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Kurzfassung

Das Minimum Label Spanning Tree Problem ist ein kombinatorisches Optimierungspro-
blem mit Anwendungen im Bereich des Designs von Telekommunikationsnetzwerken mit
dem Ziel ein möglichst einheitliches Netzwerk hinsichtlich der verwendeten Übertragungs-
einrichtungen zu finden. Gegeben ist ein zusammenhängender Graph, wobei jeder Kante
ein oder mehrere Label zugewiesen sind. Das Ziel ist die Bestimmung eines Spannbaumes
welcher eine minimale Anzahl an Labels benötigt, sodass für jede gewählte Kante min-
destens ein Label ausgewählt wird. Das Problem ist NP-vollständig.

Die bisherige Forschung in Bezug auf das gegebene Problem war primär auf die Entwick-
lung approximativer und metaheuristischer Algorithmen ausgerichtet, aber auch einige
exakte Verfahren wurden vorgeschlagen. Es wurde gezeigt, dass kein polynomieller Algo-
rithmus mit konstantem Approximationsfaktor existieren kann (außer P = NP), jedoch
sind heuristische und metaheuristische Algorithmen in der Lage hochqualitative Lösungen
in angemessener Laufzeit zu finden. Exakte Verfahren können nur relativ kleine Prob-
leminstanzen zu lösen, jedoch kann die Entwicklung fortgeschrittener Methoden dur-
chaus dazu in der Lage sein die Grenze der praktisch lösbaren Instanzen deutlich in
Richtung größerer Instanzen zu verschieben, und somit deren praktische Anwendung zu
ermöglichen.

In dieser Dissertation werden exakte und heuristische Methoden für das Minimum La-
bel Spanning Tree Problem und einige seiner Varianten betrachtet. Bezüglich heuris-
tischer Verfahren stellt die bisher noch nicht untersuchte Anwendung von Ant Colony
Optimization auf das gegebene Problem den Schwerpunkt dar. Weiters wird die Verwen-
dung der heuristischen Verfahren als primale Heuristik zur Beschleunigung exakter Ver-
fahren untersucht. Dann werden exakte Verfahren basierend auf gemischt-ganzzahliger
linearer Programmierung genauer betrachtet. Hierbei werden einerseits existierende For-
mulierungen anhand neuer Klassen von gültigen Ungleichungen gestärkt, und des Weit-
eren neue Formulierungen vorgeschlagen. Weiters wird gezeigt wie fraktionale Lösungen
der Relaxierung durch Weglassen der Ganzzahligkeitsbedingungen bezüglich der Label-
Variablen mittels Odd-Hole-Ungleichungen separiert werden können. Für letztere wird
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Kurzfassung

zur Verwendung in einem Schnittebenenverfahren eine heuristische Separierungsmeth-
ode basierend auf einem gemischt-ganzzahligen Programm mit Miller-Tucker-Zemlin Un-
gleichungen vorgestellt. Alle vorgestellten heuristischen und exakten Methoden wurden
implementiert und mittels zahlreicher computationaler Tests ausgewertet. Die präsen-
tierten Ergebnisse dokumentieren die Unterschiede zu bestehenden Verfahren, sowie die
erzielten Verbesserungen. Insbesondere stellt ein Branch-and-Cut Algorithmus basierend
auf einer neuen Formulierung die eine schnelle Schnittebenen-Separierung ermöglicht eine
deutliche Verbesserung zu bestehenden exakten Verfahren dar. Die Anwendung der Odd-
Hole Schnittebenen erweist sich für spezielle Instanzen als nützlich.

Der letzte Teil der Dissertation widmet sich einem neuen Ansatz zur Datenkompression,
basierend auf Minimum Label Spanning Trees. Ziel ist die kompakte Repräsentation einer
ungeordneten Menge von mehrdimensionalen Punkten. Der betrachtete Anwendungs-
hintergrund kommt aus der Biometrie, wo Fingerabdrücke oftmals durch deren charak-
teristische Punkte (“Minutien”) dargestellt werden. Um diese Daten als zusätzliches
Sicherheitsmerkmal, z.B. in Reisepässen, verwenden zu können, werden spezielle Kom-
pressionsverfahren benötigt um diese als Wasserzeichen in Passbilder einbetten zu können.
Dafür kodieren wir eine Teilmenge der Minutien als Spannbaum, dessen Kanten wiederum
durch eine Referenz auf ein Element einer kleinen Menge an “Template-Arcs” und kleinen
Korrekturvektoren dargestellt werden. Dadurch werden geometrische Eigenschaften der
Punkte für die Kompression benutzt indem ein Baum mit möglichst ähnlichen Kanten
hinsichtlich der relativen Position von Anfangs- und Endknoten bestimmt wird. Dabei
entsprechen mögliche Template-Arcs einer Kante den Labels des Minimum Label Spanning
Tree Problems. Da nur eine Teilmenge der gegebenen Punkte an den Baum angeschlossen
wird, besteht ein weiterer Zusammenhang zum k-cardinality Tree Problem, welches eben-
falls NP-schwer ist. Das resultierende Optimierungsproblem wird als k-node Minimum
Label Spanning Tree (k-MLSA) Problem bezeichnet.

Vor der Lösung des k-MLSA Problemes wird die Menge der Candidate Template-Arcs
mittels eines Preprocessing-Schrittes von den Eingabedaten abgeleitet, was ebenfalls ein
nicht-triviales Problem darstellt. Zu diesem Zweck wird ein Algorithmus basierend auf be-
grenzter Enumeration vorgestellt. Für das resultierende k-MLSA Problem werden Heuris-
tiken wie Greedy Randomized Adaptive Search Procedures oder Genetischen Algorithmen,
sowie exakten Verfahren wie Branch-and-Cut vorgschlagen. Weiters wird gezeigt, wie der
relativ zeitaufwändige Preprocessing-Schritt direkt in das Branch-and-Cut Verfahren inte-
griert werden kann, indem neue Template-Arcs während der Ausführung des Algorithmus
dynamisch zu einem ursprünglich eingeschränkten Modell hinzugefügt werden. Derartige
Ansätze sind bekannt als Branch-and-Cut-and-Price. Das Pricing-Problem entspricht der
Bestimmung einer Template-Arc Variable welche die Zielfunktion potentiell verbessern
kann, und wird anhand eines Algorithmus basierend auf einer k-d Tree Datenstruk-
tur gelöst. Computationale Tests belegen die Eignung des präsentierten Kompressions-
modelles für die vorgeschlagene Anwendung. Darüber hinaus kann es als Ausgangspunkt
für weitere Untersuchungen hinsichtlich der Kompression von intrinsisch ungeordneten
Datenmengen, wie zum Beispiel ungleich verteilten Messwerten, dienen.
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Abstract

The minimum label spanning tree problem is a combinatorial optimization problem with
applications in telecommunication network design with the goal of deriving a network that
is preferably uniform w.r.t. to the used communication facilities. For the minimum label
spanning tree problem we are given a connected graph with labels associated to its edges.
The goal is to derive a spanning tree requiring a minimum amount of labels in the sense
that for each edge an according label must be selected. The problem has been shown to
be NP-complete.

So far, research has primarily been devoted to the development and analysis of approxima-
tion algorithms and heuristics, but also some exact solution methods have been proposed.
It has been shown that no polynomial constant-factor approximation algorithms do exist
(unless P = NP), but however, heuristic and metaheuristic algorithms are able to provide
high quality solutions within a reasonable amount of computation time. Exact methods
are only capable of solving relatively small instances in practice, but the development of
elaborate methods may significantly shift the border of exactly solvable instances towards
larger ones, enabling their application for practical purposes.

Within this thesis exact and heuristic methods for the minimum label spanning tree prob-
lem and some variations are investigated. Regarding metaheuristics, main emphasis is
given to the application of ant colony optimization, which has not yet been considered
for the given problem. Moreover, it is studied how these methods can be used as primal
heuristics to speed up exact solution methods. In the following, exact methods based on
mixed integer programming are investigated. Within this context existing formulations are
strengthened by new classes of inequalities and new formulations are proposed. In partic-
ular it is shown how odd-hole inequalities can be used to cut-off fractional label solutions
in order to tighten the linear programming relaxation. For the latter ones a heuristic
separation procedure based on a mixed integer linear program using Miller-Tucker-Zemlin
inequalities is proposed, to be used within a cutting-plane algorithm. All the presented
heuristic and exact methods have been implemented and evaluated by comprehensive
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Abstract

computational experiments. Reported computational results show the differences and im-
provements to existing methods. In particular the branch-and-cut algorithm based on the
new connectivity formulation, which enables a fast cutting-plane separation, significantly
outperforms all existing exact methods. The application of odd-hole cutting-planes turned
out to be beneficial for particular classes of instances.

The last part of this thesis is dedicated to a newly developed compression model, which
is primarily based on the minimum label spanning tree problem. The particular goal is
to derive a compact representation of a set of unordered multi-dimensional points. The
considered application scenario comes from the field of biometrics, where fingerprint data
is often encoded as a set of characteristic points (“minutiae”) of the fingerprint pattern. In
order to use this data as an additional security feature e.g. in passports, strong compression
is required to be able to embed this data into images by watermarking techniques. For this
purpose a subset of the minutiae is encoded by a spanning tree, whose edges are in turn
represented by references into a small set of “template arcs” and small correction vectors.
By this approach it is possible to extract geometric structure within the given points and
obtain compression by deriving a tree that contains a maximum number of arcs that are
similar w.r.t. the relative geometric position of their incident nodes. By identification of
the template arcs with labels we obtain the correspondence to a variant of the minimum
label spanning tree problem. As only a subset of nodes is required to be connected, the
problem is also related to the k-cardinality tree problem, which is also NP-hard. We
call the resulting optimization problem k-node minimum label arborescence (k-MLSA)
problem.

Prior to solving the k-MLSA problem a set of candidate template arcs needs to be de-
rived in a preprocessing step from the input data, which is itself a non-trivial task. For
this purpose an algorithm based on restricted enumeration is proposed. For the resulting
k-MLSA problem heuristic methods including greedy randomized adaptive search pro-
cedures and genetic algorithms as well as exact methods including branch-and-cut are
proposed. Finally it is shown, how the relatively time-consuming preprocessing step can
be directly incorporated into the branch-and-cut algorithm by dynamically adding new
promising template arcs to the initially restricted model during the branch-and-cut algo-
rithm. Such approaches are well known as branch-and-cut-and-price. The pricing problem,
i.e. the determination of a template arc variable potentially improving the current objec-
tive function, is solved by an algorithm based on a k-d tree data structure. The presented
compression model is shown to be beneficial for the outlined application background, but
may also serve as source for further investigations into the direction of compression models
that benefit from intrinsically unordered data sets like for instance unequally distributed
scientific measurements.

vi



Acknowledgments

First of all, I want to express my gratitude to my supervisor Prof. Günther Raidl, who gave
me the opportunity to do my PhD at the Vienna University of Technology. He introduced
me into the field of combinatorial optimization and mixed integer programming, and gave
me a great support and provided numerous valuable ideas and helpful advises. He also
attained to form a great working atmosphere within the Algorithms and Data Structures
Group of the institute. I am further grateful to Prof. Ulrich Pferschy who immediately
agreed to be the second assessor of this thesis.

Furthermore I owe my gratitude to all of my colleagues at the Algorithms and Data
Structures Group. During the last four years we had many fruitful discussions as well as
a lot of fun! In particular I want to thank those colleagues who provided any kind of help
and support for my work – which probably holds for all of them!

Of course I also want to thank all other people who gave my any kind of support for this
theses, in particular to all my friends for their encouragement. Last, but not least, I owe
deep thank to my family, for their support and and encouragement during the last years!

vii



viii



Contents

1 Introduction 1
1.1 Minimum Label Spanning Tree . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory and Methodologies 5
2.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Combinatorial Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Exact Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 Integer Linear Programming . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Further Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Heuristic and Approximative Methods . . . . . . . . . . . . . . . . . . . . . 29
2.5.1 Approximation Algorithms . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.2 Construction Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Metaheuristic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6.1 Neighborhood Search Algorithms . . . . . . . . . . . . . . . . . . . . 31
2.6.2 Methods Based on Swarm Intelligence . . . . . . . . . . . . . . . . . 35
2.6.3 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Hybrid Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.7.1 Hybrid Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.7.2 Hybridizing Exact and Heuristic Algorithms . . . . . . . . . . . . . . 41

3 Heuristic Methods 43
3.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Construction and Approximation Algorithms . . . . . . . . . . . . . 44
3.1.2 Local-Search-Based Algorithms . . . . . . . . . . . . . . . . . . . . . 46
3.1.3 Further Metaheuristic Algorithms . . . . . . . . . . . . . . . . . . . 47

3.2 Ant Colony Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ix



Contents

3.2.1 Pheromone Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.2 Solution Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.3 Pheromone Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.4 Local improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.5 Implementation Aspects . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Unified Constructive Framework – GRASP . . . . . . . . . . . . . . . . . . 52
3.4 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Ant Colony Optimization Results . . . . . . . . . . . . . . . . . . . . 54
3.4.2 GRASP Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Conclusive Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Exact Methods 61
4.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Mixed Integer Programming Framework . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Mixed integer formulation . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.2 Cutting-Plane Separation . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.3 Strengthening the Formulations . . . . . . . . . . . . . . . . . . . . . 68
4.2.4 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.5 Pricing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.6 Polyhedral Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.1 Test Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.2 Test environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.3 Comparison of Described Methods . . . . . . . . . . . . . . . . . . . 80
4.3.4 Comparison to Other Work . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Application: Biometric Data Compression 101
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3 Tree-Based Compression Model . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.4 Reformulation as a Minimum Label k-Node Subtree Problem . . . . . . . . 106
5.5 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5.1 Bounds for the Number of Candidate Template Arcs . . . . . . . . . 109
5.5.2 An Algorithm for Determining T c . . . . . . . . . . . . . . . . . . . 109

5.6 An Exact Branch-and-Cut Algorithm for Solving k-MLSA . . . . . . . . . . 114
5.6.1 ILP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.6.2 Branch-and-Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.7 Branch-and-Cut-and-Price . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.7.1 Pricing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.7.2 Solving the Pricing Problem . . . . . . . . . . . . . . . . . . . . . . . 117
5.7.3 Branch-and-Cut-and-Price Algorithm . . . . . . . . . . . . . . . . . 122

5.8 Heuristic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.8.1 Greedy Construction Heuristic . . . . . . . . . . . . . . . . . . . . . 123

x



Contents

5.8.2 GRASP – Greedy Randomized Adaptive Search Procedure . . . . . 126
5.8.3 Memetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.9 Encoding of the Compressed Templates . . . . . . . . . . . . . . . . . . . . 130
5.9.1 Encoding Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.10 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.10.1 Test Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.10.2 Compression Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.10.3 Matching Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.10.4 Algorithmic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.10.5 Absolute Compression Ratios . . . . . . . . . . . . . . . . . . . . . . 148

5.11 Conclusions and Further Work . . . . . . . . . . . . . . . . . . . . . . . . . 149

6 Conclusions 151
6.1 Heuristic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.2 Exact Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.3 Application Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Bibliography 155

A Curriculum Vitae 163

B List of Publications 165
B.1 Refereed Conference Proceedings and Journal Articles . . . . . . . . . . . . 165
B.2 Presentations and Posters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

xi



xii



Chapter 1

Introduction

Dear friend, all theory is gray,
And green the golden tree of life.

Faust in J. W. Goethe’s Faust, Part 1

T
his thesis deals with the application and analysis of exact and heuristic meth-
ods for the solution of combinatorial optimization problems (COPs). The
central theme is the minimum label spanning tree (MLST) problem and re-
lated problems, which are combinatorial optimization problems falling into

the category of network design. In general, the notion of network design refers to various
problems emerging in the context of industrial and economic optimization scenarios, with
the common goal of deriving an optimal configuration w.r.t. a potential infrastructure,
minimizing particular costs given by a specific objective function. As optimization sce-
narios resulting from particular real world problems usually consist of many properties
and issues requiring specific solution concepts being solely important for one particular
application, academic research within this area is usually concerned with prototypical
problems arising as subproblem or being basis for many real world optimization scenarios.
Concepts and solutions methods devised for these problems can then be more or less easily
be applied to particular application-specific problem variants.

Network design problems usually share the common property that they can be naturally
formulated on graphs, which are general concepts in the field of discrete mathematics. A
graph is given by a set of nodes (or vertices) that are connected by undirected edges or
directed arcs. Both entities may have associated additional information like costs/weights,
capacities or labels/colors. According to the considered network design problem these en-
tities usually have corresponding real world objects, e.g. edges corresponding to streets
and nodes to crossings, or edges and nodes corresponding to communication infrastruc-
ture and network hubs. The latter example emphasizes the importance for the whole
telecommunication sector.
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Chapter 1 Introduction

The well known minimum spanning tree (MST) problem is the notorious archetype of
network design problems, being closely related to the MLST problem as well. For the MST
problem we are given a set of nodes and a set of edges, each connecting two nodes. We
assume that the given graph is connected, i.e. there are no isolated nodes. Furthermore we
are given costs that are assigned to the given edges. The objective is to find a minimum
weight subgraph connecting all the given nodes. It is easy to see, that the resulting
subgraph is a tree, i.e. it contains no cycles. The MST problem has the desirable property
that it can be efficiently solved, i.e. optimal solutions can be derived within polynomial
time by prominent algorithms of Kruskal and Prim [70, 88]. Unfortunately, most network
design problems do not have this property – on the contrary it can be shown that they
cannot be optimally solved within polynomial time with a deterministic algorithm (unless
P = NP).

1.1 Minimum Label Spanning Tree

The minimum label spanning tree (MLST) problem was first introduced in [16]. For the
MLST problem we are given a graph G = (V,E, l) with nodes v ∈ V and edges e ∈ E
connecting pairs of nodes of the node set V . In addition a labelling function l : E → L
is given, assigning to each edge an element “label” from a finite set L. The objective is
to find a minimum cardinality label subset LT ⊆ L inducing a feasible spanning tree in
the sense that for each edge in the spanning tree its corresponding label is selected. If
l : E → 2L, i.e. more than one label can be assigned to an edge, the problem is also called
generalized MLST which we will abbreviate by GMLST, cf. [17]. However, the original
problem formulation from [16] does not explicitly forbid parallel edges (i.e. multigraphs),
which corresponds to multiple labels assigned to single edges.

The MLST problem is known to be NP-complete (the concept of NP-completeness will
be discussed in Section 2.3), the non-existence of a polynomial-time constant-factor ap-
proximation (unless P = NP) has been further shown in [16, 69], which will be both
addressed in more detail in Section 3.1.

a a

aa

b b

c

b

c
c

b b

c

b

c
c

b

Figure 1.1: MLST instance (left) with corresponding optimal solution (right), with edges
being colored in correspondence to their (single) assigned label.
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1.2 Outline of the Thesis

By L(e) we denote the subset of labels that are associated to edge e ∈ E, and E(l) the
edges having assigned label l ∈ L accordingly. We call |E(l)| the label frequency. For the
nodes we define L(v) to be the set of labels associated to all edges incident to node v, and
V (l) denoting the set of nodes that are incident to edges with label l. Further notation
will be introduced on demand in the subsequent chapters.

Practical applications of the MLST problem do for instance exist within the context of
telecommunication network design. Within these networks the particular nodes are con-
nected by various types of communication medium like optical fiber, cable, microwave,
telephone line [16]. The goal is to derive a network of maximal uniformity, i.e. a minimum
amount of different connection facilities should be used. Another application scenario is
proposed within this thesis: The goal is to compress an unordered set of multi-dimensional
data, which is reduced to an extended version of the MLST problem. In Chapter 5 this
topic is treated in detail.

1.2 Outline of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 first gives a short intro-
duction to graph theory, combinatorial optimization and complexity theory. Afterwards,
prevalent methods and algorithms within the field of combinatorial optimization are pre-
sented, with particular focus on the techniques applied in the thesis. The applied methods
can primarily be subdivided in the categories exact and heuristic algorithms.

Chapter 3 deals with heuristic solution methods, with primary focus on metaheuristic
techniques applied to the MLST problem. Incipiently, previous work is reviewed and
discussed. The heuristic methods considered within this thesis are then described in
detail. Existing algorithms from literature have been implemented and tested with minor
modifications and improvements, furthermore the application of a metaheuristic not yet
applied to the MLST problem, namely ant colony optimization, is reported. Finally, results
of computational experiments are presented and discussed. This chapter includes the ant
colony optimization approach published in [21].

Chapter 4 then focuses on exact solution methods, in particular techniques based on math-
ematical programming. The chapter is based on [22]. Again, existing methods, primarily
based on mixed integer programming are reviewed and discussed. New mixed integer pro-
gramming formulations, based on cutting-plane-separation are proposed, the corresponding
polyhedra are compared w.r.t. their linear relaxation and aptitude for cutting-plane algo-
rithms. It is furthermore shown, how odd-hole inequalities can be applied to strengthen the
MIP formulations and heuristic separation procedures for these inequalities are presented.
Computational results and their discussion finally close this chapter.

Chapter 5 starts with a short discussion of potential real world applications of the MLST
problem and its variants. The main part of this chapter is devoted to a new compression
model based on the MLST problem. In particular, this compression model is adequate for
small sets of unordered weakly structured data. The particular application background
arises within the context of biometrics: For many purposes fingerprint data is represented
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by minutiae which are characteristic points within the fingerprint image. In order to use
such minutiae data as additional security feature for e.g. passport images, highly special-
ized compression mechanisms are required. After describing the particular compression
model, various exact and heuristic methods for the solution of the resulting optimization
problem are presented and evaluated. The chapter is mainly based on [24], the section
regarding branch-and-cut-and-price is based on [25]. Earlier stages of research related to
the topic of this chapter have been published in [23, 19, 92].

Conclusive remarks in Chapter 6 finally complete the thesis.
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Chapter 2

Theory and Methodologies

There is nothing as practical as a good theory.
Kurt Lewin

Our best theories are not only truer than common sense,
they make far more sense than common sense does.

David Deutsch, The fabric of reality (1997)

A
s a profound basis for the subsequent chapters, underlying theory and
methodologies are reviewed in this chapter. Starting point is a short intro-
duction to basic concepts from graph theory with a definition of according
notation. Subsequently a brief introduction to combinatorial optimization

and complexity theory is given. The main part of this chapter is devoted to solution meth-
ods constituting the primary toolbox for solving intractable problems within the field of
combinatorial optimization. These methods can be subdivided into exact and heuristic
methods, each being addressed in a distinct section. Primary focus is given to the methods
that are used and applied within the remainder of this thesis.

2.1 Graphs

The probably first introduction of the concept of graphs dates back to the 16th century,
where Leonhard Euler modeled the famous problem of finding a walk through the city
Königsberg1, which is situated on the Pregel river, crossing every bridge exactly once.
Euler simplified the problem by reducing all land masses to nodes, and bridges to edges
connecting these nodes accordingly. By analyzing the resulting formal model he showed

1Today, the city is named Kaliningrad and is part of Russia.
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the inexistence of a walk through the graph that uses each edge exactly once [45]. Se-
quences of edges fulfilling this property are nowadays called Eulerian Trails or Tours (if
they have the same start and end node). Within the beginning of the 20th century graphs
and their properties attained more interest, and the mathematical discipline of graph the-
ory emerged, with Dénes König being one of the first pioneers. Nowadays graph theory
is an important subdiscipline of discrete mathematics, as many problems having practical
and theoretical importance respectively, can be formulated by means of graphs. In par-
ticular for computer science, graphs are an integral part for theory as well as for practical
applications as many algorithms are based on graph data structures.

Formally, a graph G = (V,E) is given by a finite set of nodes or vertices v ∈ V together
with a set of edges e = {v1, v2} ∈ E, v1, v2 ∈ V . If edges are oriented, they are called arcs
and are denoted by ordered pairs a = (v1, v2) ∈ A, A ⊆ V × V . Within many contexts it
is more convenient to denote the vertices by their indices, i.e. i ∈ V instead of vi ∈ V and
therefore a = (i, j) instead of a = (vi, vj). If a graph contains only edges it is called an
undirected graph, if it contains only arcs, it is called an directed graph (or simply digraph),
if it contains both edges and arcs it is called a mixed graph. Within this thesis only simple
graphs containing no self-loops {vi, vi} or (vi, vi) and not having multiple edges or arcs
between every pair of nodes are considered. However, for directed graphs the existence of
arcs (vi, vj) and (vj , vi), vi, vj ∈ V is permitted. Two nodes are called adjacent if an edge
or arc connecting these two nodes exists. A node v is called incident to an edge e ∈ E or
arc a ∈ A and vice versa if v ∈ e, or v ∈ a respectively. Besides the specification of a graph
as a set of nodes and edges/arcs, it can also be described by an |V |×|V | adjacency matrix,
say M , where each element mij of M is one if an edge/arc from node vi to node vj exists,
and zero otherwise. As this matrix is symmetric for undirected graphs it is sufficient to
provide an (upper) triangular matrix.

A graph G′ = (V ′, E′) with V ′ ⊆ V , E′ ⊆ E and V ′ containing all incident nodes of E′
is called a subgraph of graph G = (V,E). The same definition remains valid for directed
graphs.

Graphs containing only relatively few edges in the order of magnitude of the number of
nodes are called sparse, otherwise they are called dense. If the edges or arcs fully connect
all nodes v ∈ V , the graph is called complete, and it is often denoted by Kn with n = |V |.
Hence, a complete undirected graph has n·(n−1)/2 edges, a digraph n · (n−1) arcs. A graph
is called bipartite if the node set V can be partitioned in two disjoint sets V1∪V2 = V such
that each edge or arc connects a node from V1 to one from V2, but no edges connecting
nodes within one particular set do exist.

A sequence of nodes v0, v1, . . . , vk, k ≥ 1, is called a walk if {vi−1, vi} ∈ E for i = 1, . . . , k.
If all edges are distinct the walk is called trail. If furthermore no node repetitions do occur
on the trail, we have a path. The length k of a walk/trail/path is the number of its edges.
The definitions of walk, trail and path do also naturally apply for directed graphs. A walk
v0, v1, . . . , vk is closed if v0 = vk. A closed path with k ≥ 2 is called a cycle. A graph that
does not contain cycles is called acyclic.

A connected component is a subset V ′ ⊆ V with the property that a path exists between
all pair of nodes of V ′. In the case of directed graphs we need to distinguish between
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weakly and strongly connected components. A subset V ′ is said to be weakly connected
if the underlying undirected graph obtained by ignoring the directions of the arcs, is
connected. It is further said to be strongly connected, if for all pairs of vertices v1, v2 ∈ V ′
directed paths from v1 to v2 and vice versa exist. By κ we denote the number of connected
components, isolated vertices are counted as component as well. If κ = 1 the graph is
called connected.

The number of incident edges to a vertex v is denoted by its degree d(v). For directed
graphs we further distinguish the indegree d−(v) and outdegree d+(v) denoting the number
of incoming and outgoing edges, respectively. A complete undirected graph therefore has
d(v) = |V | − 1 for all v ∈ V , and d−(v) = d+(v) = |V | − 1 in the directed case.

A cut C is defined by a subset S ⊂ V, S 6= ∅, that induces a partitioning C = (S, S̄) of
the graph, where S̄ = V \S. The set of edges or arcs with one node from set S and the
other one from set S̄ is called cutset.

An acyclic graph is also called a forest, if it further is connected it is called a tree. Given
a connected graph G it is often intended to find a tree T = (V,E′), E′ ⊆ E, |E′| =
|V | − 1, that is optimal w.r.t. some objective function. Such trees are called spanning
trees. All nodes with d(v) = 1 of a tree are called leaves. A directed acyclic graph is
called arborescence if it has |V | − 1 arcs and there exists a root node such that there is a
directed path to each of the other vertices. A complete undirected graph Kn has exactly
nn−2 spanning trees. This result is known as Cayley’s formula [14, 26]. The number
of spanning trees for the more general case |E| < n·(n−1)/2 is, by Kirchhoff’s matrix tree
theorem, given by the absolute value of the determinant of any (|V | − 1) × (|V | − 1)
submatrix of the Laplacian-matrix which is given by the difference of the degree-matrix
and the adjacency matrix of the graph [57].

When given a weighting function w : E → R, we can define the minimum spanning tree
problem, which asks for a spanning tree having minimum weight. Although the solution
space is exponentially large it is possible to compute the optimal solution efficiently. How-
ever, considering other objective functions usually makes the problem intractable, which
is addressed in more detail in Section 2.3. Other fundamental problems within the area
of graph theory are concerned with traversing graphs, like shortest paths problems, the
Hamilton-cycle problem, the problem of finding Eulerian circuits, and the Chinese Post-
man problem, to mention just some famous ones. Further problems deal with certain
colorings of graphs, flows in graphs as well as the determination of certain subgraphs with
special properties. For a comprehensive introduction to the topic the reader is referred to
extensive literature of the topic, as for instance [4].

2.2 Combinatorial Optimization

Optimization is generally considered with solving the problem of finding extreme points
like maxima and minima of certain functions. Extreme points of polynomial functions
with one variable can be easily found by elementary mathematics. The more general case
consists of an objective function of several variables, and additional constraints, restricting

7



Chapter 2 Theory and Methodologies

the space of feasible solutions. The case of linear objective functions and restrictions
defined for real variables, which can be solved within polynomial time, is discussed in
more detail in Section 2.4.1. Contrary, no general efficient techniques exist for finding
global optima of nonlinear multi-dimensional functions.

If the set of feasible solutions is finite, the problem is called a discrete optimization problem.
If the objective function itself is restricted to a discrete domain like integers or elements
from a finite set we have a combinatorial optimization problem (COP). Combinatorial
optimization is thus a branch of on the one hand combinatorics, itself being a branch of
discrete mathematics, and optimization on the other hand.

Although the number of solutions to a COP is finite, it is usually exponentially large in
dependence of the size of the input instance. Therefore combinatorial optimization mainly
deals with the development of algorithms that perform better than the complete enumer-
ation of the solution space, which is usually not possible for problem-sizes of interest.

As graphs constitute objects of discrete mathematics, many problems defined on graphs
naturally fall into the category of combinatorial optimization. Furthermore a plenitude
of other problems are studied within this field. Scientific importance of the area is based
on numerous COPs arising in industry like telecommunication network design, routing,
facility location, assignment, scheduling, and manufacturing. Besides this, combinatorial
optimization provides many insights and methodologies being important for mathematics,
physics and computer sciences. Within the latter one, COPs arise within many subdisci-
plines dealing with e.g. programming languages, compilers, automata, cryptography, and
automated proving.

The majority of COPs cannot be solved efficiently, as they are known to beNP-hard, which
is addressed in the following section. The remainder of this chapter is devoted to theoretical
foundations and methodologies within the area of combinatorial optimization.

An extensive introduction to combinatorial optimization can be found in [84], further
suggestions are [71, 87, 32, 100, 72].

2.3 Complexity Theory

In Section 2.1 we already introduced the minimum spanning tree (MST) problem. De-
spite the exponentially large number of feasible solutions, optimal solutions can be found
efficiently for this particular problem. By efficiently we mean that the number of com-
putational steps is bounded by a polynomial of the size of the input instance. However,
this beneficial property does not hold for many other problems, as for them no algorithms
are known that only require polynomial time. Complexity theory mainly deals with the
classification of particular problems according to their hardness.

A first prerequisite for the analysis of the “complexity” is a hardware-independent model of
computation. Alan Turing provided such a model, which is now known as Turing machine
– not a machine in a physical sense, but only a gedankenexperiment. Such a machine
consists of an infinite tape with discrete reading and writing positions, a read-write head
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and a finite state control. A program for such a deterministic one-tape Turing machine
(DTM) consists of a finite alphabet (finite set of symbols), a finite set of states (with
distinguished start- and halt-state), and an according transition function. If the machine
reads some particular symbol in some particular state, the transition function determines
in which state to move next, which symbol to write on the tape, and if to proceed with
the next leftmost or rightmost cell on the tape. The important thing about the Turing
machine is that it can solve any problem that can be solved on computers, as all basic
operations can be simulated by the basic operations of the read-write head. Based on
this computational model we can now define the class P to be the class of all problems
(stated in terms of decision problems) for which a polynomial time program for the DTM
exists. More precisely, the number of steps is a polynomial within the length of the input
sequence.

A further important class arises when introducing indeterminism to the Turing machine
model. This is achieved by the introduction of a guessing-module, which in a first step
writes a guessed string on the tape, such that the input string is not overwritten. If
this process has stopped, the NDTM continues its execution in the same way as the
DTM, which is called the checking-stage. To see that this nondeterministic (one-tape)
Turing machine (NDTM) is more powerful than its deterministic counterpart we consider
the situation where the probabilistic nature of the process comes to the correct decision in
each step, i.e. the machine performs a correct guess within each step. Based on this model,
the complexity class NP is defined as the class of all problems for which a polynomial
time NDTM program does exist. In other words, all problems for which a polynomial-time
nondeterministic “guess-and-check” algorithm does exist, fall into the class NP. Hence,
solutions to problems within NP can at least be verified in polynomial time, even if
deterministic solution methods are unknown.

Central concepts of nowadays complexity theory have been proposed by S. A. Cook in
the seminal paper [31]. Particular attention is paid to decision problems, which only have
“yes” or “no” as result. Note that each optimization problem, say minimization problem,
can be formulated as a decision problem, by asking the question: does a solution with
objective value lower than some specified value exist? Furthermore Cook introduced the
concept of polynomial reduction. A polynomial time transformation converting problem
A into problem B therefore allows to use any algorithm for B for problem A. Cook
proved that each problem within NP can be reduced to the satisfyability problem (SAT).
Consequently, if SAT can be solved within polynomial time, every problem in NP can be
solved in polynomial time. In [64] Karp proposed the famous 21 problems, which are in
this sense equivalent to SAT. Such problems form the “hardest” class of problems within
NP and are called NP-complete. All problems to which NP-complete problems can be
reduced, even if they are not part of class NP, are called NP-hard2. It is still an unsolved
problem to prove or disprove if P 6= NP. It is however widely believed that P 6= NP, as
otherwise polynomial time algorithms for NP-complete problems would exist, which have
however not be found so far, even though much efforts have been undertaken.

2The famous Halting problem is NP-hard and does not belong to class NP.
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Many problems within combinatorial optimization are NP-complete. A comprehensive
introduction into the area of complexity theory can be found in [49].

2.4 Exact Methods

Although some COPs can be solved to optimality within polynomial time, the vast ma-
jority falls in the category of NP-complete or NP-hard problems. For such problems,
already for relatively small instance sizes the brute-force approach, usually performed by
completely enumerating all possible solutions, fails due to memory and/or execution time
limitations. However, performing such an enumerative approach in a more intelligent way,
which permits to rule out certain branches of the enumeration tree soon, significantly
shifts the border of solvable instances towards larger ones. Such an approach is usually
called branch-and-bound (B&B), where in each intermediate node of the enumeration tree
the problem is split into subproblems by restricting the domain of certain decision vari-
ables. The availability of methods to compute bounds is crucial in order to traverse the
tree in a prospective way, and to effectively prune branches leading to suboptimal solu-
tions. Branch-and-bound based on linear programming (LP) plays a crucial role within
the area of combinatorial optimization, as it turned out to work efficiently for numerous
problems.

After a short introduction to linear programming, the following sections are primarily
devoted to (mixed) integer linear programming and related methods as LP-based branch-
and-bound, branch-and-cut, branch-and-price, and branch-and-cut-and-price. In Section
2.4.3 we finally give a short overview about further methods being of high relevance within
the combinatorial optimization area. For a broad introduction to the area of integer
programming and related methods the reader is referred to [84, 9, 99, 72] which also have
been primary resources for the remainder of this section.

2.4.1 Linear Programming

The general linear program (LP) is given by

max
n∑
j=1

cjxj (2.1a)

s.t.
n∑
j=1

aijxj ≥ bi for i = 1, . . . ,m (2.1b)

xj ≥ 0 for j = 1, . . . , n (2.1c)

with constants bi, cj ∈ R, i = 1, . . . ,m, j = 1, . . . , n, or equivalently in vector notation
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max cTx (2.2a)
s.t. Ax ≥ b (2.2b)

x ∈ Rn
+, (2.2c)

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn are given, and x ∈ Rn should be found. As
shorthand for the LP defined by (2.1a) or (2.2a) we will also write

zLP = max{cTx | Ax ≤ b,x ∈ Rn
+}, (2.3)

with zLP denoting the objective value of the optimal solution. The problem is well-defined
if the objective function is bounded and feasible solutions do exists. In this case, the
problem has an optimal solution. By (2.3) we have defined the standard-form of an LP,
to which any other LP can be transformed. Maximization problems can be transformed
into minimization problems by multiplying the objective function by −1. Equalities can
be modeled by imposing two corresponding inequalities. It may also be convenient to
formulate the LP in terms of equalities, rather then inequalities. This slack form (also
called augmented form) can be obtained by the introduction ofm additional slack variables
xn+i, i = 1, . . . ,m, enabling to write each particular inequality as equality.

max
n∑
j=1

cjxj (2.4a)

s.t. bi −
n∑
j=1

aijxj = xn+i, for i = 1, . . . ,m, (2.4b)

x ∈ Rn+m+1
+ . (2.4c)

Duality

To each LP, a dual problem exists, being strongly connected to the original primal problem.
A vivid interpretation of the dual problem comes from asking for an upper bound (or
lower bound in the case of minimization) to the primal problem. This can be achieved by
expressing c as a positive linear combination of Inequalities (2.18c), the restrictions, with
coefficients yi ≥ 0, i = 1, . . . ,m. We thus obtain

cTx =
(

m∑
i=1

yiai

)T

x =
m∑
i=1

yi
(
ai

Tx
)
≤

m∑
i=1

yibi, (2.5)

with ai denoting the i-th column of matrix A. We obtain the best bound by minimizing
the last term in (2.5), again being a linear program. Hence, if the primal problem is given
by

zLP = max{cTx | Ax ≤ b,x ∈ Rn
+}, (2.6)
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the corresponding dual problem is

wLP = min{yTb | yTA ≥ cT,y ∈ Rm
+}. (2.7)

Proposition 1 The dual of the dual problem is the primal problem.

As we have already seen, solutions to one of these problems can be used to obtain bounds
for the corresponding dual problem.

Proposition 2 (Weak Duality) If x is primal feasible and y is dual feasible, then

cTx ≤ yTb.

It directly follows, that if the primal problem is unbounded, then the dual is infeasible.
The following central theorem within the field of linear programming provides a mean of
certification of optimality of a particular solution.

Theorem 1 (Strong Duality) If zLP or wLP is finite, then both (the primal and the
dual) problem have finite optimal value zLP = wLP.

A further important property if the primal-dual pair is given by the following proposi-
tion.

Proposition 3 (Complementary Slackness) Let x and y be feasible solutions for the
primal and dual problem respectively, then x and y are optimal solutions if and only if

yi(b−Ax)i = 0, for all i, and

xj(yTA− cT)j = 0, for all j.

Polyhedra

Let xk, k ∈ N, be a finite set of points in Rn. A point x =
∑
k∈N λkxk, λk ∈ R is called a

linear combination of points xk. It is further called

• conical, if λk ≥ 0, for all k ∈ N ,
• affine, if

∑
k∈N λk = 1, and

• convex, if it is both conical and affine.

The points xk are said to be linearly independent, if
∑
k∈N λkxk = 0⇒ λk = 0, for all k ∈

N, i.e. the zero vector has only the trivial representation. A set X ⊂ Rn is a convex set,
if it is closed under finite convex combinations. The set of all finite convex combinations
of points in X is called convex hull and denoted by conv(X). Analogously we can define
the linear span (sp(X)), conical hull (cone(X)) and the affine span (aff(X)).
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Theorem 2 (Minkowski, Weyl) For a subset P ⊂ Rn, the following statements are
equivalent.

1. P = {x ∈ Rn | Ax ≤ b}, with A ∈ Rm×n, b ∈ Rm.

2. P = conv(V ) + cone(E)

Such a set P is called a polyhedron.

From this we can see, that every LP defines a polyhedron, as a set of points satisfying a
finite number of linear inequalities is a polyhedron.

Definition 1 If P ⊆ Rn is bounded, i.e. there exists an ω ∈ R+ such that ∀x ∈ P | −ω ≤
xj ≤ ω for j = 1, . . . , n, it is called a polytope.

Proposition 4 A polytope is the convex hull conv(V ) for some finite set V ⊂ Rn.

In the following we well consider the geometric entities, which can be used to describe the
boundary of a polyhedron.

Definition 2 (Hyperplane) The set {x ∈ Rn | aTx = a0} for a ∈ Rn\{0}, a0 ∈ R is
called a hyperplane.

Definition 3 (Valid Inequality) The inequality aTx ≤ a0 (also denoted by (a, a0)) is
called a valid inequality for P if it is satisfied by all points of P .

Hence, each valid inequality defines a hyperplane with the polyhedron P entirely lying on
one side of it. Particularly important valid inequalities are the ones, directly describing
the boundary of the polyhedron and are called facets.

