides a higher resolution of 32 seconds. Other missions
like Kepler or the prospectddL ATOmission [8] will provide even
larger data sets. Filtering out a reasonable small subsearof
didate planets for a further detailed analysis (includiolipfv-up
radial velocity measurements) is thus a challenging protftem
a human and computational point of view. The problem is rela-
tively well solved for single planet signals around singbsthstars
but gets much more challenging for planets around binarg sitad
multiple transiting planets, respectively.

Most of the existing approaches are particularly tailoredhie
detection of single transit signals. Many algorithms arseldaon
phase dispersion minimizatid25] where the objective is to find
the period in a discretized parameter space that minimieesdat-
tering of the data folded w.r.t. that period. One of the maxgiyp
lar approaches is theox fitting least-square algorithgBLS) [18].
The search is performed for all periods of a discretizedrpatar
space, the data is then folded according to each of thesedgeri
and a box shape is then fitted to the data. A comparison of BLS
with a matched-filter approach (see [16] and [7]) is perfairre
[26]. In [12] the authors combine BLS performed on a coarsg gr

with a subsequent Newton-Raphson refinement. Further aempa
isons and analyses are presented in [2]. In [21] the authhopope

a wavelet-based algorithm, a heuristic Markov Chain Moraed
method has been suggested in [13], and a further altermagtieod
“BAST” can be found in [22]. In the latter approach a box-sbar
for transit-like events is carried out in the unfolded data.

So far, not much effort has been taken in the direction of the d
velopment of efficient algorithms for the detection of mutanet
transiting systems (MTSs). An iterative approach, whichepu
sequentially determines planet fits, is described in [15jviGusly,
such iterative techniques may particularly fail when nplétisig-
nals of the same order of magnitude are involved. The maju-pr
lem is when fitting the signal of one individual planet (prblya
the one with strongest signals) of a MTS does not allow for the
identification of a clear transit-shape due to the interfeeeof the
remaining planets signals.

As the majority of existing algorithms operate on binnedggha
folded data the remaining signal may be completely vanistseid
will be blurred over the phase of the first planet. These &ffere-
ate the need for a method to simultaneously fitting multigaals.

So far, no system with multiple transiting planets has been d
tected — up to now, such systems have only been revealed by the
radial velocity method. The current goal is to find multipystems
in the available photometric data. Existing methods arelyikko
miss such systems in particular, as they would manifest mith
tiple signals of approximately the same order of magnitudé
therefore deduce the necessity of a fully-automatic proeete-
ing capable of fitting multi-planet transit models to the efyation
data.

Various applications for evolutionary algorithms in thddief
astronomy are outlined in [9] and have since then been ssitdigs
applied for many purposes. Fitting procedures based oruieol
Strategies have been considered in [10], where paramdtkepe
lerian models are successfully determined by fitting thematisal
velocity data. In this work we pursue the application of Enimin
Strategies to the problem on photometric data as introdinc8dc-
tion 2. Properties of the search space have been analyzéd]in [
coming to the conclusion, that the search landscape doesonet
tain much guiding information, as most parameter configomat
do not yield lower values of Eq. 4 than settig) to the aver-
age value off for all t. If the small basin of attraction w.r.t. the
parameters of one particular planet has been found, it iseber,
relatively easy to find the corresponding optimum even wittap-
plication of specialized numeric local optimization medko

4. IMPROVEMENT AND EVALUATION

OF CANDIDATE SOLUTIONS

The overall search process becomes more efficient, when op-
timal values of depthsl; are automatically derived frompj,|;,
and tj for each planetj. For this purpose we introduce bi-
nary flags(by,...,by) € {0,1}M for each observation poirt; =
(ti, fi),i=1,...,N, indicating which planet is transiting at the given
time according to the current (partial) modgf,lj,t; for each
j =1,...,M. These flags can be interpreted as integer number
with binary representatiofy b, ...by € [0,2M — 1], implying a
partitioning of the seD = {0y,...,0n} Of all observation points
O=0pU01U...UOmm_4. Assuming, for example, two planets
M = 2 we obtain the set of out-of-transit observati@ the sets
01,0, of transit events of planets one and two respectively, and
the setO3 where planets one and two are transiting simultaneously.