Definition 4 (Face) If (a, a0) is a valid inequality for P , and F = {x ∈ P | aTx = a0},
F is called a face of P .

Definition 5 (Facet) A face F of P is a facet of P if dim(F ) = dim(P )− 1.

Important special cases of faces are corner points.

Definition 6 (Corner Point) Each facet F with dim(F ) = 0 is called corner point.
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Using these definition, we can already deduce a nice geometric interpretation of finding
optimal solutions to feasible LPs. We already showed, that each LP corresponds to a
polyhedron. From Definition 2 we can see, that the objective function together with
an arbitrary objective function value defines a hyperplane. As each interior point of
the polyhedron corresponds to a feasible solution, each nonempty intersection with the
objective function hyperplane cTx = c0 corresponds to a feasible solution with objective
value c0.

Finding optimal solutions of an LP can thus be interpreted as shifting the objective func-
tion hyperplane towards larger values c0, as long as the intersection with the polyhedron
remains nonempty. From this we can already see that any optimal solution lies on the
boundary of the polyhedron.

The main workhorse for solving LPs is the Simplex algorithm, to be described in the fol-
lowing section. Although the Simplex method has exponential worst case running time, it
is usually preferred over other existing polynomial methods (like for instance the Ellipsoid
method), as it shows far superior performance for a plenitude of problems in practice, and
the worst case barely occurs.

Simplex Algorithm

The main principle of the Simplex algorithm is to iteratively move from one corner point
of the polyhedron to a neighboring one having higher objective value. This is basically
achieved by changing the basis within each step. We start our description by first present-
ing the main steps of the algorithm and then discussing some related issues in more detail
afterwards, essentially following the description in [72].

Let us consider the LP brought into standard slack form, only consisting of equality
constraints. For this purpose also the objective function is modeled as an equality, by
introducing the additional variable x0.

max x0 (2.8a)

s.t. x0 −
n∑
j=1

cjxj = 0 (2.8b)

n∑
j=1

aijxj = bi for i = 1, . . . ,m (2.8c)

xj ≥ 0 for j = 1, . . . , n (2.8d)
(2.8e)

This is no loss of generality, as each LP can easily be transformed in this particular form.
In order to model the objective function as an equality, variable x0 has been introduced.
The indices {1, . . . , n} can now be partitioned into basic indices β = (β1, . . . , βn) and
nonbasic indices η = (η1, . . . , ηn−m).
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Definition 7 (Basic Solution) A basic solution x∗ is a feasible solution, where n −m
variables x∗η1 = x∗η2 = . . . = x∗ηn−m are set to zero.

It follows, that x∗β1
, x∗β2

, . . . , x∗βm is the unique solution of the remaining system

m∑
j=1

aiβjxβj = bi, for i = 1, . . . ,m,

or, equivalently in matrix notation x∗β = A−1
β b.

The dual program of (2.8) is given by

min yTb (2.9a)
s.t. yTA ≥ cT. (2.9b)

The basic dual solution associated with basis β is uniquely defined by

y∗T = cβ
TA−1

β . (2.10)

Definition 8 (Reduced Costs)

c̄η := cη − y∗TAη (2.11)

If all reduced costs c̄ηj are nonpositive, then y∗ is feasible to the dual problem. If x∗ is
primal feasible, we can write the objective in terms of basic variables cTx∗ = cβ

Tx∗β. Due
to Equations (2.8d) we can write x∗β as Aβ

−1. Due to Equation 2.10 we further obtain
cβ

TAβ
−1b = y∗Tb. This reasoning yields to the following theorem:

Theorem 3 (Weak Optimal-Basis Theorem) If the basis is both primal feasible and
dual feasible, then it is optimal.

It is further possible to derive the following result:

Theorem 4 (Strong Optimal-Basis Theorem) If the primal and corresponding dual
problem are both feasible, then there exists a basis that is both primal and dual feasible,
and therefore optimal.
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The Simplex algorithm starts with a primal feasible solution, and within each step de-
termines a new element to enter the basis, and one to leave the basis. This approach
corresponds to following a path moving from one corner point of the polyhedron to an-
other one, having equal or better objective value, finally ending up in the optimal corner
point. The operations are carried out on the Simplex tableau. Linear program (2.8) in
tableau form is given by:

x0 x r.h.s.
1 −c 0
0 A b

(2.12)

In this table “r.h.s” stands for right hand side. If we write this tableau in terms of basic
and non-basic variables we obtain:

x0 xβ xη r.h.s.
1 0 −cη cβ

Tx∗β
0 1 A−1

β Aη A−1
β b

(2.13)

Here we have moved cβTx∗β to the right hand side, and denote the unity matrix, being the
submatrix of A w.r.t. the basic variables, by 1. We can now solve for the basic variables
and replace −cη with the reduced costs c̄η := cη − y∗TAη = cβA

−1
β b.

x0 xβ xη r.h.s.
1 0 −cη + cβA−1

β Aη cβA
−1
β b

0 1 A−1
β Aη A−1

β b

(2.14)

With Āη := Aβ
−1Aη we further obtain:

x0 xβ xη r.h.s.
1 0 −c̄η cβx

∗
β

0 1 Āη x∗β

(2.15)

In this particular form it is easy to check for feasibility, i.e. β is primal feasible if x∗β ≥ 0,
and dual feasible if c̄η ≤ 0. As already mentioned, the Simplex algorithm starts with a
feasible basis β. Then, pivot steps are performed iteratively, until an optimal basic solution
is found. The pivot consists of the determination of one element βi to leave the basis, and
one (non-basic) element ηj with positive reduced costs c̄ηj to enter the basis. The element
βi to leave the basis is determined by

i = argmink

{
x∗βk
āk,ηj

| āk,ηj > 0
}
. (2.16)

The element to enter the basis ηj with c̄j > 0 is chosen such that the new basis β′ =
(β1, β2, . . . , βi−1, ηi, βi+1, . . . , βm) remains feasible. The leaving variable is set to zero
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(according to the definition of non-basic variables), and the entering variable takes on the
value x∗β′i =

x∗βi
āi,ηj

. We obtain a (positive) increase of the objective function value by c̄ηjx∗β′i
as long as x∗β′i > 0.

So far, we presented the general algorithmic approach, but certain issues have not been
addressed yet. Some of these aspects are now briefly discussed, without going too much
into detail. For a comprehensive description the reader is referred to [36].

The Simplex method described so far requires an initial feasible basic solution. Such a
solution can in turn be derived with the Simplex method itself by the introduction of
additional auxiliary variables, which directly provide a feasible solution. If subsequent
pivoting operations are successful to transform the initial solution into one having all
auxiliary variables equalling zero, we have found a basic feasible solution to the original
problem, otherwise infeasibility has been proven. These initial steps are called Phase-I
Simplex, in contrast to the subsequently performed Phase-II Simplex, which has already
been discussed. The overall approach is hence called Two-Phase-Simplex.

A detailed discussion regarding the pivoting-rule (2.16) is also beyond the scope of this
brief introduction. However, it should be mentioned that this particular pivoting-rule
comprises several problems: Following this selection rule may yield to degenerated tableaus
and cycling, which may lead to situations where the algorithm does not terminate. These
issues can be easily circumvented, though, by the application of Bland’s pivoting rule.

A further important variation of the Simplex algorithm is the Dual Simplex method,
which is particularly important for situations where additional constraints have been added
which render the current solution infeasible. Such situations are important with respect to
cutting-plane methods, which are discussed in Section 2.4.2 in the context if integer linear
programs, but are also of high importance for the solution of merely linear programs. In
contrast to the Primal Simplex method, Dual Simplex works by moving from one dual
feasible basis to another, trying to obtain a primal feasible one.

2.4.2 Integer Linear Programming

Numerous problems within the combinatorial optimization area can be modeled as linear
programs with the additional constraints that some or all of the decision variables must
be integer or even Boolean. If all variables are restricted to an integer domain we have an
integer linear program (ILP)

max cTx (2.17a)
s.t. Ax ≤ b (2.17b)

x ∈ Zn+, (2.17c)

if this restriction is only imposed for some variables, we have a mixed integer program
(MIP)
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max cTx+ c′Tx′ (2.18a)
s.t. Ax+A′x′ ≤ b (2.18b)

x ∈ Zn+, x′ ∈ Rn′
+ . (2.18c)

In some particular cases, linear programming provides a direct way for solving ILPs.

Definition 9 (Total Unimodularity) Matrix A is called totally unimodular, if every
square nonsingular submatrix of A has determinant ±1.

Theorem 5 If A is totally unimodular and b is integer valued, then every corner point
of the polyhedron is integer valued.

Hence, the availability of a polyhedral description with this property implies the prob-
lem to be polynomially solvable. For NP-hard problems such descriptions are generally
not available. Explicitly restricting variable domains to integral numbers for polyhedral
descriptions given by linear inequalities is generally a much harder problem than linear
programming. In particular it is in general not possible to derive optimal ILP-solutions
from optimal LP-solutions by simple rounding methods or other transformations, as shown
in Figure 2.1.

Theorem 6 0-1-Integer Programming is NP-complete.

As integer programming is more general than 0-1-integer Programming, a direct conse-
quence is that it is also NP-hard. Furthermore the following result can be shown.

Corollary 1 Integer Programming is NP-complete.

Hence, in contrast to linear programming, no polynomial time algorithms for ILP do exist,
unless P = NP. Nevertheless, LP-techniques are very important tools for solving ILPs
for two reasons. First, LP-solutions of an ILP, i.e. solutions of the ILP where integrality
constraints have been omitted, provide a bound for the objective value zILP of the ILP. Such
a solution with objective function value zLP is called LP-relaxation and for maximization
problem it holds that zILP ≤ zLP. Second, effective algorithms for solving ILPs can be
built upon these bounds by integrating the process of LP-solving into an enumerative
framework, which is to be discussed in more detail in the following section.

18



2.4 Exact Methods

x2

x1

zILP
zLP

integer optimum

LP optimum

solution obtained by LP rounding

Figure 2.1: Example where rounding of LP-solution does not yield the optimal ILP-
solution. The dashed lines correspond to the objective funcion.

Branch-and-Bound

Branch-and-bound (B&B) is an algorithmic framework for solving combinatorial opti-
mization problems by performing a restricted enumeration of the solution space, using in
each step upper and lower bounds to restrict search paths that cannot lead to a global
optimum. Branch-and-bound basically follows the “divide and conquer” principle as all
problems within the enumeration tree that cannot be directly solved are split into smaller
subproblems. Let b(Pi) denote the bound for subproblem Pi, i.e. a lower bound for mini-
mization problems and an upper bound for maximization problems, and obj(Pi) denote the
objective function value for a feasible solution Pi. Let further G denote the global bound
which is an upper bound for minimization problems, and a lower bound for maximization
problems. The generic branch-and-bound framework is described in Algorithm 1.

Algorithm 1: Generic Branch-and-Bound
Put initial problem on the list of active subproblems.1
Select an active subproblem Pi. If none exists, G is the global optimum.2
If Pi is infeasible, delete Pi and goto line 2; otherwise compute b(Pi).3
If b(Pi) is equal to or worse than the global bound G, delete Pi.4
if Pi directly solvable then5

solve Pi6
if Pi better than G then G← obj(Pi)7

else8
Split Pi into further subproblems, and add them to the list9
of active problems. Goto 210

end11

To give a precise specification of a B&B algorithm certain aspects need to be detailed.
An important design decision is how to choose the next subproblem. Possibilities are
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depth-first search plus backtracking, breath-first search or quick improvement (see [84] for
details). Lines 3 and 4 of Algorithm 1 perform the pruning of the search tree. Besides
infeasibility or optimality value dominance according to the global bound G is used to
prune the search tree, and may be applied with some small tolerance ε > 0 to avoid
numeric issues. Finally, it needs to be specified, how considered problems are partitioned
into subproblems. The efficiency of a B&B algorithm usually heavily depends on the
strength of the bounds and the ability to compute them fast.

Besides its general ability to be used for solving COPs, B&B is also the main algorithmic
framework for solving MIPs. The branch-and-bound algorithm starts with solving the LP-
relaxation of the considered problem in the root node. The obtained solution generally will
consist of many fractional variables, i.e. variables not fulfilling the integrality constraints of
the MIP. As the LP-relaxation has not directly provided a solution in this case, the problem
needs to be split up into subproblems. Let x∗ denote the solution of the LP-relaxation of
subproblem, consisting of at least one fractional element x∗i . Two new subproblems are
usually created by adding constraints

x∗i ≤ bx∗i c, (2.19)

and
x∗i ≥ dx∗i e, (2.20)

respectively. Such a situation is depicted in Figure 2.2.
x2

x1

zP ′
i

zP ′′

zPi

Figure 2.2: Example for splitting problem Pi into subproblems P ′ and P ′′ by adding con-
straints x1 ≥ 3 and x1 ≤ 2.

Cutting-Plane Method and Branch-and-Cut

The idea of branch-and-cut (B&C) originates from the cutting-plane method for solving
COPs by linear programming. We have already discussed that it is generally not possible
to describe the convex hull of the solution vectors to an NP-hard COP by a polynomial
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number of constraints w.r.t. the instance size. This can be achieved by an exponentially
large set of constraints, which is, however, usually not available. Even in the case such a
formulation is available, it is usually not possible to directly pass an exponentially large
set of constraints to an LP-solver. However, usually only a relatively small subset of the
exponentially many constraints is necessary in order to obtain an optimal integer solution
of the LP. This observation led to the development of the cutting-plane algorithm. The
procedure starts by solving the LP-relaxation of a restricted problem. This restricted
problem can either be the LP-relaxation of a feasible MIP, or even an incomplete formula-
tion, having solutions that violate certain constraints of the problem under consideration.
Given a solution to the restricted problem, it needs to be identified, which inequalities of
the polyhedral description of the convex hull of the solution vectors of the initial problem
are violated. The problem of finding such inequalities is called separation problem.

Definition 10 (Separation problem) Given a point x̃ ∈ Rn and a polyhedron P ⊆ Rn.
Decide, whether x̃ belongs to P or not, and, in the latter case find a valid inequality (α, α0)
for P which is violated by x̃.

The solution to the separation problem provides a valid inequality (α, α0), if one exists,
which then can be added to the LP. Resolving the LP, which can efficiently be performed
by the Dual Simplex algorithm (see Section 2.4.1), then yields another solution, having
the same or better objective function value than the previous one. As this solution again
might be fractional or infeasible to the initial problem, the process needs to be iteratively
performed until a valid integer solution is obtained. The name cutting-plane method
arises from the interpretation of cutting away certain parts of the polyhedron by the
addition of a valid inequality. See Figure 2.3 for an illustration of cutting-planes. The
challenging part within this approach is to efficiently solve the separation problem, and
in particular to find good valid inequalities in the sense that preferably large parts of the
polyhedron are cut away. An important result of Grötschel, Lovasz, and Schrĳver in 1981
shows that separation and optimization are equivalent to a certain extend, as a linear
optimization problem defined by a polyhedron can be solved in polynomial time if and
only if the corresponding separation problem can be solved in polynomial time. In this
case, polynomial time refers to the number of variables and the logarithm of some bound
on the magnitude of entries of A and b.

We now address the topic of how to obtain cutting plains, which can be divided into
generic cutting-planes and template-based cutting-planes. The first class can be generally
applied to any ILP, whereas the second class constitutes problem specific cutting-planes
being closely related to specific templates or components a valid solution must or must
not contain.

Chvátal-Gomory Cutting-Planes Let P denote the polyhedron defined by (2.17b) and
(2.17c) and nonnegativity constraints x ∈ Rn

+. Let further further F denote the set of
feasible integer solutions to ILP (2.17). The Chvátal-Gomory (C-G) procedure describes
a general framework for deriving valid inequalities for conv(F) which are not valid for P
and therefore strengthen the formulation.
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x2

x1

z

C1

C2

z′

Figure 2.3: Additional inequalities (cutting planes) depicted by dark gray lines are added
to the initial polyhedron (area shaded in light gray). The resulting (dark gray)
polyhedron provides a tighter description of the underlying ILP model, in this
case all fractional solutions w.r.t. the depicted objective function are cut-off
and the LP-solution z′ is integral.

We can now choose a u ∈ Rm
+ . All x satisfying (2.17c) also satisfy

n∑
j=1

(uTAj)xj ≤ uTb.

It directly follows, that
n∑
j=1
buTAjcxj ≤ uTb. (2.21)

By using the integrality of x we obtain the C-G cutting-planes.

Definition 11 (Chvátal-Gomory Cutting Planes)

n∑
j=1
buTAjcxj ≤ buTbc (2.22)

By variation of vector u we obtain the first Chvátal closure of the polyhedron P , given
by

P1 =

x ∈ Rn
+ | Ax ≤ b,

n∑
j=1

(buTAjc)xj ≤ buTbc, for all u ∈ Rn
+

 . (2.23)

It can be shown that P1 is indeed a polyhedron, and in some cases (as for instance for the
matching problem) indeed corresponds to conv(F).
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Gomory Cutting-Planes Gomory cutting-planes are a particular manifestation of C-G
cutting-planes, which can be directly extracted from basic-feasible solutions. A row of the
Simplex tableau (compare (2.15)) is given by

xβi +
n−m∑
j=1

āβiηjxηj = x∗βi , i = 0, . . . ,m. (2.24)

By rounding down the coefficients we obtain the Gomory (fractional) cutting planes:

xβi +
n−m∑
j=1
bāβiηjcxηj = bx∗βic, i = 0, . . . ,m (2.25)

By subtracting (2.24) from (2.26) we obtain an equivalent inequality

xβi +
n−m∑
j=1

(bāβiηjc − āβiηj )xηj = bx∗βic − x
∗
βi , i = 0, . . . ,m. (2.26)

Template-based Cutting-Planes In contrast to the C-G or Gomory cutting-planes, the
cutting-planes discussed in the following cannot be generally applied to any MIP. In con-
trast, they are defined by a particular template that must either be fulfilled or must
not occur in a solution of the considered problem. Such cutting-planes are often very
strong, such that they define facets of conv(F) or faces of reasonable high dimension.
Furthermore it is often possible to develop efficient separation algorithms for such fami-
lies of valid inequalities. First exciting results in the context of template-based cutting-
planes have been obtained for the symmetric traveling salesman problem, by using subtour-
elimination constraints, 2-matching inequalities and comb inequalities. To consider the
subtour-elimination constraints in more detail, they state that no subgraph defined by
V ′ < V is allowed to contain a tour, as the overall goal is to find a minimum cost tour on
the whole graph. The corresponding inequalities are given by∑

e∈E(S)
xe ≤ |S| − 1 for all S ⊂ V, 2 ≤ |S| ≤ |V | − 1, (2.27)

with xe denoting the decision variables for the edges. However, there are exponentially
many such constraints, which therefore cannot be directly added to a solver (except for
very small instances). Hence, such inequalities are only separated in the case they are
violated by a LP-solution. This is done by inspecting each obtained optimal solution of
the LP-relaxation in order to find a partial solution violating the corresponding constraints,
or to show that no such violation exists. In the first case the corresponding inequalities
are added to the model, which is in turn resolved.

A lot of research has been devoted to the development and analysis of such template-
based cutting-planes for many different combinatorial optimization problems. In this
paragraph we have just mentioned a few of them, in order to present the general idea. For
solving spanning-tree problems directed connection cuts and cycle-elimination cuts are of
particular importance, and will be introduced and discussed in more detail in Chapter
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4 in Section 4.2, the corresponding separation algorithms are discussed in Section 4.2.2.
In Chapter 4 we further show how to apply odd-hole inequalities to the minimum label
spanning tree problem, and propose a MIP-based heuristic separation method in Section
4.2.3.

Combining Branch-and-Bound with the Cutting-Plane Method Embedding cutting-
plane methods into the branch-and-bound framework (Section 2.4.2) leads to the branch-
and-cut (B&C) approach. Cutting-planes may be used for two purposes. First, to obtain
feasible solutions within each node of the branch-and-bound tree, which is particularly the
case when the problem was modeled with exponentially many constraints, and the initial
LP-model is therefore not feasible to the original problem. Well-known examples for such
situations are formulations for spanning trees based on connectivity or cycle-elimination
constraints. The second reason to use cutting-planes within the B&B framework is to
strengthen the LP-relaxation in each node of the B&B-tree, yielding better bounds, likely
permitting a more effective pruning of the search tree. However, as opposed to the ad-
vantage of smaller B&B-trees, there is the evident drawback of the separation-problem to
be solved frequently, again emphasizing the importance of efficient separation algorithms.
Whereas Gomory cuts were not to be thought to be of practical importance in the early
90’s of the last century [34], they are nowadays part of almost every LP-solver, as they
turned out to significantly speed up the branch-and-bound process, in particular when all
cuts from the optimal tableau are generated. The additional separation of template cuts
leads in many cases to efficient state-of-the-art exact algorithms.

Column Generation

As opposed to the cutting-plane method, where new constraints are dynamically added
to the model, column generation proceeds by adding new variables to the model. The
name originates from considering each variable in the Simplex tableau (2.12) as a column.
The method is particularly important for problems having a huge, mostly exponential
number of variables (as opposed to constraints). Many problems like the cutting-stock
problem, which was the first application of column generation (see [51]), naturally imply
such formulations, but however, many other problems can be transformed to a model with
a larger number of variables by Dantzig-Wolfe decomposition [37]. Let us consider the
MIP

min z = cTx (2.28a)
s.t. Ax ≥ b (2.28b)

Dx ≥ d (2.28c)
x ∈ Zn+, (2.28d)

within this context known as the original or compact formulation. From Theorem 2 we
know that we can write each x ∈ P as a convex combination of extreme points {pq}, q ∈ Q
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plus a nonnegative combination of extreme rays {pr}, r ∈ R of P , i.e.

x =
∑
q∈Q

pqλq +
∑
r∈R

prλr,
∑
q∈Q

λq = 1, λ ∈ R|Q|+|R|+ . (2.29)

With the linear transformations cj = cTpj and aj = Apj , j ∈ Q ∪ R, we obtain the
extensive formulation, which is equivalent to (2.28).

min z =
∑
q∈Q

cqλq +
∑
r∈R

crλr (2.30a)

s.t.
∑
q∈Q

aqλq +
∑
r∈R

arλr ≥ b (2.30b)

∑
q∈Q

λq = 1 (2.30c)

λ ≥ 0 (2.30d)

This reformulation (2.30) usually has less rows than (2.28), but a larger number of vari-
ables. It can be shown, that the resulting polyhedra are not combinatorially equivalent.
Constraints (2.31c) are known as convexity-constraints.

Decomposition will be particularly useful if the considered MIP contains a block-diagonal
structure, which is often the case for COPs, as certain groups of “connecting” or “coupling”
constraints, having many non-zero coefficients, can often be identified. The blocks can be
interpreted as relatively independent subproblems which are then, on a higher level, linked
together (by λ).

Column Generation is an algorithmic approach for solving such structured problems as
given by (2.30). Hence, we call

min z =
∑
j∈J

cjλj (2.31a)

s.t.
∑
j∈J

ajλj ≥ b (2.31b)

λj ≥ 0 for all j ∈ J (2.31c)

the master problem (MP). In each iteration of the Simplex algorithm a new non-basic
variable to enter the basis is determined based on the reduced costs. This particular step
of the Simplex provides the main motivation for the CG approach. Instead of directly
starting with solving the MP, we consider the restricted master problem (RPM), just
consisting of a small subset J ′ ⊆ J of columns. New columns are just added on demand,
according to the selection rule (compare with Definition 8)

argmin
{
c̄j := cj − y∗TAj | j ∈ J

}
. (2.32)
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The dual optimal solution y∗, whereupon this decision is based on, is provided by the
solution of the RPM by the Simplex algorithm. The determination of such a column to
add, having negative reduced costs is called the pricing problem. Each such variable could
potentially improve the objective function, furthermore, if no such variable with negative
reduced costs could be found, no further improvements are possible. It is, however, desir-
able not to have to explicitly enumerate the whole index set. By exploiting the structure
of the considered problem it is often possible to formulate the pricing problem in terms of
an optimization problem.

c̄∗ = min
{
c(a)− y∗Ta | a ∈ A

}
(2.33)

In this case it is not necessary to explicitly enumerate the space of all possible columns
A, but rather to determine the best such column in a more direct way, or to prove that
none such column does exist.

Branch-and-Price and Branch-and-Cut-and-Price

Using column generation within the branch-and-bound framework directly leads to
the branch-and-price (B&P) algorithm, which was for the first time proposed by
Desrosiers [40], and later on described in a generic algorithm in [105]. Within each node of
the B&B-tree new variables are priced in, until no further potentially improving variable
is found. If the solution still contains fractional variables branching is performed. A fur-
ther combination with the cutting-plane method is usually called branch-and-cut-and-price
(BCP).

Although it is generally believed that such combinations of cutting-plane methods with
B&B and B&C are very powerful tools, these approaches show only moderate performance
if applied in a straightforward way. Frequently observed problems are the heading-in effect,
which refers to slow progression in the beginning due to poor information provided by the
dual variables, and the tailing-off effect referring to poor convergence after a certain stage
of fast progression. Dual solutions are frequently observed to jump between extreme values
(bang-bang effect), intermediate Lagrangean dual bounds not to converge monotonically
(yo-yo effect). Advanced techniques like stabilized column generation [79] significantly
improve the overall performance.

For a comprehensive description of column generation and related topics the reader is
referred to [39] and [74].

2.4.3 Further Methods

There are many further popular and frequently used methods and approaches to modeling,
which are, however beyond the scope of this work, as this introductory chapter is primarily
focused on methods going to be applied in the remainder of this thesis. For the sake of
completeness we finish this section covering exact solution methods for combinatorial
optimization problems by briefly mentioning some further, important approaches.
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Lagrangean Relaxation

Lagrangean relaxation (LR) is a powerful relaxation technique, where certain hard con-
straints are moved to the objective function as a penalty term. Let us consider the following
linear program:

min cTx (2.34a)
s.t. Ax ≥ b (2.34b)

Bx ≥ d (2.34c)
0 ≤ x ≤ 1 (2.34d)

To compute a lower bound, we may now relax a subset of constraints, say Ax ≥ b, by
adding it to the objective function with coefficients λ ≥ 0. Hence, the LR is given by:

min cTx+ λ(b−Ax) (2.35a)
s.t. Bx ≥ d (2.35b)

0 ≤ x ≤ 1 (2.35c)

It can be easily verified that (2.35a) gives a lower bound for the optimal solution of (2.34a).
In order to obtain the best available bound, the Lagrangean dual program

max
λ≥0


min cTx+ λ(b−Ax)
s.t. Bx ≥ d

0 ≤ x ≤ 1

 (2.36)

must be solved. It can be shown that the bound obtained by solving (2.36) to opti-
mality strictly dominates the LP-bound for problem (2.35a). The determination of the
Lagrange-multipliers within (2.36) can be performed by subgradient method or the volume
algorithm [5]. A good introduction to Lagrangean relaxation and related topics can be
found in [7].

Constraint Programming

Constraint programming (CP) can to a certain extend be regarded as a complementary
approach to solving COPs, as opposed to traditional LP-based techniques. It is of par-
ticular importance for constraint satisfaction problems (CSPs), where the goal is not to
optimize over a given objective function, but to find any feasible assignment for the deci-
sion variables, fulfilling all specified constraints. As opposed to strictly linear constraints,
also logical constraints, or even more complex functions not necessarily having closed
mathematical forms can be specified.
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The term programming in CP is in close correspondence to the term programming in for
instance object oriented programming or functional programming, and has less in common
with mathematical programming. It should be rather understood as programming tech-
nique [75]. Algorithms for solving CP problems are often based on constraint propagation
and domain reduction. The term constraint propagation refers to the communication of
any modification of a variables domain when it is modified, to other interacting constraints.
In contrast, domain reduction is about the modification of further variables within one
constraint in the case a particular variable is modified. To find a feasible solution to a CSP
a search strategy needs to be specified, which is often based on depth-first search. At each
node of the search tree the problem is split into subproblems based on a specified goal.
This process is continued until a feasible solution has been found, or the problem could
be shown to be infeasible. Hence the process is closely related to solving ILP by branch
and bound, however with the difference that non-linear constraints can be handled, and
subproblem generation is performed in a more problem-specific way.

Constraint programming turned out to be very effective in the context of scheduling prob-
lems, but also for many other problems where finding feasible solutions is of primary
interest. On the other hand, it is not suitable for many types of problems, as no relax-
ations are used for effectively pruning the search tree. The topic of CP is covered in great
detail in [96].

Convex Optimization

Some problems can be modeled by means of linear constraints, but have convex objective
functions. A well known special case is quadratic programming (QP), given by

min cTx+ 1
2
xTQx (2.37a)

s.t. Ax ≥ b (2.37b)
x ≥ 0, (2.37c)

with Q being a symmetric, positive semi-definite n×n matrix. With these properties the
objective function is also convex. Such QPs can be solved by a slightly modified variant
of the simplex algorithm [111], but also other algorithms like interior point method are
applicable.

Having now reviewed the most important mathematical programming techniques and
algorithms which are frequently applied for exactly solving combinatorial optimization
problems, we now focus on heuristic and approximative methods in the remainder of this
chapter.
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2.5 Heuristic and Approximative Methods

With respect to NP-complete problems, exact methods are usually only applicable to
small to moderate sized problem instances, and typically require relatively long running
times ranging from a couple of minutes to a couple of hours and even more. Consequently,
heuristic methods, not necessarily yielding optimal solutions, are an auspicious alternative,
in particular when running times are limited and near optimal solutions are of importance.
Algorithms providing a guarantee of not exceeding the optimal objective function value
by a certain value or multiplicative factor in the worst-case are called approximation
algorithms. If the performance bound is unknown or infinite an algorithm is simply called
a heuristic. Algorithms building a feasible solution from scratch are called construction
algorithms.

If each decision of the algorithm is performed by selecting the locally best extension
component, and these decisions are not revised later on, the algorithm is said to be greedy.
Approximation and construction algorithms will be discussed in Sections 2.5.1 and 2.5.2.

Algorithms iteratively modifying solutions in order to obtain better ones are called im-
provement algorithms. During the last couple of decades numerous “general purpose”
algorithmic templates emerged, which can be more or less easily adapted for particular
optimization problems. Such algorithms are called metaheuristics, and are to be discussed
in Section 2.6.

2.5.1 Approximation Algorithms

If algorithm A can be shown not to exceed the optimum in the worst case by more than
a certain amount, it is called an approximation algorithm. Let I denote an instance of
the considered problem, and A(I) denote the objective function delivered by algorithm A.
Let further Opt(I) denote the optimal objective function value of instance I. Algorithm
A is said to have an absolute performance guarantee ρ if

|Opt(I)−A(I)| ≤ ρ, for all instances I. (2.38)

Definition 12 (Constant Factor Approximation Algorithm) Algorithm A has a
relative performance guarantee (1+ε) for minimization problem I if there exists a constant
ε > 0 such that

A(I) ≤ (1 + ε) Opt(I), for all instances I, (2.39)

and a relative performance guarantee of (1− ε) for a maximization problem

A(I) ≥ (1− ε) Opt(I), for all instances I. (2.40)

Such algorithms are called (1 + ε)-approximation algorithms, and (1 − ε)-approximation
algorithms respectively.
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The performance bound is tight, if the inequalities are fulfilled with equality for at least
one instance I. As a consequence this bound cannot be improved by further analysis.

If ε can be specified as a parameter for algorithm A, such that A is a (1 + ε) or (1 −
ε) approximation algorithm respectively, and furthermore algorithm A has polynomial
runtime w.r.t. the size of the instance when ε is regarded as a constant, the resulting
family of algorithms is called polynomial-time approximation scheme. If the algorithm has
further polynomial runtime w.r.t. the instance size and parameter 1/ε it is called a fully
polynomial-time approximation scheme (FPTAS).

The complexity class APX refers to all optimization problems in NP, for which
polynomial-time ε-approximation algorithms do exist. Unfortunately, many NP-complete
problems cannot be approximated within a constant factor within polynomial time. Let
PT AS denote the complexity class (denoted by calligraphic font) of NP-hard problems
for which PTAS exists, and FPT AS be the class of NP-hard problems for which FPTAS
exists. It can be shown, that unless P = NP, FPT AS ( PT AS ( APX , and in par-
ticular strict inclusion holds for this hierarchy. Hence, for APX -hard problem, no PTAS
can exist.

See [107] for a comprehensive introduction to approximation algorithms.

2.5.2 Construction Algorithms

Construction algorithms are methods that start with an empty solution, and then itera-
tively add further components to the partial solution, until a feasible solution is obtained.
For many problems the main purpose of construction heuristics is to create feasible start-
ing solutions for subsequent application of metaheuristics (see Section 2.6). However, for
huge problem instances, the application of fast construction heuristics may be the only
way to obtain any feasible solutions, as the application of metaheuristics is not practicable
due to memory and running-time limitations. Due to these two major fields of application
construction algorithms are usually primarily designed to work fast and efficient.

Many construction algorithms follow the greedy-principle. Due to their usual simplicity
greedy algorithms often can be relatively easily analyzed and for many problems perfor-
mance guarantees can be derived. Hence, in fact, many greedy algorithms are approxi-
mation algorithms. For some COPs it is also possible to develop greedy algorithms that
always yield the optimal solution. Of course, this is only possible for problems not being
NP-complete or harder, unless P = NP. A well known example is the minimum spanning
tree problem, which can be solved optimally with the well known algorithms by Prim and
Kruskal. Optimal solutions can be generally found by greedy algorithms if the problem
has matroid structure [71].
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2.6 Metaheuristic Methods

During the last decades metaheuristics have become rather popular approaches for solv-
ing various kinds of optimization problems. The term metaheuristic was introduced by
F. Glover in [52] for the first time. In contrast to problem specific heuristic algorithms,
metaheuristics are high-level generic templates which can, in principle, be applied to any
optimization problem. They primarily provide a description of the interaction and appli-
cation of various low-level components, to be specifically designed for the application to
a particular problem. Designing and integrating these low-level components in an appro-
priate way, as well as the adjustment of certain parameters, is usually the crucial part for
obtaining efficient metaheuristic algorithms w.r.t. a particular problem. As these tasks
cannot be described in a generic way, the application of metaheuristics to particular op-
timization problems is an ongoing and active field of research. Although many attempts
have been made into the direction of the development of robust black-box optimization
tools, best results can mostly be achieved by the incorporation of problem specific opera-
tors and methods into the general algorithmic framework of metaheuristics. A plenitude
of different metaheuristics has been developed, and some of them are to be discussed in the
following sections, as it is generally not possible to identify one particular approach that
is superior over the other ones. Over all possible optimization problems, all optimization
algorithms essentially show the same average performance. This result is essentially known
as the No Free Lunch Theorem, which has been presented and analyzed in [112]. As a
consequence, designing algorithms for particular optimization problems seldomly follows
a strict methodology or recipe. In fact, it can be seen as the art of combining analysis,
intuition, computational testing and experience in a beneficial way to obtain algorithms
having desirable properties like providing high average solution quality, robustness, and
low runtime and memory requirements. These conflicting properties frequently make de-
sign choices and analysis of the resulting algorithms even more difficult.

In the following some of the most popular and frequently used metaheuristics are described
in more detail. Main emphasis is given to the methods going to be used in the remainder
of this thesis. In Section 2.6.1 we consider methods having in common that they itera-
tively modify a single solution by considering its neighbors w.r.t. to some neighborhood
structure. The metaheuristics covered in Sections 2.6.2 and 2.6.3 have in common that
they simultaneously operate on a set of candidate solutions, and that they are inspired
by certain mechanisms from nature. In Section 2.7.1 we finally turn our attention to the
combination (“hybridization”) of metaheuristics, which showed to be profitable for many
applications and problems.

2.6.1 Neighborhood Search Algorithms

Many metaheuristics are built upon the principle of neighborhood search. All these algo-
rithms have in common that they start from an initial solution x ∈ S, where S denotes
the search space, i.e. set of allowed solutions.
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Definition 13 (Neighborhood Structure) A neighborhood structure N : S → 2S is a
function assigning a set of neighbors N (x) ⊆ S, called neighborhood of x to every solution
x ∈ S.

The basic algorithmic building block for exploiting neighborhood structures is called local
search (LS). The principle is to start with a solution x ∈ S and then move through the
solution space by successively proceeding with better solutions found by exploring the
neighborhood of the current one. We assume the objective to be minimization according
to objective function f : x → R. The basic local search algorithm is presented in the
following Algorithm 2.

Algorithm 2: Local Search
Input: Solution x ∈ S1
repeat2

choose x′ ∈ N (x)3
if f(x′) < f(x) then4

x← x′5
end6

until termination criterion is fulfilled7

In Algorithm 2 it remains unspecified how to choose x′ in line 3. One of these strategies
is usually applied:

• Random Neighbor: A random neighbor is chosen.
• Next Improvement: The neighboring solutions are traversed, and as soon as an

improvement to the current solution is found, the algorithm proceeds with this better
solution.
• Best Improvement: An overall best solution from the neighborhood is used to proceed

with.

Within LS usually next or best improvement is performed, whereas random neighbor has
applications in simulated annealing and tabu search, to be presented in the following
Sections 2.6.1 and 2.6.1. Local search is usually terminated if a local optimum has been
found.

Definition 14 (Local Minimum) A solution x is a local minimum for N (x) if f(x) ≤
f(x′) for all x′ ∈ N (x).

A local maximum is defined analogously for maximization problems. Single application of
LS to complex COPs generally yields only solutions of moderate quality. Straightforward
improvements are, however, to perform multiple LS runs starting from different initial
solutions. Such approaches are known as multi-start local search . In the following sections
we consider metaheuristics which are extensions to the outlined local search procedure.
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Simulated Annealing

The origin of the name simulated annealing (SA) is due to the annealing process for
crystals, whereas annealing is a thermal process for obtaining low-energy states of solids.
In a first step the temperature of a heat bath is increased to an amount at which melting
occurs, then temperature is decreased again to allow the particles to arrange themselves,
with the goal to achieve a nearly perfectly structured lattice in the ground state. The
metaheuristic simulated annealing, proposed in [66], closely follows this procedure.

The SA algorithm can be interpreted as an extension to LS with random neighbor step-
function typically applied. Differences are, however, that inferior solutions are accepted
with certain probability, depending on the difference of the objective values and temper-
ature T . A neighboring solution x′ ∈ N (x) with f(x′) > f(x) is accepted if

r < e
|f(x′)−f(x)|/T , (2.41)

where r ∈ [0, 1) is a uniformly distributed random number. Lower gaps of the objective
values and higher temperature thus increase the likelihood of worse solutions being ac-
cepted. The decision rule given by (2.41) is called Metropolis criterion. Hence, objective
values correspond to the particles’ energy state in the annealing process. The tempera-
ture T is initially set to a high value in a problem specific way, for instance such that
moves to worse solutions are accepted with a specified probability. The temperature is
then successively decreased during the execution of the algorithm, making moves to worse
solutions less likely. In comparison to LS, the probability of ending up in a local optimum
is significantly reduced. Due to its simplicity and effectiveness SA is a frequently applied
metaheuristic.

Tabu Search

Another popular extension of local search is tabu search [53]. Again, the basic algorithm
follows the local search paradigm, the neighborhood is typically explored with a best
improvement strategy, and the best neighbor is usually always accepted. Major difference
to local search is the usage of tabu lists, with the main intention to prevent cycling (visiting
the same solution over and over) and therefore support the ability to escape local optima.
The tabu list(s) keep track of either entire solutions or, more commonly, attributes of
performed moves for a specified number of iterations. New solutions are only accepted,
if they are compliant with the tabu list(s), i.e. recently visited solutions are avoided. An
important parameter is the lenght of the tabu list, also called tabu tenure. If too small
values are used, cycling can still occur. On the other hand too long tabu lists impose
too strong restrictions on the further search process. Hence, the determination of the
best value to be used for a particular problem is often a difficult task. Due to this issue,
self-adaptive approaches have been proposed. For instance, the length of the tabu lists is
dynamically adjusted within reactive tabu search [6].
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Greedy Randomized Adaptive Search Procedures

A straightforward extension to iterated local search, proposed in [95], is called greedy ran-
domized adaptive search procedure and is widely known by its acronym GRASP. Within
this approach, multiple starting points for subsequent local search are created by a ran-
domized greedy construction heuristic. The greedy decisions are randomized by means of
a restricted candidate list (RCL) which is filled with potential extension candidates. In
each construction step one of the elements of the RCL is randomly chosen. How the RCL
is built up, is an important design issue for GRASP. Small RCLs imply less randomiza-
tion, which leads to less diversity amongst the solutions used as starting points for the
LS. Longer RCLs will on the contrary produce solutions of weaker expected quality on
average, which may also be not desirable. Again, attempts to dynamically adjust this
parameter have been made, for instance known as Reactive GRASP.