Optimal transit depths can be derived by minimizing
N

which can be achieved by solving the system of linear equatio
resulting from

©)

However, given the model parametéfswe do not know their
implied index set®y in advance. In order to avoid iterating over
the whole index set we use the following algorithm for a fashe
putation of (4), which uses estimations of the start-inslioéthe
next transit to “jump” over the out-of-transit parts. Foistive em-
ploy an arrayS containing pairgidx,t) of next transit start indices
and times for each planet at each time. The final outcome & a li
T of index-pairs containing the in-transit intervals.

) N M .
—"géd):zzl<fif*+Zx'jd;>-x'k:0 ©)
k i= =1 Algorithm 1: build-transit-indicator()
forallk=1,...,M. Let 1 build initial start-listS
K _ : M 2 i+ mingc S
== ! oo Ke{o,...,2% -1} ™ 3 while (i < N) do
e Bk 4 istart < i
denote the sum of the observed photon fluxes from groups 5 whilei < NAF >0do i «—i+1
Ukek Ok, andf = 3N, fi. Let furthermy = |Uyek Okl andg|, j = 6 | iena—i
1,...,2M —1, i = 1,...,N, indicate if observatiori belongs to 7 | T —TU(istartend)
groupj. For the casé/ = 2 direct expressions can be derived (see 8 if i <N then )
[11]), whereas the general casé & 2) requires the solution of the 9 update-start-listj
system of linear equations given by (6). For this purpose eezin 10 i — (argmin S).idx
to rewrite (6) in order to resolve the values of the coeffitseof 11 end

dk. Letl(.) denote the set of group indices belonging to the planet12 end

indices given as argument(s), i.e. the setofla 1,...,2M —1
where the bitwise logic comparison with all of its argumengdds
a positive value. We obtain

M
> (i dj =g - £ - 10 ®)
=1

for eachk = 1,...,M. To give an example, fok = 2 we obtain
|03UO7’ -dy + |02U03U06UO7| Oy + ’O6UO7| -d3 for the
term on the left hand side of (8).

4.1 Speeding up the objective function evalu-
ation

By splitting the sum over all observation points in one sum fo
out-of-transit measurements and another one for in-trawsnts,
we can rewrite (4) as

f(m7f7r)—\/¢_%(fi—f*)2+i‘ Z(fi_({.}(ti))z.
1€00 ieO\Op

We can speed up the objective function evaluation by ncatiteg
over allN observation points when evaluating (4), but only iterating
over points where a transit event occurs. To do so we rewrée t
first term in the square root of (9) to

9)

1
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These three terms can now be reformulated such that no faints
Op need to be considered for evaluating (4), wheg= ZiN:1 fi2
andf are computed in advance. In particular we get

(10

f2 = foq— ; f2, (11a)
i€0g ieO\Og

2= (f- ; fi), (11b)
i€e0\Og

(11c)

fi=f— ; fi,
i€0g ieO\Og

where all terms from the right hand sides can either be coaaput
in advance or contain in-transit points exclusively.

Algorithm 1 shows the main procedure of buildingTipln a first
step, start-lisSis initialized (line 1) by determining the first transit
event of each planet. In the subsequent loop (line 3) ingdrsp
of transit events are successively added by extracting themam
index fromS(line 9), incrementing the index as long as staying in-
transit (line 5), and performing respective updates of thg4istS.
Function§ = leiilj )~('] indicates which planets are transiting at
timet;, i.e. {' = 0 if there are no transits gt and for instancg' =
2(P~1 4 2(a-1) if planetsp andq are transiting simultaneously at
timet;. Hencey' is the interpretation of the binary flagshs . .. by
introduced at the beginning of this section as integer nusbe

Algorithm 2: update-start-list{ )
1forj=1,...,Mdo

2 inew(_ itcurr

3 Wh”e inewg itcurr dO

4 t — find-next-transit-start-ting)
5 inew < find-time-indeXi,,,.t)

6 end

7 S[”.idx<—inew

8 Sjlt—t

9 end

Algorithm 2 shows the update procedure of start-8st The
argumentiy,, denotes the current position in the time array, i.e.
we are looking for the next transit-start-times aftgr . This is
achieved by iteratively searching for the next transit 8méeach
planet (w.r.t. the current status 8f as long as it remains smaller
thantj_  (see lines 3-6 in Algorithm 2). For this purpose func-
tionfind-next-transit-start-time(t) (Algorithm 3) is used
to determine the time on the one hand (line 4), and on the other
hand functionf i nd-ti me-i ndex(it,,) (Algorithm 4) to find the
corresponding index (line 5).