Variable Neighborhood Search Methods

The basic idea of variable neighborhood search methods is to use more than one neighbor-
hood structure within a local search framework. This approach has been introduced by
Mladenović and Hansen [82, 56]. If a solution x is a local optimum w.r.t. a particular neigh-
borhood structure, another one may yield further improvements. Hence, the probability of
getting stuck in local optima can be significantly reduced. Let N1(x),N2(x), . . . ,Nkmax(x)
denote the kmax considered neighborhood structures. It is generally reasonable to consider
these neighborhood structures ordered increasingly w.r.t. their complexity, i.e. the number
of neighboring solutions defined by it. Algorithm 3 shows a natural extension of LS using
more than one neighborhood structure, called variable neighborhood descent (VND).

Algorithm 3: Variable Neighborhood Descent
Input: Solution x ∈ S1
k ← 12
repeat3

choose x′ ∈ Nk(x)4
if f(x′) < f(x) then5

x← x′6
k ← 17

else8
k ← k + 19

end10

until k = kmax11

In line 4 the algorithm tries to find a better solution in the current neighborhood Nk.
If this attempt was successful, the algorithm proceeds with N1, otherwise the algorithm
switches to the next neighborhood. However, abilities of leaving local optima are still
limited within VND. This problem is circumvented by (basic) variable neighborhood search
(VNS), presented in Algorithm 4.
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Algorithm 4: (Basic) Variable Neighborhood Search
Input: Solution x ∈ S1
repeat2

k ← 13
repeat4

Shaking: choose random solution x′ from N ′k(x)5
x′ ← Local Search(x′)6
if f(x′) < f(x) then7

x← x′8
k ← 19

else10
k ← k + 111

end12

until k = kmax13

until termination criterion is fulfilled14

Primary difference to VND is the shaking operation in line 5, which chooses a random
solution of the current neighborhood N ′k. The algorithm then proceeds with a local search
for this solution in line 6. Again, if an improvement compared to x could be found, the
algorithm proceeds with this new incumbent solution and switches to first neighborhood
structure, otherwise the next neighborhood structure is used.

Many variations of the basic VNS scheme of Algorithm 4 have been proposed. If the local
search performed in line 6 is omitted, we obtain reduced variable neighborhood search (R-
VNS). If alternatively local search is replaced by VND, the resulting algorithm is called
general variable neighborhood search (G-VNS). Note that the neighborhood structures N ′k
used within VND must not correspond to the ones used in the outer loop for the shaking.
These neighborhood structures N ′k should be significantly larger than the one used within
VND, in order to provide an appropriate mechanism for escaping local optima w.r.t.
the neighborhoods used in VND. The decision of which variable neighborhood search
variant to apply, and the design of the neighborhood structures to be used within the
framework, must be carefully decided based upon the properties of the considered problem,
characteristics of the data instances and allowed running times.

2.6.2 Methods Based on Swarm Intelligence

Many metaheuristic techniques are based on parallel construction or modification of a pool
of candidate solutions and frequently are inspired by nature. The common concept is the
observation of emergent intelligence at high levels in a system of “low level components”.
The collective behavior of a fish school or flock birds would not be expected, if only
low-level components, i.e. individual animals, are considered. Despite the absence of a
centralized control by a group leader or a predefined schedule for all individuals, the whole
group is able to commonly perform certain tasks, quickly adopt to changing environments
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as a collectively behaving super-individual. For instance a fish school is able to split to
avoid a predator and reunite afterwards.

Principles facilitating such collective behaviour in a decentralized system are usually sub-
sumed under the term self-organization. The emergent intelligence on the level of the
entire system is often called swarm intelligence. This astonishing phenomenon was inspi-
ration for many metaheuristic optimization algorithms, which to a certain extend imitate
the underlying principles and mechanisms of swarm intelligence.

The above mentioned examples of bird flocks and fish schools gave rise to a metaheuristic
called particle swarm optimization (PSO), proposed in [65], which is particularly suited
for continuous optimization problems. Within this approach a group of particles traverses
the search space in order to find near optimal solutions. Within each discrete time step
the motion of each individual particle undergoes a change of velocity and direction, based
on the motion of surrounding particles and best solutions discovered so far.

A further example of biologically inspired algorithms are artificial immune systems, out-
lined for the first time in the seminal work [46]. Main properties of such approaches
are to imitate the immune system’s ability of adaptive learning and memory. Recently,
these techniques have been also successfully applied to optimization problems. Probably
the most popular approach among biologically inspired techniques is stimulated by the
behaviour of ant colonies, and therefore subject of the following section.

Ant Colony Optimization

Ant colony optimization (ACO) is based on the foraging behaviour of ants. Despite the
ants disability to survey the region around the anthill, or to make educated decisions,
almost all ants run on near-optimal paths from the anthill to the food source and back.
This “optimization task” is mainly achieved by stigmergy, i.e. communication by means of
modification of the common environment. Along their way, each ant deposits pheromone,
a volatile chemical factor, further ants follow trails of high pheromone concentration with
high probability, but may also leave this trails to explore further ones. The latter mecha-
nism is important to retain flexibility as well as to avoid premature convergence to a local
optimum, i.e. all ants walking on a suboptimal path. The first metaheuristic based on these
principles has been introduced by M. Dorigo, V. Maniezzo and A. Colorni [42, 43].

Algorithm 5: Generic-ACO
for it iterations do1

for each ant m, 1 ≤ m ≤M do2
solution construction (of ant m)3
optional local search4

end5
pheromone update6

end7
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Ant colony optimization is a stochastic model-based search procedure, where construction
steps are influenced by local information and global pheromone values. The correspon-
dence to ants are artificial agents constructing the solution, mostly by traversing some
kind of construction graph. The general algorithmic template works as specified by Algo-
rithm 5. In each iteration, all ants construct solutions, usually one after another. Each
decision in the constructive process is influenced by local information and pheromone val-
ues. Let i denote the current position of ant m in the construction graph. The set of
feasible extension candidates is denoted by F (i). To each edge {i, j} in the construction
graph a pheromone value τij is associated. Local information is reflected by ηij and usually
corresponds to a simple function evaluating the contribution of the element correspond-
ing to edge {i, j}. The decision of the next component to be added is usually performed
according to the following probabilities

pmij =


ταijη

β
ij∑

k∈F (i) τ
α
ikη

β
ik

for all j ∈ F (i),

0 otherwise,
(2.42)

Parameters α and β control the relative contribution of pheromone trails and local infor-
mation to the resulting probabilities. If α = 0 the construction process degenerates to a
randomized greedy heuristic. If on the other hand β = 0 the whole process will quickly
converge to an arbitrary solution (constructed by all ants).

After the solution construction process pheromone update takes place. This involves two
steps: deposition and evaporation. Each ant deposits pheromone on the trails it has
traversed in the construction graph during the solution construction process. The amount
of pheromone to be deposited is usually dependent on the solution quality obtained by
ant m. Evaporation is the primary mean to “forget” information that has been aquired
by the pheromone model so far, and enables to explore other areas of the solution space
during the search process.

Various algorithmic variations with differences according to pheromone deposition and
evaporation do exist, like MAX −MIN Ant System, Ant Colony System, Elitist Ant
System or Rank-based Ant System. For a comprehensive introduction to ACO see [44].

2.6.3 Evolutionary Algorithms

Optimization algorithms that are inspired by biological evolution are called evolutionary
algorithms (EAs). In particular, the principle components of Charles Darwin’s theory of
evolution and Mendel’s laws of inheritence are reproduced as algorithmic building blocks.
Frequently used variants of EAs are genetic algorithms (GAs), evolution strategies (ESs),
evolutionary programming (EP) and genetic programming (GP). All these variants have
in common that the algorithm operates on a set of candidate solutions or individuals.
Within each iteration (“generation”) these individuals are combined and modified in or-
der to create new offspring solutions. Following the biological analog, these operations
are called recombination and mutation. Primary goal of recombination is to merge bene-
ficial properties of different individuals in a reasonable but essentially randomly decided
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way. Mutation provides a mean of exploration of new path of evolution by small random
changes. Having created the offspring individuals, evaluation is performed, based on the
objective function for the given problem. As a result, following the terminology of bio-
logical evolution, fitness values are assigned to each individual, with higher fitness values
mark better solutions. The next generation population is then obtained by the application
of selection, which favors high quality solutions over inferior ones. A generic template for
EAs is given in Algorithm 6.

Algorithm 6: Generic-EA
create initial population P1
evaluate(P )2
t← 03
while t < max. generations do4

P ′ ← recombine(P (t))5
P ′′ ← mutate(P ′)6
evaluate(P ′′)7
P (t+ 1)← select(P ′′ ∪ P (t))8
t← t+ 19

end10

Variable t denotes discrete time-steps, for each such generation a new population P (t) of
individuals is created. All variants of GAs can be described with this template, differ-
ences are how individuals are encoded, and the functionality of the evolutionary operators
recombination, mutation and selection.

The most famous variant of EAs probably are the genetic algorithms, which have been
applied to numerous types of optimization problems. The idea of GAs goes back to John
Holland et al. [60]. A comprehensive introduction to GAs can be found in [54]. Genetic
algorithms differ to other EAs in that they facilitate an encoding of the solution that is in
close correspondence to the biological archetype. Individuals are usually represented by a
string (“chromosome”) of elements from a finite set (“genes”). These genes might have a
strong correspondence to the problems decision variables, but also weaker couplings of the
encoded candidate solution (“genotype”) to the decoded candidate solution (“phenotype”)
might exist. This is for instance the case when real values are encoded with binary
numbers. The simplest crossover strategy is to arbitrarily select a crossover-point and to
build a new offspring by using all genes left of the crossover-point from one parent, the
genes on the right side from the other. Mutation can be performed by simply changing the
value of one gene with some low probability. However, in general, these operators should
be designed in a more problem specific way, such that profitable attributes are inherited
to the offsprings in a meaningful way. To determine the parents for the creation of new
offspring solutions roulette-wheel selection is frequently performed. Thereby individuals
are selected with a probability proportional to their fitness values.

Several attempts to theoretically explain the functionality of GAs have been made. The
schema theorem provides an explanation of how GAs operate by combining various small
building blocks in a profitable way. Crucial part for the development of efficient GAs is to
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find an appropriate encoding of the problem. The property of locality should be met, i.e.
small changes in the genotype should correspond to small deviations in the phenotype and
vice versa. This often implies the requirement to place strongly dependent genes close to
each other, as they should not be detached by recombination.

Many extensions and improvements to the presented standard GA framework do exist.
For instance, the use of scaling or tournament selection often facilitates a fine adjustment
of selection pressure, i.e. the ratio at which high-quality solutions are preferred to average
ones by the selection operator. In the case of irregular distributions of fitness values rank-
selection may be applied, where instead of fitness values only the rank within the current
population ordered decreasing w.r.t. the fitness values is accounted for selection probability.
If invalid solution candidates can be produced by recombination, these individuals need
either to be repaired or penalized accordingly, which is often a crucial part to achieve good
convergence properties. In contrast to the above sketched generational model, it is also
possible to use a steady-state approach. In this case just one individual is changed at a
time.

Many further techniques exist, in order to prevent premature convergence to a global opti-
mum. These include, but are not limited to the introduction of sub-populations (“niching”)
to support genetic diversity, or advanced population management techniques, ensuring a
certain amount of diversity within the population. For a more detailed treatment of these
issues the reader is referred to [54, 80, 3], which is however just a small selection of existing
literature related to this topic.

Other variants of EAs are evolution strategies and evolutionary programming, both being
similar to each other. In particular for continuous parameter optimization problems, ESs
and EP are often considered to be more appropriate than GAs. Main differences are that
parameters are directly encoded as real numbers, and mutation, based on the addition
of (parametrized) Gaussian variables, is the primary operator. In particular ESs provide
means for dynamic adaptation to local properties of the search space, by self-adaptation
of strategy parameters. This property allows for faster convergence rates towards (local)
optima. Furthermore, in contrast to GAs, no numeric issues w.r.t. the binary encoding of
the parameters can occur. For an extensive treatment of the topic the reader is referred
to [2].

Genetic programming is a popular machine learning technique with the goal of the deriva-
tion and optimization of formulae or computer programs to perform a specific task. Indi-
viduals are usually encoded by means of a tree structure corresponding to the syntax or
parse tree of the corresponding program or formula. As a result of increasingly available
computational power numerous successful applications of GP have been reported, e.g. in
the areas of electronic circuit design, quantum computing, but also to create “inventions”,
cf. [68].

Many recent topics and achievements regarding evolutionary algorithms are covered in
great detail in [3].
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2.7 Hybrid Algorithms

Various exact and heuristic algorithms have largely different properties regarding their
ability to find feasible or high-quality solutions fast, or to solve certain subproblems or
even prove optimality for the considered problem. By exploiting individual advantages,
a combination of auspicious methods may lead to hybrid algorithms with overall superior
performance. During the last years, hybrid algorithms gained much attention amongst the
scientific community, in particular regarding the application to combinatorial optimization
problems. A comprehensive overview about the state-of-the art is provided in [10].

2.7.1 Hybrid Metaheuristics

Typically, different metaheuristics applied to a particular problem show different charac-
teristics and may have different advantages. The motivation behind hybridizing meta-
heuristic primarily is to obtain a method with superior performance that exploits the
individual advantages of the single heuristics. In particular for difficult large scale opti-
mization problems hybrid approaches can more and more be found amongst the leading
algorithms. A taxonomy for hybrid metaheuristics is proposed in [91] and pursued in [94].
Main properties are the types of algorithms being hybridized, level of hybridization, order
of execution, and underlying control strategy.

A very successful type of combination is to use local improvement methods as subordi-
nate method guided by another metaheuristic, which is itself primarily designed to find
promising regions of the search space. Local search methods are often able to find a local
optimum (“top of the hill”) fast, but lack the ability to perform a global search covering
many different promising regions of the search space. In a hybrid approach this partic-
ular task is referred to the guiding heuristic as well as the control of the global search
strategy, i.e. intensification vs. diversification. Within the evolutionary computation com-
munity the term memetic algorithm is used for genetic algorithms guiding an additional
subordinate heuristic.

For complicated large-scale real-world problems attempts of directly solving it by meta-
heuristic techniques are often impracticable due to high running times and poor average
solution quality. Multi-stage approaches frequently yield significant improvements, if wise
decompositions into subproblems can be found. Multi-level refinement strategies [109]
attempt to obtain higher-level approximations to the original problem by coarsening, and
then solve, iteratively refined problems, at each level.

Due to the increasingly available hardware facilities for parallel computing within the
last years, the parallel approach becomes more and more important. One approach is to
execute multiple metaheuristics in a collaborative way in order to improve overall conver-
gence properties and success ratios by consecutive exchange of solutions and information.
On the other hand, in particular subordinate methods may be subject to parallelization
themselves, for instance by using graphics processing units for the efficient solution of
subproblems, cf. [20].
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Numerous applications and various examples of combinations of metaheuristics are pre-
sented in [55].

2.7.2 Hybridizing Exact and Heuristic Algorithms

According to [89], hybrid approaches combining exact and heuristic algorithms can be
classified as follows:

• Collaborative Combination: Algorithms exchange information during their execu-
tion, which may be performed sequentially, intertwined or in parallel.
• Integrative Combination: In this case one algorithm is part of the other one. Either

the exact as well as the heuristic algorithm can be used as subordinate method.

It is often the case that considered instance sizes are too large for the direct application
of exact methods. Hence, metaheuristics are frequently used to derive a restricted search
space, which is usually obtained by considering all elements being part of the best solutions
created by the metaheuristic. Subsequent applications of exact methods are often able to
obtain further improvements. It is however also possible to start the computation with
an exact procedure like B&B, but stop the computation at a specified level of the B&B-
tree. With the subsequent application of heuristics feasible solutions are then derived from
these partial ones. Such approaches are particularly useful if the first decisions are very
critical.

Parallel and intertwined collaborative approaches are less frequent, probably due to the
higher complexity of such approaches. However, frameworks for cooperative construction
and modification of solutions have been proposed, as for instance asynchronous teams
(AT) [103], or teams for cooperative heterogeneous search (TECHS) [38]. Both approaches
have in common that algorithms of very different complexity, including different running
times and memory requirements, interact by constructing or modifying candidate solu-
tions in a collaborative way. Within the AT approach these algorithms asynchronously
operate on a pool of candidate solutions stored in a shared memory. In contrast, TECHS
works by sequential execution of the contributing algorithms, which is however, period-
ically interrupted. At this time gathered information is passed to further contributing
algorithms.

Turning our attention to integrative combinations now, we first consider the case where
the exact method is used as subordinate algorithm. In many cases it turned out to be
beneficial to solve certain subproblems with exact methods. Examples are recombination
or mutation operators within EAs, as well as local improvement methods. Furthermore
information provided by LP-relaxations can be exploited by metaheuristics, cf. [90]. A
further application of exact algorithms is to explore very large-scale neighborhoods (VLSN)
(cf. [1]), as for instance performed by a dynamic programming approach for the dynasearch
neighborhood [27].

A further, frequently applied approach is to embed heuristics into exact algorithms, with
the primary goal of speeding up the overall process. A popular approach is to use primal
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heuristics within the B&B method, to obtain feasible solutions or better incumbent solu-
tions fast. Starting point for such heuristics is usually the LP-relaxation of the B&B-nodes
at which the heuristic is applied. A further beneficial way of embedding heuristics is to
use them for cut-generation or for solving the pricing problem within column-generation.
If exact polynomial-time separation algorithms for some considered cutting-planes are too
slow for practical purposes, or have not been found at all, heuristic cut-separation may
often be a sufficient mean to benefit from the application of these cutting-planes, though.
Another approach called local-branching incorporates the idea of local search into the B&B
framework [48]. If MIPs contain binary variables, decisions on these variables usually have
a high impact on the objective values of corresponding solutions to the whole problem.
Finding feasible incumbent solutions having cleverly devised values of the binary variables
is thus of high importance for the overall performance of the B&B process. Having such
an incumbent solution at hand, the idea of local branching is to incorporate local search
around this particular solution into the B&B process. For this purpose, branching is per-
formed in such a way, that the first branch contains all solutions with a Hamming distance
smaller than a certain value, whereas the second branch contains all other solutions. Such
constraints can be formulated in terms of linear constraints for the binary variables. After
such a branching it is enforced that the first subtree is entirely solved in a classical way be-
fore the second branch is considered, with which is dealt with in the same way again. This
closely corresponds to performing local search around the considered feasible solution and
is thus likely to yield improved feasible solutions fast. Further potential of improvement
exists regarding the node-selection strategies used within the B&B algorithm. In [67] the
authors optimized this strategy by GP, based on the information gathered in the hitherto
search process.

A comprehensive survey regarding the combination of mathematical programming meth-
ods with metaheuristics – often called matheuristics – is given in [93], numerous examples
can be found in [78].
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Heuristic Methods

Intelligence is quickness to apprehend as distinct from
ability, which is capacity to act wisely on the thing

apprehended.
Dialogues of Alfred North Whitehead (1953)

Before we work on artificial intelligence why don’t we do
something about natural stupidity?

Steve Polyak

M
etaheuristic methods have become rather popular in recent decades, as they
are usually the only chance to handle medium to large scale data instances
of difficult NP-hard problems in practice. Most existing work related to
the MLST problem can be found in the field of metaheuristic methods,

and is reviewed in this chapter. Subsequently the application of metaheuristics like greedy
randomized adaptive search procedures and ant colony optimization to the minimum label
spanning tree problem is described.

3.1 Previous Work

The minimum label spanning tree (MLST) problem has been introduced by Chang and
Leu [16] for the first time. In this work the authors showed the MLST problem to be
NP-complete, and proposed an exact and an approximative algorithm.

Here we present a proof with minor differences to the proof given in [16]. The proof
proceeds by reduction of the set-covering problem, well known to be NP-complete, to
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MLST. The decision-variant of the problem required for this reduction asks for the exis-
tence of a feasible solution with |LT | < K for some integer K. The problem is clearly in
NP, as it is possible to check in polynomial time the feasibility of a given solution. Let
S = {a1, a2, . . . , an} be the set of elements to be covered in the set covering problem, and
C1 = {a11 , a12 , . . . , a1|C1|

}, C2 = {a21 , a22 , . . . , a2|C2|
}, . . . , Cm = {am1 , am2 , . . . , am|C1|

} be
subsets of S. Let C = {C1, . . . , Cm}. The set covering problem asks for a minimum cardi-
nality subset C ′ of C, such that

⋃
Ci∈C′ Ci = S. Figure 3.1 depicts graph G constructed

from S and Ci ∈ C having the property that there is a covering of S with K subsets of
C if and only if G has a MLST with K labels. Graph G = (V,E) is defined as follows:
V = {a1, . . . , an, C1, . . . , Cm, s}, where s denotes an artificial root node; The edges are
given by E = {(s, Ci | i = 1, . . . ,m} ∪ {Cp, apl | p = 1, . . . ,m, l = 1, . . . , |Cp|}. All edges
incident to s are labelled by ls, all other edges being incident to Cp are labelled by lp. The
graph G fulfills the required property, i.e. G has an MLST with K labels if and only if a
minimum covering of size K− 1 exists, and can be constructed within polynomial time.

s

l1
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C2

C3

Cm

a1

a2

an

a4

ssa3ls
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Figure 3.1: Construction of G for the proof of NP-completeness of MLST. Image based
on illustration in [16].

3.1.1 Construction and Approximation Algorithms

In [16], Chang and Leu propose a constructive method, called Maximum Vertex Covering
Algorithm (MVCA). The basic idea is to start with a graph containing no edges, and then,
iteratively select a label l and add the corresponding edges to the graph, until a connected
subgraph is obtained. The greedy-criterion for the selection of the next label to consider
is based on the number of currently uncovered vertices. However, this algorithm may
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fail to yield connected graphs, as pointed out in [30]. Krumke and Wirth [69] proposed a
modified construction algorithm (see Algorithm 7), which uses the reduction of the number
of connected components achieved by the addition of label l to the current partial solution
as greedy criterion. It is not specified which label to take in the case of more than one
label yielding minimal number of components in line 4.

Algorithm 7: (modified) MVCA
H = (V,EH = ∅)1
LH = L2
while H is not connected do3

l← argminl∈L\LH nr. of components (G = (V,EH ∪ E(l)))4

EH = EH ∪ E(l)5
LH = LH\l6

end7

This algorithm is called MVCA or modified MVCA in literature though, despite the name
not any longer accurately describing its behaviour. Within this thesis, we will follow this
terminology and call the modified construction algorithm from [69] MVCA.

Further variations and enhancements of MVCA have been presented [115] and [30]. Many
suggested improvements comprise a refined decision of which label to select in line 4 of
Algorithm 7, but also hybridization with the pilot method. Such hybridizations, but also
multiple executions of a randomized MVCA generally yield better results at the expense
of higher running times. Simply considering the label frequency as discriminative factor in
the case of ties for the decision in line 4 of Algorithm 7 turned out to be advantageous, as
running times are barely reduced, but improvements regarding the solution quality have
been obtained.

In [69] the authors present a performance guarantee of 2 ln |V |+1 for the modified MVCA,
and furthermore show, that no constant-factor approximation algorithm does exist for the
MLST problem. An improved bound of ln(|V | − 1) + 1 is obtained by Wan, Chen and Xu
[110]. A tight bound has been derived by Xiong, Golden and Wasil [114]: if G contains
no label occurring more than b times, no solution Hb times greater than the optimum will
be constructed by MVCA, with

Hb =
b∑
i=1

1
i

(3.1)

being the b-th harmonic number. A further result according to approximability has been
obtained by Brüggemann et al. [11]:

Theorem 7 For r ≥ 3 the problem MLSTr is APX-complete even if the input graph G is
restricted to be bipartite and of maximum degree 3.
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3.1.2 Local-Search-Based Algorithms

Neighborhood structures for local search algorithms have been first analyzed by Brügge-
mann, Monnot and Woeginger [11]. In particular they consider the MLSTr problem, which
is defined as having maximum label frequency r, and analyze the k-switch neighborhood
for this problem. Therein, the k-switch neighborhood is defined as follows.

Definition 15 Let k ≥ 1 be an integer, and let L1 and L2 be two feasible label sets for
some instance of MLST. Then the set L2 is in the k-switch neighborhood of L1 if and only
if

|L1 − L2| ≤ k and |L2 − L1| ≤ k. (3.2)

Hence L2 can be obtained by first removing up to k labels from L1, and then adding up
to k labels to it. Then they prove the following theorem.

Theorem 8 For any integer r ≥ 2 and for any instance G of MLSTr the objective value
of any local optimum with respect to the 2-switch neighborhood is at most a factor of (r+1)/2
above the optimal value.

Furthermore it is shown that this bound is tight. For the k-switch neighborhood, the
following result is presented in [11]:

Theorem 9 For any integer k ≥ 2, for any integer r ≥ 2 and for any real ε > 0, there
exists an instance G of MLSTr and a spanning tree T for G that is a local optimum with
respect to the k-switch neighborhood, such that the objective value of T is at least r/2 + ε
above the optimal objective value.

So far, many metaheuristics based on local search have been applied to the MLST problem.
In [15] the authors propose Simulated Annealing, Reactive Tabu Search, build on top of
the 1-switch neighborhood, the Pilot Method with the MVCA as construction method,
and a VNS using k-switch neighborhoods.

Consoli et al. [29] furthermore applied GRASP and VNS to the MLST problem. Within
the first two GRASP iterations the best label (w.r.t. reduction of the number of connected
components) is added to the initially empty solution. In further iterations a random label
is used for this purpose. The restricted candidate list is filled with labels that induce
a minimum number of connected components. Subsequent local search only consists of
removing redundant labels from the solution created in the construction phase.
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3.1.3 Further Metaheuristic Algorithms

A genetic algorithm (GA) for the MLST problem has first been proposed in [114]. The
algorithm operates on a list of labels, encoding a feasible solution. Crossover is performed
by combining the label-lists of two candidate solutions, then reordering the labels l de-
creasing w.r.t. to |E(l)|, and finally taking as many labels till the corresponding graph
is connected. Mutation is performed by first adding some label l to the solution, and
then iteratively removing labels in increasing order of their label frequency as long as the
solution remains valid. The algorithm is designed to require just one single parameter,
the population size; selection and replacement is performed in a deterministic way, the
number of iterations is set to the number of individuals in the initial population.

A modified GA has been presented in [115]. Within this variant, crossover is again per-
formed by considering the combined list of labels of two individuals, but then applying
MVCA on this particular set of labels. Although having longer running times, better
solutions could be obtained, yielding less required generations. These GAs, as well as
modified MVCA variants are also discussed in detail in the PhD-thesis of Xiong [113].

A further genetic algorithm has been proposed in [85]. Candidate solutions are encoded
as permutations of all labels, decoding end evaluation is performed simultaneously by
iterating through the permutation, adding as many labels as required to build a feasible
solution, i.e. a connected subgraph. After evaluation, a redundancy check is performed,
reordering redundant labels immediately after the feasible ones. Crossover is performed
by alternatively taking labels from the parents, and then eliminating duplicate labels by
always keeping the first occurrence. Mutation is performed by swapping the one value of
the feasible part with another one of the infeasible part of the permutation.

3.2 Ant Colony Optimization

In this section we describe our new ant colony optimization approach (ACO) to the MLST
proble, based on the generic ACO procedure listed in Algorithm 5 in Chapter 2. In
step “solution construction” in line 3 of Algorithm 5 further labels are added iteratively,
starting from an empty set of labels. The decision which label to take next is based on a
probability distribution defined over all labels reducing the number of components implied
by the labels (and corresponding edges) of the current partial solution, parametrized by
pheromone values τ and local information η, to be defined in detail subsequently. In the
following we describe the algorithm in detail, starting with the description of underlying
pheromone models.

3.2.1 Pheromone Models

The most natural or obvious formulation is to introduce a pheromone value for each label
l ∈ L, i.e. τl, l ∈ L (model P-i). This representation has the advantage of being very
compact, but however, mutual dependencies are not represented very accurately. This
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might be a problem as within this simple pheromone model the algorithm cannot gather
information of particular labels being of high potential importance w.r.t. some constructed
subset L′ ⊂ L, but being unimportant regarding other subsets L′′ ⊂ L. Such information
can be better reflected by the following larger pheromone model (P-ii). Let τij denote
the entries of a |L| × |L| matrix. Let us again assume, we already have constructed label
set L′ and are about to decide which label to take next. The desire to add label l is then
given by

τ(L′, l) :=
∑
i∈L′

τil. (3.3)

A third alternative arises, when considering the main purpose of pheromones as biasing
the solution process of the MVCA-heuristic (P-iii). Hence we can introduce a |Lmvca|×|L|
matrix, were Lmvca denotes the set of labels constructed by the MVCA-heuristic. Each
row i of this matrix then provides a probability distribution for all labels to be used in
the i-th construction step of each ant.

3.2.2 Solution Construction

In each iteration M ants construct solutions based on pheromones and local information.
Let τ(L′, l) := τl for pheromone model (P-i), and τ(L′, l) := τ|L′|,l for (P-iii). Having
constructed labels L′ the probability for ant m of adding label l is given by

pmL′,l =
{
p(L′, l) if c(L′ ∪ l) < c(L′),
0 otherwise, (3.4)

with

p(L′, l) = τ(L′, l)α · η(L′, l)β∑
l′∈{l∈L|c(L′∪l)<c(L′)}

τ(L′, l′)α · η(L′, l′)β
, (3.5)

and c(L′) denoting the number of connected components of graph G = (V,E′) where
E′ denotes the set of edges with a label from set L′. The balance between pheromone
information τ(L′, l) and local information η(L′, l′) is controlled by parameters α and β.
Let E(L′) ⊂ E denote the subset of edges having associated to a label l ∈ L′, and let
c(L′) denote the number of connected components of the subgraph G′ = (V,E(L′)). Local
information is then defined by expression

η(L′, l) = c(L′)− c(L′ ∪ l). (3.6)

Hence, if setting α = 0 we obtain a randomized greedy heuristic, essentially following
the greedy criterion from the MVCA-heuristic. In general, parameters α and β balance
between following the already gathered global information provided by pheromone trails
and the local information resulting from direct improvements of the label w.r.t. the current
partial solution. Using simpler models for the local information, like simply considering
the number of edges associated to the particular label turned out not to work well in
preliminary tests.
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The most obvious way to perform the construction process is to add further labels to an
initially empty set L′ until a feasible solution is obtained (C-i). However, solutions having
more labels than the best-so-far solution likely do not contain any useful information with
regard to finding further improvements and should therefore deposit no pheromone val-
ues. Even solutions having the same number of labels as the best-so-far solution may not
contain such information, as possible lower cardinality solutions might have significant dif-
ferences or even be completely disjoint to many or all higher cardinality solutions (without
redundant labels). This observation suggests an alternative solution construction process
(C-ii) which limits the number of constructed labels to the size of the best-so-far solution
decreased by one. This approach intends to minimize the number of connected compo-
nents and at the same time maximize the number of additional arcs being represented
within these fixed cardinality label sets. This strategy aims to increase the likelihood of
ending up with connected feasible solutions after the addition of the last label. The overall
construction process can also be performed in a combined way, i.e. one half of the ants
constructing feasible, the other one infeasible ones (C-iii).

To counteract stagnation we optionally perform pheromone smoothing, similar to the
approach presented in [102]. Hence, we replace each τ(L′, l) in Equation (3.5) by

τ(L′, l) + λ′ ·
(

max
l∈L\L′

τ(L′, l)− min
l∈L\L′

τ(L′, l)
)
, (3.7)

where λ′ is controlling the amount of smoothing. It is initially set to zero, and in case of
stagnation, indicated by no improvement within itλ iterations, successively increased in
steps of λ/itλ until the maximum value λ is reached. If no improvement occurs for 2 · itλ
iterations, we reinitialize pheromones entirely.

3.2.3 Pheromone Update

Pheromone update, which takes place after each iteration basically consists of two compo-
nents: evaporation and deposition. Whereas pheromone evaporation provides a mean for
escaping local optima and enables to direct the search towards other regions of the solution
space, pheromone deposition is the main mean to guide the search process towards regions
appearing attractive as a result of solutions created so far.

Pheromone evaporation is governed by parameter ρ, the evaporation rate. The update
rule is given by

τi ← (1− ρ′) · τi, (3.8)

where index i refers to all elements of the pheromone vector or matrix respectively. For
(P-i) and (P-iii) we directly use parameter ρ for ρ′, in the case of (P-ii) we set ρ′ = ρ/|L|
in order to obtain a comparable evaporation for each particular label.

Afterwards, pheromone deposition is performed based upon certain solutions. Various
strategies do exist regarding to which solutions are selected for this purpose, which we
leave unspecified for the moment. However, all update rules have in common, that an
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amount ∆L′ is added to the pheromone values corresponding to the labels of solution L′.
Regarding (P-i) the update is straightforwardly performed by

τl ← τl + ∆L′, for all l ∈ L′. (3.9)

As pheromone model (P-iii) also accounts for the position at which a certain label has
been added we have to consider L′ as an ordered set and refer to the label constructed in
step i by L′[i]. The pheromone update is then performed by

τil ← τil + ∆L′, for each L′[i]. (3.10)

For model (P-ii) the update is performed in the following way:

τij ← τij + ∆L′, for all i, j ∈ L′. (3.11)

Following the approach of MAX −MIN Ant System we introduce upper and lower
bounds for the pheromone values τmax and τmin. Pheromone values are initialized by the
arithmetic mean of these two values.

The value ∆L′ is calculated differently for the two proposed construction methods. If only
feasible solutions are constructed, we only deposit pheromone for solutions having no more
labels then the best-so-far solution.

In order to evaluate constructed candidate solutions we need to develop a function f(L′)
which discriminates between solutions with equal |L′|. An evaluation function f(L′) can
be built by considering function

h(L′) = 1− |E(L′)|
|E|

, (3.12)

which accounts for additional edges being represented by labels L′. Feasible solutions can
thus be evaluated by f(L′) = |L|+ h(L′).

If, on the other hand, infeasible solutions are constructed, we primarily have to account for
the number of connected components induced by L′. We therefore use f(L′) = c(L′)+h(L′)
in this case. In addition to the best-so-far feasible solution we also globally store the best-
so-far created infeasible solution.

The pheromone deposition is performed by the best-so-far as well as the iteration-best
ant in each iteration. If mixed construction (C-iii) is performed, a total of four ants
deposit pheromone. For both construction mechanisms we use ∆L′ = 1 when pheromone
models (P-i) or (P-iii) are used, and ∆L′ = 1/|L′| in the case of model (P-iii), which
compensates the fact that for each label totally |L′| pheromone values are increased. A
further differentiation regarding the amount of pheromones to be deposited seems not to
be reasonable within this context. In order to not implicitly limit pheromone values, we
perform the evaporation step after the pheromone deposition.
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3.2.4 Local improvement

Typically used neighborhoods for the MLST problem consist of the replacement of k la-
bels within the current solution. Using f(L′) = |L′| + h(L′) again allows for a better
discrimination of solutions of equal cardinality. Regarding the solution construction pro-
cess restricted to the cardinality of the incumbent solution minus one (see Section 3.2.2),
we might also consider local search procedures working on infeasible solutions. Within
such a process, solutions are evaluated by f(L′) = c(L′) + h(L′). Besides the specification
of the size k of the neighborhood, we may consider various reinsertion strategies after
having removed k labels. Completely traversing the whole neighborhood w.r.t. to some
solution with already having k labels removed, is impracticable, in particular for larger k.
Hence we follow the strategy to consider all extension candidates for the first k′ places,
and add the remaining k − k′ labels following the greedy MVCA strategy, similar to the
approach used in [29].

A further local improvement method consists of simply checking the labels for redundancy,
by removing each label of the solution, and then test for connectivity. In particular for
solutions which labels induce many additional edges, this method is more likely to be
successful.

3.2.5 Implementation Aspects

In order to compute the number of components induced by a certain set of labels L′ we
use a disjoint set (also called union find) datastructure (see for instance [33]), as also
suggested in [69]. If we are considering edge set E′, all the operations on the union find
data structure can be carried out in a total time of O(|E′| ·α(|E′|, |V |)), where α(|E′|, |V |)
denotes the inverse Ackermann function. For all reasonably occurring |E′| and |V | it
holds, that α(|E′|, |V |)) ≤ 4. In comparison, a depth-first search (DFS) procedure would
take time O(|V |+ |E′|). Within local search algorithms but also the MVCA-heuristic and
therefore also the computation of the local information within the ACO algorithm, we
often face the situation of tentatively adding some label for evaluation, and then removing
it immediately. Hence we can further benefit from disjoint set datastructures supporting
a rollback mechanism. The major benefit of this approach is that we can evaluate all
further labels w.r.t. some considered partial solution in quasi-constant time. Let us further
consider the situation where we want to remove some label l′ from a partial solution L′,
which also occurs within the local search procedure. In this case we need to rebuild
the disjoint set datastructure which takes O(|E(L′\l′)| · α(|E(L′\l′)|, |V |)) time. In this
situation DFS allows for an incremental computation by first removing |E(l′)| edges from
the graph, and then running DFS (O(|V | + |E(L′\l′)|)). However, compared to the time
required to rebuild the disjoint set datastructure O(|E(L′\l′)| · α(|E(L′\l′)|, |V |)), this is
no real drawback. Consequently we consider the disjoint set datastructure to be overall
more appropriate for the given task.
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3.3 Unified Constructive Framework – GRASP

Furthermore we apply greedy randomized adaptive search procedures (GRASP) to the
MLST problem. Our approach is different to the one proposed in [29] as we again use the
more discriminative evaluation function f(L′) = c(L′) + h(L′) and describe the underly-
ing randomized construction heuristic in a framework, which also consists of the classic
MVCA algorithm as a special case, but also certain variations as for instance proposed in
[30].

The parameters for Algorithm 8 are summarized in Table 3.1 and are discussed in detail
after the description of the algorithm. The outer loop (line 3) in Algorithm 8 is executed
as long as the solution set L′ does not imply a connected graph. The next loop (line
5) then iterates over all labels that are not yet part of the partial solution L′. The
labels can optionally be considered in decreasing order of the label frequency |E(l)| which
is advantageous for the variants of Algorithm 8 that for performance reasons explicitly
prevent to iterate over all labels in each iteration. Within this loop the restricted candidate
lists RCLi are created. Each time a new improvement is found w.r.t. the number of
connected components, index i is increased (line 7), and a new RCLi is created for this
new index value. The previous RCLs are kept, as they may optionally be used to enhance
the final RCL (labelled with RCLtot) to facilitate a more diverse construction process.
This behaviour is controlled by parameter threshold and performed in the loop of line
25. The current RCL is then extended by the considered label if the condition of line 13
holds, i.e. the number of connected components induced by the current label is equal to
the best number of connected components found so far. In line 16 it is then checked if the
size of the current RCL is greater or equal to the size specified by rclsize. If the maximal
number of improvements is exceeded, the iteration over all labels in L\L′ is quit, otherwise
f∗ is rounded down in order to allow only labels implying a further reduced number of
connected components to be added to the RCL. The label to be added to L′ is finally
selected in line 28. The decision is usually performed in a random way, but may be also
be performed based on f(L′ ∪ {l}), which is discussed in more detail subsequently.

Algorithm 8 describes several variations of MVCA and corresponding randomized varia-
tions in a unique framework. Table 3.1 gives an overview of possible parameter configura-
tions. Setting rclsize =∞, impmax =∞ and threshold = 0 implies the classic MVCA. If
rclsize =∞ and the label selection in line 28 which always selects the label with minimal
f(L′∪{l}), i.e. the label which in addition to the best reduction of the number of connected
components also covers most further edges in the graph, we obtain an enhanced MVCA
variant. In Table 3.1 this variant is labelled with “impr. MVCA”. Any parameter settings
are, however, possible to be used as a randomized construction heuristic to be used for
GRASP, as listed in column “GRASP” of Table 3.1. Smaller values of impmax may be
used to speed-up the construction process, which is particularly meaningful for instances
containing a huge number of labels. In this case, the iteration over possible extensions
to L′ is stopped, as soon as impmax improvements w.r.t. the number of components are
obtained. The final RCL usually contains only the best labels (regarding their reduction of
the number of connected components). However, when setting threshold > 0 also further
labels can be used for this purpose to achieve a stronger diversification of the constructed
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Algorithm 8: randomized MVCA
L′ ← ∅ // currently used labels1
f∗ ←∞ // to store best objective2
while c(L′) 6= 1 do3

i← 04
for all l ∈ L\L′ (optionally in decreasing order of |E(l)|) do5

if bf(L′ ∪ {l})c < bf∗c then6
i← i+ 17
RCLi = ∅8

end9
if f(L′ ∪ {l}) ≤ f∗ then10

f∗ ← f(L′ ∪ {l})11
end12
if bf(L′ ∪ {l})c = bf∗c then13

RCLi = RCLi ∪ {l}14

end15
if |RCLi| ≥ rclsize then16

if impmax 6= 0 ∧ i ≥ impmax then17
break (exit for loop)18

else19
f∗ ← bf∗c20

end21

end22

end23
RCLtot = RCLi24
for j = 1, . . . , threshold do25

RCLtot = RCLtot ∪ RCLi−j26

end27
l← element from RCLtot28
T ← T ∪ {l}29
L′ ← L′\{l}30

end31

solutions. In the right part of Table 3.1 we list two particular configurations, to be used
for our computational experiments with GRASP, which are presented in the following
section.

3.4 Computational Results

In this section we present computational results for the presented ACO and GRASP
approaches. For our computational experiments we considered the instance set also used
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Table 3.1: Parameters of the unified construction framework.

Parameter Description MVCA impr. MVCA GRASP Var. I Var. II
rclsize size of RCL ∞ ∞ any 20 20
impmax limit for improvements in ∞ ∞ any 3 ∞

each construction step
threshold threshold for labels considered 0 0 any 0 0

in each construction step
label selection line 28 in algorithm 8 random best f(L′ ∪ {l}) random random random
it iterations n/a n/a n/a 30 30

in [30, 29, 28, 15]. All tests have been performed on a Intel Nehalem E5540 (2,53 GHz)
CPU, under Linux with Kernel 2.6.31.

3.4.1 Ant Colony Optimization Results

Within comprehensive preliminary testing we determined a generally well-working config-
uration of the presented algorithmic components of the ACO algorithm. Table 3.2 gives a
summary of the determined parameter settings used for the subsequently presented com-
putational results. Relatively high values of β are required, to give the labels mostly
reducing the number of connected components a reasonable high chance of being selected.
On average, in particular in the first construction steps, almost all labels will provide com-
parable reductions in the number of connected components, but higher reductions provide
significant information that should be exploited.

Table 3.2: Parameter settings

Description Parameter Value
minimum pheromone value τmin 10−3

maximum pheromone value τmax 10
pheromone-contribution α 2
local-information-contribution β 12
evaporation rate ρ 0.1
pheromone-smoothing parameter λ 0.2
iterations for pheromone smoothing itλ 20

Table 3.3 shows our results obtained for the instances with |V | = 200 and |V | = 500.
Results have been computed with the parameter settings listed in Table 3.2 and it = 100
iterations andM = 20 ants. Columns VNS contain the results of the variable neighborhood
search presented in [29], being the best method therein. For a certain number of nodes,
groups with various ratios of number of labels compared to the number of nodes as well
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Table 3.3: ACO results for instances with |V | = 200 and |V | = 500.

Parameters VNS ACO
|V | |L| d obj. tb[s] obj. σ̄obj tavg[s] σ̄t tb[s] σ̄tb
200 50 0.8 2.0 0.0 2.00 0.00 136.09 23.51 0.00 0.00

0.5 2.2 0.03 2.20 0.00 15.21 6.59 0.07 0.26
0.2 5.2 0.23 2.20 0.00 15.21 6.59 0.07 0.26

200 100 0.8 2.6 0.14 2.60 0.00 107.10 83.67 1.16 2.66
0.5 3.4 0.16 3.40 0.00 23.48 7.93 2.41 5.07
0.2 7.9 2.9 8.09 0.16 15.52 2.23 2.09 3.71

200 200 0.8 4.0 0.08 4.00 0.00 39.54 6.26 0.00 0.00
0.5 5.4 0.88 5.40 0.00 33.56 5.10 7.58 8.25
0.2 12.0 33.7 12.35 0.13 26.38 3.64 3.70 5.21

200 250 0.8 4.0 1.5 4.02 0.04 42.56 7.17 9.32 13.20
0.5 6.3 2.3 6.37 0.05 35.87 5.34 4.53 6.48
0.2 13.9 1.5 13.98 0.11 34.12 4.80 4.96 6.32

500 125 0.8 2 0.05 2.00 0.00 81.70 6.18 0.00 0.00
0.5 2.6 0.56 2.61 0.01 109.32 18.48 6.10 20.25
0.2 6.2 3.7 6.25 0.07 103.22 17.26 14.93 24.58

500 250 0.8 3 0.49 3.00 0.00 188.46 4.40 0.00 0.00
0.5 4.1 26.9 4.26 0.08 196.18 57.65 7.52 32.97
0.2 9.9 10.2 10.16 0.18 160.47 19.12 22.96 41.19

500 500 0.8 4.7 8.6 5.0 0.00 403.84 27.57 6.26 51.01
0.5 6.5 110.2 7.30 0.20 365.20 47.80 20.02 70.72
0.2 15.8 50.3 16.63 0.30 356.08 55.81 55.06 90.68

500 625 0.8 5.1 0.97 5.56 0.12 487.07 29.38 5.67 57.24
0.5 7.9 33.9 8.39 0.08 629.85 62.70 41.04 101.34
0.2 18.3 60.0 19.37 0.33 593.66 71.82 60.10 133.56

as various graph densities |E| = d · |V |·(|V |−1)
2 exist. For each group ten different instances

do exist. Reported objective values (column “obj.”) and running times tb at which the
best solution was found, are average values over these ten instances. In columns ACO
we report our results for 30 independent runs. Objective function values are listed in
column “obj.”, corresponding standard-deviations in column σ̄obj. By tavg we denote the
average total running times, and by tb the average times at which the best solutions of
the individual runs have been obtained. Corresponding standard-deviations are listed
in columns σ̄t and σ̄tb. With this particular parameter settings it is possible to obtain
good solutions relatively fast, but however, in particular for the low density instances the
average objective function values are generally higher than the ones obtained by VNS.

In Table 3.4 we report the results for various configurations of the ACO algorithm for a
selected subset of low density graphs, i.e. the hardest instances within the sample. Again,
we performed 30 independent runs for each instance and used the parameter settings from
Table 3.2, but 200 iterations and M = 50 ants. If local search is applied (indicated in
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column “LS”), we set it = 100 and M = 30 to compensate for the longer computational
time required for each local improvement. The best objective value obtained for each group
of instances is highlighted in the table. Unfortunately it is not possible to draw a clear
conclusion which pheromone model is overall superior. Model (P-ii) yields the best results
for instances with |V | = 200, |L| ∈ {100, 250}, but is generally worse for larger instances.
For these instances (P-i) and (P-iii) yield comparable results. The construction method
(C-i) generally shows the worst performance on these instances, (C-ii) and (C-iii) show
a similar average performance.

Various configurations regarding the subordinate local search method have been evaluated
in preliminary experiments. However, due to longer running times, no configuration could
outperform ACO without local improvement. To limit the time requirements for the
local search, it turned out to be advantageous only to apply it for the best solutions
regarding number of labels and number of components for feasible and infeasible solutions
respectively. The neighborhood size was set to k = 2, as smaller neighborhoods did not
yield sufficient improvements, and traversing larger neighborhoods turned out to be too
time-consuming.

Although the running times of the configurations reported in Table 3.4 are higher than
the ones with less iterations and ants reported in Table 3.3, they are still reasonable for
many purposes. With these configurations improved average solution values compared to
[29] could be obtained for some groups of instances.

3.4.2 GRASP Results

Table 3.5 shows the results obtained with the presented GRASP using the parameter
settings listed in Table 3.1. Again, the results of 30 independent runs, each one consisting
of it = 30 iterations, are reported. For the local search we use k = k′ = 2. Within
preliminary tests this configuration was found to be superior over k = 1, which corresponds
to a simple redundancy check for each label of the current solution. Running times for local
search have been limited to 30 seconds for each individual run after the construction phase.
This timelimit is, however, only reached for the largest instances reported in Table 3.5.

The results show that the particular value of parameter impmax does not affect the obtained
solution qualities very much. It may, however, yield a significant speedup for instances
with a huge amount of labels and thus be beneficial for instances as occurring in the
context of the data compression application presented in Chapter 5. The results reported
in Table 3.5 are superior to the results of ACO in the fast setup reported in Table 3.3.
But, however, no parameter configuration has been found that yields better results with
slightly increased running times. This is due to the dramatic increase of running times for
larger k or k′ < k.
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Table 3.4: Comparison of different pheromone models and construction mechanisms for
instances with |V | = 200 and |V | = 500; M = 50, it = 200.

|V | |L| d Pheromones Construction LS obj. ¯σobj tavg[s] σ̄t tb[s] σ̄tb

200 100 0.2

P-i C-i − 8.17 0.07 80.49 12.43 3.68 11.98
P-i C-ii − 8.00 0.14 173.93 142.17 28.99 77.59
P-i C-iii − 8.03 0.15 75.30 14.18 7.56 17.24
P-ii C-i − 8.02 0.14 96.09 14.82 9.62 18.07
P-ii C-ii − 7.91 0.03 49.75 5.15 5.14 10.29
P-ii C-iii − 7.93 0.06 75.03 9.95 8.80 17.01
P-iii C-i − 8.16 0.12 92.19 14.40 5.46 14.03
P-iii C-ii − 7.95 0.10 108.51 76.15 17.86 40.03
P-iii C-iii − 8.10 0.16 102.63 34.08 8.66 24.93
P-iii C-i X 8.09 0.18 165.99 123.16 26.10 60.07

200 200 0.2

P-i C-i − 12.27 0.07 116.88 14.70 6.62 13.35
P-i C-ii − 12.14 0.10 205.14 153.83 19.96 53.90
P-i C-iii − 12.19 0.13 103.74 27.96 8.63 18.18
P-ii C-i − 12.30 0.14 177.24 26.89 18.86 33.27
P-ii C-ii − 12.14 0.16 89.54 11.64 11.96 21.39
P-ii C-iii − 12.24 0.18 136.87 18.49 11.70 24.25
P-iii C-i − 12.28 0.12 155.74 21.49 12.41 18.89
P-iii C-ii − 12.10 0.10 113.32 55.58 11.01 22.86
P-iii C-iii − 12.17 0.12 131.43 34.58 12.34 24.48
P-iii C-i X 12.25 0.15 199.75 176.59 50.82 53.48

200 250 0.2

P-i C-i − 13.90 0.02 132.10 20.27 6.08 8.82
P-i C-ii − 13.89 0.03 191.20 110.09 3.78 17.94
P-i C-iii − 13.90 0.02 114.24 17.90 3.74 7.65
P-ii C-i − 13.93 0.07 213.18 29.64 25.45 35.18
P-ii C-ii − 13.89 0.05 118.40 15.71 5.64 10.17
P-ii C-iii − 13.89 0.03 166.75 22.85 10.68 19.93
P-iii C-i − 13.90 0.02 178.46 23.16 14.24 16.11
P-iii C-ii − 13.90 0.00 133.80 39.43 3.96 3.07
P-iii C-iii − 13.90 0.00 150.73 26.62 6.16 7.72
P-iii C-i X 13.91 0.05 161.63 92.77 44.68 48.69

500 125 0.2

P-i C-i − 6.23 0.05 491.23 81.82 14.91 27.67
P-i C-ii − 6.20 0.00 542.53 91.33 16.08 31.82
P-i C-iii − 6.20 0.00 466.21 74.85 18.61 37.56
P-ii C-i − 6.20 0.00 538.08 89.72 24.36 44.55
P-ii C-ii − 6.20 0.00 342.43 50.45 19.82 36.25
P-ii C-iii − 6.20 0.00 487.29 86.41 26.15 50.40
P-iii C-i − 6.25 0.07 589.74 112.51 22.20 53.69
P-iii C-ii − 6.21 0.03 537.69 256.29 29.22 82.07
P-iii C-iii − 6.20 0.00 543.99 98.21 23.05 48.80
P-iii C-i X 6.21 0.03 551.19 247.50 121.28 223.48

500 250 0.2

P-i C-i − 9.93 0.12 494.51 77.73 53.44 91.76
P-i C-ii − 9.87 0.10 393.68 70.28 49.23 84.44
P-i C-iii − 9.89 0.10 445.86 67.57 59.85 102.39
P-ii C-i − 10.05 0.14 587.90 98.54 79.25 135.14
P-ii C-ii − 10.03 0.18 460.34 86.31 65.70 111.33
P-ii C-iii − 10.05 0.19 491.29 82.24 73.31 126.40
P-iii C-i − 9.89 0.11 537.09 87.52 75.80 108.99
P-iii C-ii − 9.91 0.10 384.20 68.47 47.06 70.65
P-iii C-i X 10.03 0.18 612.77 289.21 190.16 267.34
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3.5 Conclusive Remarks

This chapter provided a comprehensive review of existing work regarding construction and
approximation algorithms and metaheuristics for the MLST problem. In the main part
of this chapter we have then proposed an ant colony optimization (ACO) approach – a
metaheuristic that has not yet been applied to the MLST problem. Different pheromone
models and construction mechanisms have been discussed and analyzed. Here, it turned
out to be advantageous to also construct incomplete rather than feasible solutions. Using
a parameter configuration that keeps running times relatively short good results could be
obtained, in particular for medium and high density instances. With a higher number of
iterations and more artificial ants the algorithm was able to find new better solutions for
certain instances of a benchmark set. Furthermore greedy randomized adaptive search
procedures (GRASP) have been considered. Several variations of the underlying random-
ized construction method based on MVCA have been described in a unified framework.
GRASP was able to produce good solutions in relatively short running times. However,
parameter settings yielding significantly better results imply drastically increased run-
ning times. Hence, if computational times are not crucial, but high solution qualities
are inevitable, ACO should be preferred over GRASP. In particular for very large scale,
dense graph instances with huge numbers of labels, as we are faced with in Chapter 5,
GRASP may though be an interesting way to obtain better results compared to simply
using MVCA.
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Chapter 4

Exact Methods

Nil satis nisi optimum.
Nothing but the best is good enough.

I
n this chapter we propose a branch-and-cut(-and-price) (BCP) framework
for the solution of moderately sized problem instances. We present a poly-
hedral and computational comparison of an underlying flow-formulation to
a (usually stronger) formulation based on directed connection cuts. For the

latter one we show how the cut-separation can be performed more efficiently than for many
other spanning tree problems. New inequalities are introduced to strengthen the formu-
lations. Optionally also cycle-elimination cuts are separated. Furthermore we show how
to use odd hole inequalities to strengthen the formulation by cutting off fractional values
of the label variables. We furthermore consider branch-and-cut-and-price, i.e. instead of
starting the algorithm with a full model, we use a restricted model and then generate
new (label) variables on demand. In order to obtain valid integral solutions in each node
of the branch-and-bound (B&B) tree fast, we apply primal heuristics based on the well
known MVCA-heuristic [16, 69]. After reviewing related previous work in Section 4.1, a
detailed description of the formulations and algorithmic building blocks is presented in
Section 4.2. In Section 4.3 we finally present a comparison of the described formulations
and algorithmic components based on computational experiments.

4.1 Previous Work

In [16] an exact algorithm based on A∗-search has been proposed. The A∗-algorithm,
introduced in [58], is a general technique for traversing graphs in order to reach a particular
“goal node” on a minimum cost path. It can be seen as a generalization of the Dijkstra
algorithm, which incorporates heuristic information into the search. Let the costs of
any partial solution (“path”) x be given by function g(x), and let further h(x) denote a
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heuristic estimate for the additional costs to obtain a feasible solution, i.e. to reach the
goal node. The A∗ algorithm maintains a list of open problems. Then, in each step the
problem with minimum f(x) = g(x) + h(x) is extended. This is done by first calculating
f(x′) for all possible extensions x′ and then putting them on the list of open problems. If
h(x) is an underestimate, the first feasible solution found by A∗ will be optimal.

For the MLST problem, the computation of h(L′), with L′ denoting a partial solution,
is performed by considering the remaining labels in decreasing order w.r.t. to their label
frequency, and setting it to the number of labels required to represent the number of edges
that is required to obtain a feasible solution. The algorithm maintains two data structures
O and C to store open partial and already expanded (closed) partial solutions. To each
such element also an associated function value is stored. The algorithm works as specified
in Algorithm 9.

Algorithm 9: A∗-algorithm [16]
O = {∅}1
C = {}2
while L′ ← element L′′ ∈ O with minimum f(L′′) do3

if c(L′) = 1 then4
determine spanning tree for label set L′5
exit6

else7
for each l ∈ L\L′ do8

L′′′ ← L ∪ {l}9
if L′′′ /∈ O ∧ L′′′ /∈ C then10

calculate f(L′′′) = g(L′′′) + h(L′′′)11
where g(L′′′) = g(L′) + 1 and g(∅) = 012

add L′′′ to O13

end14

end15

end16

end17

Line 4 in Algorithm 9 makes use of the previously introduced notation c(L′) to indicate
the number of connected components induced by the arcs having assigned to a label from
set L′.

A similar algorithm has been described in [29], however without guidance function f(L′).
The recursive Algorithm 10 is initially called with an empty set, the global set C∗ stores
the smallest feasible solution found so far.

So far, only two publications are dealing with exact methods for the MLST problem based
on mathematical programming techniques. The first MIP formulation proposed by Chen
et al. [17] is based on Miller-Tucker-Zemlin inequalities which ensure that the decision
variables for the edges induce a connected subgraph covering all nodes of the initial graph.
In a recent work of Captivo et al. [13], the authors propose a MIP formulation based on
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Algorithm 10: Test(C) [29]
if |C| < |C∗| then1

if c(C) = 1 then2
C∗ ← C3

else4
if |C| < |C∗| − 1 then5

for each c ∈ L\C do6
Test(C ∪ {c})7

end8

end9

end10

end11

single commodity flows, a frequently used modelling technique for spanning trees. Both
approaches will be closer reviewed in the following section.

4.2 Mixed Integer Programming Framework

In this section we first give a formulation of the MLST as mixed integer program (MIP).
For the spanning-tree property we present two alternative variants: 1) based on a flow-
formulation and 2) a formulation based on directed connectivity cuts. Both formulations as
well as additional inequalities to strengthen the formulation and methods for cutting-plane
separation and dynamic variable generation are described within one generic framework,
as they can be used in different combinations.

We use the following variables: variables zl ∈ {0, 1}, forall l ∈ L indicate if label l is
part of the solution; The edge variables xe, forall e ∈ E denote if edge e is used for the
final spanning tree; Variables yi,j , forall i, j ∈ V denote directed arc variables used for the
cut-based formulation, where we introduce for each edge e = {i, j} ∈ E two arcs (i, j) and
(j, i) ∈ A. For the flow formulation we analogously introduce two directed flow variables
fij , fji ∈ [0, n− 1]. Let further L(e) denote the set of labels associated to edge e.

4.2.1 Mixed integer formulation

The basic formulation is given by the following integer linear program:

min.
∑
l∈L

zl (4.1a)

s.t.
∑
l∈L(e)

zl ≥ xe for all e ∈ E (4.1b)

x ≡ “spanning tree” (4.1c)
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The objective function (4.1a) minimizes the number of required labels, Inequalities (4.1b)
ensure that for each selected edge (at least) one label is selected. For the abstract condition
(4.1c) we will subsequently introduce two alternative formulations: a flow formulation and
a cut-based formulation.

Fixing the number of selected edge according to a valid spanning tree∑
e∈E

xe = |V | − 1, (4.2)

is a prerequisite for the subsequently presented flow formulation, but may be omitted when
connectivity-based formulations are used, as our primary goal is to find a feasible set of
labels from which the derivation of a a corresponding spanning tree is an easy task.

A single-commodity flow formulation, also considered in [13], is given as follows:∑
(0,i)∈A

f0i = |V | − 1 (4.3a)

∑
(i,t)∈A

fit −
∑

(t,j)∈A
ftj = 1 for all t ∈ V \{0} (4.3b)

fij ≤ (|V | − 1) · xe for all {i, j} ∈ E and e = {i, j} (4.3c)

Equation (4.3a) ensures the correct quantity of flow leaving the (arbitrary) root node with
index 0. For all other nodes flow consumption (4.3b) must hold, i.e. one unit of flow is
consumed at each node. Inequalities (4.3c) finally ensure that only edges with a sufficient
amount of flow may be selected. Flow formulations have the big advantage that they
permit to formulate a spanning tree by a polynomial number of variables and therefore
permit to provide a compact model to the MIP solver. It shortcomings are, however,
that it provides a relatively poor LP-relaxation [76]. This is particularly due to the weak
coupling of f to x-variables in Inequalities (4.3c), the linking constraints. This drawback
can be circumvented by the introduction of multiple commodities k for each node v ∈ V .
Again, all flows of commodity k originate from node 0 and must be delivered to node k.
The formulation is given by the following equalities:

∑
(i,t)∈A

fkit −
∑

(t,j)∈A
fktj =


−1 t = 0,

0 t 6= 0 ∧ t 6= k,
1 t = k,

for all k ∈ V \{0}. (4.4)

Linkage of flow to edge variables is then given by

xe ≤ fkij for all k ∈ V \{0}, e = {i, j} ∈ E (4.5)

This formulation, however, has the drawback of having more variables than the single
commodity flow formulation, i.e. O(|V | · |E|) flow variables in contrast to O(|E|).

An alternative formulation is given by directed connection inequalities, stating that to each
node a valid (directed) path must exist. In contrast to the flow model this formulation

64



4.2 Mixed Integer Programming Framework

consists of an exponential number of inequalities and therefore cannot be initially passed
to an LP-solver for larger instances. However, this formulation provides a better LP-
relaxation to many spanning tree problems, as it exactly describes the convex hull of the
minimum spanning tree polytope. The corresponding inequalities are given by (4.6a),
linkage to the edge variables is given by (4.6b).

∑
(i,j)∈δ−(S)

yij ≥ 1 for all S ⊆ V, 0 /∈ S (4.6a)

xe ≥ yij for all {i, j} ∈ E and e = {i, j} (4.6b)

Here δ−(S) denotes the set of ingoing arcs to some node set S ⊂ V . Instead of Inequalities
(4.6b) we could also directly link the labels to the directed arcs. However, we proceed with
Inequalities (4.6b) for sake of a unified notation. Moreover, additional |E| constraints
with only two non-zero coefficients do not significantly introduce further complexity. The
separation of these directed-connection inequalities is discussed in Section 4.2.2.

It is well known to be practically advantageous to initially add the inequalities

yij + yji ≤ 1, for all {i, j} ∈ E (4.7)

and ∑
(i,j)∈δ−(j)

yij ≥ 1, for all j ∈ V \{0} (4.8)

to directed (cut-based) formulations. Inequalities (4.7) limit the sum of the arcs corre-
sponding to one edge to 1, Inequalities (4.8) assure that each node has one incoming arc.
By δ−(i) we denote the set of incoming arcs to node i.

We can also ensure feasibility for integer solutions by cycle-elimination inequalities. These
inequalities enforce the resulting graph not to contain any cycles, which is together with
the enforced number of arcs also a sufficient condition for spanning trees, and are given
by the following Inequalities (4.9):

∑
e∈C

xe ≤ |C| − 1, for all cycles C ∈ G, |C| > 2. (4.9)

A further way for prohibiting cycles are models based on the well known Miller-Tucker-
Zemlin inequalities [81]. Such a model for the MLST problem has been proposed in [17],
however with some differences. Let ui ∈ R for all i ∈ V denote variables assigning numeric
values to teach node. By inequalities

ui − uj + |V | · yij ≤ |V | − 1 for all (i, j) ∈ A (4.10a)
ui ≤ |V | for all i ∈ V (4.10b)
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cycles can be inhibited by just using a polynomial number of variables, however with
the drawback, that a large multiplicative factor appears, usually leading to bad LP-
relaxations. Main difference to the formulation proposed in [17] is the meaning of the
variables. Whereas we use distinct variables for labels and edges (O(|E|+ |L|) variables),
and link them by Inequalities (4.3c) which are totally O(|E|) constraints, they introduce
O(|E| · |L|) variables xijk with i, j corresponding to edges i, j and index k corresponding
to labels.

In [13] the authors pointed out an important property of the flow formulation: They
showed that the edge variables are not required to be integer in order to obtain the cor-
rect (optimal) objective function value. Furthermore it is easy to derive a valid MLST
solution based on the set of labels provided by the MIP solution. Based on this reasoning,
we can establish the following theorem, which extends this result to further MLST formu-
lations, and also immediately provides an improved cut formulation with a fast separation
method.

Theorem 10 For any MIP formulation given by equations 4.1a, 4.1b and 4.2, zl ∈
{0, 1}, for all l ∈ L any set of labels corresponding to an optimal solution to this for-
mulation, and additionally meeting the following inequalities (“epsilon-connectivity”)∑

e∈δ(S)
xe ≥ ε for all S ⊂ V, S 6= ∅ (4.11)

implies a valid MLST. Here, ε > 0 denotes some arbitrary small real number.

Proof The number of edges is fixed by (4.2), but a solution may still contain fractional
edges. However, as the label variables z are integer and required to be greater than the
value of the corresponding edge variables by inequalities (4.1b), they are always one if
the corresponding edge variable has a value greater than ε. Consequently, fractional edge
variables will only appear in the final solution if they do not raise the objective function
value (by requiring additional labels). Due to Inequalities (4.11) the labels obtained from
the MIP solution facilitate paths between all pairs of nodes. 2

Given a label set of an optimal MIP solution, a feasible spanning tree can easily be derived
in polynomial time, by determining an arbitrary spanning tree on the edges induced by
the label set, as described in [13]. As a direct consequence of Theorem 10 the domain
of the variables x and y need not be restricted to Boolean values, restricting them to
non-negative values by inequalities

xe ≥ 0, for all e ∈ E, (4.12)

and

yi,j ≥ 0, for all {i, j} ∈ E, (4.13a)
yj,i ≥ 0, for all {i, j} ∈ E, (4.13b)

is already sufficient.
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Theorem 10 also suggests a further formulation to the MLST problem. Although not
explicitly containing any constraints describing a valid spanning tree, equations (4.1a),
(4.1b), (4.2) and (4.11) already provide a valid description to the MLST problem, and
could be further strengthened by (4.16) and∑

e∈δ(i)
xe ≥ 1, for all i ∈ V. (4.14)

Inequalities (4.11) will again be separated on demand, which can however be performed
more efficiently then the separation for the directed connection cuts, which will be dis-
cussed in detail in Section 4.2.2.

However, epsilon-connectivity as defined by Theorem 10 is not guaranteed if cycle-
elimination inequalities (4.9) are used exclusively to describe a valid spanning tree. A
fractional LP-solution not containing a cycle may still contain a subtour, i.e. a subgraph
where the sum over corresponding edges is larger than the size of its nodes minus one.
Such a situation is depicted in Figure 4.1. As a consequence, the domain of the x-variables
must be restricted to Boolean values if only cycle-elimination inequalities are used to de-
scribe a valid spanning tree. The same is true for the Miller-Tucker-Zemlin formulation
given by Inequalities (4.10a).

1

1

1/2

11

1/2 1/21/2

1/2 1/2

1

Figure 4.1: LP-solution that does not contain a cycle w.r.t. Inequalities (4.9), but still vio-
lates subtour elimination constraints. Corresponding (integer) label solutions
are not necessarily feasible.

In the beginning of this section, fixing the number of edges by Equality (4.2) was stated to
be a requirement for most flow and cut based formulations, but may however be omitted
regarding the “ε-connectivity” formulation given by (4.1a), (4.1c), and (4.11).

We now draw our attention to the special case of having only one single label assigned to
each edge. If we have not fixed the number of edges we can impose further equalities∑

l∈L(e)
zl = xe for all e ∈ E, (4.15)

instead of Inequalities (4.1b), which provide a more direct link between labels and their
corresponding edges. This approach emphasizes the search for a feasible label set of
minimal cardinality rather then the search for a feasible spanning tree.
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4.2.2 Cutting-Plane Separation

The directed connection Inequalities (4.6a) can be separated by computing the maximum
flow from the root node r to each nodes i as target node. This provides a minimum (r, i)-
cut. We have found a violated inequality if the value of the corresponding arcs according
to the sum of the LP-values is less than 1. Our separation procedure utilizes Cherkassky
and Goldberg’s implementation of the push-relabel method for the maximum flow problem
[18] to perform the required minimum cut computations.

The cycle-elimination cuts (4.9) can be easily separated by shortest path computations
with Dijkstra’s algorithm. Hereby we use 1 − yLP

ij as the arc weights with yLP
ij denoting

the current value of the LP-relaxation for (i, j) in the current node of the B&B-tree. We
obtain cycles by iteratively considering each arc (i, j) ∈ A and searching for the shortest
path from j to i. If the value of a shortest path plus yLP

ij is less than 1, we have found a
cycle violating Inequalities (4.9). We add this inequality to the LP and resolve it. In each
node of the B&B-tree we perform these cutting plane separations until no further cuts can
be found.

Theorem 10 suggested a formulation not requiring any auxiliary variables (like flow or
arc variables), where validity of the labels is obtained by Inequalities (4.11) exclusively.
Instead of using the minimum cut based separation routine (which would also be valid),
we can perform a faster separation by a simple depth first search (DFS). Given an LP-
solution, we first select an arbitrary start node for which we call the DFS procedure.
Within this procedure we only consider edges e with xe ≥ ε, the other ones are ignored.
Within the DFS we keep track of all visited nodes, if there are unvisited nodes at the
end of the DFS, we have found a valid cut. The DFS can be carried out in O(|V | + |E|)
time, which is clearly superior to the time of the maximum flow algorithm running in
O(|V | · |E|+ |V |2+ε).

4.2.3 Strengthening the Formulations

As each node must be connected to the spanning tree by one of its incident edges, we
can further impose additional inequalities to strengthen the formulation w.r.t. the label
variables: ∑

l∈L(v)
zl ≥ 1, for all v ∈ V. (4.16)

Here, L(v), v ∈ V denotes the set of labels being associated to the edges incident to node
v. We will subsequently refer to this set of |V | inequalities as node-label-inequalities. Fig-
ure 4.2 gives a simple example of an LP solution where the node is sufficiently connected
according to the sum of the LP-values of the ingoing arcs and therefore its incident edges,
but the corresponding sum over the labels associated to these edges is clearly infeasible
w.r.t. Inequalities (4.16). Therefore Inequalities (4.16) strengthen the presented formu-
lations w.r.t. their LP-relaxation. In Section 4.2.6 we formally prove this property with
respect to the particular proposed MIP-formulations for the MLST.
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a2 = 1/2

a2 = 1/2

e1 = 1/2

e2 = 1/2

l1 = 1/2

l1 = 1/2

Figure 4.2: Example of node that is feasible connected w.r.t. its incoming arcs, but not
w.r.t. inequalities (4.16). Edges e1 = e2 = 1/2 in the current LP-solutions, but
as both edges have assigned to the same label l1 = 1/2 the sum over the set of
all labels assigned to incident edges of the considered node is also 1/2. Such
situations are forbidden by Inequalities (4.16).

This basic idea used in Inequalities (4.16) can be pursued by considering sets of two nodes,
say v1 and v2. Let e12 denote the edge joining v1 and v2. Let further L(e12) denote the set
of labels associated to this edge. For set L(v1) ∪ L(v2) we can observe, that at least two
labels are required to feasibly connect the nodes v1 and v2, if L(v1)∩L(v2) = ∅. However,
if L(v1) ∩ L(v2) = L(e12) we still require two labels from L(v1) ∪ L(v2). We therefore
obtain the following valid inequalities,∑

l∈L(v1)∪L(v2)
zl ≥ 2, for all v1, v2 ∈ V with L(v1) ∩ L(v2) = L(e12), (4.17)

which are not directly implied by Inequalities (4.16). Figure 4.3 shows an example where
Inequalities (4.17) dominate Inequalities (4.16).

le12 = 1/2

v1 v2
e12 = 1/2

∑
l∈L(v1)\le12

l = 1/2
∑

l∈L(v2)\le12
l = 1/2

Figure 4.3: Example of node-label-constraints for sets of two nodes (4.17) dominating In-
equalities (4.16), i.e. the node-label constraints for single nodes. For both
nodes vi, i = 1, 2 it holds that

∑
l∈L(vi) ≥ 1. Corresponding Inequality (4.17)

is however violated, as
∑
l∈L(v1)∪L(v2) l = 3/2.

As we can expect a lot of branching on the label variables, in particular for GMLST
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instances, further cutting-planes cutting of fractional label solutions may be helpful. In
order to identify such valid inequalities, we consider situations where fractional label vari-
ables lower the objective value of LP solutions. Such a situation is depicted in Figure
4.4. If labels a = b = c = 1/2 in the LP solutions the corresponding arcs can be set to 1/2
as well without violating any directed connectivity inequality. However, w.r.t. these arc
set, at least two labels must be selected in an integer solution. Consequently adding the
inequality a+b+c ≥ 2 will cut-off this fractional solution, but is only valid if no additional
arcs/edges are incident to these nodes.

a b b c ca

1 2 3

V \{1,2,3}

Figure 4.4: Example of fractional label solution

In the following we show how to apply odd hole inequalities to cut-off such and more
general situations. These inequalities are well known from studies of the set-covering
polytope, their application becomes evident by the observation that the MLST problem
can be seen as a set covering problem where each node v needs to be covered by a label from
the set L(v) and the corresponding edges fulfilling further constraints (i.e. forming a valid
spanning tree). In particular we use a MIP based heuristic to separate valid inequalities
for the set-covering problem with coefficients {0, 1}, which have been proposed in [35].

Let Λ be a |V | × |L| matrix with λij = 1 if node i is labeled with j, λij = 0 otherwise. A
|V ′| × |L′| submatrix Λ′ of Λ of odd order is called an odd hole if it contains exactly two
ones per row and column. For the subproblem Λ′z′ ≥ 1 the inequality

∑
l∈L′

zl ≥
|L′|+ 1

2
(4.18)

is valid. In [35] the authors showed, that this inequality even remains valid if H ≤ Λ′ ≤
H∗, where H is an odd hole, and H∗ being a special matrix closely related to H. Finding
an odd hole H to a given matrix Λ′ is NP-complete, but if we have found such an odd
hole, it is possible to decide in polynomial time whether H ≤ Λ′ ≤ H∗ and therefore
(4.18) is valid [35].

Separation-Heuristic for the Odd Hole Inequalities

In order to cut-off fractional label solutions we consider the subset of nodes V ′′ ⊆ V which
labels are either fractional or zero in the current LP solution. Let Λ̃V ′′ denote the matrix
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where each entry λij represents the current LP value of label j associated to node i, or
−1 if the label j is not associated to node i. Let further ΛV ′′ denote the corresponding
matrix representing which labels are assigned to particular nodes, i.e. its elements λV

′′
ij

are one if label j ∈ L(δ(i)), and zero otherwise. Our goal is to heuristically search for
odd holes in ΛV ′′ , based on the information provided by matrix Λ̃V ′′ , and then transform
the related inequality to a valid inequality for the initial problem by the according lifting
steps. We are hence searching for an odd hole H with H ≤ ΛV ′,L′ with V ′ ⊆ V ′′, L′ ⊆ L′′
and |V ′| = |L′| being odd. By the procedure of [35] we can now decide if∑

l∈L′′\L′
γl · zl +

∑
l∈L′

zl ≥
|L′|+ 1

2
(4.19)

is valid for ΛV ′,L′ . The term
∑
l∈L′′\L′ γl · zl results from lifting all labels which are

associated to a node v ∈ V ′ but are not part of the odd hole induced by V ′ and L′. The
lifting-coefficient is denoted by γl, the calculation of its value will be discussed later on.
By the following MIP (4.20) we aim to find subsets V ′ and L′ forming an odd hole and for
which inequality (4.19) is violated according to the current LP solution. For this purpose
we define a bipartite directed graph G̃ = (Ṽ = Ṽ1 ∪ Ṽ2, Ã), Ṽ1 = V ′′, Ṽ2 = L′′, Ã = {(i, j) |
i ∈ V ′′ ∧ j ∈ L′′(V ′′)}. Each cycle with length 4 · k + 2 corresponds to an odd cycle w.r.t.
the number labels, and is therefore a potential odd hole. Variables xij ∈ {0, 1} represent
the arcs from node i ∈ V ′′ to label j ∈ L′′(V ′′) and are intended to finally describe a valid
odd hole. Variables aij ∈ [0, 1] denote other arcs which connect nodes i ∈ V ′′ being part
of the odd hole (described by the x variables) and other labels not being part of the odd
hole. For each arc a = (i, j) the coefficient ca is the LP value of label j if j ∈ L′ and zero
otherwise.

max k + 1−
∑
i∈Ã

xi · ci −
∑
i∈Ã

ai · ci (4.20a)

s.t. k + 1−
∑
i∈Ã

xi · ci −
∑
i∈Ã

ai · ci ≥ 0 (4.20b)

∑
i∈Ã

xi = 4 · k + 2 (4.20c)

∑
(i,j)∈δ−(j)

xij ≤ 1 for all j ∈ L′′ (4.20d)

∑
(i,j)∈δ+(i)

xij ≤ 1 for all i ∈ V ′′ (4.20e)

∑
(i,j)∈A

xij −
∑

(j,k)∈A
xjk = 0 for all i ∈ Ṽ (4.20f)

yi − yj + 1 + |Ṽ | · xij − |Ṽ | · zi ≤ |Ṽ | (4.20g)∑
i∈V

zi ≤ 1 (4.20h)

∑
(k,i)∈δ−(i)

xki −
∑

(j,l)∈δ−(j)
xjl ≤ aij for all (i, j) ∈ Ã (4.20i)
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yi ≤ |Ṽ | for all i ∈ Ṽ (4.20j)
zi ∈ {0, 1} for all i ∈ Ṽ (4.20k)
xi ∈ {0, 1} for all i ∈ Ã (4.20l)

0 ≤ ai ≤ 1 for all i ∈ Ã (4.20m)

From (4.20c) we can see that |L
′|+1
2 = k + 1. As we prefer solutions where (4.19) is

considerably violated we maximize the difference between |L′|+1
2 and

∑
i∈Ã xi · ci. The

term
∑
i∈Ã ai · ci gives a lower bound for the sum over all labels we need to lift w.r.t. some

particular x-solution. The correct coefficient which is to be discussed later on, cannot
be formulated by a linear expression. By Equation (4.20b) this particular expression is
enforced to be larger than zero, as the resulting inequality to be added to the MLST-MIP
would not be violated otherwise. As a consequence all feasible solutions to MIP (4.20)
fulfill this property which is desirable for the heuristic separation procedure discussed
subsequently. For each node on the cycle the numbers of ingoing and outgoing arcs are
limited to one by equations (4.20d) and (4.20e) and flow-conservation is imposed for each
node (4.20f). The integer variables yi assign numeric values to the nodes i ∈ V ′′ ∪L′′ and
prevent multiple cycles in the solution in (4.20g) by enforcing for each arc on the cycle
(except the one outgoing from the node i with zi = 1 (4.20h)) to have an at least by one
smaller source than target node. Such inequalities have been first proposed in [81], and are
well known as Miller-Tucker-Zemlin-inequalities. By Inequalities (4.20i) all arcs connecting
nodes i ∈ V ′ which are part of the odd cycle to be determined (by x-variables) to nodes
j ∈ L′′(i) not being part of this cycle. Finally, yi, for all i ∈ Ṽ are enforced to be smaller
than |Ṽ | (4.20j), and the node selection and arc variables are required to be Boolean (4.20k,
4.20l). The a-variables only need to be restricted to 0 ≤ ai ≤ 1, for all i ∈ Ã, as they are
implicitly integer by Inequalities (4.20i). Figure 4.5 shows an example for a solution to
the MIP. The arcs selected by x-variables are depicted in red color, the dashed ones do
not contribute to the objective function. The blue arcs correspond to the “lifting-arcs”,
selected by a-variables.

Given a solution to the MIP (4.20), we still need to check, if (4.19) is valid for this
particular solution. The z-variables are derived by taking all labels j ∈ L′ selected by xij
in (4.20). For this purpose we use the criterions described in [35] – here we only provide
a rough explanation. An arc connecting two nodes on the odd cycle determined by (4.20)
which is not part of the cycle itself is called a chord. In order to (4.18), and therefore
(4.19) after the lifting, to be valid, all chords of the odd cycle must be compatible. The
chord set is called compatible, if 1) no chord induces even cycles (w.r.t. nodes i ∈ V ′ on
the cycle), and 2) every pair of crossing chords is compatible. Compatibility for crossing
chords is defined on the basis of the mutual distances of their adjacent nodes on the cycle.
Let aij = (vi, lj), vi ∈ V ′, lj ∈ L′ and ahk = (vh, lk), vh ∈ V ′, lk ∈ L′ be two crossing
chords. We now remove lj and its two incident arcs from the odd hole. The chords are
compatible, if the unique path from vi to vh has an even distance w.r.t. nodes in V ′ in
this graph.