Functionfind-next-transit-start-time(j) (Algorithm 3)
returns the next transit start time for plarjet.r.t. the current status
of S. If Shas already been initialized (line 1) we simply have to add



the periodp; to the current value. Otherwise the first transit start-
time according tdp has to be determined. In line 7 of Algorithm
3 we assign the relative position in phase of observatiom tim
to variablet, taking care of the special casg+ 1 > pj, which

is necessary for the actual calculation of the transit staes in
line 8.

Algorithm 3: find-next-transit-start-timegj

1 if §j].t not uninitializedthen

2 /[ this is not the first entry
3 /I — simply add period

4 return t + pj

5 else

6 /I first transit

7

{tomodpj+pjifrj+lj > pPjAt <Tj
-

top mod p; otherwise

if t <Tj+1;

8 | o to+ (1) —t)
otherwise

to+(Tj + Pj —t)
9 return t*
10 end

Given these transit start times, the corresponding inditestill
need to be determined. Although the input-data is mostlyakgu

ics processing unit@GPUs) became very popular for general com-
puting purposes possibly subject to parallelization, ag #re espe-
cially designed for high parallelism. Due to open applizatpro-
gramming interfaces it is relatively comfortable to use sheam-
ing multiprocessors (SMs) of a graphics card fygneral pur-
pose computing on GPUSPGPU); see for instance [20] for a
broad overview. For our implementation we specifically utes
NVIDIA CUDA interface [1]. If parallelization is performedn
the level of whole candidate solutiofsoarse-grained approach)
we usually do not fully load the GPU. As a consequence the gain
is only moderate. In order to exploit the capabilities of GeU
in a better way, an additional parallelization on datallévenore
fruitful (fine-grained approach

As first step when evaluating a candidate model, we need to cal
culate the optimal transit depths for each planet. In ordesotve
Egs. (8) we need to iterate over all data points to comtite
These operations can be carried out in parallel for equétigds
groups of data, merging the results afterwards. Havingutatied
dj,j =1,...,M, we need to compute the result of Eq. (4), again
requiring to iterate over all data points. The algorithmsadided
in Section 4.1 by-pass the iterations over the whole indéxae
the execution on CPUs, which can however not be transfered to
the GPU, as the resulting code provides no direct way forlpara
lelization. So the same splitting and merging steps as donthé
calculation ofd; are carried out again. To fully benefit from the
GPU’s computational power it needs to be carefully decidbithv

sampled, there may be missing points or even sequences. Thusntities (blocks of data, groups of candidate solutionsyvbich

we use functiorii nd-ti me-i ndex (Algorithm 4) to search for the
correct start-index. This procedure is based on iteratigdiptions

of the position irt (line 6 and 7) by dividing the interval from the
current time to the search-time By,,q the average time interval

(tip1—ti).

Algorithm 4: find-time-indexit,,,t)

1 teur < timu,,

2 At —t— tcurr

3 ie3t<— itcurr + At/Ata\/g

4 while ~(tj, <t Atj 1 >1) do
5 teurr < ties‘

6 At —t— tcurr

7 iest< lest+ At/mavg
8 end

9 return iest

Note that the calculation of transit depths according torés)
quires an additional iteration over all in-transit datanp® whereas
using it together with the transit-indicator does not imalfurther
additional iteration, as the information for calculatirige ttransit
depths is already gathered by building up the transit-stdicT .

4.2 Parallelization by Utilization of the
Graphics Processing Unit (GPU)

Population based metaheuristics typically provide thesibdiy
for easy parallelization, as operations like variation valeation
usually have to be performed for many candidate solutiorouin
case there is an additional potential for parallelizatamfor each
fithess function evaluation a huge amount of data points si&ed
be compared to the model, comprising identical operationsdch
such point. This aspect has already been successfullyiesgio
other contexts, see e.g. [23].