It remains to determine the lifting-coefficients γl. If a lifting-label only covers one node
of the odd hole, the sum over all labels necessary to feasibly cover all nodes from the odd
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la

lb

lc
lg

ld

le

lf

v1

v2

v3

v4

Figure 4.5: Example for a solution to 4.20. The cycle with red arcs constitutes the odd
hole. The dashed red arcs do not contribute to the objective function, whereas
the solid red arcs (which connect nodes to labels) contribute with the LP-
value of the target-label as coefficient. Blue arcs provide a lower bound for
the contribution of all labels that need to be lifted in order to obtain a valid
inequality for the initial problem.

hole does not change. The label can however be used alternatively to one of the odd hole
labels and therefore gets coefficient one. Otherwise, if one lifting-label covers all odd hole
nodes, the coefficient must equal the right hand side of (4.19), i.e. γl = |L′|+1

2 in this case.
Suppose some lifting-label l covers νl odd hole nodes, then the size of the remaining odd
hole nodes is |L

′|+1
2 = d |L

′|
2 e. These remaining nodes are still adjacent to two labels in

the odd hole, pairwise having one label in common. We can therefore derive the following
value for the lifting coefficient

γl = d |L
′|

2
e − d|L

′| − νl
2

e = |L
′|+ 1
2

−
( |L′|+ 1

2
− dνl

2
e
)

= dνl
2
e. (4.21)

During the branch-and-bound MLST solution process the MIP (4.20) is solved with very
tight runtime-limits. As soon as an incumbent integer solution has been found, this solu-
tion is checked for validity by the mentioned criterions. Obtained valid MLST-inequalities
are added immediately. Then the incumbent integer solution is rejected to the MIP solver
by which we enforce to search for further solutions. This process continues until the time
limit is reached.
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4.2.4 Heuristics

In order to improve the overall performance – in particular the ability to generate feasible
integer solutions fast – we embed a primal heuristic into the framework. For this purpose
we adopt the well known MVCA heuristic [16, 69, 30]. This heuristic can create feasible
solutions itself, but also complete partial solutions L̃ ⊂ L. Creating complete solutions
is important for the acquisition of strong upper bounds to efficiently cut-off unprofitable
branches of the B&B-tree from the beginning on, but also to obtain an initial solution
for BCP (Section 4.2.5). On the other hand the MVCA heuristic can be used to obtain
feasible integer solutions and therefore upper bounds in within each B&B-node based upon
some variables already fixed to integer values.

We also consider the ant colony optimization(ACO) approach presented in Chapter 3 as a
primal heuristic. Within this context ACO may be used to obtain good initial solutions,
but also to complete partial solutions defined by the label variables which are equal to one
in a particular B&B-node. For this purpose the pheromone structure may be initialized
by setting pheromones for such labels to the maximum value (τmax), whereas the other
ones are set to the minimum value (τmin).

Many further fast metaheuristic techniques do exist for this problem, which could also
easily be integrated into this framework. This is however beyond the scope of this work,
as we primarily focus on the mathematical programming methods for the MLST.

4.2.5 Pricing Problem

Problem formulations with a large (usually exponential) number of variables are frequently
solved by column generation or branch-and-price algorithms. Such algorithms start with
a restricted set of variables and add potentially improving variables during the solution
process on demand, see Section 2.4.2. If these algorithms also include cutting-plane gener-
ation we obtain branch-and-cut-and-price (BCP), cf. Section 5.7. Although the presented
MLST formulation only has a polynomial number of label variables, these particular vari-
ables lead to extensive branching on them, requiring a special treatment. Hence we based
a solution approach on BCP.

We obtain the restricted master problem by replacing the complete set of labels L by a
subset L′ ⊆ L in (4.1a). The set L′ is required to imply a feasible solution, and is obtained
by the MVCA heuristic. Then, new variables and therefore columns potentially improving
the current objective function value in the simplex tableau are created during the B&B
process. These new variables are obtained from the solution of the pricing problem which
is based upon the dual variables. Let πi denote the dual variables corresponding to con-
straints (4.1b), and µi the ones corresponding to (4.16). They therefore reflect a measure
for the costs of some particular edge e w.r.t. the currently selected labels (πe), and the
costs of connecting some node v w.r.t. the currently selected labels (µv). The pricing
problem is to find a variable with negative reduced costs

c̄l = 1−
∑

(i,j)∈A(l)
πij −

∑
i∈V (l)

µi, (4.22)
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within the set of all labels L. Here A(l) denotes all arcs having label l, V (l) denotes the
set of nodes incident to arcs with label l. Finding such a variable or even the one with
maximal reduced costs can be done by enumeration. Although only a polynomial number
of labels is involved, we may benefit from the pricing scheme as we only need to solve
smaller LPs within the B&B procedure.

4.2.6 Polyhedral Comparison

In this section we compare various formulations resulting from combining the equations
and inequalities from Section 4.2 as listed in Table 4.1. The only formulation just requiring
a polynomial number of constraints is the flow-formulation with roughly O(|L| + 3 · |E|)
variables and O(|L|+ |V |+ |E|) constraints. The directed cut-formulation requires O(|L|+
3·|E|) variables and an exponential number of constraints. Also the modified “epsilon” cut-
formulation requires exponentially many constraints, but only has O(|L|+|E|) variables.

Table 4.1: MLST formulations resulting from combining the equations and inequalities
from section 4.2. Further variants are given by the use of the components listed
in the second part of the table, to be used as index for the formulation to be
used with.

abbrevation involved equations and inequalities
SCF (4.1a), (4.1b), (4.3a) - (4.3c)
MCF (4.1a), (4.1b), (4.2), (4.4), (4.3c)
DCut (4.1a), (4.1b), (4.2), (4.6a), (4.6b), (4.7), (4.8)
EC (4.1a), (4.1b), (4.2), (4.14), (4.11)
MTZ (4.1a), (4.1b), (4.10a
CEF (4.1a), (4.1b), (4.9)
n node-label-constraints (4.16)
ñ extended node-label-constraints (4.17)
t tree search, i.e. fixed number of edges (4.2)
s strong linkage (4.15)
c cycle elimination inequalities (4.9)
o odd-hole inequalities
p variable pricing

In the following we use the graph depicted in Figure 4.6 to show the properties of the
polyhedra defined by the formulations listed in Table 4.1.

Proposition 5
P SCFtno ( P SCFtn ( P SCFt ( P SCF (4.23)

Proof As P SCFtn contains the same equations and inequalities as P SCFt , but additionally
the Inequalities (4.16), we have P SCFtn ⊆ P SCFt . Figure 4.7 shows a LP solution of P SCFt
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Figure 4.6: Example graph used in the following to show the properties of the formulations
listed in Table 4.1. The set of labels is given by L = {a, b, c, d, e}, the optimal
solution value is f = 3.

which is not contained in P SCFtn , which implies P SCFtn ( P SCFt . Such an LP solution
may still contain fractional labels due to odd holes, like shown in Figure 4.5, by which we
obtain P SCFtno ( P SCFtn .

If the values of the edge and label variables in Figure 4.7 are decreased as much as possible
for SCF, we obtain la = 1/4, lb = 3/8 and lc = 1/8 implying f lp = 3/4. As SCFt contains
the additional Inequality (4.2), we can conclude that P SCFt ( P SCF. 2
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Figure 4.7: LP solution of SCFt with objective value f lp = 1+5/8 (la = 1/4, lb = 3/8, lc = 1).
The blue arcs depict the flow variables with their according LP-values. This
solution is not valid for SCFtn, as the sum over the set of labels adjacent to
node v2 is smaller than one.

Proposition 6
PDCuttno ( PDCuttn ( PDCutt ( PDCut (4.24)

Proof The proof of PDCuttno ( PDCuttn ( PDCutt follows by the same reasoning as
for the proof of theorem 5. Figure 4.8 shows that PDCuttn ( PDCutt . However, the
requirement that each directed cut must have a value greater than one already implies that∑
e∈δ(v) xe ≥ 1, for all v ∈ V . This implies

∑
e∈E xe ≥ |V | − 1. An LP-solution to DCut

may contain more edges than an LP-solution to DCutt, which does, however, due to the
minimality not affect the objective value of the LP-relaxation, i.e. PDCutt

z = PDCut
z . 2
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Figure 4.8: LP solution of DCutt with objective value f lp = 2 + 1/6 (lb = 1/2, lc = 2/3, a+
d+ e ≥ 1, w.l.o.g. la = 1). The green arcs depict the arc variables with their
according LP values. The solution is not valid for DCuttn, as the sum over the
set of labels adjacent to node v5 is smaller than one.

Let PS denote the projection of some polyhedron P to a subspace S.

Proposition 7
PECtno
x ( PECtn

x ( PECt
x ( PEC

x (4.25)

Proof By applying the same reasoning as for the proofs of the last two theorems, we can
prove Proposition 7. Figure 4.9 gives an example for PECtn ( PECt . 2
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Figure 4.9: LP solution of ECt with objective value f lp = 3/2 + ε (la = ε, lb = 1/2, lc = 1).
The solution is not valid for ECtn, as the sum over the set of labels adjacent
to nodes v1 and v2 are smaller than one.

In the following we will show the relations between the formulations SCFt, DCutt and
ECt.

Theorem 11
PDCutt
x ( P SCFt

x ( PECt
x (4.26)

Proof Figures 4.8, 4.7 and 4.9 already showed, that the polyhedrons are not equal. To
prove that PDCutt

x ( P SCFt
x we show a procedure to transform all x-variables of any valid
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LP-solution of DCutt to a valid x-solution in SCFt. For all i, j ∈ V there exists at least
one path from i to j with all edges (k, l) having LP-values xlp

kl greater than zero. If we
consider a network with source i and target j, only containing edges e being part of one
of these paths and having capacities xlp

e there exists a flow of at least one unit from s to
t. We now arbitrarily select a root node r (w.l.o.g. r = 0) and show how to construct a
valid flow permitting the same x-configuration for SCFt as in DCutt. For an edge e to
have LP value xlp

e a corresponding flow variable must be larger than xlp
e /(n−1). We start

by setting all flow variables to zero. Then for each node ti, i = 1, . . . , n − 1 we construct
all paths from r to t, considering all edges with xlp

e > 0. Summing up xlp
e > 0 for all

edges e on these paths may not exceed (n − 1), as the number of edges is fixed by (4.2)
when i = 2. However, this sum may usually be smaller than (n− 1), say λl, but integer.
Now we backtrack all these paths and set their flow values to minimal values according to
flow conservation (4.3b) and LP-values for the edges. Note that

∑
i∈δ(r) fri = λ1 after this

first step. We then continue this procedure for all further ti, i = 2, . . . , n − 1. According
to (4.2) in step tk at most (n− 1)−

∑
l<k λk not yet considered edges need to be added,

possibly increasing
∑
i∈δ(r) fri by exactly this amount. We finally end up with all nodes

being feasibly connected and
∑
i∈δ(r) fri = (n − 1) fulfilling (4.3a) and flow conservation

(4.3b) being fulfilled at each node.

It is trivial to see that the x-variables of a valid LP-solution of SCFt is also valid for
ECt. 2

Theorem 12
PDCuttn
x ( P SCFtn

x ( PECtn
x (4.27)

Proof In the proof of Theorem 11 we already showed how each projection of a solution
of DCutt to the subspace defined by the x-variables can be transformed into a solution
of SCFt, and likewise SCFt to ECt. The only difference of the polyhedrons considered
in Theorem 12 are the constraints (4.16), which clearly do not affect this transformation.
It needs to be shown, that the polyhedrons are not equal, which is done by the example
in Figure 4.10. The depicted ECtn solution is not valid for SCFtn or DCutn respectively,
although the node-label constraints (4.16) are fulfilled. However, the value of edge {3, 4}
can be increased to 1/5 (implying the need to decrease the values of edges {1, 4} and {3, 6}
accordingly), which makes the solution feasible to SCFtn. Nevertheless, this solution
remains infeasible to DCuttn, by which we have shown the theorem. 2

4.3 Results

In this section we present a comprehensive computational comparison of the presented
formulations and separation strategies, and compare our methods to other work. Three
different datasets are used for our computational tests. We start by a description of the
test instances used for our experiments and tests.
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Figure 4.10: Valid LP-solution of ECtn with f lp = 2 + ε (la = 1, lb = ε, lc = 1) that is not
valid for SCFtn. It can however be transformed to such, by increasing x3,4 to
1/5, yielding f lp = 2 + 1/5. It is easy to see, that this solution is still not valid
for DCuttn.

4.3.1 Test Instances

The first set is the publicly available benchmark set used in [30, 29, 28, 15]. We refer to
this data set as Set-I. It consists of graphs with 100 to 500 nodes and various densities
d ∈ {0.2, 0.5, 0.8}, defined by |E| = d · |V |·(|V |−1)

2 , and different numbers of labels |L| =
l/4, l ∈ {1, 2, 4, 5}. The instances are organized in groups of ten for each configuration of d
and |L| for each |V |. So far, primarily metaheuristics have been applied to this instance
set, but also an exact algorithm based on A∗-search, as reported in [29].

The second test set Set-II is created following the specification of the instances used in
[13], in order to obtain comparable results to the MIPs presented therein. This set is
organized in four groups. In contrast to Set-I, the instances of the first two groups just
contain very few labels, i.e. |L| ∈ {5, 10, 20}. The number of nodes ranges from 20 to 1000,
network densities are set to |E| = 4 · |V | Moreover, this set contains various grid-graphs
(group 3) of sizes 2×10, 4×5, 2×18, 3×12, and 6×6. The fourth group contains instances
with |V | ∈ {20, 50} and |L| = |V | and various network densities d ∈ {0.2, 0.5, 0.8}.

In addition to Set-I and Set-II we created a further test set Set-III containing also in-
stances with multiple labels assigned to the edges. The construction is performed by
first creating a spanning tree and assigning labels from set L∗ ⊆ L to its edges. Usually
L∗ = L if not stated otherwise, but |L∗| � |L| is used to study the effect of having opti-
mal solutions with significantly less labels than for completely random label assignment
for the particular graph properties. Next further edges are added until a specified density
d · n·(n−1)

2 , 0 < d ≤ 1 or specified number of edges m := |E| is reached. Then we randomly
assign all labels not used yet. In the final step we iterate over all edges and assign further
labels by uniform random decision. Parameter a specifies how many labels can be assigned
to each edge, if not stated otherwise a = 1. Instead of directly using |L| as a parameter,
we may also specify the size of the label set by parameter r = |L|

|E| , 0 < r ≤ 1. In contrast
to the other instances, the instances of Set-III have relatively high values of r, i.e. r = 1/4
and r = 3/4. Although such instances are less likely to occur within practical applications
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regarding telecommunication network design, they may be relevant for other scenarios, as
for instance the compression model presented in Chapter 5 of this thesis.

4.3.2 Test environment

The generic framework presented in Section 4.2 has been implemented in C++ (gpp-4.3)
within the SCIP framework [101]. The standard-plugins have been used for all computa-
tional tests unless explicitly stated otherwise. In addition some branch-and-cut algorithms
(not involving any pricing procedures) have been implemented within the ILOG CON-
CERT framework [61] for comparison purposes. As LP solver ILOG CPLEX (in version
12.0) [61] has been used for both frameworks.

All computational tests have been performed on an Intel Xeon E5540 processor operating
at 2.53 GHz and having 24 GB for totally 8 cores. The operation system is Ubuntu 9.10
with Linux-kernel 2.6.31. All runs have been performed in single-threaded mode, running
times have been limited to 7200 seconds, unless stated otherwise.

4.3.3 Comparison of Described Methods

In this section we present a comparison of the described formulations based on compu-
tational tests. Furthermore we analyze the impact of particular “components” to each
of the formulations. These components consist of the node-label-inequalities (4.16), the
extended node-label-inequalities (4.17), the strong linkage of the edges to the edges (4.15),
which can however only be used if only one label is assigned to the edges and the number
of edges is not fixed by Equation (4.2). Table 4.1 provides an overview of these com-
ponents and corresponding notation. After the comprehensive analysis and comparison
of the particular methods in this section, we compare the results of the newly proposed
methods to previous work in Section 4.3.4.

MIP formulations

In this section we primarily focus on the comparison of formulations EC, DCut and SCF.
However, particularities like node-label-constraints (4.16), or fixed number of edges (4.2),
or the direct linkage of labels to edges (4.15), may significantly change the picture regarding
the superiority of one method over another one. For this reason we present the results not
only for three formulations, but rather four to five variants of each formulation. Recall,
that directly linking the labels to edges by Equations (4.15) is only possible for instances
with one label assigned to each edge (4.15), i.e. a = 1 and is generally not possible for
flow-formulations. In order not to be biased towards some particular class of instances we
report these results for each of the three instance sets.

Tables 4.2 and 4.3 show the results for instances of Set-I with |V | = 100 and |V | = 200.
These instances include graphs with various densities d ∈ {0.2, 0.5, 0.8}, where |E| =
d· |V |·(|V |−1)

2 , and different numbers of labels, i.e. |L| = 1/2·|V |, |L| = |V |, and |L| = 5/4·|V |.
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Table 4.2: Comparison of selected variants of formulations EC, DCut and SCF on the
instances from Set-I with |V | = 100.

|L| = 50 |L| = 100 |L| = 125
d alg cnt opt obj t bbn cuts cnt opt obj t bbn cuts cnt opt obj t bbn cuts

0.2

EC 10 10 6.7 7 234 65 10 10 9.7 62 3876 1072 9 9 11.2 123 9365 2843
ECt 10 10 6.7 8 347 196 10 10 9.7 25 2482 414 9 9 11.2 34 3769 871
ECtn 10 10 6.7 4 100 173 10 10 9.7 11 857 339 9 9 11.2 16 1401 402
ECn 10 10 6.7 0 24 3 10 10 9.7 9 1298 179 9 9 11.2 33 2648 594
ECsn 10 10 6.7 0 31 3 10 10 9.7 6 1127 34 9 9 11.2 12 2570 89
DCut 10 10 6.7 80 1167 691 10 10 9.7 1013 14378 7798 9 8 11.2 1470 19646 11403
DCutt 10 10 6.7 125 1458 954 10 10 9.7 478 6676 3919 9 9 11.2 740 10273 6450
DCuttn 10 10 6.7 21 127 116 10 10 9.7 86 1021 729 9 9 11.2 115 1426 1017
DCutn 10 10 6.7 11 90 96 10 10 9.7 57 1157 599 9 9 11.2 176 3186 1868
DCutsn 10 10 6.7 12 94 89 10 10 9.7 51 1190 516 9 9 11.2 129 3086 1536
SCF 10 2 6.8 7028 136930 -1 10 0 10.3 7200 19854 -1 9 0 12.4 7200 17296 -1
SCFt 10 1 6.7 7133 143226 -1 10 0 10.3 7200 101319 -1 9 0 11.7 7200 119683 -1
SCFtn 10 10 6.7 15 83 -1 10 10 9.7 67 673 -1 9 9 11.2 85 1033 -1
SCFn 10 10 6.7 15 83 -1 10 10 9.7 63 673 -1 9 9 11.2 84 1033 -1

0.5

EC 10 10 3.0 17 46 5 10 10 4.7 374 5584 282 10 10 5.2 446 5307 630
ECt 10 10 3.0 14 69 148 10 10 4.7 175 5039 330 10 10 5.2 129 3249 382
ECtn 10 10 3.0 9 7 136 10 10 4.7 34 524 165 10 10 5.2 39 452 277
ECn 10 10 3.0 0 2 0 10 10 4.7 8 221 4 10 10 5.2 9 127 4
ECsn 10 10 3.0 0 2 0 10 10 4.7 9 173 4 10 10 5.2 11 370 12
DCut 10 10 3.0 217 488 272 10 8 4.8 3858 15810 7214 10 10 5.2 3150 9316 4187
DCutt 10 10 3.0 190 465 256 10 9 4.7 3471 11770 6246 10 10 5.2 1794 5366 3175
DCuttn 10 10 3.0 56 13 28 10 10 4.7 401 1133 450 10 10 5.2 305 633 342
DCutn 10 10 3.0 27 12 28 10 10 4.7 261 1597 518 10 10 5.2 250 1179 401
DCutsn 10 10 3.0 27 23 55 10 10 4.7 216 1539 390 10 10 5.2 225 1234 362
SCF 10 10 3.0 850 1475 -1 10 0 5.0 7200 11453 -1 10 0 5.8 7200 7586 -1
SCFt 10 10 3.0 722 1597 -1 10 6 4.7 5319 23618 -1 10 0 5.5 7200 18169 -1
SCFtn 10 10 3.0 22 1 -1 10 10 4.7 211 617 -1 10 10 5.2 171 298 -1
SCFn 10 10 3.0 20 1 -1 10 10 4.7 203 617 -1 10 10 5.2 176 298 -1

0.8

EC 10 10 2.0 12 2 12 10 10 3.0 161 848 98 10 10 4.0 999 4310 20
ECt 10 10 2.0 11 7 196 10 10 3.0 36 142 179 10 10 4.0 135 2344 130
ECtn 10 10 2.0 14 4 102 10 10 3.0 24 11 187 10 10 4.0 44 394 83
ECn 10 10 2.0 0 1 0 10 10 3.0 1 3 2 10 10 4.0 17 102 0
ECsn 10 10 2.0 0 1 0 10 10 3.0 2 4 1 10 10 4.0 17 51 0
DCut 10 10 2.0 255 97 65 10 9 3.1 2367 2440 1286 10 0 4.0 7200 6958 3525
DCutt 10 10 2.0 198 127 131 10 9 3.1 1997 2702 1635 10 9 4.0 5083 6363 3410
DCuttn 10 10 2.0 87 7 19 10 10 3.0 314 370 216 10 10 4.0 923 1193 408
DCutn 10 10 2.0 40 5 22 10 10 3.0 418 932 457 10 10 4.0 780 1853 546
DCutsn 10 10 2.0 33 3 29 10 10 3.0 128 161 93 10 10 4.0 740 2154 668
SCF 10 10 2.0 274 103 -1 10 0 3.6 7200 2826 -1 10 0 4.0 7200 2752 -1
SCFt 10 10 2.0 33 5 -1 10 0 4.0 7200 3035 -1 10 0 4.0 7200 2849 -1
SCFtn 10 10 2.0 28 1 -1 10 10 3.0 29 2 -1 10 10 4.0 243 349 -1
SCFn 10 10 2.0 28 1 -1 10 10 3.0 29 2 -1 10 10 4.0 230 349 -1

In these tables, as well as in the following ones, we report the following entities for each
method and group of instances: Columns “cnt” contain the number of instances within
each group, which is 10 in most of the cases. The reason for less than ten instances reported
is not being able to finish some instances with particular formulations due to high memory
requirements. Columns “opt” report the number of instances that have been solved and
proved to be optimal within the timelimit. In columns “obj” the average objective value for
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Table 4.3: Comparison of selected variants of formulations EC, DCut and SCF on the
instances from Set-I with |V | = 200.

|L| = 100 |L| = 200 |L| = 250
d alg cnt opt obj t bbn cuts cnt opt obj t bbn cuts cnt opt obj t bbn cuts

0.2

EC 10 8 8.0 3770 52682 16621 10 0 12.9 7200 42289 22303 10 0 15.4 7200 32009 18669
ECt 10 7 8.0 4541 43756 7665 10 0 13.6 7200 43298 8007 10 0 16.0 7200 43792 7293
ECtn 10 10 7.9 1296 14254 539 10 2 13.3 6878 60643 1436 10 1 14.9 6761 46296 1658
ECn 10 10 7.9 201 8379 5 10 5 12.2 5146 189033 973 10 3 13.8 6387 144597 5207
ECsn 10 10 7.9 191 8322 4 10 7 12.1 4331 182237 81 10 3 13.9 6153 250129 158
DCut 10 0 8.8 7200 10929 8971 10 0 14.5 7200 3850 3632 10 0 18.9 7200 3681 3548
DCutt 10 0 9.0 7200 4392 4036 10 0 14.5 7200 2896 2866 10 0 16.1 7200 2653 2622
DCuttn 10 7 8.1 5487 13056 8036 10 0 13.0 7200 5588 4763 10 0 15.7 7200 3982 3552
DCutn 10 9 8.0 3398 14653 8637 10 0 12.9 7200 15877 12200 10 0 14.9 7200 11207 9494
DCutsn 10 9 8.0 2996 14937 7658 10 0 12.7 7200 19280 13569 10 0 14.7 7200 13712 10837
SCF 10 0 9.3 7200 1017 -1 10 0 14.5 7200 634 -1 10 0 16.8 7200 559 -1
SCFt 10 0 8.9 7200 3204 -1 10 0 13.5 7200 4733 -1 10 0 15.8 7200 5326 -1
SCFtn 10 8 8.0 3353 9362 -1 10 0 12.4 7200 6854 -1 10 0 14.1 7200 4343 -1
SCFn 10 8 8.0 3498 8308 -1 10 0 12.4 7200 6468 -1 10 0 14.1 7200 4099 -1

0.5

EC 10 10 3.4 769 2082 69 10 0 5.8 7200 8603 539 10 0 6.5 7200 5380 456
ECt 10 10 3.4 1452 2744 558 10 0 5.8 7200 10307 647 10 0 6.4 7200 9084 1024
ECtn 10 10 3.4 570 469 678 10 7 5.5 4249 6550 908 10 0 6.5 7200 15870 861
ECn 10 10 3.4 25 126 1 10 9 5.4 1291 14284 12 10 8 6.4 4323 57715 31
ECsn 10 10 3.4 19 92 1 10 9 5.4 1176 14653 6 10 9 6.4 4049 62371 18
DCut 9 0 4.1 7200 1086 728 10 0 7.2 7200 323 265 10 0 7.9 7200 272 215
DCutt 9 0 4.3 7200 613 469 10 0 7.9 7200 298 290 10 0 8.2 7200 335 307
DCuttn 10 8 3.5 5135 954 481 10 0 6.6 7200 557 349 10 0 7.4 7200 420 282
DCutn 10 8 3.5 3132 1079 507 10 0 6.2 7200 1795 929 10 0 7.1 7200 1097 564
DCutsn 10 9 3.4 2054 979 412 10 0 6.0 7200 2072 912 10 0 6.7 7200 1432 671
SCF 10 0 4.3 7200 124 -1 10 0 7.0 7200 69 -1 10 0 7.8 7200 54 -1
SCFt 10 0 3.9 7200 207 -1 10 0 6.5 7200 166 -1 10 0 7.3 7200 150 -1
SCFtn 10 10 3.4 1102 270 -1 10 0 5.7 7200 828 -1 10 0 6.5 7200 839 -1
SCFn 10 10 3.4 1204 270 -1 10 0 5.7 7200 749 -1 10 0 6.4 7200 728 -1

0.8

EC 10 10 2.6 2803 2968 16 10 0 4.0 7200 1132 16 10 0 5.0 7200 1640 48
ECt 10 10 2.6 3040 3650 505 10 0 4.0 7200 2146 656 10 2 4.4 7064 6763 757
ECtn 10 9 2.7 2739 103 613 10 10 4.0 5038 6819 634 10 9 4.1 2902 1331 776
ECn 10 10 2.6 76 2 73 10 10 4.0 1122 5975 1 10 10 4.0 609 3324 3
ECsn 10 10 2.6 28 1 1 10 10 4.0 911 4845 1 10 10 4.0 301 777 1
DCut 4 0 3.0 7200 152 134 10 0 8.2 7201 105 110 10 0 7.1 7200 69 70
DCutt 10 0 3.9 7200 151 171 10 0 5.2 7202 110 112 10 0 6.8 7200 111 112
DCuttn 10 3 3.3 6344 142 67 10 0 4.6 7200 177 102 10 0 5.5 7200 120 98
DCutn 10 3 2.7 6528 1103 444 10 0 4.2 7200 329 170 10 0 4.9 7200 158 126
DCutsn 10 6 2.6 5135 799 292 10 0 4.0 7200 556 227 10 0 5.0 7200 226 140
SCF 10 0 2.9 7200 69 -1 10 0 4.9 7200 35 -1 10 0 5.5 7200 33 -1
SCFt 10 2 2.8 5923 54 -1 10 0 4.3 7200 58 -1 10 0 5.1 7201 35 -1
SCFtn 10 9 2.6 4177 74 -1 10 1 4.0 6929 391 -1 10 3 4.7 6712 264 -1
SCFn 10 9 2.6 4183 79 -1 10 1 4.0 6973 375 -1 10 2 4.7 6871 229 -1

all instances in the group is reported. If not all instances have been solved to optimality,
this value corresponds to the average value of feasible solutions that have been found
within the timelimit. Average running times in seconds are then reported in columns “t”.
The average number of branch-and-bound nodes is listed in columns “bbn”, the average
number of generated cuts in column “cuts”. Results of the fastest method(s) for each
group are emphasized with bold letters.
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From Tables 4.2 and 4.3 we can already observe that the difficulty of solving these instances
is strongly correlated to the objective function values of the instances. Higher values, in
particular those larger than ten, require significantly more B&B-nodes, and the separation
of more cuts. This also implies longer average running times. This property holds for all
of the considered formulations. The results in Tables 4.2 and 4.3 show that formulation
ECsn consistently gives the best results for these instances. The single commodity flow
formulations show a slightly better performance than the directed cut formulations for
most of the instances.

The strength of the node-label-inequalities (4.16) is also demonstrated by the results in
Tables 4.2 and 4.3. Their addition to the plain formulations does not only yield a significant
speedup, but also enables to solve more instances regarding the set with |V | = 200.
The difference between Inequalities (4.16) and their extended form, given by Inequalities
(4.17) is examined in Section 4.3.3. Regarding Equation (4.2) no clear conclusion can be
drawn from these instances. If, however, combinations of these components are considered,
the variants only using the node-label-constraints are superior in most of the cases. For
formulations EC and DCut it is also possible to directly link the edges to the labels by
Equations (4.15). In most of the cases, this yields the best results, when combined with
the node-label-inequalities for both formulations, and in particular in combination with
EC the overall best results.

Table 4.4 reports the results for the same formulations for the instances of Set-II. These
instances have the major difference to contain only graphs of extremely low density d and
just very few labels. Again, we can observe a clear superiority of formulations ECsn and
ECn, which are able to solve all these instances with average running times of less than a
half second.

In Tables 4.5, 4.6, and 4.7 results for the instances from Set-III are reported. Table 4.5
shows the results for instances with |V | = 100 and a = 1, i.e. one single label assigned to
the edges. As already mentioned in Section 4.3.1, this instances differ from the previous
ones in the way that they contain a higher number of labels, i.e. r = 1/4 and r = 3/4 with
r = |L|

|E| . It can be observed that it is beneficial to limit the number of edges to |V | − 1 by
Equation (4.2) in this case. Thus, the stronger LP-relaxation implied by this restriction
is beneficial in the case of higher values of r. For instances with r = 1/4 formulation EC
still shows the best performance, but DCut provides better results in the case of r = 3/4.
Hence, the strong LP-relaxation becomes even more important if |L| is in the same order
of magnitude as |E|.

With a single exception the same effect can be observed for the instances with a ∈ {2, 5}
reported in Table 4.6. The effect of more than one label being assigned to the edges seems
to make the problem easier to solve, but the effect is relatively small. It is important to
note, that directly linking the labels to the edges, which was beneficial for the instances
with a = 1, cannot be applied to instances with larger a.

Table 4.7 shows the result for grid-graphs with 100 and 400 nodes and |L| ∈ {30, 50, 80}.
The average optimal objective value on these graphs is relatively high, which makes them
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Table 4.4: Comparison of selected variants of formulations EC, DCut and SCF on the
instances from Set-II.

|L| = 5 |L| = 10 |L| = 20
|V |, |E| alg cnt opt obj t bbn cuts cnt opt obj t bbn cuts cnt opt obj t bbn cuts

200, 800

EC 10 10 3.0 0 1 0 10 10 5.0 0 3 0 10 10 7.9 0 13 2
ECt 10 10 3.0 0 2 236 10 10 5.0 0 8 315 10 10 7.9 2 47 582
ECtn 10 10 3.0 0 2 157 10 10 5.0 0 6 249 10 10 7.9 1 20 515
ECn 10 10 3.0 0 1 0 10 10 5.0 0 1 0 10 10 7.9 0 6 2
ECsn 10 10 3.0 0 1 0 10 10 5.0 0 1 0 10 10 7.9 0 6 1
DCut 10 10 3.0 1 6 38 10 10 5.0 4 14 63 10 10 7.9 14 127 171
DCutt 10 10 3.0 3 6 26 10 10 5.0 7 18 37 10 10 7.9 18 161 173
DCuttn 10 10 3.0 0 4 29 10 10 5.0 2 7 36 10 10 7.9 8 21 63
DCutn 10 10 3.0 0 2 24 10 10 5.0 0 6 49 10 10 5.0 0 6 49
DCutsn 10 10 3.0 0 1 0 10 10 5.0 0 1 0 10 10 7.9 0 6 1
SCF 10 10 3.0 2 2 -1 10 10 5.0 9 32 -1 10 10 7.9 69 800 -1
SCFt 10 10 3.0 3 2 -1 10 10 5.0 9 32 -1 10 10 7.9 71 800 -1
SCFtn 10 10 3.0 0 1 -1 10 10 5.0 1 3 -1 10 10 7.9 6 16 -1
SCFn 10 10 3.0 0 1 -1 10 10 5.0 1 3 -1 10 10 7.9 6 16 -1

500, 2000

EC 10 10 3.5 0 1 0 10 10 5.9 0 2 0 10 10 9.9 0 12 0
ECt 10 10 3.5 3 2 621 10 10 5.9 6 7 833 10 10 9.9 16 44 1129
ECtn 10 10 3.5 2 1 541 10 10 5.9 5 6 763 10 10 9.9 16 25 1385
ECn 10 10 3.5 0 1 0 10 10 5.9 0 1 0 10 10 9.9 0 8 0
ECsn 10 10 3.5 0 1 0 10 10 3.5 0 1 0 10 10 9.9 0 7 0
DCut 10 10 3.5 5 5 34 10 10 5.9 14 14 76 10 10 9.9 48 152 184
DCutt 10 10 3.5 13 7 25 10 10 5.9 28 15 34 10 10 9.9 68 181 144
DCuttn 10 10 3.5 2 3 16 10 10 5.9 9 8 33 10 10 5.9 9 8 33
DCutn 10 10 3.5 1 2 46 10 10 5.9 3 6 67 10 10 9.9 20 20 139
DCutsn 10 10 3.5 1 2 82 10 10 5.9 3 6 60 10 10 9.9 20 19 129
SCF 10 10 3.5 10 3 -1 10 10 5.9 28 18 -1 10 10 9.9 372 661 -1
SCFt 10 10 3.5 11 3 -1 10 10 5.9 29 18 -1 10 10 9.9 384 661 -1
SCFtn 10 10 3.5 0 1 -1 10 10 5.9 4 3 -1 10 10 9.9 20 20 -1
SCFn 10 10 3.5 0 1 -1 10 10 5.9 3 3 -1 10 10 9.9 18 20 -1

1000, 4000

EC 10 10 4.1 0 1 0 10 10 6.6 0 1 0 10 10 11.3 0 13 0
ECt 10 10 4.1 20 1 1182 10 10 6.6 46 6 1762 10 10 11.3 121 54 3514
ECtn 10 10 4.1 300 1 3823 10 10 6.6 234 6 2660 10 10 11.3 108 26 2909
ECn 10 10 4.1 0 1 0 10 10 6.6 0 1 0 10 10 11.3 0 7 0
ECsn 10 10 4.1 0 1 0 10 10 6.6 0 1 0 10 10 11.3 0 6 0
DCut 10 10 4.1 16 5 40 10 10 6.6 47 13 259 10 10 11.3 144 191 275
DCutt 10 10 4.1 54 6 22 10 10 6.6 90 20 36 10 10 11.3 240 189 150
DCuttn 10 10 4.1 7 3 23 10 10 6.6 26 7 26 10 10 11.3 103 36 47
DCutn 10 10 4.1 12 1 184 10 10 6.6 13 5 195 10 10 11.3 64 26 355
DCutsn 10 10 4.1 11 1 178 10 10 6.6 47 6 495 10 10 11.3 57 24 253
SCF 10 10 4.1 30 2 -1 10 10 6.6 99 14 -1 10 10 11.3 1243 416 -1
SCFt 10 10 4.1 31 2 -1 10 10 6.6 96 14 -1 10 10 11.3 1303 416 -1
SCFtn 10 10 4.1 1 1 -1 10 10 6.6 12 3 -1 10 10 11.3 52 31 -1
SCFn 10 10 4.1 1 1 -1 10 10 6.6 12 3 -1 10 10 11.3 48 31 -1

difficult to solve. However, all instances with |L| ∈ {30, 50} could be solved to opti-
mality by formulation ECsn, which showed the overall best performance on this class of
instances.

Having now analyzed the main variations of the discussed formulations we draw our atten-
tion to further approaches and enhancements that have been proposed in Section 4.2.
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Table 4.5: Comparison of selected variants of formulations EC, DCut and SCF on the
instances from Set-III with |V | = 100, a = 1.

|L| = 1/4 · |E| |L| = 3/4 · |E|
d alg cnt opt obj t bbn cuts cnt opt obj t bbn cuts

0.05

EC 10 10 19.6 2 1892 1722 10 0 61.6 7200 108393 124719
ECt 10 10 19.6 23 6887 6026 10 1 51.3 6480 178187 195559
ECtn 10 10 19.6 14 4944 4486 10 2 51.2 5760 163875 182801
ECn 10 10 19.6 2 1491 1246 10 0 62.5 7200 103413 119245
ECsn 10 10 19.6 1 1313 966 10 0 55.5 7200 133833 151889
DCut 10 10 19.6 35 5214 3026 10 0 50.7 7200 367146 337417
DCutt 10 10 19.6 34 4174 2487 10 4 49.8 4381 76629 55867
DCuttn 10 10 19.6 12 1148 759 10 6 49.8 3195 87152 60318
DCutn 10 10 19.6 13 1437 941 10 0 50.4 7200 337882 315950
DCutsn 10 10 19.6 1 1313 966 10 0 50.4 7200 360801 343056
SCF 10 3 19.6 5576 987720 -1 10 0 51.5 7200 1815207 -1
SCFt 10 9 19.6 1354 513872 -1 10 5 50.0 3823 3081605 -1
SCFtn 10 10 19.6 31 5160 -1 10 8 49.9 1508 800971 -1
SCFn 10 10 19.6 49 9415 -1 10 0 50.6 7200 894051 -1

0.2

EC 10 1 15.1 7099 208082 117362 10 0 45.1 7200 62300 63102
ECt 10 10 14.8 675 54742 23790 10 4 36.5 6326 138547 137549
ECtn 10 10 14.8 344 36386 16745 10 2 37.1 6450 120465 121687
ECn 10 2 15.3 6369 136657 94927 10 0 46.0 7200 40163 41557
ECsn 10 4 14.8 4894 231148 95062 10 0 39.2 7200 65167 63256
DCut 10 0 16.3 7200 48073 35316 10 0 38.9 7200 119789 87861
DCutt 10 6 14.8 3196 55169 37144 10 6 35.8 3706 61762 47626
DCuttn 10 10 14.8 835 13677 8698 10 7 35.8 2432 36099 27852
DCutn 10 0 15.7 7200 39132 29700 10 0 38.5 7200 48576 40239
DCutsn 10 1 15.6 7134 78339 57546 10 0 38.0 7200 88645 73235
SCF 10 0 17.0 7200 14435 -1 10 0 40.5 7200 39472 -1
SCFt 10 0 15.5 7200 173479 -1 10 0 37.8 7200 480980 -1
SCFtn 10 9 14.8 2401 31073 -1 10 1 36.1 6495 152260 -1
SCFn 10 0 15.2 7200 63078 -1 10 0 38.4 7200 29479 -1

0.5

EC 10 0 15.8 7200 69554 36260 10 0 38.8 7200 54153 55751
ECt 10 8 13.3 2570 62487 30425 10 5 30.7 4064 51442 50552
ECtn 9 8 13.2 1400 34106 18769 10 4 31.0 5038 59605 57375
ECn 10 0 16.2 7200 35944 18323 10 0 38.9 7200 28984 31127
ECsn 10 0 13.7 7200 296782 88962 10 0 33.8 7200 63430 64801
DCut 10 0 15.4 7200 7645 4291 10 0 36.0 7200 31008 19324
DCutt 10 6 13.5 5152 9463 9036 10 6 30.3 4331 16003 13285
DCuttn 10 5 13.5 4557 9195 8543 10 7 30.2 3552 12337 9780
DCutn 10 0 15.4 7200 5807 3785 10 0 36.6 7200 6935 5131
DCutsn 10 0 14.4 7200 12834 8154 10 0 32.4 7200 14108 9913
SCF 10 0 16.4 7200 1345 -1 10 0 34.5 7200 3160 -1
SCFt 10 0 14.6 7200 19313 -1 10 0 32.3 7200 35869 -1
SCFtn 10 5 13.5 4756 9842 -1 10 2 30.7 5842 16960 -1
SCFn 10 0 14.5 7200 6765 -1 10 0 33.1 7200 2327 -1

Further Methods

In Section 4.3.3 the node-label-inequalities (4.16) have been shown to be of utter impor-
tance for a strong formulation. In Section 4.2.3 we have also presented an extension of this
idea, where two nodes are considered instead of just one. This led to the class of Inequal-
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Table 4.7: Comparison of selected variants of formulations EC, DCut and SCF on the grid
graph instances from Set-III with |E| ≈ 4 · |V |.

|V | = 10× 10 |V | = 20× 20
|L| alg cnt opt obj t bbn cuts cnt opt obj t bbn cuts

30

EC 10 10 9.2 4 2041 1540 10 10 11.5 61 7496 400
ECt 10 10 9.2 6 2641 1843 10 10 11.5 183 7547 5819
ECtn 10 10 9.2 4 1639 1544 10 10 11.5 91 3757 4231
ECn 10 10 9.2 1 1369 656 10 10 11.5 17 3602 200
ECsn 10 10 9.2 1 1281 601 10 10 11.5 17 3558 175
DCut 10 10 9.2 61 4948 3240 2 2 11.0 5224 6233 37505
DCutt 10 10 9.2 93 6196 4135 10 10 11.5 3029 22956 19238
DCuttn 10 10 9.2 34 1892 1710 10 10 11.5 627 4058 10961
DCutn 10 10 9.2 18 1512 1364 1 0 12.0 7200 39 24766
DCutsn 10 10 9.2 19 1356 2314 1 0 13.0 7200 26 23113
SCF 10 10 9.2 815 118270 -1 10 0 11.8 7200 22192 -1
SCFt 10 10 9.2 641 90448 -1 10 0 11.7 7200 22091 -1
SCFtn 10 10 9.2 17 1280 -1 10 10 11.5 251 3127 -1
SCFn 10 10 9.2 12 1008 -1 10 10 11.5 218 3076 -1

50

EC 9 8 13.0 1018 54653 41036 10 9 17.1 4341 464602 31132
ECt 9 7 13.1 1959 99397 73687 10 0 17.0 7200 301858 167539
ECtn 9 8 13.0 1578 83996 67834 10 10 17.0 3834 212265 107170
ECn 9 9 12.9 129 25299 16378 10 10 17.0 1347 208221 11217
ECsn 9 9 12.9 66 22339 13131 10 10 17.0 1087 193213 8470
DCut 9 9 12.9 867 67360 37873 7 0 17.3 7200 29390 47832
DCutt 9 9 12.9 1032 74718 42088 10 0 17.2 7200 32248 33668
DCuttn 9 9 12.9 302 20596 12907 10 0 17.0 7200 86172 64236
DCutn 9 9 12.9 336 28974 17613 7 0 16.3 7200 3345 36785
DCutsn 9 9 12.9 207 20951 13323 7 0 15.7 7200 648 23682
SCF 9 0 13.3 7200 368322 -1 10 0 18.5 7200 13103 -1
SCFt 9 0 13.2 7200 741954 -1 10 0 18.5 7200 19592 -1
SCFtn 9 9 12.9 215 21632 -1 10 0 17.1 7200 131296 -1
SCFn 9 9 12.9 299 34004 -1 10 8 17.1 5532 169723 -1

80

EC 10 0 19.5 7200 134608 118377 10 0 25.0 7200 199143 139246
ECt 10 0 19.9 7200 231789 208661 10 0 24.9 7200 143214 104486
ECtn 10 0 19.6 7200 229619 202787 10 0 24.8 7200 146616 112030
ECn 10 0 19.5 7200 162192 138904 10 0 24.6 7200 305748 138953
ECsn 10 0 18.9 7200 228167 176741 10 0 24.6 7200 299188 134344
DCut 10 0 18.8 7200 252826 225273 10 0 25.5 7200 31756 32402
DCutt 10 0 18.9 7200 248123 216513 9 0 19.8 7200 24121 25391
DCuttn 9 0 18.7 7200 283625 220940 10 0 25.2 7200 43604 44755
DCutn 10 0 18.8 7200 239489 197073 8 0 24.6 7200 54226 62124
DCutsn 10 0 18.9 7200 248966 213157 7 0 25.1 7200 25262 46754
SCF 10 0 19.7 7200 285092 -1 10 0 27.0 7200 9767 -1
SCFt 10 0 19.2 7200 948572 -1 10 0 28.0 7200 22180 -1
SCFtn 10 0 19.0 7200 689593 -1 10 0 25.3 7200 68435 -1
SCFn 10 0 18.8 7200 863039 -1 10 0 25.2 7200 99643 -1

ities (4.17). Table 4.8 shows a comparison of formulations ECt and DCutt with on the
one hand the node-label-inequalities (4.16) and on the other hand additional Inequalities
(4.17). In particular for formulation ECt these further inequalities turn out to be useful
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in many cases. They do not only speedup the solution process, but moreover frequently
enable to solve more instances to provable optimality. However, also the opposite is often
the case. It is therefore not possible to decide which approach is superior over the other
based on the available data. On grid-graphs Inequalities (4.17) have not been beneficial
at all.