Such situations are usually classifiedSisgle Instruction, Mul-
tiple Data(SIMD). Over the recent years, the deploymengi@ph-

size are assigned to the SMs. This issue is addressed in mi@ie d
in Section 6.1, where corresponding results are also pregen

5. GLOBAL OPTIMIZATION BY EVOLU-
TION STRATEGIES

To solve the global parameter optimization problem, we use a
Evolution StrategyES) [3], as this particular metaheuristic turned
out to be adequate for this problem in a preceding compafisin
The ES can be classified aélaA )-ES with self-adaptation of strat-
egy parameters [24], whele denotes the size of the population
andA the number of offsprings created in each iteration. For each
parametek of each individual in the population, mutation is per-
formed in the following, usual way,

X = X+ N (0,0y),

where N(0,0) denotes the Gaussian distribution having a mean
value of zero and a standard deviatmnThe valuesy, € [1075, 0]

are used as strategy parameters which themselves undergmth
cess of mutation, given by

O} = Ok - eN(0T0)+N(0T)

(12)

(13)

This self-adaptive process attempts to exploit propedfeke fit-
ness landscape and thus facilitates an efficient searcleggodt
turned out to be advantageous to use a variant of elitisedeh
which creates the new population by deterministically igkihe
best individuals from thep parents and\ offsprings, but tak-
ing at mosty’individuals from the parents. Hence, our selection
is in fact in-betweenu+ A)-selection andy, A)-selection. The
reason behind this approach is to support exploitation efréx
gions around the best solutions found so far, which is raitner
portant, as the basins of attraction are relatively smatit ékclu-
sively using the(u+ A)-strategy reduces the risk of getting stuck
to local optima. Following the suggestions in [24], we satpae-

terst = (Vzm)fl andtg = (Jm)il. If some



Table 1: Test-instances (no. 100-111) with correspondingis-
cess ratios and average running times for signals with one &¥
ficial planet.

Parameters (% opt.) tavg(S)

p | d T|on:0 100 300 0 100 300
1.0 0.10 100.0 0.5 100 98 82| 13 20 118
1.0 0.10 500.0 0.5 100 100 100| 12 9 18
20 010 100.0 0.5 100 100 72 6 6 146
20 0.10 500.0 0.5 100 100 100 7 6 6
20 010 100.0 0.5 100 100 100 7 6 6
20 0.05 500.0 0.5 100 100 n/a 6 8 n/a
1.0 0.05 500.0 0.5 98 100 80| 23 21 81
1.0 0.05 300.0 0.5 96 98 64| 33 27 161
1.0 0.05 100.0 0.5 100 94 n/a| 22 50 n/a
1.0 0.02 500.0 0.5 80 82 32| 82 63 302
1.0 0.02 300.0 0.5 74 46 8| 95 154 421
1.0 0.02 100.0 0.5 60 44 nfa| 121 257 n/a

depth is set to @ — implying that this particular planet-model does
not improve the quality of the fit at all — a new random planet is
created on this position, which might increase diversitpagithe
population. Prior to mutation, recombination is appliedhyirob-
ability Pr € [0,1]. We use the intermediate recombination, given
by

X = i X + (1= 0,
Wherex& andxﬁ denote the parameters of the parents epds
a uniform random number from the intervatp, 1+ p] for each
parametek, wheref3 = % turned out to be most successful.

(14)

6. RESULTS

For a comprehensive evaluation of the presented algorithens
created artificial test-instances with up to three planstsllar jit-
ter and measurement errors of real data instances are siahiia
adding Gaussian random values to each data point in theciattifi
signal. For each configuration three instances with differ@ise-
levels are creatediy = 0,0y = 100 andoy = 300.

For our computational experiments we use the following para
eter setting that has been determined in preliminary tegts:
100 A =500 1= 50. Prior to mutation we perform intermediate
recombination for the strategy parameters and parameténsaw
probability of Pr = 0.8, which showed the overall best performance
within preliminary tests. The maximum number of iteratiaves
set to 2000 and no time limit has been imposed, but the runs hav
been stopped as soon as the correct solution has been folind. A
tests have been performed on a cluster consisting of IntehXe
E5540 processors operating at 2.53 GHz and having 24 GB for to
tally 8 cores.