Further formulations, considered in Section 4.2, are based on the property, that a tree
must not contain a cycle by definition. Formulation MTZtn requires just a polynomial
number of variables, but contains constraints with infamous “Big-M” constants, as the SCF
formulation does. On the contrary CEF contains an exponential number of Inequalities
(4.9), which need to be separated as cutting-planes as for the DCut or EC formulation. Due
to their fast separation by a simple shortest-path computation, also other formulations may
benefit from additionally using cycle-elimination cuts. Corresponding results are reported
in Table 4.9, column “cec” lists the average number of separated cycle-elimination cuts.
Whereas MTZtn and CEFtn show a relatively weak performance on the instances with
r = 1/4, they provide good results in the case of r = 3/4. In particular for the low density
graphs CEFtn could solve all instances to optimality, which no other method was able to.
For the dense graphs best results are obtained by DCuttnc and ECtnc.

Table 4.10 shows the results that have been obtained by including primal heuristics into
the branch-and-bound algorithm. Formulations ECtn, ECsn, DCuttn, and DCutsn are
considered for this purpose. Results are reported for the MVCA and ACO used as primal
heuristic. The parameters for ACO are chosen with an emphasis on fast execution times.
We used M = 10 ants and it = 40 iterations. The simple pheromone model (P-i) was
choosen as well as the solution construction mechanism (C-iii). The other parameters have
been set as described in Chapter 3. As indicated by preliminary experiments it turned
out to be advantageous only to use the primal heuristics in the root node, as they were
generally not able to find improved solutions based on the information provided by the
LP-solution in other B&B-nodes. The results in Table 4.10 show, that the fast MVCA
yields superior results over the ACO, when used as primal heuristic. Embedding MVCA
in B&B has a positive effect w.r.t. the variants “tn” of formulations EC and DCut, but a
negative impact concerning variants “ts”.

Odd-Hole Inequalities

We now draw our attention to the odd-hole inequalities. Within preliminary tests we
determined a tight timelimit of 10−3 seconds for the MIP (4.20) to show the overall best
performance. Two algorithmic variants are considered for the results reported in Table
4.11. The first version (denoted with index o) simply adds the found valid cutting-planes
to the MIP. Alternatively, the set of labels corresponding to the obtained odd-hole can
also be used to deduce a branching rule. This was motivated by the observation that many
lifted odd-hole cutting planes, found by MIP (4.20), were not strong enough to define facets
w.r.t. the involved label variables. As a consequence, these variables remained fractional
after the cutting-plane was added to the MIP. However, odd-holes provide an important
information and references to situations where special configurations of label-variables
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artificially reduce the LP-relaxation. Hence it is likely, that immediately branching over
these variables may be beneficial. This is done by inserting all labels of the odd-hole into
a global queue, and always branch over such a variable unless the queue is empty. Index
ob denotes this approach in Table 4.11. Odd-hole cuts are separated with lowest priority
amongst the user-defined cutting-planes, and are only separated in levels of the B&B-tree
which are multiples of ten.

The results in Table 4.11 show that the odd-hole inequalities are beneficial in many cases,
in particular when used to deduce branching-rules from the corresponding label-variables.
For instances from Set-I and Set-II almost no odd-holes have been found with the described
parameter settings. For dense graphs it is less likely to find odd-holes that are violated
by the current LP-solution, as each node is incident to many edges. Hence |L(v)| is in
the same order of magnitude as |V | in the expected case. This implies many non-zero
lifting coefficients in Inequalities (4.19), reducing the chance of finding a valid inequality
that is actually violated by the current LP-solution. Hence, the separation of odd-hole
inequalities is most beneficial for sparse graphs. Also the number of labels compared to the
number of edges has an impact on the efficiency of the odd-hole separation. If the number
of labels is relatively low, the expected label frequency νl will be high. This implies high
values for the lifting coefficients γl, which in turn reduces the chance of finding violated
odd-hole inequalities. If, on the other hand, the number of edges is too high, odd-holes
are generally less likely to occur, as the sets L(v)∩L(u), for all v, u ∈ V can be expected
to be very small or even empty.

Branch-and-Cut-and-Price

Additionally using the column generation approach within the B&C framework, i.e.
branch-and-cut-and-price (BCP) is only beneficial for a very special class of instances.
For most of the instances almost all variables are priced in during the solution process.
The computational overhead for solving the pricing problem and resolving the MIP im-
plies significantly higher running times in this case. However, if the instances consist of
a high number of labels, and have an optimal solution that is significantly lower than the
average optimal solution value when assigning the labels to the edges randomly in the
instance construction process, BCP shows a superior performance. To study this effect,
special instances have been created, that contain single optima having a relatively low
number of labels. The computational results for these instances are reported in Table
4.12. In particular for the larger instances a clear superiority of the BCP approach w.r.t.
the corresponding B&C algorithm can be observed. For this special class of instances,
the percentage of created label variables is always less than 30% of the total number of
labels (reported in column “priced”). Although the importance of such instances may be
quite limited for many purposes, the instances regarded in Chapter 5 exhibit comparable
properties. For the data-compression application presented therein, the BCP approach is
thus a valuable and important mean for exactly solving large instances.
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Summary

In Table 4.13 we finally report the best method for each group of instances from the
three instance sets. For this purpose, also variations including primal heuristic and using
cycle-elimination cut separation are considered. In the case a variant including a primal
heuristic yields the best performance, we additionally report the best method not using
primal heuristics. Formulations ECsn and ECsnh are the best formulations for almost all
instances of Set-I, with the primal heuristic often yielding small improvements. The same
is true for the instances of Set-II, where almost all variations of formulation EC are able
to solve the considered instances in less than a second. For Set-III formulation DCut
is superior for many instances with |L| = 3/4 · |E|, whereas EC is better for instances
with |L| = 1/4 · |E|. In constrast to Set-I it is beneficial to restrict the number of edges
to |V | − 1 as indicated with index “t”. Additionally separating cycle-elimination cuts
frequently yields the overall best method, in particular for instances with |L| = 3/4 · |E|.
Furthermore it can be observed that variants using separation of odd-hole inequalities are
frequently the overall best methods for this group.

4.3.4 Comparison to Other Work

In this section we present direct comparisons to existing work, in particular [13]. Table
4.14 shows the results presented in [13], running times have been rounded to integers. For-
mulation “MLSTb” corresponds to formulation SCF of this work. Formulation “MLSTc”
only uses a weaker coupling of labels to edges, given by the following inequalities∑

(i,j)∈A
xij ≤ min{|V | − 1, A(l)}zl, for all l ∈ L. (4.28)

Table 4.14 furthermore reports results for the implementation of the exact backtrack-
ing method from [16], labelled with “MLST-CL”. Table 4.15 shows the running times of
selected MIP variants in comparison to our reimplementation of the flow formulation “ML-
STb” from [13] (SCF). Formulation ECtn is clearly superior to the others, all instances
have been solved in less than one second. Higher running times of SCF as opposed to
“MLSTb” can be explained due to the fact that the SCIP framework [101] has been used
for the implementation of SCF, whereas “MLSTb” has been implemented with the ILOG
CONCERT framework [61].

Table 4.16 shows the results of selected MIP variants in comparison to the exact A∗

backtracking-search procedure used in [29]. The A∗-algorithm is very effective for instances
with small optimal objective value, but instances with larger objective values or large sets
of labels cannot be solved. The time limit imposed by the authors of [29] was three
hours. It is important to note that the running times listed in Table 4.16 are not directly
comparable, as the authors of [29] list the computation time at which the best solution was
obtained, and also different hardware has been used. For some groups, where A∗ could not
solve all instance (indicated by “NF”), the MIP method was able to do so. Furthermore, it
is reported if the MIP method could solve some but not all instances within some group.
In any case the average objective value for the ten instances of each group is reported
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in column “avg(|LT |)”, also considering the best feasible solutions that have been found
within the time limit of two hours. If not all instances have been solved to optimality, this
is indicated with “(*)” in this particular columns.

In general it can be observed that relatively small instances could be solved efficiently by
the MIP approach, but for larger instances with |V | = 400 and |V | = 500 it generally fails
to produce provable optimal solutions within the allowed time limit.

4.3.5 Summary

For all formulations the node-label-constraints (4.16) significantly improved running-times
and reduced the number of branch-and-bound nodes. Despite its relatively poor LP-
relaxation, formulation ECtn turned out to be superior to the other ones for a broad class
of test instances, which is mainly to the fast cut separation and the low number of involved
variables. Amongst the other considered formulations DCuttn is superior over ECtn for
dense graphs with a huge number of labels.

The odd-hole cuts (4.19) significantly improved running-times and number of branch-and-
bound nodes for some classes of instances, in particular when branching-rules are deduced
from the label sets corresponding to the found odd-holes. Using BCP for dynamically
adding new labels during the solution process turned out to be only beneficial in the case
where the input instances significantly deviate from random label assignments, i.e. where
the optimal solution is much lower than the expectation value of randomly assigned labels.
However, such solutions may likely easily be found also by heuristic methods. Nevertheless,
this could remain the only way to prove optimality for “easy” large-scale instances and is
also of importance for the data-compression application presented in Chapter 5.

4.4 Conclusions

In this chapter we presented a branch-and-cut(-and-price) framework for solving MLST
instances exactly. We gave a comparison of an underlying flow-formulation in compar-
ison to the (better) directed cut-based formulations. Furthermore, a new connectivity
formulation permitting a fast cutting-plane separation has been presented. We further
presented the application of odd-hole inequalities to this problem for the first time. To
separate cutting-planes based on these odd-hole inequalities, a separation heuristic based
on a mixed integer program using Miller-Tucker-Zemlin inequalities has been proposed.

Moreover, a detailed comparison of the contribution of the presented algorithmic building
blocks has been presented. Our results show that the presented framework is able to solve
small to medium sized instances to optimality within a relatively short amount of time.
Existing benchmark instances could be solved within a significantly shorter computation
time than before and new (larger) instances could be solved to proven optimality for the
first time.
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Table 4.8: Comparison of formulations ECt and DCutt with Inequalities (4.16), indicated
with index n, and with additional Inequalities (4.17), indicated with index ñ.

ECtn/DCuttn ECtñ/DCuttñ

|V |, |E|, a, |L| cnt opt obj t bbn cuts cnt opt obj t bbn cuts
100, 247, 1, 61 10 10 19.6 14 4944 4486 10 10 19.6 0 499 492

10 10 19.6 12 1148 759 10 10 19.6 19 1577 1034
100, 247, 1, 185 10 2 51.2 5760 163875 182801 10 7 50.0 2174 65781 68723

10 6 49.8 3195 87152 60318 10 5 49.8 4284 86769 62183
100, 900, 1, 247 10 10 14.8 344 36386 16745 10 10 14.8 177 18352 6741

10 10 14.8 835 13677 8698 10 10 14.8 1949 26973 16494
100, 900, 1, 742 10 2 37.1 6450 120465 121687 10 7 35.8 2403 48038 45398

10 7 35.8 2432 36099 27852 10 8 35.7 1822 20522 15153
100, 2475, 1, 618 10 8 13.2 1400 34106 18769 9 8 13.2 1801 46469 22363

10 5 13.5 4557 9195 8543 10 4 13.6 5417 10773 9933
100, 2475, 1, 1856 10 4 31.0 5038 59605 57375 10 7 30.3 2506 27241 24957

10 7 30.2 3552 12337 9780 10 8 30.2 2907 3715 3689
100, 247, 2, 61 10 10 16.6 12 4707 4080 10 10 16.6 1 601 498

10 10 16.6 16 1162 787 10 10 16.6 21 1348 907
100, 247, 2, 185 10 7 35.0 2375 102179 93532 10 10 34.7 9 3269 3274

10 10 34.7 61 4661 3696 10 10 34.7 19 1425 1226
100, 900, 2, 247 10 10 11.9 629 42052 20637 10 10 11.9 912 55106 20864

10 10 11.9 681 5906 5180 10 10 11.9 1523 16435 12011
100, 900, 2, 742 10 3 26.3 5242 119550 107358 10 7 25.8 3265 69685 53785

10 9 25.6 1489 24931 17663 10 9 25.6 1583 17076 12240
100, 2475, 2, 618 10 10 10.9 506 22467 6432 10 10 10.9 558 37153 3921

10 5 11.2 5664 11813 9786 10 1 11.7 7050 12503 11444
100, 2475, 2, 1856 10 4 23.2 5213 61908 53294 10 3 23.2 5757 73145 57657

10 5 22.8 4259 8850 8481 10 8 22.5 3649 4185 4254
100, 247, 5, 61 10 10 10.5 0 306 359 10 10 10.5 0 248 306

10 10 10.5 5 115 134 10 10 10.5 11 316 321
100, 247, 5, 185 10 6 20.6 3467 143690 125295 10 9 20.5 1202 60571 49983

10 10 20.5 698 45870 25073 10 10 20.5 498 36774 20977
100, 900, 5, 247 10 10 7.8 128 12441 651 10 10 7.8 288 39324 825

10 10 7.8 1628 15222 9552 10 5 7.8 5675 66499 42125
100, 900, 5, 742 10 3 15.1 5140 139983 90176 9 4 15.0 4344 155589 73198

10 6 14.8 4406 44628 32312 10 4 14.9 5171 50434 38692
100, 2475, 5, 618 10 10 6.9 255 6604 532 10 10 6.9 624 27936 785

10 6 7.1 5089 5318 3529 10 0 7.4 7200 8303 6431
100, 2475, 5, 1856 10 6 13.0 3472 72582 38165 10 6 13.0 3848 103635 41651

10 4 13.1 5743 7934 7389 10 1 13.6 7191 8419 8617
10× 10, 360, 1, 30 10 10 9.2 4 1639 1544 10 10 9.2 6 2641 1843

10 10 9.2 34 1892 1710 10 10 9.2 90 6196 4135
10× 10, 360, 1, 50 9 8 13.0 1578 83996 67834 9 8 13.0 1877 102421 75692

9 9 12.9 302 20596 12907 9 9 12.9 1034 74718 42088
10× 10, 360, 1, 80 10 0 19.6 7200 229619 202787 10 0 19.9 7200 251957 226941

10 0 18.7 7200 283625 220940 9 0 18.8 7200 283288 241399
20× 20, 1520, 1, 30 10 10 11.5 91 3757 4231 10 10 11.5 176 7547 5819

10 10 11.5 627 4058 10961 10 10 11.5 2866 22956 19238
20× 20, 1520, 1, 50 10 10 17.0 3834 212265 107170 10 1 17.0 7194 326051 178058

10 0 17.0 7200 86172 64236 10 0 17.2 7200 34742 35779
20× 20, 1520, 1, 80 10 0 24.8 7200 146616 112030 10 0 24.9 7200 150529 110120

10 0 25.2 7200 43604 44755 10 0 20.6 7200 25718 26997
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Table 4.9: Comparison of various formulations based on cycle elimination, i.e. the Miller-
Tucker-Zemlin formulation MTZ and the CEF on the instances from Set-III
with |V | = 100, a = 1. Furthermore results for connectivity-based formulations
(EC and DCut), enhanced by cycle elimination inequalities are reported.

|L| = 1/4 · |E| |L| = 3/4 · |E|
d alg cnt opt obj t bbn cuts cec cnt opt obj t bbn cuts cec

0.05
MTZtn 10 5 19.7 3931 502063 -1 -1 10 7 49.9 3112 721279 -1 -1
CEFtn 10 6 19.6 3000 135407 -1 16638 10 10 49.8 901 94205 -1 6389
CEFtñ 10 5 19.6 3998 155632 -1 17642 10 7 49.9 2208 208113 -1 14321
ECnc 10 10 19.6 14 1353 121 59 10 0 50.3 7200 532836 170798 1783
ECtnc 10 10 19.6 12 915 153 96 10 7 49.8 2566 62656 44607 5502
DCutnc 10 10 19.6 13 1433 931 55 10 0 50.4 7200 376649 351288 1630
DCuttnc 10 10 19.6 13 1029 700 94 10 7 49.8 2291 36745 27748 2859

0.2
MTZtn 10 7 15.0 4276 45276 -1 -1 10 5 35.8 4272 87003 -1 -1
CEFtn 10 7 14.9 3217 36913 -1 3298 10 7 35.7 2313 91215 -1 5422
CEFtñ 10 3 15.2 5307 61399 -1 5690 10 7 35.7 2668 40566 -1 2478
ECnc 10 0 15.6 7200 31835 143 118 10 0 37.8 7200 59337 1533 30
ECtnc 10 10 14.8 701 10687 196 670 10 8 35.7 1871 51079 15544 3426
DCutnc 10 0 15.9 7200 39225 29755 171 10 0 39.4 7200 47294 39206 3
DCuttnc 10 10 14.8 737 11214 7212 581 10 8 35.7 1537 21721 13795 1400

0.5
MTZtn 10 5 13.5 5555 7818 -1 -1 10 3 30.9 5658 13851 -1 -1
CEFtn 10 5 13.6 5038 8686 -1 763 10 7 30.1 4444 19156 -1 1653
CEFtñ 10 3 13.6 5791 8399 -1 1063 10 5 30.5 5570 6646 -1 711
ECnc 10 0 14.1 7200 3463 26 35 10 0 32.7 7200 6497 118 25
ECtnc 10 7 13.5 3865 8772 116 913 10 9 30.1 2112 9120 1344 665
DCutnc 10 0 15.6 7200 5353 3395 24 10 0 38.2 7200 6964 5357 6
DCuttnc 10 8 13.5 3394 7452 6433 675 10 9 30.0 2427 7475 5918 576
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Table 4.10: Comparison of best formulations used without and with primal heuristics, i.e.
MVCA and ACO.

|L| = 1/4 · |E| |L| = 3/4 · |E|
d alg cnt opt obj t bbn cuts cnt opt obj t bbn cuts

0.05
ECtn 10 10 19.6 14 4944 4486 10 2 51.2 5760 163875 182801
ECsn 10 10 19.6 1 1313 966 10 0 55.5 7200 133833 151889
DCuttn 10 10 19.6 12 1148 759 10 6 49.8 3195 87152 60318
DCutsn 10 10 19.6 10 1336 895 10 6 49.8 3195 87152 60318
ECtn + MVCA 10 10 19.6 12 5474 4866 10 2 51.3 5771 145352 166307
ECsn + MVCA 10 10 19.6 2 1635 1255 10 0 52.3 7200 137776 154933
DCuttn + MVCA 10 10 19.6 11 1056 714 10 6 49.8 2902 57282 41009
DCutsn + MVCA 10 10 19.6 12 1530 993 10 0 50.4 7200 371927 343330
ECtn + ACO 10 10 19.6 12 4425 3916 8 4 49.6 3600 107155 110775
ECsn + ACO 10 10 19.6 2 1339 978 10 0 49.9 7200 134930 151941
DCuttn + ACO 10 10 19.6 10 937 627 9 4 49.8 4019 74506 52846
DCutsn + ACO 10 10 19.6 11 1303 828 10 0 50.4 7200 371927 343330

0.2
ECtn 10 10 14.8 344 36386 16745 10 2 37.1 6450 120465 121687
ECsn 10 4 14.8 4894 231148 95062 10 0 39.2 7200 65167 63256
DCuttn 10 10 14.8 835 13677 8698 10 7 35.8 2432 36099 27852
DCutsn 10 10 14.8 835 13677 8698 10 0 38.0 7200 88645 73235
ECtn + MVCA 10 10 14.8 767 52496 28531 10 2 36.9 6004 120042 120862
ECsn + MVCA 10 4 14.8 4904 212222 89873 10 0 38.7 7200 63308 60554
DCuttn + MVCA 10 10 14.8 799 12503 8284 10 8 35.7 2169 34219 25835
DCutsn + MVCA 10 1 15.5 7067 72658 54894 10 0 38.1 7200 82575 67712
ECtn + ACO 10 10 14.8 345 31157 14313 9 5 36.0 4135 67362 66292
ECsn + ACO 10 3 14.9 5323 228273 94410 10 0 36.1 7200 64340 60405
DCuttn + ACO 10 10 14.8 640 11034 7149 9 6 35.8 2524 35560 26632
DCutsn + ACO 10 2 15.0 6977 80725 54925 10 0 36.2 7200 83553 69016

0.5
ECtn 9 8 13.2 1400 34106 18769 10 4 31.0 5038 59605 57375
ECsn 10 0 13.7 7200 296782 88962 10 0 33.8 7200 63430 64801
DCuttn 10 5 13.5 4557 9195 8543 10 7 30.2 3552 12337 9780
DCutsn 10 0 14.4 7200 12834 8154 10 7 30.2 3552 12337 9780
ECtn + MVCA 10 8 13.3 1991 40440 23995 10 5 30.5 4274 53202 50948
ECsn + MVCA 10 0 13.7 7200 279895 79633 10 0 32.4 7200 67026 66888
DCuttn + MVCA 10 7 13.3 3321 6462 5852 10 9 30.0 2728 8479 7236
DCutsn + MVCA 10 0 14.3 7200 11154 7224 10 0 32.2 7200 14878 10082
ECtn + ACO 9 7 13.3 2261 44962 25718 6 2 31.3 5419 61481 59297
ECsn + ACO 10 0 13.7 7200 345358 80054 10 0 31.1 7200 64469 63099
DCuttn + ACO 10 7 13.4 3534 7659 6933 8 5 30.5 3374 10577 8304
DCutsn + ACO 10 0 13.8 7200 12035 7319 10 0 31.2 7200 13919 9175
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Table 4.11: Comparison of formulations ECt and DCutt with and without using odd-hole
inqualities. Index o denotes if odd-hole inequalities are separated, index b
indicates that odd-hole inequalities have been used to induce branching over
related label variables.

ECtn/DCuttn ECtno/DCuttno ECtnob/DCuttnob

|V |, |E|, a, |L| cnt opt obj t bbn cuts opt obj t bbn cuts oh opt obj t bbn cuts oh
100, 247, 1, 61 10 10 19.6 14 4944 4486 10 19.6 25 5692 5141 23 10 19.6 17 5226 4701 19

10 10 19.6 12 1148 759 10 19.6 13 1163 772 1 10 19.6 13 1121 733 1
100, 247, 1, 185 10 2 51.2 5760 163875 182801 2 51.2 5760 144151 159964 194 2 51.1 5760 143562 159321 173

10 6 49.8 3195 87152 60318 6 49.8 3214 83347 58322 11 6 49.8 3197 85997 60585 13
100, 900, 1, 247 10 10 14.8 344 36386 16745 10 14.8 417 37993 18284 134 10 14.8 343 34639 15817 120

10 10 14.8 835 13677 8698 10 14.8 892 14659 9364 1 10 14.8 987 15816 10131 2
100, 900, 1, 742 10 2 37.1 6450 120465 121687 3 36.8 6377 126819 128924 1251 2 36.7 6007 119218 119667 1308

10 7 35.8 2432 36099 27852 7 35.8 2369 34717 26348 77 7 35.8 2371 33757 26083 61
100, 2475, 1, 618 10 8 13.2 1400 34106 18769 8 13.3 2499 48599 28883 174 8 13.3 1820 35479 21775 138

10 5 13.5 4557 9195 8543 7 13.5 4261 8305 7615 9 7 13.3 4318 8322 7769 8
100, 2475, 1, 1856 10 4 31.0 5038 59605 57375 5 30.8 4133 53079 52191 709 4 31.0 4499 54945 54254 614

10 7 30.2 3552 12337 9780 9 30.0 2827 8780 6809 51 9 30.0 2778 8061 6898 39
100, 247, 2, 61 10 10 16.6 12 4707 4080 10 16.6 14 5148 4496 23 10 16.6 13 4987 4363 20

10 10 16.6 16 1162 787 10 16.6 17 1161 788 0 10 16.6 16 1146 775 1
100, 247, 2, 185 10 7 35.0 2375 102179 93532 6 35.1 3485 137028 125999 272 7 35.0 2431 102595 90520 178

10 10 34.7 61 4661 3696 10 34.7 69 5073 4081 8 10 34.7 22 1758 1630 4
100, 900, 2, 247 10 10 11.9 629 42052 20637 9 12.0 997 48954 22866 137 10 11.9 857 41933 21903 129

10 10 11.9 681 5906 5180 10 11.9 891 8242 6868 6 10 11.9 1000 8936 7734 11
100, 900, 2, 742 10 3 26.3 5242 119550 107358 3 26.2 5395 118483 104341 1312 4 26.3 4841 107072 94593 1220

10 9 25.6 1489 24931 17663 9 25.6 1603 24112 18031 82 9 25.6 1443 23837 16801 67
100, 2475, 2, 618 10 10 10.9 506 22467 6432 10 10.9 748 28917 9107 44 10 10.9 388 17770 3684 14

10 5 11.2 5664 11813 9786 5 11.2 5736 10958 9467 7 6 11.1 5727 11155 9316 8
100, 2475, 2, 1856 10 4 23.2 5213 61908 53294 1 23.8 6490 74525 64822 822 2 23.5 6298 72256 62059 754

10 5 22.8 4259 8850 8481 7 22.6 3642 7480 7073 22 8 22.5 3479 7831 7173 20
100, 247, 5, 61 10 10 10.5 0 306 359 10 10.5 0 306 359 1 10 10.5 1 267 338 1

10 10 10.5 5 115 134 10 10.5 5 115 134 0 10 10.5 5 115 134 0
100, 247, 5, 185 10 6 20.6 3467 143690 125295 4 20.7 4461 157779 137051 937 6 20.6 3047 116829 103068 673

10 10 20.5 698 45870 25073 9 20.5 787 43883 24921 12 9 20.5 783 45144 25575 10
100, 900, 5, 247 10 10 7.8 128 12441 651 10 7.8 134 12521 631 2 10 7.8 157 13710 862 3

10 10 7.8 1628 15222 9552 10 7.8 1513 15071 9222 1 10 7.8 1540 15153 9365 0
100, 900, 5, 742 10 3 15.1 5140 139983 90176 4 15.0 4838 132756 83094 702 4 15.0 4458 125665 78327 651

10 6 14.8 4406 44628 32312 5 14.9 4520 45818 33172 22 5 14.9 4392 44435 32267 18
100, 2475, 5, 618 10 10 6.9 255 6604 532 10 6.9 253 6581 519 0 10 6.9 262 6701 577 0

10 6 7.1 5089 5318 3529 6 7.0 5092 5503 3685 0 6 7.0 5093 5447 3608 0
100, 2475, 5, 1856 10 6 13.0 3472 72582 38165 7 12.9 3132 62473 33275 255 7 12.9 2343 50106 24087 158

10 4 13.1 5743 7934 7389 3 13.3 6505 8896 8420 9 3 13.1 6213 8259 7770 8
10× 10, 360, 1, 30 10 10 9.2 4 1639 1544 10 9.2 5 1427 1350 10 10 9.2 5 1427 1384 11

10 10 9.2 34 1892 1710 10 9.2 32 1685 1510 5 10 9.2 34 1711 1576 6
10× 10, 360, 1, 50 9 8 13.0 1578 83996 67834 8 13.0 1550 81112 66089 310 9 12.9 619 54900 42488 145

9 9 12.9 302 20596 12907 9 12.9 387 25142 16180 23 9 12.9 298 19938 12261 8
10× 10, 360, 1, 80 10 0 19.6 7200 229619 202787 0 19.8 7200 211903 186885 1086 0 19.5 7200 211561 188812 1102

10 0 18.7 7200 283625 220940 0 18.8 7200 232626 190432 403 0 19.0 7200 223970 188832 381
20× 20, 1520, 1, 30 10 10 11.5 91 3757 4231 10 11.5 107 3749 4310 0 10 11.5 106 3799 4249 0

10 10 11.5 627 4058 10961 10 11.5 753 4028 11567 0 10 11.5 705 4112 11261 0
20× 20, 1520, 1, 50 10 10 17.0 3834 212265 107170 9 17.0 4232 209923 105755 32 9 17.0 4324 210003 107385 39

10 0 17.0 7200 86172 64236 0 17.0 7200 77221 60603 6 0 17.0 7200 80453 59244 4
20× 20, 1520, 1, 80 10 0 24.8 7200 146616 112030 0 24.8 7200 133250 102086 626 0 24.9 7200 131641 101479 577

10 0 25.2 7200 43604 44755 0 25.2 7200 39262 41704 21 0 25.2 7200 39451 42952 19
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Table 4.12: Branch-and-cut-and-price results for a special class of instances containing
many labels and isolated optima with a relatively low number of labels.

|V |, |E|, a, |L| method cnt opt obj t bbn cuts priced
100, 247, 2, 61 ECtn 10 10 5.0 0 1 32 -1

DCuttn 10 10 5.0 0 1 7 -1
ECtnp 10 10 5.0 0 1 64 14
DCuttnp 10 10 5.0 0 1 13 17

100, 247, 2, 185 ECtn 10 10 10.0 0 1 1 -1
DCuttn 10 10 10.0 0 1 2 -1
ECtnp 10 10 10.0 0 1 2 11
DCuttnp 10 10 10.0 0 1 3 7

100, 900, 2, 247 ECtn 10 10 5.0 0 1 30 -1
DCuttn 10 10 5.0 1 1 15 -1
ECtnp 10 10 5.0 0 1 72 29
DCuttnp 10 10 5.0 0 2 19 28

100, 900, 2, 742 ECtn 10 10 10.0 0 14 42 -1
DCuttn 10 10 10.0 8 13 25 -1
ECtnp 10 10 10.0 2 497 328 30
DCuttnp 10 10 10.0 12 32 41 25

100, 2475, 2, 618 ECtn 10 10 5.0 1 2 46 -1
DCuttn 10 10 5.0 19 4 15 -1
ECtnp 10 10 5.0 1 6 51 27
DCuttnp 10 10 5.0 11 4 19 26

100, 2475, 2, 1856 ECtn 10 10 10.0 2 15 48 -1
DCuttn 10 10 10.0 40 11 23 -1
ECtnp 10 10 10.0 10 237 174 24
DCuttnp 10 10 10.0 36 23 26 16

300, 22425, 2, 1856 ECtn 10 10 10.0 228 1 273 -1
DCuttn 10 10 10.0 617 1 6 -1
ECtnp 10 10 10.0 105 1 257 2
DCuttnp 10 10 10.0 459 1 13 2

300, 35880, 2, 8970 ECtn 9 6 6.7 3846 1 600 -1
DCuttn 9 8 8.9 4113 1 17 -1
ECtnp 9 9 10.0 880 1 674 14
DCuttnp 9 9 10.0 1131 1 20 12

300, 35880, 2, 26910 ECtn 10 10 10.0 627 1 254 -1
DCuttn 10 10 10.0 2735 1 10 -1
ECtnp 10 10 10.0 259 1 262 2
DCuttnp 10 10 10.0 1212 1 18 3
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Table 4.13: Overview of all test instances from Set-I, Set-II and Set-III and correspond-
ing best formulations.

Set |V | d/|E| |L| a Best Formulation
Set-I 100 0.2 50 1 ECsn

100 ECsn, ECsnh
125 ECsn

0.5 50 ECsn, ECn, ECsnh
100 ECn, ECsnh
125 ECn, ECsnh

0.8 50 ECsn, ECn
100 ECn, ECsnh
125 ECsn, ECn, ECsnh

200 0.2 100 ECsn, ECsnh
200 ECsn
250 ECsn, ECsnh

0.5 100 ECsn
200 ECsn
250 ECsn, ECsnh

0.8 100 ECsn
200 ECsn, ECsnh
250 ECsn, ECsnh

Set-II 1000 4000 5 EC∗ (several variants having same performance)
10 EC∗ (several variants having same performance)
20 EC∗ (several variants having same performance)

Set-III 100 0.05 1/4 · |E| several methods having same performance
3/4 · |E| CEFtn

0.2 1/4 · |E| ECtñ
3/4 · |E| DCuttnc

0.5 1/4 · |E| ECtño
3/4 · |E| ECtnc

0.05 1/4 · |E| 2 EC∗ (several variants having same performance)
3/4 · |E| ECtñob, ECtnc

0.2 1/4 · |E| ECtñob, ECtnh
3/4 · |E| DCuttñobc

0.5 1/4 · |E| ECtnob
3/4 · |E| ECtnoc

0.05 1/4 · |E| 5 several methods having t ≤ 0
3/4 · |E| DCuttñc

0.2 1/4 · |E| ECtn
3/4 · |E| DCuttnco

0.5 1/4 · |E| ECtn, ECtnh
3/4 · |E| ECtnob, ECtnh

10× 10 30 1 EC∗ (several variants having same performance)
50 ECsnob
80 DCutsñob (best relaxation)

20× 20 30 ECsn, ECn
50 ECsn
80 DCuttñ (best relaxation)
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Table 4.14: Running times in seconds reported in [13], rounded to integers.

l 5 10 20 5 10 20 5 10 20
n 20 50 100
MLSTb 0 0 0 0 0 1 0 1 3
MLSTc 0 0 0 0 0 1 0 1 7
MLST-CL 0 0 0 0 0 0 0 0 1
l 5 10 20 5 10 20 5 10 20
n 200 500 1000
MLSTb 0 3 15 1 9 136 2 43 621
MLSTc 1 6 34 4 38 371 5 132 1994
MLST-CL 0 0 6 0 0 71 0 0 360
l 5 10 20 5 10 20 5 10 20
n 20 50 - - -
MLSTb 0 0 0 10 9 8 - - -
MLSTc 0 0 0 6 9 4 - - -
MLST-CL 0 0 0 45 0 0 - - -
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Table 4.15: Running times for instances that have been created according to specification
from [13]. The first column lists the method for the corresponding row. In
parenthesis the corresponding method from [13] is reported.

l 5 10 20 5 10 20 5 10 20
n 20 50 100
avg(|LT |) 2.0 2.5 3.8 2.4 3.3 5.0 3.0 4.1 6.6
SCF (MLSTb) 0 0 0 0 0 0 0 0 19
SCFtn 0 0 0 0 0 0 0 0 1
DCuttn 0 0 0 0 0 0 0 0 1
ECtn 0 0 0 0 0 0 0 0 0
ECsn 0 0 0 0 0 0 0 0 0
A* (MLST-CL) 0 0 0 0 0 0 0 0 1
l 5 10 20 5 10 20 5 10 20
n 200 500 1000
avg(|LT |) 3.0 5.0 7.9 3.5 5.9 9.9 4.1 6.6 11.3
SCF (MLSTb) 3 3 9 71 29 384 31 96 1303
SCFtn 0 1 6 0 4 19 1 13 51
DCuttn 0 0 4 1 3 21 12 13 67
ECtn 0 0 0 0 0 0 0 0 0
ECsn 0 0 0 0 0 0 0 0 0
A* (MLST-CL) 0 0 13 0 0 159 0 0 609
d 0.2 0.5 0.8 0.2 0.5 0.8 - - -
n 20 50 - - -
avg(|LT |) 7.1 3.5 2.2 3.0 3.9 7.6 - - -
SCF (MLSTb) 0 0 0 23 40 25 - - -
SCFtn 0 0 0 3 0 1 - - -
DCuttn 0 0 0 5 2 2 - - -
ECn 0 0 0 0 0 0 - - -
ECsn 0 0 0 0 0 0 - - -
A* (MLST-CL) 0 0 0 67 0 0 - - -
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Chapter 5

Application: Biometric Data
Compression

To iterate is human, to recurse is devine.
L. Peter Deutsch

I
n this chapter we present an application of a particular variant of the min-
imum label spanning tree (MLST) problem. The objective is to develop a
method capable of compressing relatively small sets of spatial points (coor-
dinates). The application background is to compress fingerprint (minutiae)

templates to enable their embedding in (e.g. passport) photographs by watermarking tech-
niques as an additional security feature.

A particular variant and extension of the MLST serves as an encoding-model, compression
is finally achieved by finding high-quality or optimal solutions for the particular input
instances.

This chapter mainly rephrases [24] and finally reviews recent improvements to the there
mentioned approach, being topic of two diploma-theses [104, 86] which have been super-
vised by Günther Raidl and myself. The diploma-thesis [41] is also related to the subject
of this chapter, as well as the conference papers [23, 19, 92].

5.1 Introduction

In this work, we describe a new possibility for compressing relatively small unordered
data sets. Our particular application background is to encode fingerprint template data
by means of watermarking techniques (see [63]) e.g. in images of identification cards as an
additional security feature. Since the amount of information that can be stored by means
of watermarking is very limited, extraordinary compression mechanisms are required in
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θ

x

y

Figure 5.1: Minutiae points of a fingerprint image. The right figure shows the Cartesian
coordinates x and y of a specific minutia point, as well as its orientation θ.
Together with its type (e.g. ridge ending, bifurcation, etc.) one minutia point
can be described as a 4-tuple (x, y, θ, t).

order to achieve reasonably small error rates when finally checking fingerprints against the
encoded templates.

Having a scanned fingerprint image, traditional image processing techniques are applied for
determining its minutiae, which are points of interest such as bifurcations, crossover, and
ridge endings. Fingerprint matching algorithms are usually based on these minutiae data
[77]. Typically, 15 to 80 minutiae are extracted from a single fingerprint, and for each we
obtain as attributes its type t (e.g. ridge ending, bifurcation, etc.), x and y coordinates,
and an angle θ, the tangent to the corresponding ridge line (see Fig. 5.1). A minutia
can thus be interpreted as a four-dimensional vector. The task we focus on here is the
selection of an arbitrary subset of k minutiae in combination with its lossless encoding
in a highly compact way, with k being a prespecified number. The remaining nodes are
simply ignored, as it is usually sufficient to perform a reliable matching of a fingerprint to a
template by just considering a subset of its minutiae. Obviously k must not be chosen too
small in order to preserve reliability of the matchings (see Section 5.10.3). Furthermore,
any kind of bias w.r.t. the selection of the k points, as for instance systematically selecting
points with low mutual distances, should be avoided.

For this purpose we formulate the problem as a combinatorial optimization problem, in
particular a variant of the Minimum Label Spanning Tree (MLST) Problem, which is the
main topic of this thesis. By finding optimal or near-optimal solutions to this problem,
we can represent the minutiae data by means of a directed tree spanning k nodes, where
each edge is encoded by a reference to a small set of template arcs and a small correction
vector.

The paper is organized as follows: After a review of related work in Section 5.2 we give a
detailed and more formal problem description in Sections 5.3 and 5.4. Section 5.5 describes
the preprocessing which actually computes the labels from the input data. Section 5.6
presents a branch-and-cut algorithm to solve the MLST problem variant to optimality. To
achieve shorter running times for practical purposes metaheuristics are applied to solve the
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problem approximately. A greedy randomized adaptive search procedure and a memetic
algorithm are described in detail in Section 5.8. In Section 5.9 we explicitly describe how to
encode a solution on a binary level. Finally, we present the results from our computational
experiments in Section 5.10, and conclusions are drawn in Section 5.11.

5.2 Previous Work

In general, data compression creates a compact representation of some input data by
exhibiting certain structures and redundancies within these data. Various well estab-
lished techniques exist for diverse fields of applications like text-, image-, and audio-
compression.

For instance entropy based methods like Huffman coding or arithmetic coding are well
approved in the field of lossless text compression. Alternatively, dictionary coders like the
well known LZ77 and LZ78 [116, 117] try to account for (repeating) structures in the text
by means of a dictionary. The idea of a dictionary can also be found in other compression
techniques specialized for image-, audio- or video-compression. For example, consider
the lossy vector quantization method for image compression. Hereby the input data is
grouped in blocks of length L, and the respective elements of such a block correspond to
the components of a vector of size L. The image is represented by subsequent references to
the most similar vector in the codebook, a list of typical and frequently occurring vectors.
For a comprehensive review of data compression techniques see [98].

Our approach follows this general idea of using a dictionary or codebook, but its determi-
nation as well as its usage is very different from the existing methods. Before going into
details we point out the limitations and peculiarities of our approach.

If k is equal to the number of input data points our approach encodes the input data in
a lossless way; for lower values of k the method can be considered a special form of lossy
compression.

As we are not interested in the respective order of the minutiae, the initial sequence need
not to be preserved. In this case a theoretical bound for the encoding length of O(log k),
opposed to O(k) exists [106]. As our encoding as directed k-node spanning tree does not
preserve the relative order of the minutiae it can be interpreted as an attempt to benefit
from the absence of the requirement to preserve the order.

In [23] the considered compression model and a GRASP algorithm to solve the associated
optimization problem heuristically was outlined for the first time. An exact branch-and-
cut approach was presented in [19, 92]. The topic has then been extensively presented in
[24], which is primary basis of this chapter.
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template arc
correction vector

correction vector domain

Figure 5.2: Encoding of some tree arc by means of a template arc and a (small) correction
vector

5.3 Tree-Based Compression Model

More formally, we consider as raw data n d-dimensional points (vectors) V = {v1, . . . ,vn}
from a discrete domain D = {0, . . . , ṽ1 − 1} × . . .× {0, . . . , ṽd − 1}, D ⊆ Nd corresponding
to our minutiae data (d = 4 in the above described application scenario). The domain
limits ṽ1, . . . , ṽd ∈ N represent the individual sizes and resolutions of the d dimensions.

Our aim is to select k of these n points and to connect them by an outgoing arborescence,
i.e. a directed k-node spanning tree. For this we start with a complete directed graph
G = (V,A) with A = {(u,v) | u,v ∈ V,u 6= v} on which we search for the optimal
arborescence by optimization. Each node in this complete graph corresponds exactly to
one of the n points (vectors) and is therefore denoted by the same label vi, i ∈ [0, n].
Consequently, each arc of the arborescence represents the relative geometric position of
its end point w.r.t. its starting point.

In addition, we use a small set of specially chosen template arcs. Instead of storing for
each tree arc its length in any of the d dimensions, we encode it more tightly by a reference
to the most similar template arc and a so called correction vector from a small domain
(see Fig. 5.2). Thus, the set of template arcs acts as a codebook (Fig. 5.3). If many arcs
of the initial graph have similar geometric properties the proposed encoding of each arc
by a reference to a template arc and an additional correction vector is likely to yield a
smaller representation (i.e. requires less bits) than the trivial one.

In order to achieve a high compression rate, we optimize the selection of the k encoded
points, the tree structure, and the used template arcs simultaneously. The domain for the
correction vectors is prespecified, while the number of template arcs is the objective to be
minimized. Another possibility would be to prespecify the number of template arcs and
minimize the correction vector domain. This approach, however, is not part of this work
and could be a topic of further research.

Having solved this optimization problem, we finally store as compressed information the
template arc set and the tree. The latter is encoded by traversing it with depth-first
search; at each step we write one bit indicating whether a new arc has been traversed to
reach a yet unvisited node or backtracking along one arc took place. When following a
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template arcs

Figure 5.3: Illustration to the encoding of points via a directed spanning tree using a
codebook of template arcs; correction vectors are omitted

new arc, a reference to its template arc plus the (small) correction vector are additionally
written.

More formally, a solution to our problem consists of

1. a vector of template arcs T = (t1, . . . , tm) ∈ Dm of arbitrary size m representing the
codebook, and

2. a rooted, outgoing tree GT = (VT , AT ) with VT ⊆ V and AT ⊆ A connecting
precisely |VT | = k nodes, in which each tree arc (i, j) ∈ AT has associated

• a template arc index κi,j ∈ {1, . . . ,m} and
• a correction vector δi,j ∈ D′ from a prespecified, small domain D′ ⊆ D with

D′ = {0, . . . , δ̃1 − 1} × . . .× {0, . . . , δ̃d − 1}.

For any two points vi and vj connected by a tree arc (i, j) ∈ AT the relation

vj = (vi + tκi,j + δi,j) mod ṽ, ∀(i, j) ∈ AT , (5.1)

must hold; i.e. vj can be derived from vi by adding the corresponding template and
correction vectors. The modulo-calculation is performed in order to always stay within a
finite ring, so there is no need for negative values and we do not have to explicitly consider
domain boundaries. Fingerprint minutiae data is usually given by a set of four-dimensional
data (d = 4). However, the fourth dimension usually consists of only a very few different
values. It may thus be beneficial only to consider a smaller number of dimensions for
compression, cf. Section 5.10. However, for the sake of a simpler notation we defer this
issue to Section 5.9. Here, we assume that all dimensions are considered for compression.

Note that Equation (5.1) ensures, that the k selected points can be reconstructed exactly.
As the correction δi,j is always choosen in a way that the original arc can be reconstructed
exactly, the relative geometric positions of the selected k nodes in the resulting tree pre-
cisely corresponds to their relative geometric positions in the initial graph.

Our main objective is now to find a feasible solution with a smallest possible codebook
size, i.e. which requires a minimal number m of template arcs.

Regarding the considered application of fingerprint template verification, only parameter k
has an impact on the resulting accuracy. This is discussed in more detail in Section 5.10.3.
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The encoding of the resulting data is described in detail in Section 5.9. This data can then
be directly embedded into images by watermarking techniques, as proposed by [63]. The
verification process itself requires the aquisition of the fingerprint of the respective persion
in a first step. Given this fingerprint image, minutiae need to be extracted by means of
any minutiae extraction algorithm, cf. [77]. This data is then verified against the decoded
template. It is important to note, that having just k nodes in the template does not
induce any further complications. There are already various imprecisions in the aquisition
process, e.g. due to different fingerprint scanners or different positions of the finger on the
scanner. Moreover the result of minutiae extraction is highly dependent on the particular
image, aquired in the previous step. Hence, matching algorithms are already able to cope
with minutiae sets of different cardinality [77].

5.4 Reformulation as a Minimum Label k-Node Subtree
Problem

We approach the problem of finding a smallest possible codebook of template arcs together
with a feasible tree as follows: First we derive a large set T c of candidate template arcs
(see Section 5.5); then we assign to each arc (i, j) ∈ A all template arcs T c(aij) ⊆ T c

that are able to represent it w.r.t. equation (5.1). Secondly we optimize the codebook by
selecting a minimal subset T ⊆ T c allowing a feasible tree encoding.

The remaining problem in the second part of this approach is related to the Minimum
Label Spanning Tree (MLST) Problem. In our problem the candidate template arcs T c

correspond to the labels. Major differences are, however, that we have to consider complete
directed graphs, multiple labels may be assigned to an arc, and the labels come up with
certain geometric properties.

Although we do not have a proof yet, there are strong hints that the problem remains
NP-hard in this version. Consider the situation, where an arborescence is prespecified
and its optimal labeling should be found by optimization. Due to the geometric properties
of the arcs and the labels this problem is equivalent to the rectangle covering problem,
which is known to be NP-complete [59].

Another major extension to the MLST problem is the fact that not all nodes but only an
arbitrary subset of size k shall be connected in general. We call the resulting version of the
MLST problem k-node Minimum Label Spanning Arborescence (k-MLSA) problem.

5.5 Preprocessing

The preprocessing step is to derive a set of candidate template arcs from which the code-
book will be chosen as a subset. This set of candidate template arcs has to be sufficiently
large to allow an overall optimal solution, i.e. a minimal codebook.
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In the following we will use the terms arc and vector equivalently, as each arc (i, j) in our
graph represents the geometric information of the vector (vj−vi) mod ṽ. To describe the
preprocessing in more detail we have to introduce further notation:

• B = {vij = (vj −vi) mod ṽ | (i, j) ∈ A} = {b1, . . . , b|B|}, the set of different vectors
we eventually have to represent.

• D(t) ⊆ D, the subspace of all vectors a particular template arc t ∈ D is able to
represent when considering the restricted domain D′ for the correction vectors, i.e.

D(t) = {t1, . . . , (t1 + δ̃1 − 1) mod ṽ1} × . . .× {td, . . . , (td + δ̃d − 1) mod ṽd}. (5.2)

• B(t) ⊆ B, t ∈ D, the subset of vectors from B that a particular template arc t is
able to represent, i.e. B(t) = {b ∈ B | b ∈ D(t)}.

Furthermore, let B′ ⊆ B, B′ 6= ∅, be some subset of vectors from B which can be
represented by a single template arc. For each dimension l = 1, . . . , d assume the l-th
elements (coordinates) of the vectors in B′ are labeled by indices in a non-decreasing way,
i.e. bl1 ≤ bl2 ≤ . . . ≤ bl|B′|. Let bl0 = bl|B′| − ṽl for convenience. (Note that bl0 can be
negative.)

For such a B′, we define the standard template arc to be a vector τ (B′) being able to
represent all vectors b ∈ B′ and the property of having maximal possible coordinate values
in each dimension. In most cases it will be sufficient to take the minimum coordinate values
bl1, l = 1, . . . , d for this purpose. However it might also occur, that the elements from B′

can only be represented with template arcs t having D(t) crossing the domain boarder
w.r.t. at least one dimension. For this reason we need to define the standard template arc
in the following way:

Definition 16 (Standard Template Arc)

τ (B′) = (τ1(B′), . . . , τd(B′)) (5.3)

where
τ l(B′) = bli∗

l
with i∗l = argmaxi=1,...,|B′|b

l
i − bli−1 ∀l = 1, . . . , d. (5.4)

Figure 5.4 shows an example of such a standard template arc. For the elements b1, . . . , b6
we obtain the ordering b11, b

1
6, b

1
2, b

1
3, b

1
4, b

1
5 for the first dimension, and b22, b

2
5, b

2
6, b

2
4, b

2
1, b

2
3 for

the second dimension.

The subspace BB(B′) = {b1i∗1 , . . . , b
1
i∗1−1 mod ṽ1}×. . .×{bdi∗

d
, . . . , bdi∗

d
−1 mod ṽd} is the small-

est bounding box including all vectors from B′ with respect to the ring structure.

To denote the limits of the bounding box BB(B′) in a simpler way, we further define
τ̂ (B′) = (b1i∗1−1, . . . , b

d
i∗
d
−1), i.e. τ̂ (B′) represents the corner point of the bounding box

opposite to τ (B′).

These definitions lead to the following lemma.
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b1

b3

b4

b5

b6

b2b2
τ (b1, ..., b6)

Figure 5.4: The big gray dots are three of the possible representants for the tree arcs
b1, . . . , b6, but the standard template arc τ is the lower left point of the shaded
rectangle. The rectangles depict the δ̃-domain.

Lemma 1 If a subset B′ ⊆ B of vectors can be represented by a single template arc, then
the standard template arc τ(B′) always is such a template arc.

Proof This directly follows from the definition of τ (B′), since this is the corner point
with the smallest coordinates of the smallest bounding box of all vectors in B′. �

We therefore can restrict all further considerations to the set of standard template arcs
induced by all nonempty subsets of vectors that can be represented by a single template
arc, i.e.

T = {τ(B′) | B′ ⊆ B,B′ 6= ∅ ∧B′ ⊆ D(τ(B′))}. (5.5)

Lemma 2 A set B′ ⊆ B can be represented by a single template arc, thus in particular by
τ (B′), if

ṽl − (bli∗
l
− bli∗

l
−1) < δ̃l, ∀l = 1, . . . , d. (5.6)

Proof Case 1: i∗ = 1. In this case we have (ṽl− (bl1− (vl|B′|− ṽ
l))) = vl|B′|− b

l
1 < δ̃l,∀l =

1, . . . , d. Case 2: i∗ > 1. In this case the bounding box associated to τ (B′) goes across
the domain border and the condition is (ṽl − (bli∗ − vli∗−1)) < δ̃l, ∀l = 1, . . . , d. �

Definition 17 (Domination of template arcs) Let t′ = τ (B′) and t′′ = τ (B′′), B′ ⊆
B,B′′ ⊆ B. Standard template arc t′ dominates t′′ if and only if B′′ ⊂ B′.

From the set T we only need to keep the non-dominated template arcs for our purpose,
and call the resulting set T c (candidate template arcs).
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δ̃ = (6,6)
|B| = 20

|T c| = (|B|4 + 1)2 = 36

∈ B

∈ T c

1 2 3 4

1

3

2

4

5

6

7

8

9

10

11

12

65 7 8 9 10 11 12 13 14

Figure 5.5: Example for |T c| = Θ(|B|d) with d = 2.

5.5.1 Bounds for the Number of Candidate Template Arcs

A lower bound on |T c| obviously is 1: in the best case, one template arc is able to represent
all b ∈ B.

An upper bound is given by O(|B|d): Each standard template arc t ∈ T c is composed of d
coordinates that are adopted from up to d vectors from B. This bound is tight as the worst-
case example in Fig. 5.5 shows for d = 2. Bold dots represent the vector set B, small dots
the non-dominated standard template arcs T c. Obviously, |T c| = (|B|/4 + 1)2 = Θ(|B|2).
The example can be extended to higher dimensions d and larger |B| in a straight-forward
way. In practice, however, we expect |T c| � Θ(|B|d).

5.5.2 An Algorithm for Determining T c

We determine the set of candidate template arcs T c by performing a restricted enumeration
of all subsets B′ ⊆ B, B′ 6= ∅ that can be represented by their standard template arc τ (B′).
The algorithm maintains three disjoint index sets C, E, Ω ⊆ {1, . . . , |B|} that represent at
all time a partitioning of B, i.e. B = B(C)∪B(E)∪B(Ω), C∩E = ∅, E∩Ω = ∅, C∩Ω =
∅. Hereby B(S) is considered to be (arbitrarily) ordered and denotes the vectors in B
referenced by the indices in S. Set C contains the indices of the vectors which are covered
by a current bounding box represented by vectors t and t̂, set E refers to the vectors that
have been actively excluded and must not be covered, and Ω refers to the remaining, still
“open” vectors. Table 5.1 summarizes these and a few local data structures.

The candidate template arc determination is started with the procedure determine-T c

(Algorithm 11), which performs the initialization of the global data structures and
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Table 5.1: Basic data structures of the preprocessing algorithm.
Symbol Purpose

C Covered vectors (by current bounding box (t, t̂))
E Actively excluded vectors (must not be covered)
Ω Open vectors
N Newly covered vectors
z Feasibly addable vectors

then calls the recursive procedure recursive-T c(var C, t, t̂, var E, var Ω) (Al-
gorithm 12). The keyword var denotes that the respective variables are passed by call-
by-reference. The overall procedure follows the subsequent principle.

1. find further vectors to be added to the current partial solution

2. • there are no further addable vectors ⇒ add current vector t to T c

• otherwise: recursive calls for all possible extensions of current partial solution

E ... actively excluded vectors

t̂

t

N ... new vectors in current bounding box

F ... feasibly addable vectors

C ... covered by current bounding box

Figure 5.6: Partitioning of the nodes during the execution of Algorithm 12 w.r.t. the cur-
rent bounding box, defined by (t, t̂).
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Algorithm 11: determine-T c()

T c ← ∅; Ξ← ∅; C ← ∅; E ← ∅; Ω← {1, . . . , |B|}1
recursive-T c(C, 0, 0, E, Ω)2
return T c3

Vectors t and t̂ are assumed to represent the bounding box for the vectors referenced
by C. In the first step, a further set N of references to vectors in B is determined,
which are now covered by the bounding box, but which are still contained in Ω. These
vectors are then directly moved from Ω to S, and no branching will occur on these vectors
(actively excluding them would not make sense). Furthermore, the set z of open variables
(contained in Ω) which can be feasibly added to C (B′), hereby increasing the current
bounding box up to size δ̃, is determined. Within the loop at line 15, the algorithm
considers each element in z and adds it as next element to C. Procedure update-BB(t,
t̂, bi) (Algorithm 13) updates the bounding box (t, t̂) accordingly. The addition of further
vectors is handled via recursion. Before the loop continues with the next vector from z, the
current vector is moved from C to E, i.e. it is actively excluded from further consideration
and must not be considered in subsequent recursive calls. At the end of the procedure, sets
C, E, and Ω are restored to their initial states. Figure 5.5.2 illustrates the partitioning of
the nodes during the execution of Algorithm 12 w.r.t. the current bounding box.

When z becomes empty, no further vectors are available for addition and the recursion
terminates. We then check if a previously created template arc exists that dominates the
current template arc. This is efficiently done by just considering all actively excluded
vectors referred to by E. If one of them can be added to C, then C is not maximal
and another template arc dominating the current one must have already been previously
found.

According to the ring structure of the domain, terms of the form b ∈ (l, . . . , u), e.g. in line
8 or 13 in update-BB(t, t̂, bi) (Algorithm 13), have the following meaning: if l ≤ r it
simply denotes {x | x ≥ l,x ≤ r}; otherwise the interval goes across the domain border
and thus the term denotes the values {x | x ≥ 0,x ≤ l} ∪ {x | x ≥ r,x ≤ ṽ}, where ṽ
again denotes the domain border. To find new vectors, that are now covered by a just
extended bounding box (t, t̂) we use the procedure find-new-vectors-in-BB(t, t̂, var
Ω) (Algorithm 14). This procedure as well as find-addable-vectors(t, t̂, var Ω)
(Algorithm 15) run in time O(|B| · d).
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Algorithm 12: recursive-T c(var C, t, t̂, var E, var Ω)

if C = ∅ then1
N ← ∅;2
z← {1, . . . , |B|}3

else4

N ← find-new-vectors-in-BB(t, t̂,Ω)5
C ← C ∪N ; Ω← Ω \N6

z← find-addable-vectors(t, t̂, Ω)7

end8
if z = ∅ then9

/* no further i (referencing vectors bi) can be added to C; check10
if C is also maximal with respect to E, the actively excluded
vectors */
if 6 ∃j ∈ E | blj ∈ {(t̂l − δ̃l + 1) mod ṽl, . . . , (t+ δ̃l − 1) mod ṽl}, ∀l = 1, . . . , d11

then
T c ← T c ∪ {t}12

end13

else14
for i ∈ z do15

// Vectors B(C ∪ {i}) can be represented by their τ (B(C ∪ {i}))16
C ← C ∪ {i}; Ω← Ω \ {i}17

(t′, t̂′)← update-BB(t, t̂, bi)18
/* only perform further investigation if bounding box has not19
yet been considered */
if 6 ∃j ∈ E | blj ∈ {tl, . . . , t̂l}, ∀l = 1, . . . , d then20

recursive-T c(C, t′, t̂′, E, Ω)21
end22
/* in the next iteration of the loop, vector bi is actively23
excluded */
C ← C \ {i}24
E ← E ∪ {i}25

end26

end27
C ← C \N28
E ← E \z29
Ω← Ω ∪N ∪ E30
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Algorithm 13: update-BB(t, t̂, bi)

if |C| = 0 then1
// bi is the first vector in C2

t′ ← bi, t̂
′ ← bi3

else4

// calculate new (t′, t̂′) based on (t, t̂) and bi5
for l = 1, . . . , d do6

// we assume ∀l = 1, . . . , d : δ̃l ≤ ṽl/27

if bli ∈ {(t̂l − δ̃l + 1) mod ṽl, . . . , tl} then8
t′l ← bli9

else10
t′l ← tl11

end12

if bli ∈ {t̂l, . . . , (tl + δ̃l − 1) mod ṽl} then13
t̂′l ← bli14

else15
t̂′l ← t̂l16

end17

end18

return (t′, t̂′)19

end20

Algorithm 14: find-new-vectors-in-BB(t, t̂, var Ω)

for j ∈ Ω do1
if blj ∈ {tl, . . . , t̂l}, ∀l = 1, . . . , d then2

N ← N ∪ {j}3
end4

end5
return N6

Algorithm 15: find-addable-vectors(t, t̂, var Ω)

z← ∅1
for j ∈ Ω do2

if blj ∈ {(t̂l − δ̃l + 1) mod ṽl, . . . , (t+ δ̃l − 1) mod ṽl}, ∀l = 1, . . . , d then3
z← z ∪ {j}4

end5
return z6

end7

Sets C, E, z, and N can efficiently be implemented by using simple arrays and corre-
sponding variables for indicating the number of currently contained elements. In this way,
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the restoration of C and E at the end of recursive-T c (Algorithm 12) can even be done
by simply memorizing the array sizes at the beginning and finally resetting the counters.

In order to speed up the overall method, we use a k-d tree as data structure (see [8]) for
maintaining Ω. In this way geometrical properties can be exploited, and not all vectors in
Ω need to be explicitly considered each time.

Theorem 13 The overall time complexity for determine-T c is bounded above by O(d ·
|B|3d).

Proof Let ζ = |B|d. As t, t̂ ∈ T c and |T c| = O(ζ) there are ζ!
2(ζ−2)! possible bounding

boxes (t, t̂), and therefore O(ζ2) recursive calls in the worst case. As the worst case
runtime of the first part of the algorithm is O(d · |B|), we get an overall worst case time
complexity of O(d · |B|3d). �

Note that the running time O(d · |B|3d) to enumerate a set of maximal cardinality O(|B|d)
results from the necessity to remove all dominated elements, as described above. For our
application we assume δ̃ to be relatively small, which implies that B(t) will be small as
well, i.e. one template arc typically just represents a small number of arcs. Hence, the
running times of the procedure are much lower in practice.

5.6 An Exact Branch-and-Cut Algorithm for Solving k-MLSA

In order to solve the k-MLSA problem to optimality, we consider a branch-and-cut algo-
rithm for the following formulation as an integer linear program (ILP).

5.6.1 ILP Formulation

To be able to choose the root node of the arborescence by optimization we extend V to
V + by adding an artificial root node 0. Further we extend A to A+ by adding the arcs
(0, i), ∀i ∈ V . We use the following variables for modeling the problem as an ILP:

• For each candidate template arc t ∈ T c, we define a variable yt ∈ {0, 1}, indicating
whether or not the arc is part of the dictionary T .

• Further we use variables xij ∈ {0, 1}, ∀(i, j) ∈ A+, indicating which arcs belong to
the tree.

• To express which nodes are covered by the tree, we introduce variables zi ∈
{0, 1}, ∀i ∈ V .
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Let further A(t) ⊂ A denote the set of tree arcs a template arc t ∈ T c is able to represent,
and let T (a) be the set of template arcs that can be used to represent an arc a ∈ A, i.e.
T (a) = {t ∈ T c | a ∈ A(t)}. We can now model the k-MLSA problem as follows:

minimize m =
∑
t∈T c

yt (5.7a)

s.t.
∑

t∈T (a)
yt ≥ xa ∀a ∈ A (5.7b)

∑
i∈V

zi = k (5.7c)

∑
a∈A

xa = k − 1 (5.7d)

∑
i∈V

x(0,i) = 1 (5.7e)

∑
(j,i)∈A+

xji = zi ∀i ∈ V (5.7f)

xij ≤ zi ∀(i, j) ∈ A (5.7g)
xij + xji ≤ 1 ∀(i, j) ∈ A (5.7h)∑
a∈C

xa ≤ |C| − 1 ∀ cycles C in G, |C| > 2 (5.7i)

∑
a∈δ−(S)

xa ≥ zi ∀i ∈ V, ∀S ⊆ V, i ∈ S, 0 /∈ S (5.7j)

Inequalities (5.7b) ensure that for each used tree arc a ∈ A at least one valid template arc
t is selected. Equalities (5.7c) and (5.7d) enforce the required number of nodes and arcs
to be selected. Equation (5.7e) requires exactly one arc from the artificial root to one of
the tree nodes, which will be the actual root node of the outgoing arborescence.

Equations (5.7f) state that selected nodes must have in-degree 1. Inequalities (5.7g) ensure,
that an arc may only be selected if its source node is selected as well. Inequalities (5.7h)
forbid cycles of length 2, and finally inequalities (5.7i) forbid all further cycles (|C| > 2).

In order to strengthen the ILP we can additionally add (directed) connectivity-constraints,
given by inequalities (5.7j), where δ−(S) represents the ingoing cut of node set S. These
constraints ensure the existence of a path from the root 0 to any node i ∈ V for which zi =
1, i.e. which is selected for connection. In principle, equations (5.7j) render (5.7f), (5.7g),
(5.7h) and (5.7i) redundant [76], but using them jointly may be beneficial in practice.

5.6.2 Branch-and-Cut

As there are exponentially many cycle elimination and connectivity inequalities (5.7i) and
(5.7j), directly solving the ILP would be only feasible for very small problem instances.
Instead, we apply branch-and-cut [84], i.e. we just start with the constraints (5.7b) to
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(5.7h) and add cycle elimination constraints and connectivity constraints only on demand
during the optimization process.

The cycle elimination cuts (5.7i) can be easily separated by shortest path computations
with Dijkstra’s algorithm. Hereby we use (1− xLP

ij ) as the arc weights with xLP
ij denoting

the current value of the LP-relaxation for (i, j) in the current node of the branch-and-
bound tree. We obtain cycles by iteratively considering each edge (i, j) ∈ A and searching
for the shortest path from j to i. If the value of a shortest path plus (1−xLP

ij ) is less than
1, we have found a cycle for which inequality (5.7i) is violated. We add this inequality
to the LP and resolve it. In each node of the branch-and-bound tree we perform these
cutting plane separations until no further cuts can be found.

The directed connection inequalities (5.7j) strengthen our formulation. Compared to the
cycle elimination cuts they lead to better theoretical bounds, i.e. a tighter characterization
of the spanning-tree polyhedron [76], but their separation usually is computationally more
expensive. We separate them by computing the maximum flow (and therefore minimum
(0, i)-cut) from the root node to each of the nodes with zi > 0 as target node. If the value
of this cut is less than zLP

i , we have found an inequality that is violated by the current LP-
solution. Our separation procedure utilizes Cherkassky and Goldberg’s implementation
of the push-relabel method for the maximum flow problem [18] to perform the required
minimum cut computations.

The branch-and-cut algorithm has been implemented using C++ with CPLEX in version
11.0 [62].

5.7 Branch-and-Cut-and-Price

The exact branch-and-cut algorithm from Section 5.6.2 has two major shortcomings. First,
the preprocessing method is relatively time-consuming, and second, the large amount
of label-variables yields large LPs to be solved within every node of the branch-and-
bound tree. These observations support the idea to develop a branch-and-cut-and-price
(BCP) approach, where after starting with a small feasible set of labels, further labels are
dynamically added on demand. In the diploma theses of Thöni [104] and Oberlechner [86]
two different approaches following this general idea have been developed. After a formal
introduction of the pricing problem in Section 5.7.1, the corresponding solution techniques
presented in [104] are briefly summarized.

Following the idea of Inequalities (4.16) proposed in Section 4.2, we introduce inequali-
ties ∑

t∈T (Γ−(vi))
yt ≥ zi − xri, ∀i ∈ V, (5.8)

to provide (besides Inequalities (5.7b)) further information for the pricing step, but also to
further strengthen the LP. Inequalities (5.8) state that the for each selected node except
the artificial root node, the sum over the template-arc variables associated to the nodes
incident (ingoing) arcs, must be greater or equal than one.
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5.7.1 Pricing Problem

Let πa denote the dual variables corresponding to Inequalities (5.7b), and further µj denote
the dual variables corresponding to Inequalities (5.8). The reduced costs for each template
arc t are then given by

c̄t = 1−

 ∑
a∈A(t)

πa +
∑

j∈{v|(u,v)∈A(t)}
µj

 . (5.9)

Any template arc with negative reduced costs c̄t may potentially improve the current
objective function value, if there are no such template arcs, the solution cannot be fur-
ther improved. We define the pricing problem as finding the template arc with maximal
negative reduced costs.

Definition 18 (Pricing Problem)

t∗ = argmint∈T

1−

 ∑
a∈A(t)

πa +
∑

j∈{v|(u,v)∈A(t)}
µj

 . (5.10)

5.7.2 Solving the Pricing Problem

A nice geometrical interpretation for the pricing problem arises, when considering the
two-dimensional case. Each tree arc corresponds to a point in D according to its associ-
ated geometric information. Furthermore, each point in D in the same way corresponds
to a potential template arc. Hence, we will use the terms tree/template arc and their
corresponding points interchangeably within this section. All template arcs potentially
representing an arbitrary tree arc bi must have their endpoint in the rectangle D(b− δ̃+e)
with bi corresponding to its upper right corner, and e denoting the d-dimensional vector
with all components being 1. Let T ′(b) denote this area whose points correspond to the
potential template arcs able to represent b. To each T ′(b) we now associate the value

ζb =
∑

i∈{a|a∈A∧a=b}
πi +

∑
j∈{v|(u,v)∈A∧(u,v)=b}

µj . (5.11)

The first term on the right hand side in Equation (5.11) corresponds to the sum of all
dual values associated to the constraints for the tree arcs corresponding to b, given by
Inequalities (5.7b). The second term results from the dual values of all nodes according to
Constraints (5.8) which are incident to a tree arc corresponding to b. We can now imagine
these rectangles T ′(b) as transparently shaded with a gray scale value ζb with higher values
corresponding to a darker shades. See Fig. 5.7 for an example of two elements b1 and b2
and their corresponding regions T ′(b1) and T ′(b2) being drawn in the domain.

Let us now consider the situation of all b ∈ B and their corresponding T ′(b), shaded
accordingly with ζb, being drawn in the area corresponding to the two-dimensional domain
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D. Due to the transparency of the rectangles, regions of overlapping rectangles will obtain
darker colors. Formally we define for each region R a corresponding value

ζR =
∑

b∈A(t), t∈R
ζb (5.12)

for some arbitrary t being located in region R. Figure 5.9 shows an example with two
overlapping elements bi. We can now see that the pricing problem given by Definition 18
exactly corresponds to finding the darkest such area. This analogy remains valid even in
the higher dimensional case if we use regions of corresponding dimensionality instead of
areas with dimensionality two. The correspondence of the presented illustration to the
pricing problem becomes evident by considering the correspondence of Equation (5.11) to
the two sums in Equation (5.10). The only difference is that Equation (5.11) is formulated
in terms of unique points b and Equation (5.10) in terms of template arcs t, which we
actually want to determine.

Based on this observation, we now outline an algorithm to solve the pricing problem.
This algorithm was primary subject of a diploma thesis [104], for details according to the
implementation of the algorithm, the reader is referred to this work. Here we proceed by
describing the basic functionality and principles.

Underlying datastructure is a k-d tree which is used to partition the domain into the
corresponding regions resulting from T ′(b), for all b ∈ B and resulting overlapping regions.
Here k denotes the number of dimensions to be used within the tree, and should not be
mixed up with the number of nodes to be connected to the arborescence. However, as the
term k-d tree is commonly used for this datastructure, we refrain from referring to it as
d-d tree. For convenience, we briefly review the principles of k-d trees. Primary field of
application of k-d trees is to act as a search tree for k-dimensional points, being stored in
the tree. However, the resulting tree implicitly defines a hierarchical partitioning of the
underlying domain. Each node of the binary tree defines a division of the subspace in which
it is located into exactly two subspaces. Within each level l coordinate l mod k is used
to define this subdivision. At the root node the whole domain is subdivided according
to some coordinate of the first dimension. Each child node then defines a subdivision
according to a coordinate of the second dimension, and so forth. For our purpose we
define each node to have either two children, or to be a leaf node. In our case, a leaf
node may either correspond to a region that cannot contain a template arc, or otherwise,
a region that contains all possible template arcs representing a unique subset of elements
bi ∈ B.

Figures 5.7 and 5.9 show examples of two and three elements being drawn in the domain
respectively. These figures furthermore show how the domain is segmented into subregions
according to T ′(b1) and T ′(b2) (and T ′(b7) in Figure 5.9). Corresponding k-d trees, which
we will from now on call segmentation trees are depicted in Figures 5.8 and 5.10. As
each node of the tree subdivides its subspace into two subspaces, it defines a hyperplane,
which we will also call splitting-hyperplane. In the two-dimensional examples in Figures
5.7 and 5.9 these hyperplanes correspond to lines, which are depicted in the figures as
well. In the example of Figure 5.7 the first split is performed according to the second
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Figure 5.7: Example of two elements b1 and b2 and corresponding regions T ′(b1) and
T ′(b2) drawn in the domain D. (Image with minor modifications taken from
[104])
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Figure 5.8: Segmentation tree corresponding to the example shown in Figure 5.7. (Image
credits: [104])
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Figure 5.9: This illustration shows the situation after the insertion of a further element
(b7) into the segmentation tree shown in Figures 5.7 and 5.8. (Image with
minor modifications taken from [104])

coordinate at point r1 = b1. Nodes ri denote the coordinates corresponding to each node
i of the segmentation tree. The area T ′(b1) is finally defined by nodes r2, r3 and r4, area
T ′(b2) by nodes r5, r6, r7 and r8. In the figure all points ri correspond to the corner
points of areas T ′(b) for all elements b in the tree, which is however an arbitrary decision
for a better illustration. In fact, only one coordinate is required to define a hyperplane
being orthogonal to the basis vector of the considered dimension, which is always the case
in the segmentation tree. Besides the intermediate “splitting” nodes, the tree in Figure
5.8 also contains the leaf nodes, with corresponding regions depicted in Figure 5.7. The
second example, given by Figures 5.9 and 5.10 shows the resulting tree after the insertion
of element b7. Again, splitting nodes and leafs (corresponding to regions) are contained in
the visualization of the tree, as well as in the corresponding illustration of the fragmented
domain. To build up the whole tree, regions T ′(b) for all b ∈ B are iteratively inserted.
For each such T ′(b) we need to find the correct position for inserting it into the tree. This
is done by checking at each tree node r if T ′(b) is entirely located in one of the subspaces
defined by r. If a region is entirely contained in a region defined by a current leaf of
the tree, this leaf is replaced with an according subtree corresponding to the splitting
hyperplanes required to properly define T ′(b). However, if T ′(b) is part of both subspaces
defined by current node r, we need to split up T ′(b) accordingly, and insert the resulting
subregions into both branches of r. Having now described, how the segmentation tree can
be created, we focus on how the tree can be used to efficiently search for the best template
arc.

At this point we assume that the whole segmentation tree has been created in advance.
As we will see later, this is not a real requirement. Our goal is to find the region R with
maximum ζR, which is the solution to the pricing problem. As the pricing problem needs
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Figure 5.10: Segmentation tree corresponding to the example shown in Figure 5.9. (Image
credits: [104])

to be solved many times, the search has to be efficient. In particular we want to avoid to
assign ζB to all leafs (corresponding to regions) B in the tree according to the values ζb
derived by the dual values. Therefore the search is based on upper and lower bounds used
to prune branches at an early stage. Let R(r) denote the subspace corresponding to node
r of the segmentation tree. Upper and lower bounds for each node r of the tree can be
derived based on the following definitions.

Definition 19 (Upper Bound Set) The upper bound set is given by all elements b ∈ B
which can be represented by some potential template arc in the subspace corresponding
to tree node r.

UB(r) = {b ∈ B | ∃t ∈ R(r) ∧ b ∈ B(t)}

Definition 20 (Lower Bound Set) The upper bound set is given by all elements b ∈ B
which can be represented by all potential template arc in the subspace corresponding to
tree node r.

LB(r) = {b ∈ B | ∀t ∈ R(r) ∧ b ∈ B(t)}

These bound sets are stored for each node of the search tree. In Figures 5.7 and 5.9 these
sets are denoted in braces for each node.

Based on these sets, we can immediately derive numeric bounds, based on the dual val-
ues.

Definition 21 (Upper Bound)
ub(r) =

∑
b∈UB(r)

ζb
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Definition 22 (Lower Bound)
lb(r) = max

b∈UB(r)
ζb

The search process is performed based on these upper and lower bounds. Starting at the
root node, the set B is divided into two not necessarily disjoint sets. These sets UB(r)
correspond to the nodes which are representable by some template arc of the subspaces
introduced by the splitting-hyperplane defined by the current tree node r. With ub(r)
we directly obtain a numeric value being the upper bound for this particular branch. A
lower bound is given by lb(r), i.e. the element with maximal ζb in this branch. For
each node we check if UB(r) = LB(r) which implies that we have found a leaf node.
A global lower bound lb∗ is used to prune the search tree, as we do not have to follow
branches with ub(r) < lb∗. Initialization of the global lower bound can be performed with
lb∗ = maxb∈B ζb. The search strategy to be used is best first search based on the upper
bounds ub(r).

Within the description of the algorithm, we have omitted many implementation issues.
One important aspect to be considered is the fact that regions may cross the domain
border. This needs to be checked in advance, and corresponding subregions must be
inserted in this case. Furthermore a lot of design issues are involved in order to find the
best way to implement the bounding procedure. Also the reconstruction of the coordinate
values of the corner points of each region requires to take care of some special cases. For
a detailed presentation and analysis of this issues the reader is referred to [104].

A further improvement of the overall process can be achieved, if the entire tree is not
completely built in advance, but rather in a dynamic way during the search process. Each
time the search is according to the bounds directed toward a certain branch of the tree,
we check if this branch has already been created. If this is not the case, it is expanded as
needed during the search process. Hence construction and traversing the tree is performed
in an intertwined way. This has not only the advantage of the initial construction step to
be omitted, but will also result in smaller trees to operate with. As certain regions of the
domain will not contain any useful template arcs, corresponding branches are unlikely to
be created during the whole BCP solution process, saving space and time.

Corresponding pseudocodes are omitted within this presentation, as they would require
a more detailed formal description and notation. In the following Section 5.7.3 we show
how this algorithmic framework for solving the pricing problem can be used within a
branch-and-cut-and-price approach.