Letml = (m, f*), andf () denote, as shorthand fo(m, T, f),
the objective function value of thgeneratedsignal with parame-
tersiy. We call all solutions withf (M) < f (™) + € “optimal”,

for our experiments we used= 10-°. It is important to note, that
for noisy signals more than one solutighwith f (i) < f () +¢
will exist, as the noise added to the generated signal willee
subobtimal. Our experiments showed that typically all @t so-
lutions closely correspond to the parameters used for kggreer-
ation, i.e. no significant deviations have been observeprdatice,
finding any of these solutions would be sufficient for the dete
of the planetary system.

Tables 1 and 2 show results for test instances containinguotie
two artificial signals, respectively. We report the peregetof runs

Table 2: Test-instances (no. 210-219) with correspondingis-
cess ratios and average running times for signals with two ar
ficial planets.

Parameters (% opt.) tavg[s]
p | d T|ony:0 100 300 0 100 300
1.0 0.10 5000 O. 88 94 80| 251 161 318
22 010 500.0 1.
1.0 0.10 5000 O. 100 100 78| 92 91 332
22 010 300.0 1.
1.0 0.10 3000 O. 56 54 14| 532 501 917
2.2 010 500.0 1.
1.0 0.05 5000 O. 86 70 20| 227 377 655
2.2 005 5000 1.
1.0 0.05 4000 O. 70 76 60| 312 276 378
75 020 500.0 1.
1.0 0.10 400.0 oO. 64 70 84| 487 430 244
75 050 500.0 1.
1.0 0.05 4000 O. 28 26 14| 615 705 841
31 010 500.0 1.
1.0 0.05 500.0 O. 64 76 34| 410 313 660
3.1 010 400.0 1.
1.0 0.05 5000 O. 90 88 44| 228 207 608
3.1 010 300.0 1.
1.0 0.05 500.0 O. 94 88 56| 215 244 525
3.1 010 200.0 1.

where “optimal” solutions have been obtained and averageing
times for three different noise levetsy. Fifty independent runs
have been performed for each such case. For some instartbes wi
o = 300 no results are available (indicated by “n/a”), as th@-alg
rithm stopped prematurely because of solutions having fditre
ness values than the intended optimal solution correspgridithe
original artificial signal. We can observe, that the alduoritis able
to find the original signal with high probability, in partiew for
the case of one planet with a probability close to one for atmo
all instances. As expected, the detection efficiency deeseaig-
nificantly in the case the noise exaggerates the signal polmer
the case of two artificial signals, the probability of sigdatection

is still high enough to provide a satisfactory detectionbaitality
when the algorithm is executed two or three times on theqadati
data instance.

Table 3 shows results for three-planet signals, averaggaeom
tational times for a full run are roughly 2000 seconds. W'zt ¢
already be observed from the one- and two-planet resulthés (
obvious) property that detection efficiency is highly degiemt on
the signal power, which is given by the parametérand!. To
study this effect in more detail, we systematically vary paeam-
etersd and| and keep the other parameters fixed to the values
p1=10,pp =33,p3=7.7,11 =051, = 10,13 = 2.5. A sys-
tematic study of the detection efficiency in dependenceebther
parameters is beyond the scope of this work. However, pirgim
results indicate that their variation has less impact tharvariation
of d andl. It can be observed that signals containing more noise are
often detected more frequently, which is due to the pasicsiop-
ping criterion and our definition of optimal solutions mem@&d
in the last paragraph. Most notably, the results show theh ev
relatively large amount ofvhite noise in general does not have a
substantial negative impact on detection efficiency.

All results have been computed by using the parameter-space
reduction and advanced fitness-function evaluation meésode-
scribed in Section 4. The optimal calculation of the deptgris
icantly improves the ability of the algorithm to improve stiing



solutions fast. The advanced fitness function evaluatioogature
improves the overall running times of up to a factor of four.

The results indicate that the algorithm is a promising taol f
multi-planet transit detection, as, at least for the cogrgd kinds
of instances, optimal solutions can be obtained with nedgtihigh
probability and reasonable running times.

6.1 GPU Results

In this section we present results and hardware specifierpara
eter settings regarding our GPU-implementation of tisg £ al-
gorithm. As test platform we used an AMD Athlon 64 3200+ PC
with 2000 MHz with aGeForce 9600 GTGPU with eight stream-
ing multiprocessors (SMs).
threads, calledvarps It is usually a good practice to pass larger

blocks (groups of threads) to the GPU as particular threads of a

warp may be stalled due to relatively time consuming instons,

such as memory access instructions [1]. In our case, the @umb

of SM registers is the limiting factor. There are 8192 remist

available on each SM, but each thread is assigned its owri-phys

cal registers, which then cannot be used by other threadsthmt
considered block is finished. As each of these threads e@air
registers to perform its instructions, we obtain an uppemioof

Each of these SMs can execute 32

Table 4: Running times of instance art-215-j when using GPU
with various parameter settings compared to CPU version
(with and without transit indicator). Parameter settings: pu=
50,A = 230 itmax = 500

Processing Unit Ind. per SM  Data-blocks {[s]

1SM 256 coarse 77
2 SM 128 coarse 72
4 SM 64 coarse 72
8 SM 32 coarse 70
2SM 256 5000 40
4 SM 256 2500 22
8 SM 256 1250 14
CPU (transit indicator) n/a n/a 119
CPU (no transit indicator) n/a n/a 528

tion candidates and therefore leading to convergence tb@pst
mal solution even in the case these artifacts have less pibapr
the real further planetary signals. We are hence interéstedery

8192/23 = 356 for the number of threads to be assigned to one accurate description of the real transit shape. A reasersaioiurate

SM. It is however only possible to specify numbers of threaats
responding to powers of two, so we obtain 8132= 256 as the

transit model is determined by the relative size of the pléméhe
star as well as thenpact parameterwhich is the distance of the

number of threads assigned to one SM. From this we can see, thatransiting line to the center of the host star, and the sttt dark-

within the coarse grained approach we do not fully load th&JGP

even if the number of individuals corresponds to the numbier o

threads that can be executed in parallel on the GPU. Thiceeghe
behaviour is also confirmed by the experiments summarizéd-in
ble 4.

We therefore group the input-data (of usually pdints) indata-

ening. Exact transit models have been developed in [19] andbe
easily integrated into the presented algorithms by theunson of
further model parameters. For preliminary experiments wétal
photometric data we applied the following simpler transidel
by introducing one further parametsr € [0,1],1 < j <M. We
therefore redefinen; = (pj,lj,d;j,Tj,sj). The following sigmoid-

blocksand evaluate 256 candidate models on one SM. Using a data-shaped functions can be used to obtain a more accuratet@scri

block size of 1250 therefore fully loads the eight availaBds.
Table 4 gives an overview of the running-times achieved by va
ious data-block sizes for a typical two-planet instance e Bhst
considered assignment to the eight available SMs yieldeedp
factor of almost forty, and we can expect this factor to grdw a
most linearly with the number of available SMs. For threaqgit
systems the situation gets more complicated, as we arereeioi
solve a system of linear equations (8). Nevertheless, weare
fident to be able to nearly conserve the speedup factor, mgusi
GPU-implementations of solvers for systems of linear equat
like [6].

Compared to the CPU variant using the improved objective-fun
tion evaluation methods from Section 4.1 (which probablynca

be reasonably implemented on GPUs) we still have a speedup of
a factor more than eight. Hence the GPU approach makes-partic

ularly sense for the application on modern workstationsafapli-
cation scenarios when scientists want to compute fits focipe
cally selected instances. On recently emerging GPU chushés
approach is also auspicious for the processing of largle-sizda
sets.

7. REAL DATA INSTANCES

Although many single planet fitting-algorithms use boxpsth
models, more accurate models significantly improve therétgos
ability to find multiple planetary systems. As real tranginsitures
deviate from the simple box shape, residuals resulting fsoim
tracting an (optimal) box shape remain in the signal and dvik
to their periodicity likely obscure further planetary s This
is particularly true for heuristic search processes as auifacts
might introduce strong local optima possibly attractingnaolu-

of the transit shape:

up(t) = (1+e5’2‘“)717 (15)

Up(t) = (1+ e’“z‘“) g (16)
Within these formulas the constantised as a factor fdrin the ex-
ponent determines the slope of the sigmoid shape, the e&ltitim
& transforms the sigmoid shape in interj@/1]. Reasonable val-
ues are 5 & < 10. Withuy (t) anduy(t) we can use the following
functions to describe the ingress and egress phase of tistira

ﬁl(t7mj) =up ( (17)

2(t modpj—r,»—lj+521|j)>.

2(t mod pj —Tj)
sj-lj ’

sj-lj (18)

Gg(t,mj) =Uy <

The whole transit-shape is then given by

Gy(t,m;) if 1y <tmod pj <Tj+ 31
xi(st)— 4 Tbm) i T4 31 <tmodp) <)+,
i 1 if T+ 31j <t mod pj <Tj+1j - 31|
0 otherwise.

19)
instead of Eq. (2) used for the box-model, and now provides co
tinuous values indicating the percentage of total transjtial for
planetj at timet.

Small values of approximate a V-shaped transit, whereas inter-
mediate values correspond to a typical (planetary) U-sthajgmal.



Table 3: Success ratios for three-planet artificial test inances (no. 300-363). All of these instances have in commdretparameters

P1= 1.0, P2 = 3.3, P3 = 7.7,11=051,=10,13=25.

Parameters (% opt.) Parameters (% opt.) Parameters (% opt.)

11,1213 dq,dp,d3 on:0 100 300| Iq,lp,l3 di,dp,d3 on:0 100 300( Iq,lp,13 di1,dp,d3 oy:0 100 300
0.05, 0.15, 0.40 400, 400,400 30 14 46| 0.10,0.15,0.80 400,200,400 56 40 64| 0.10,0.30,0.40 400,200,200 40 30 26
0.10, 0.15, 0.40 400, 400,400 28 30 74| 0.10,0.30,0.80 400,200,400 30 28 70| 0.05,0.30,0.80 400, 200,200 8 20 20
0.05,0.30,0.40 400,400,400 36 34 56| 0.05,0.15,0.40 400,400,200 22 56 50| 0.10,0.15,0.80 400,200,200 22 42 28
0.05, 0.15, 0.80 400, 400,400 26 30 24| 0.10,0.15,0.40 400,400,200 46 52 92|/ 0.10,0.30,0.80 400, 200,200 20 8 22
0.10, 0.30, 0.40 400, 400,400 44 34 68| 0.05,0.30,0.40 400,400,200 28 58 58| 0.05,0.15,0.40 200,400,200 40 30 2
0.05, 0.30, 0.80 400, 400,400 24 26 38| 0.05,0.15,0.80 400,400,200 14 24 8|l 0.10, 0.15,0.40 200,400,200 40 64 70
0.10, 0.15, 0.80 400, 400,400 32 36 74| 0.10,0.30,0.40 400,400,200 36 48 82| 0.05,0.30,0.40 200,400,200 36 44 36
0.10, 0.30, 0.80 400, 400,400 44 26 70|l 0.05,0.30,0.80 400,400,200 10 40 58| 0.05,0.15,0.80 200,400,200 24 8 22
0.05,0.15,0.40 200,400,400 24 28 28|/ 0.10,0.15,0.80 400,400,200 6 16 22|/ 0.10,0.30,0.40 200,400,200 54 64 68
0.10, 0.15,0.40 200, 400,400 38 36 58| 0.10,0.30,0.80 400,400,200 30 26 84| 0.05,0.30,0.80 200,400,200 24 44 42
0.05, 0.30, 0.40 200, 400,400 48 50 16| 0.05,0.15,0.40 200,200,400 44 36 18|/ 0.10,0.15,0.80 200,400,200 24 36 56
0.05,0.15,0.80 200,400,400 36 32 28|/ 0.10,0.15,0.40 200,200,400 46 56 46| 0.10,0.30,0.80 200,400,200 50 80 66
0.10, 0.30, 0.40 200, 400,400 56 68 56| 0.05,0.30,0.40 200,200,400 36 30 44| 0.05,0.150.40 200,200,200 38 46 36
0.05, 0.30,0.80 200,400,400 36 38 28| 0.05,0.15,0.80 200,200,400 40 22 20| 0.10,0.15,0.40 200,200,200 68 68 50
0.10, 0.15,0.80 200, 400,400 46 38 66| 0.10,0.30,0.40 200,200,400 40 30 62| 0.05,0.30,0.40 200,200,200 44 52 14
0.10, 0.30,0.80 200,400,400 50 44 30|l 0.05,0.30,0.80 200,200,400 26 42 38| 0.05,0.15,0.80 200,200,200 28 36 30
0.05, 0.15, 0.40 400, 200,400 28 22 60| 0.10,0.15,0.80 200,200,400 46 52 74|l 0.10,0.30,0.40 200,200,200 44 52 64
0.10, 0.15, 0.40 400, 200,400 52 40 60| 0.10,0.30,0.80 200,200,400 46 50 85| 0.05,0.30,0.80 200,200,200 16 44 28
0.05,0.30,0.40 400,200,400 26 34 66| 0.05,0.15,0.40 400,200,200 16 18 54| 0.10,0.15,0.80 200,200,200 32 46 68
0.05, 0.15, 0.80 400,200,400 24 20 62| 0.10,0.15,0.40 400,200,200 44 20 76|/ 0.10,0.15,0.80 200,200,240 44 34 72
0.10, 0.30, 0.40 400, 200,400 40 32 50| 0.05,0.30,0.40 400,200,200 26 28 68

0.05, 0.30,0.80 400, 200,400 26 24 54| 0.05,0.15,0.80 400, 200, 290 4 4 22

Values close to zero correspond to a box like shape, whigipisal
for relatively small planets producing central transits.

In order to determine the optimal transit depths we do, hewev
still implicitly use the rectangular shape, as it enablemke aver-
age values over the particular index s@s i € [0,2], as a basis
for the calculations given by Egs. (8). However, by this pidae
we systematically underestimate the transit depths inhigugnear
dependence of parametgr We therefore approximately correct
the depths according to the following formula

d}:dj-(1+sj), (20)
which turned out to work well by computational experiments.

First experiments with real photometric data series aijread
showed that this transit model already overcomes the disclis-
sues of the box-shape and therefore significantly improveses-
gence properties.

A further important issue regarding the application to gfzd-
tometric data is how to identify promising planetary camdés

amongst the huge set of computed fits. Having computed fits for

particular data instances we need to discriminate betwestiav-
ing adjusted the model parameters to noise and artifactevang
found plausible transit signals. The primary parametestiwh dis-
criminative test is the signal-to-noise ratio in the paiée transit-
phases compared to the signal power (i.e. transit lengtidepth)

of the model, e.g. see [16, 18]. As a first simple approach we ca

for each planet consider the ratio of the standard deviatigithin

each transit phase of the residual signal, i.e. the obtdihasdb-

tracted from the data, to the corresponding transit deptbr aF
plausible fit the depth must be significantly larger than tieeepof

magnitude of scattering within the transit phase. Havingntba
plausible fit, there still is the chance of just facing steliariability

or eclipsing binary stars. Many of these cases can likelylioe e
inated by checking the parameters for plausibility, seq.[Zhe

development of more sophisticated and reliable methoddén-i
tify promising candidates, however, remains future work ttas

work primarily deals with optimization aspect of the prable

8. CONCLUSIONS AND FUTURE WORK

The computational experiments presented in Section 6lglear
show that the ETEX algorithm performs quite well on the consid-
ered test instances. In the course of our computationakrienpets
the methods to speed up the objective function evaluatiddeirt
tion 4.1 turned out to reduce the overall computation timemwfo
a factor of four. This method, as well as the parameter sphecr
tion by the calculation of optimal depths according to sorivery
partial solution is not only applicable to thesEeX algorithm, but
also to any other metaheuristic global optimization proced A
further improvement can be obtained by parallelizing thepgota-
tions by using graphics processing units. A speedup of arfaqt
to forty compared to the naive implementation, and more &igint
compared to the algorithm using the improved evaluatiorhoubt
can be already achieved on current medium-class GPUs.

In order to process large data sets as provided by spacedpées
like CoRoT or Kepler, a single computer will not be able tofpen
the computations within a reasonable amount of time likesday
weeks. This is however no limitation, as (CPU) computingtets
are available at many academic institutions. The most apiate
computing environment would though be a GPU-grid suppgrtin
a highly parallelized execution of the algorithms. Howesrch
GPU-grids are currently not as prevalent as CPU-gridsifyirsg
the CPU-variant of the &rex algorithm. Furthermore it is cur-
rently the only way to handle models of more than two planets.

To our best knowledge, the presented algorithms are the first
fully-automatic methods for fitting multi-planet transitogtels to
photometric time-data series. Hence these algorithms tnhigta
useful tool for the discovery of the first planetary systerthwul-
tiple transiting planets.
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