5.7.3 Branch-and-Cut-and-Price Algorithm

The first step of the entire branch-and-cut-and-price (BCP) algorithm is to determine a
feasible starting solution. Any connected subgraph of k nodes is sufficient for this purpose.
Hence, we determine a starting solution by connecting arbitrary k nodes by a star-shaped
spanning tree, assign big values to the dual variables corresponding to this set of arcs, and
use the pricing algorithm to determine a feasible starting solution.
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The restricted master problem (RMP) is defined according to formulation (5.7) with ad-
ditional Inequalities (5.8), however the entire set T c is replaced by T p denoting the set
of label variables that have already been priced in. Within each node of the B&B-tree
directed connection cuts and cycle elimination cuts are separated to obtain a feasible LP-
relaxation. Afterwards new template arc variables are priced in as long as such variables
with negative reduced costs according to Equation (5.10) can be found and no further
cutting-planes can be added. It turned out to be advantageous to add all variables with
negative reduced costs within each pricing iteration. The development of the BCP al-
gorithm in combination with an alternative solution method for the pricing problem is
subject of an ongoing diploma thesis [86]. The BCP results reported in Section 5.10.4
used the pricing solver based on the segmentation tree as described in Section 5.7.2 within
this BCP framework.

5.8 Heuristic Methods

Practical results of the described branch-and-cut and branch-and-cut-and-price algorithms
are presented in Section 5.10. They show that this approach is only applicable for small
instances and requires relatively long running times. Therefore, we now describe a fast
greedy construction heuristic and then focus on metaheuristics including a greedy ran-
domized adaptive search procedure (GRASP) and a memetic algorithm (MA).

5.8.1 Greedy Construction Heuristic

Based on the greedy construction heuristic from [69], we developed a greedy algorithm for
our k-MLSA problem. A solution is constructed by starting with an empty codebook T
and graph G′ = (V ′, A′) with A′ = ∅, V ′ = ∅ and iteratively adding template arcs from
T c to T in a greedy fashion. In the following we will treat T as an ordered set, and
refer to its elements by T [i], i = 1, . . . , |T |. Each time a template arc t is added to T ,
all corresponding induced arcs A(t) ⊂ A are added to A′. For each arc (i, j) we also add
the corresponding nodes i and j to V ′. This is done until the resulting graph contains
a feasible k-node arborescence. In contrast to the classical undirected MLST problem,
the decision which template arc (label) to take next is significantly more difficult, as the
impact of the addition of one template arc towards a final arborescence (with some specific
root node) is not immediately obvious.

In the construction heuristic for MLST, a label that reduces the number of separated
components the most is always chosen. The number of components of G′ minus one
corresponds to the number of edges that must be added at least to obtain a complete
spanning tree, and this number of edges is an upper bound for the number of labels to be
added.

In any case, a label which directly yields a spanning tree is an optimal choice and should
be selected. A label which yields a G′ to which only one more edge must be added is
always the second best choice, since exactly one more label is necessary. Note that all
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T c = {t1, t2, t3}
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Figure 5.11: Suppose we want to connect all of the 12 nodes in the given graph G, i.e.
k = 12. After adding the template arcs t1, t2 and t3 we can identify three
nontrivial strongly connected components (SCCs), i.e. components consisting
of more than one node. All nodes have incoming arcs, but these three SCCs
do not. We need to add at least two more arcs as α(G′) = 2. Hereby G′

denotes the graph where each SCC is contracted into one single node.

such situations are equally good. In general, the assumption is that a label yielding a
G′ to which a lower number of further edges must at least be added will usually lead to
a better solution (requiring less labels) than a label yielding a G′ having a higher lower
bound of edges to be necessarily added.

While the notion of simple components does not make sense in the directed k-MLSA
anymore, we can still follow the idea of determining the number of edges (arcs) that must
at least be added to obtain a complete arborescence in order to decide upon the next label
to be added.

Let α(G′) denote the minimum number of arcs that need to be added, so that this aug-
mented graph contains an arborescence. In principle, α(G′) can be calculated efficiently as
follows: Determine all maximal strongly connected components (SCCs) in G′ and shrink
them into corresponding representative single nodes. Arcs to or from a node in a strongly
connected component are replaced by corresponding arcs to/from the representative node.
Multiple arcs between two nodes are replaced by corresponding single arcs, and self-loops
are simply deleted. By this transformation, we obtain a directed acyclic graph Gs. The
problem is reduced, but the value α(G′) will remain the same since within each strongly
connected component, any node can be reached from each other and no further edges will
therefore be necessary. It further does not matter to which particular node of a strongly
connected component an ingoing or outgoing arc is connected. Let Z ⊆ V be the set of
nodes for which no ingoing arc exists in Gs. The minimum number of required additional
arcs is now α(G′) = k − (|V | − |Z | + 1), and the label that minimizes this number the
most is considered the best choice. Figure 5.11 shows an example of the computation and
usage of α(G′). We do not need to explicitly shrink the SCCs each time if we keep track
of all SCCs with in-degree zero. Algorithm 16 details the overall procedure.
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Algorithm 16: k-MLSA-greedy(V,A, T c)

G′ = (V ′, A′) with V ′ ← V,A← ∅1
T ← ∅ // currently used labels2
while no k-arborescence exists do3
t∗ ← 0 // best template arc of this iteration4
for all t ∈ T c do5

z∗ ←∞ //stores lowest found number of SCCs6
A′′ ← {aij ∈ A(t)}7
compute SCCs of G′ = (V ′, A′ ∪A′′)8
Z ← SCCs with in-degree zero9
if |Z| < z∗ then10

z∗ ← |Z|11
t∗ ← t12

end13

end14
A′ ← A′ ∪ {aij ∈ A(t∗)}15
T ← T ∪ {t∗}16
T c ← T c\{t∗}17

end18
remove redundant arcs and labels19

Obviously, the algorithm frequently has to check if a partial solution already contains a
feasible arborescence. This task can be achieved by performing depth first search (DFS)
using each node as start node (time complexity O(k3)). To achieve a speedup of this
method we try to avoid or reduce the number of time consuming DFS calls. Let G′ denote
the graph containing just the edges and nodes induced by some template arc set T , i.e.
if (i, j) ∈ A is represented by template arc t ∈ T we add the nodes i, j and the arc (i, j)
to G′ = (V ′, A′). Let further δ−(v) denote the in-degree of a node v, i.e. the number of
incoming arcs. Furthermore let δi0(V ′) denote the subset of nodes from V ′ with δ−(V ′) = 0,
and let us assume that the current partial solution consists of the template arcs (labels)
T . First, we check the degree of each node to see if a sufficient number of nodes v with
in-degree δ−(v) > 0 is available. If |V ′| − δi0(V ′) + 1 < k then G′ cannot represent a valid
solution, and we do not have to perform the DFS. If a solution is possible we distinguish
the following two cases. In the first case, where k = |V |, there can be at most one node
with in-degree zero. If there is such a node it has to be the root node and we perform
the DFS starting from this node. Otherwise, if all nodes v ∈ V ′ have δ−(v) > 0 we have
no choice but to perform DFS starting from all nodes. In the more general second case
k < |V |, if |V ′|− δi0(V ′)+1 = k, one of the nodes with in-degree zero has to be the root of
the tree, otherwise the tree would not contain the required k nodes. So it is sufficient to
perform the DFS starting at just these δi0(V ′) nodes. Otherwise we again have to perform
DFS starting from all nodes.

The final step is to remove redundant tree arcs and redundant template arcs. Because
of mutual dependencies of these tasks, this is a non-trivial operation itself and hence we

125



Chapter 5 Application: Biometric Data Compression

apply a heuristic. As long as the solution remains valid we perform the following two
steps: 1) try to remove redundant labels; 2) as long as |A′| > k try to remove the leaves
and intermediate arcs. By this procedure we finally obtain a valid k-node arborescence.

5.8.2 GRASP – Greedy Randomized Adaptive Search Procedure

The greedy heuristic is relatively fast but yields only moderate results. Significantly
better solutions can be achieved by extending it to a greedy randomized adaptive search
procedure (GRASP) [47]. The constructive heuristic is iterated and the template arc to
be added is always selected at random from a restricted set of template arcs, the restricted
candidate list (RCL). As soon as a valid solution exists, it is further improved by a local
search procedure. In total, it iterations of these two steps are performed.

Function k-MLSA-randomized-greedy(V,A, T c) (Algorithm 17) shows the randomized
greedy construction of solutions in detail. One crucial part in designing an efficient GRASP
is to define a meaningful RCL. The problem in our case is that there are many equally good
template arcs that could be candidates to extend the current partial solution. On the other
hand, finding the best template arcs, i.e. those template arcs reducing α of the current
partial solution the most, can be very time consuming, as all candidate template arcs need
to be considered. As GRASP also heavily relies on the subsequent local improvement, we
do not necessarily have to find the best candidates to extend our partial solution. On
the other hand, being too lazy with this decision might reduce the overall performance
considerably. In the following we describe the parametrized procedure of building up the
RCL in more detail.

Prior to each extension of the current partial solution (line 26), the RCL is built in the
loop in lines 5 to 25. As soon as a further improving template arc is found (line 11) the
RCL is cleared, and then successively filled with further template arcs of the same quality.
This finally yields a list of equally good template arcs, which are after all the candidates
for the next greedy decision. The size of this list is limited by rclmax for performance
reasons. There is one further, even more important parameter related to the issue of
balancing the greedy solution quality versus run time efficiency of the process of building
the RCL. The parameter impmax limits the number of improvements according to line 11.
In the special case of impmax = 0 the RCL finally simply consists of the first template
arcs improving the current solution. In this case the major contribution to construct high
quality solutions is passed to the subsequent local search. Setting impmax =∞ implies a
situation where the loop of line 6 iterates over all candidate template arcs each time. Due
to the relatively large number of candidate template arcs this approach may be to time
consuming for practice.

In each GRASP iteration, itls local search steps are performed after the randomized con-
struction. The local search uses a template arc insertion neighborhood, where a new
template arc is added to the solution, and then redundant template arcs are removed.
The goal is to find template arcs that render at least two template arcs from the cur-
rent solution redundant. Figure 5.12 shows such a situation. Another beneficial situation
arises when further nodes are connected to the existing arborescence. In each iteration
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Algorithm 17: k-MLSA-randomized-greedy(V,A, T c)

G′ = (V ′, A′) with V ′ ← V,A← ∅1
T ← ∅ // currently used labels2
while no k-arborescence exists do3

i← 04
for all t ∈ T c do5

z∗ ←∞ //stores lowest found number of SCCs6
A′′ ← {aij ∈ A(t)}7
compute SCCs of G′ = (V ′, A′ ∪A′′)8
Z ← SCCs with in-degree zero9
if |Z| < z∗ then10

z∗ ← |Z|11
RCL = ∅12
i← i+ 113

end14
if |Z| = z∗ then RCL = RCL ∪ t15
if |RCL| ≥ rclmax then16

z∗ ← z∗ − 117
if i ≥ impmax then18

break19
end20

end21

end22
t′ ← random element from RCL23
A′ ← A′ ∪ {aij ∈ A(t′)}24
T ← T ∪ {t′}25
T c ← T c\{t′}26

end27
remove redundant arcs and labels28
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Figure 5.12: Template arc insertion neighborhood: after t5 is added to the solution t3
and t4 are redundant and thus can be removed from the solution

the template arcs are considered in decreasing order w.r.t. the number of tree arcs they
represent. The neighborhood is searched with a first improvement strategy. Furthermore
only a prespecified fraction of the template arcs is used, i.e. the template arcs representing
most of the tree arcs.

5.8.3 Memetic Algorithm

As an alternative to GRASP we implemented a memetic algorithm (MA). It is based on a
steady-state framework, where in each iteration a single offspring solution is derived and
locally improved. It replaces a randomly chosen candidate solution from the population,
to retain diversity. The algorithm uses tournament selection, and local improvement steps
are performed for each new candidate solution after the application of the evolutionary
operators, i.e. recombination and mutation. Algorithm 18 shows the overall framework.

Algorithm 18: k-MLSA-MA()

randomly create initial population1
t← 02
while t < tmax do3

select parents T ′ and T ′′ by tournament selection4
T ← crossover(T ′, T ′′)5
mutation(T )6
local improvement(T )7
t← t+ 18

end9

Following the ideas presented in [114] we encode a candidate solution as an ordered subset
of labels. In our case the template arcs correspond to these labels and the chromosome
of a candidate solution is therefore denoted by T , T [i] denotes the i-th template arc
of candidate solution T . If these template arcs induce a k-node arborescence we have
a feasible solution, otherwise further template arcs need to be added to the candidate
solution in order to make the solution feasible. Note however, that a feasible solution may
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contain redundant template arcs, which are not necessarily part of an optimal solution
induced by the other template arcs of the ordered set.

For candidate solutions of the initial population we ensure that they are feasible. To create
a randomized candidate solution, all template arcs are shuffled and then added as long as
the candidate solution remains infeasible.

The MA then tries to minimize the number of template arcs required for a feasible so-
lution by iterative application of the genetic operators and local improvement. As many
candidate solutions have the same number of template arcs, the total number of induced
arcs is also considered in the fitness function f(T ), which is going to be minimized:

f(T ) = |T |+
(

1− |A
′|
|A|

)
. (5.13)

Again, A′ denotes the set of induced tree arcs. This accounts for the fact that candidate
solutions whose template arcs cover many arcs are more likely to produce good offsprings
and result in successful mutations.

Since the order of the template arcs does not need to be preserved, we use a crossover
operator introduced in [85], which takes the template arcs for the child candidate solution
alternatingly from the parents until a feasible solution is obtained. If a template arc
reoccurs, it is not added to the offspring and the next template arc from the other parent
is processed instead. Function crossover(T ′, T ′′) (Algorithm 19) shows this procedure
in detail. Again T denotes the (ordered) set of template arcs of an candidate solution,
T [i] denotes the i-th template arc.

Algorithm 19: crossover(T ′, T ′′)

T ← ∅ // new offspring initialized with empty set1
i← 0, j ← 0 // counter variables2
while T contains no k-MLSA do3

if i mod 2 = 0 then4
t← T ′[bi/2c]5

else6
t← T ′′[bi/2c]7

end8
if t /∈ T then9

T [j]← t10
j ← j + 111

end12
i← i+ 113

end14
return T15

In addition to recombination we use two different types of mutation:
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1. A randomly selected template arc t /∈ T is appended. This increases the likeli-
hood for the ability to remove some redundant template arc by a subsequent local
improvement.

2. A randomly selected template arc t /∈ T , replaces either a random or the worst
t′ ∈ T . The worst template arc is the one inducing the minimal number of arcs. If
the solution is not feasible, further randomly selected template arcs are added until
a feasible solution is reached.

The subsequent local improvement method local-improvement(T) (Algorithm 20), fol-
lowing the one presented in [85], uses the idea that a reordering of the template arcs could
make some of them redundant. In contrast to the local improvement method used in the
GRASP algorithm this method can only remove template arcs from a current solution if
some of them are actually redundant. As the MA continuously modifies the candidate
solutions from the population and also further template arcs are added to a candidate so-
lution by mutation, there is no need to use a more expensive neighborhood search, which
also considers currently unused template arcs.

The MA uses the same optimizations as the (randomized) greedy construction heuristics
(described in Sections 5.8.1 and 5.8.2) to reduce the number of DFS calls. Furthermore it
only checks for a k-node arborescence if the number of different nodes reaches the required
size k, because a k-node arborescence is not theoretically possible before that.

Algorithm 20: local-improvement(T)

i← 0 // counter variable1
while i < |T | do2

remove all arcs only labeled by T [i]3
if T contains k-MLSA then4

T ← T \ T [i]5
else6

restore respective arcs7
i← i+ 18

end9

end10

Our computational experiments showed that the MA is able to produce high quality
solutions very quickly and indeed finds an optimal solution in almost every case. Details
on the results are given in Section 5.10.4.

5.9 Encoding of the Compressed Templates

In the following we describe how the compressed templates will be encoded on a binary
level. The compression results from Section 5.10.2 are based on the definitions given in
this section.
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~̃ξ

~̃v

vi

vj

aij mod ~̃ξ

aij mod ~̃v

Figure 5.13: Representation of the arc aij = (vi,vj) using the domains ṽ and ξ̃ respec-
tively.

We now need to extend the definition of the domain border given in Section 5.3. There,
the domain border ṽ was defined by ṽl = maxi=1,...,n vli, l = 1, . . . , d. For the concrete
specification of the original and the resulting compressed data structure we need to distin-
guish between the domain of one particular instance (ṽ), and a further entity, describing
the size of the domain considering all possible input instances.

Definition 23 The overall domain border ξ̃ is given by

ξ̃l = max
I

ṽlI , l = 1, . . . , d, (5.14)

where the maximum goes over all input instances I.

To see the necessity to distinguish between ξ̃ and ṽ, reconsider the preprocessing, i.e. the
determination of the labels. For the further optimization it is obviously beneficial when
single template arcs represent many tree arcs w.r.t. δ. Figure 5.13 shows the representation
of the arc (i, j) using the domains ṽ and ξ̃ respectively. Unlike (i, j) mod ξ̃, (i, j) mod ṽ
may be covered by a template arc in the domain ṽ together with some other tree arcs in
this domain. For arcs aij > ξ̃ − δ̃ it is not even possible to represent them together with
arcs from the domain ṽ. Hence, an optimal solution to the k-MLSA problem may require
more template arcs when using ξ̃ instead of ṽ as parameter for the preprocessing routine.
As the values ṽ often significantly deviate from ξ̃ this effect is not negligible. Since m has
a high impact on the compression ratio, we use ṽ instead of ξ̃ and accept the resulting
disadvantage that we have to store ṽ for each compressed template.

In our experimental evaluations (Section 5.10) we will compare our compressed data to
the following size (in bits) of the original raw data

λraw = size(ConstData) + n ·
d∑
l=1
dld ξ̃le, (5.15)

which is the size of the constant data and n times the number of bits to store one particular
point. The size() operator denotes the number of bits needed to encode the data given as
argument.
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x

y

offset

Figure 5.14: The points vi are scattered in the shaded rectangle. Commonly used encod-
ings of such data points indicate their common offset (dashed arrow) and
the respective relative coordinate values of the points themselves. A direct
encoding would require unnecessary many bits.

The variable ConstData denotes additional data of constant size that is related to the
data points. E.g. if we have offset values (see Fig. 5.14) for each dimension we need this
data to achieve a lossless compression of the data points themselves.

As the algorithms may be applied to a subset of the dimensions, we need the following
function to define the total encoding length:

χl =
{ 1 dimension l is considered by the compression method

0 otherwise.
(5.16)

The total encoding length of the arborescence (achieved by the compression procedure) is
given by the following formula:

λ(m, δ, k, ṽ, ξ̃,χ) = size
(
ConstData′

)
+ 2 · 7︸︷︷︸

values k,m

+2 ·
d∑
l=1
dχl ld ξ̃le︸ ︷︷ ︸

root node, domain ṽ

+ 2 · (k − 1)︸ ︷︷ ︸
encoding of tree structure

+
⌈
m ·

d∑
l=1

χl ld ṽl
⌉

︸ ︷︷ ︸
template arcs

+(k − 1) ·
⌈

ld m︸ ︷︷ ︸
index to template arc

+
d∑
l=1

χl ld δ̃l︸ ︷︷ ︸
δ̃−values

+
d̃∑
l=1

(1− χl) ld ṽl︸ ︷︷ ︸
remaining dimensions

⌉
.

(5.17)

Note that ConstData of the compressed data is not necessarily the same as the corre-
sponding entity of the raw data. For instance this can be the case if the raw data does not
contain explicit offset values, but however ∃l ∈ {1, . . . , d} | mini=1,...,n vli > 0. We account
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for this by drawing a distinction between the constant data of the raw data (ConstData)
and that of the compressed data, namely ConstData′.

The second term in equation (5.17) constitutes 14 bits for the storage of k and m; the third
term denotes the number of bits that are necessary to store the root node and the size of
the domain ṽ. The next term represents the encoding of the tree structure. The encoding
is based on the parenthesis theorem of the depth first search (DFS) algorithm [33]. If we
traverse the resulting arborescence by DFS and write a “(” each time we traverse an arc
forward, and write “)” each time we traverse an arc backward the resulting string is an
representation of the structure of the DFS-tree. In our case we simply write “0”s and
“1”s instead of “(”s and “)”s, thus requiring (k − 1) · 2 bit in total. The next term in
equation (5.17) constitutes the size of the m template arcs. We only need to store the
components that are indicated by the characteristic function χl, as we do not consider
the other dimensions for compression, but directly store their values instead. The term
ld ṽl denotes the number of bits that are necessary to store the respective component of
the template arc. The last term in equation (5.17) describes the size of the encoding of
the (k − 1) tree arcs. Their representation consists of an index to a template arc, the
appropriate correction vectors and finally the components of the remaining dimensions.
Note that it is sufficient to round up the whole last term in equation (5.17) (and not
each individual logarithm in the respective sums), because it is always possible to find
such an appropriate encoding. For this purpose consider the following example, where
we want to encode values of the following domain: {0 . . . 4} × {0 . . . 8} × {0 . . . 17}. The
number of bits necessary to encode each individual dimension are 3, 4 and 5 respectively,
which yields 12 in total. Contrary a more tight encoding would use the representation
n = c1 + c2 · 18 + c3 · (18 · 9), which just requires 10 bit in total.

5.9.1 Encoding Example

Let ξ̃
T = (512, 512, 512), δ̃T = (5, 5) and k = 9. As δ̃ is only two-dimensional we do not

consider the third dimension of the input data for compression. Instead we simply store
the respective values for each tree arc. The input data is given by the following set:

{(
200
200
21

)
,

(
208
304
30

)
,

(
211
386
97

)
,

(
261
356
210

)
,

(
313
330
293

)
,

(
314
409
22

)
,

(
503
252
268

)
,

(
608
280
157

)
,

(
414
356
77

)
,

(
662
332
104

)
,

(
702
676
78

)}
.

Thus the offsets are 200 for the first and second coordinate and the domain borders
are ṽT = (503, 477, 294). Figure 5.15 shows a solution to the given problem. The
trivial encoding requires 243 bit, whereas the encoded template has a size of 232 bit;
ConstData’ = 14 + 27 + 27 + 16 = 84. The resulting compression ratio is not very impres-
sive, but in the example only two dimensions have been considered for compression and δ̃
is extremely small. Being able to reconstruct the original data points without loss would
require additional ld(ξ1) + ld(ξ2) = 18 bits for the offsets.
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root node

ṽ

7 + 7 = 14 bit

ld ξ = 27 bit

ld ξ = 27 bit

tree structure 2 · (k − 1) = 2 · 8 = 16 bit

template arcs

k,m 9 2

(303, 52, 268)

(503, 477, 294)

1111001100011000

m · d∑d
l=1 χ

l ld vle = 2 · 18 = 36 bit

(k − 1) · dld m+
∑d

l=1 χ
l ld δ̃l +

∑d̃
l=1(1− χl) ld ṽle

t1 = (100, 25)

t2 = (50, 50)

tree arcs 1 5 3 157

1 3 4 30

1 5 1 293

2

2

2

idx δ1 δ2 remaining dimension

3 2 210

4 2 104

972 4

Encoding

(303, 52, 268)

(408, 80, 157)

(8, 104, 30)(8, 104, 30)

(462, 132, 104)
(113, 130, 293)

(114, 209, 22)
(11, 186, 97)

= 8 · (1 + 4.64 + 8.19) = 112 bit

(61, 156, 210)

2 3 3 22

(214, 156, 77)

1 1 1 77

Figure 5.15: This figure shows a concrete encoding example. The first block basically con-
tains information to be able to process the following blocks. It is followed by
the list of the template arcs. This can be compared to a dictionary or code-
book of traditional compression methods. The block on the bottom contains
the actual tree information, i.e. a list of arcs encoded by an index to one
of the template arcs, the respective correction vectors, and finally the values
of the dimensions which are not considered for compression. The black dots
indicate that the size of the respective (sub)blocks is not known in advance,
because it depends on output values of the compression algorithm (like the
number of template arcs m).
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5.10 Experimental Results

This section starts by a description of the input data used for our computational exper-
iments. Then we present the results of the exact method in order to analyze the com-
pression ratios achievable by our methods. Furthermore we shortly evaluate the impact
of the compression to the false non-match rate (FNMR). Finally we present the results
of the metaheuristic techniques (greedy algorithm, GRASP, and the memetic algorithm)
in comparison to the optimal results of branch-and-cut. All running times in this section
refer to a 2.4 GHz Opteron processor with 4 GB RAM.

5.10.1 Test Instances

For our tests we use two different data sets. The first set of 20 templates was provided by
the Fraunhofer Institute Berlin and is in the following referred to as Fraunhofer Templates.
In addition we use a minutiae data set from the U.S. National Institute of Standards and
Technology [50]. For the instances we use the prefix ft and nist, respectively.

The Fraunhofer data set contains 20 templates which are multiple scans of four differ-
ent fingers from two persons. The encoding of the points is ξ̃

T = (ξx, ξy, ξθ, ξtype) =
(29, 29, 29, 21). The size of ConstData is 14 bit, i.e. 7 bit for the offset value for each
spatial dimension respectively. The templates consist of 15 to 40 minutiae which cor-
responds to a typical amount of minutiae detected by an electronic fingerprint scanner.
The templates are listed in the first part of Table 5.3, i.e. ft-01 to ft-20. The full name
matches the pattern P[0-9999] F[0-99] R[0-99] where P abbreviates “Person”, F “Finger”,
and R “Release”. One can see, that various releases of the same finger involve significant
differences to the number of minutiae that are detected. The second part of the table lists
the templates from the NIST data set. From the large set of NIST Templates we selected
a subset for our experiments, see Table 5.3. We chose five templates from each of the
categories ugly, bad and good. The instance names reflect this classification. Furthermore
for each fingerprint, there exists minutiae data to a latent and a corresponding tenprint
image. Latent refers to fingerprints on e.g. crime scenes that are invisible to the eye and
require some type of chemical processing or dusting to make them visible. Fingerprint im-
ages that are created by inking and rolling fingertips onto a paper or some scanning device
and traditionally have been captured of all ten fingers are usually referred to as tenprints.
Obviously the quality of tenprints is superior to the latents, which typically just consist of
a few dozen minutiae (min=5, max=82, avg=20.55, std-dev=13.25). The tenprints have
between 48 and 193 minutiae (avg = 106.3, std-dev=25), which is a significantly higher
number than we can expect to get from an electronic fingerprint scanning device. None
the less, in our experiments we only use the tenprint data, as the latents do not contain
enough minutiae and the larger size of the tenprints enables us to test the performance of
our method concerning higher numbers of data points. The encoding of the NIST points
is ξ̃

T = (ξx, ξy, ξθ, ξtype) = (212, 212, 29, 21). The size of ConstData is 33, which are the
offsets for the dimensions x, y and θ.
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Chapter 5 Application: Biometric Data Compression

Table 5.2: Characterization of the two template data sets

Fraunhofer NIST

avg(|V |) 30.75 96.47
min(|V |) 15 72
max(|V |) 40 120

ṽavg (286, 383, 358, 2)T (3993, 3368, 359, 2)T

ṽmin (129, 191, 252, 2)T (2936, 2281, 359, 2)T

ṽmax (224, 287, 312, 2)T (3293, 2788, 353, 2)T

Column ρ∗ shows the best compression ratios that could be achieved by our computational
experiments, the column right to it shows the respective parameter values that yielded
the result. The results for the Fraunhofer templates are exact ones, whereas the results
for the NIST templates are results of metaheuristics. Table 5.2 gives an overview of the
characteristics of the two data sets.

5.10.2 Compression Results

Table 5.3 gives an overview of the data instances used for our experimental evaluations,
and the corresponding best results. Besides the number of nodes and resulting tree arcs
we list the best compression ratios we could achieve by our method together with the
respective parameter values. The compression ratios ρ are defined by

ρ [%] = 100− 100 · λraw
λenc

, (5.18)

where λraw refers to equation (5.15) of the k selected points and λenc to equation (5.17).
As ρ does not reflect the size of the compressed template compared to the full template,
but only to the trivial encoding of the k selected points, we will also refer to ρ as relative
compression ratio. We denote the best found compression ratio by ρ∗. Though adequate for
our application background, we do not set ConstData′ = 0 for the subsequent experiments,
in order to evaluate the compression ratios more objectively.

In Table 5.4 we present some data regarding the preprocessing – the determination of
the candidate template arcs T c. For larger values of δ̃ the running times become quite
large, which is clearly not satisfactory. Obviously, the running times for δ̃ yielding the
best compression ratios (e.g. δ̃

T = (25, 25) or δ̃
T = (30, 30, 30), see Tables 5.6 and 5.8) are

of high importance. Fortunately the running times for these parameter values seem to be
still reasonable for practical applications.

Tables 5.5, 5.6, 5.7, and 5.8 give an overview of the compression ratios of this ap-
proach. For the Fraunhofer data we used the parameter values k ∈ {10, 15, . . . , 40} and

δ̃ ∈
{(

10
10

)
,

(
15
15

)
, . . . ,

(
45
45

)
,

(
50
50

)}
(i.e. applying the algorithm to two dimensions) as well
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5.10 Experimental Results

Table 5.3: Overview about the test instances used for our experiments and their best
results

short name full name |V | |B| ρ∗[%] parameters

ft-01 P0001 F00 R00 31 930 9.9 k = 25, δ̃T = (20, 20)
ft-02 P0001 F00 R01 38 756 8.7 k = 25, δ̃T = (40, 40)
ft-03 P0001 F00 R02 35 1190 9.6 k = 35, δ̃T = (35, 35, 35)
ft-04 P0001 F00 R03 20 380 5.1 k = 15, δ̃T = (35, 35, 35)
ft-05 P0001 F00 R04 39 1482 11.5 k = 30, δ̃T = (20, 20)
ft-06 P0001 F01 R00 15 210 2.8 k = 15, δ̃T = (40, 40)
ft-07 P0001 F01 R01 28 756 7.2 k = 25, δ̃T = (20, 20)
ft-08 P0001 F01 R02 27 702 9.8 k = 20, δ̃T = (35, 35)
ft-09 P0001 F01 R03 27 702 8.6 k = 25, δ̃T = (50, 50)
ft-10 P0001 F01 R04 31 930 8.5 k = 25, δ̃T = (45, 45)
ft-11 P0001 F03 R00 38 1406 11.7 k = 39, δ̃T = (45, 45)
ft-12 P0001 F03 R01 28 756 12.0 k = 25, δ̃T = (35, 35)
ft-13 P0001 F03 R02 25 600 8.7 k = 25, δ̃T = (50, 50)
ft-14 P0001 F03 R03 33 1056 10.2 k = 30, δ̃T = (45, 45)
ft-15 P0001 F03 R04 29 812 9.9 k = 29, δ̃T = (45, 45)
ft-16 P0014 F00 R00 37 1332 10.6 k = 25, δ̃T = (40, 40, 40)
ft-17 P0014 F00 R01 31 930 8.6 k = 25, δ̃T = (45, 45)
ft-18 P0014 F00 R02 40 1560 13.5 k = 30, δ̃T = (30, 30, 30)
ft-19 P0014 F00 R03 35 1190 10.1 k = 30, δ̃T = (45, 45)
ft-20 P0014 F00 R04 28 756 7.1 k = 20, δ̃T = (45, 45)

nist-u-01-t u201t6i 99 9702 18.9 k = 80, δ̃T = (120, 120)
nist-u-02-t u202t8i 93 8556 18.9 k = 80, δ̃T = (120, 120)
nist-u-03-t u204t2i 100 9900 18.9 k = 80, δ̃T = (120, 120)
nist-u-04-t u205t4i 84 6972 13.8 k = 80, δ̃T = (120, 120)
nist-u-05-t u206t3i 72 5256 18.9 k = 80, δ̃T = (80, 80)

nist-b-01-t b101t9i 106 11130 18.9 k = 80, δ̃T = (80, 80)
nist-b-02-t b102t0i 94 8742 13.4 k = 80, δ̃T = (80, 80)
nist-b-03-t b104t8i 107 11342 18.9 k = 80, δ̃T = (120, 120)
nist-b-04-t b105t2i 81 6480 18.6 k = 80, δ̃T = (80, 80)
nist-b-05-t b106t8i 93 8556 13.8 k = 80, δ̃T = (80, 80)

nist-g-01-t g001t2i 99 9702 13.4 k = 80, δ̃T = (80, 80)
nist-g-02-t g002t3i 101 10100 13.8 k = 80, δ̃T = (80, 80)
nist-g-03-t g003t8i 102 10302 18.9 k = 80, δ̃T = (120, 120)
nist-g-04-t g004t8i 120 14280 13.8 k = 80, δ̃T = (80, 80)
nist-g-05-t g005t8i 80 6320 13.8 k = 73, δ̃T = (80, 80)
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5.10 Experimental Results

Table 5.5: Average compression ratios for the Fraunhofer templates for δ̃T = (30, 30, 30)

k ρmax ρmin ρavg σρ

10 -6.12 -6.80 -6.63 0.29
15 5.07 -9.22 1.15 3.67
20 6.62 -1.57 4.60 3.11
25 10.92 -0.14 5.05 3.68
30 13.47 1.29 6.31 3.05
35 9.66 4.63 7.56 2.26

as δ̃ ∈

{(
10
10
10

)
,

(
15
15
15

)
,

(
20
20
20

)
, . . . ,

(
45
45
45

)
,

(
50
50
50

)}
(applying the algorithm to three dimensions)

and all their combinations for our experiments. The results for the Fraunhofer data have
been computed with the exact branch-and-cut method, and are therefore optimal values.
Due to the long running time and memory requirements the branch-and-cut algorithm
is not practicable for the NIST templates. These results have therefore been computed
with the memetic algorithm. Tables 5.5, 5.6, 5.7, and 5.8 list average compression val-
ues, where the average goes over all instances and parameter settings listed in the table
caption. These results are also illustrated in Figures 5.10.2, 5.10.2 and 5.10.2.
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Figure 5.16: Average compression ratios for the Fraunhofer data for k ∈ {10, 20, 30, 40}
and 2-dimensional δ̃

At a first glance the compression ratios are not too high. However, when compared to
other well established compression techniques, it turns out that all these methods con-
sistently enlarge the templates. Table 5.9 shows the results of our application of other
well known compression tools to our test data. Columns 2 to 7 list the results of some
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Chapter 5 Application: Biometric Data Compression

Table 5.6: Average compression ratios for the Fraunhofer templates with k ∈ {20, 25, 30}

δ̃
T

ρmax ρmin ρavg σρ

(10, 10) 9.48 -0.87 4.98 2.11
(15, 15) 9.93 1.39 5.44 2.06
(20, 20) 11.71 0.35 5.95 2.31
(25, 25) 9.80 0.87 5.43 1.89
(30, 30) 9.76 2.69 5.79 1.97
(35, 35) 12.04 0.00 4.52 2.87
(40, 40) 10.19 0.00 5.87 2.58
(45, 45) 10.19 0.35 6.03 2.56
(50, 50) 8.68 -2.96 4.54 2.31

(10, 10, 10) 0.84 -20.21 -5.82 4.95
(15, 15, 15) 6.72 -8.01 -0.30 3.73
(20, 20, 20) 11.01 -5.92 2.61 3.57
(25, 25, 25) 10.54 -3.36 3.90 2.83
(30, 30, 30) 13.47 -1.57 5.14 3.39
(35, 35, 35) 10.45 0.82 5.70 2.81
(40, 40, 40) 10.64 -0.52 4.29 2.93
(45, 45, 45) 9.60 0.35 4.99 1.92
(50, 50, 50) 9.60 0.42 4.84 2.51

Table 5.7: Average compression ratios for the NIST templates with δ̃T = (80, 80, 80)

k ρmax ρmin ρavg σρ

20 17.35 4.85 9.47 2.87
40 18.90 11.03 15.42 2.97
60 18.97 10.00 16.08 2.20
80 19.30 10.70 15.49 3.26

Table 5.8: Average compression ratios for the NIST templates with k ∈ {40, 60, 80}

δ̃
T

ρmax ρmin ρavg σρ

(40, 40) 19.02 12.40 15.09 1.77
(80, 80) 15.51 3.63 10.01 3.42

(40, 40, 40) 18.24 11.80 15.85 1.80
(80, 80, 80) 19.30 10.00 15.67 2.85
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Figure 5.17: Average compression ratios for the Fraunhofer data for k ∈ {10, 20, 30, 40}
and 3-dimensional δ̃
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Figure 5.18: Average compression ratios for the NIST data for k ∈ {20, 40, 60, 80}

compression algorithms implemented in the LEDA C++ library [73] for various values of
k. For this purpose we selected k points at random. The abbreviations in the first header
row denote: Huff =̂ Huffman Coding; BMA =̂ Burrows-Wheeler Transform in combination
with a Move-To-Front coder and an Adaptive Arithmetic Coder [108, 12, 83]; Columns
8 to 19 show the results for the application of some commonly used (Unix/Linux) com-
pression tools, namely zip, gzip, bzip2 and compress under Kubuntu Linux in version
8.04. Again, we selected k points at random and applied the compression tools to their
binary encoding. Finally we subtracted the size of constant data of known size from the
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Chapter 5 Application: Biometric Data Compression

compressed file size, in particular 22 byte for zip, 18 byte for gzip and 8 byte for bzip2.

The bad performance of these tools on our data set may be explained on the one hand by
the fact that they are not specifically designed to compress very small data sets, but on
the other hand also by the observation that the input data does not contain a significant
amount of redundant information. Furthermore the underlying algorithms are not able
to benefit from the special structure of the input data, i.e. spatial coordinates, but also
cannot benefit from the fact that the relative order of the points need not be preserved.

5.10.3 Matching Results

The impact of the reduction of the number of minutiae, i.e. the parameter k to the
reliability of the matching of different minutiae templates has been evaluated in [41].
Obviously k is the only parameter of our algorithm having an impact to matching quality.
Other influences result from the concrete hardware (fingerprint scanner), the minutiae
detection and extraction algorithm and also the concrete matching algorithm.

For this purpose, computational experiments have been performed with the Fraunhofer
data together with a fingerprint minutiae matching algorithm, also provided by the Fraun-
hofer institute [41]. The false match rate (FMR) turned out not to be critical for our
application scenario. For nearly all reasonable values of k, i.e. k ≥ 5, it remained zero.
For a verification application the false non-match rate (FNMR) is of higher importance.
When mating different templates from the same finger the FNMR is about 5% on average.
This non vanishing FNMR is due to some randomness in the template acquisition process
(scanning, detection, extraction). Hence it is unlikely to achieve exactly the same minutiae
sets by performing the acquisition process several times. Values of k ≤ 20 yielded FNMRs
of more than 30% on average, which definitely seems to be too high for our application
scenario. Nevertheless, larger values, in particular k ≥ 25 yielded FNMR of less than
20% on average. This seems to be reasonable as the acquisition process can be repeated
several times in the case of failure of verification. Demanding k ≥ 25 might indeed be
very pessimistic, as 12-20 minutiae are often thought to be sufficient for a trusty matching
[97].

Nevertheless the optimal value of k is highly dependent on the concrete implementation
of this application, in particular the fingerprint scanner and the subsequent image pro-
cessing algorithms. The exact requirements regarding the FNMR need to be specified for
a concrete implementation; also the acceptable computation times have influence.

5.10.4 Algorithmic results

In this section we compare the presented k-MLSA algorithms regarding the running times
and solution quality.

Although the running times of the B&C algorithm are sometimes very low, there are also
many cases where the running times are clearly too high for practical purposes. Due to
the larger size of the NIST templates the branch-and-cut approach is not practicable for
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them anymore. Computational experiments showed that using the cycle elimination cuts
exclusively, i.e. without the directed connection cuts, yields lower running times than
using both kinds of cuts. The exclusive use of the directed connection cuts turned out
to be very slow, due to the computationally more expensive separation problem, i.e. the
maximum flow problem. Most of the instances can be solved to provable optimality within
a couple of seconds, but there are also many instances where the total running time lies
between 10 and 30 minutes, or even more in some rare cases.

The BCP approach also allows to solve NIST instances with some parameter configurations
which is a clear improvement to the B&C approach. Table 5.10 gives an overview of
corresponding average running times and success ratios.

Table 5.10: Results of the Branch-and-Cut-and-Price algorithm. Average values for all
solved instances in the particular group are reported.

Instances Parameters t[s] pit pvar inst. solved

Fraunhofer δ̃
T = (40, 40, 40), k = 20 98 1436 753 19/19

Fraunhofer δ̃
T = (40, 40, 40), k = 30 132 1023 604 19/19

NIST δ̃
T = (40, 40, 40), k = 40 2002 1838 796 4/15

NIST δ̃
T = (40, 40, 40), k = 80 1270 2545 847 5/15

NIST δ̃
T = (40, 40, 40), k = |V | 2692 4636 1280 7/15

However, running times are still too high for practical applications, where a total running
time of a few minutes will be acceptable. The metaheuristics are able to fulfill this goal.

The results regarding the running times and solution quality, i.e. the number of template
arcs required for the resulting arborescence, are presented in Tables 5.11 and 5.12. The
first three columns show the instance names and parameters k and δ. Then, in the
first part of the table, we list the results from the exact branch-and-cut method, the
second part contains the objective value of the currently best known solution. The column
mbest shows the best result of the multiple runs of the algorithm, column mavg shows the
average value. By σx we denote the standard deviation of the entity x. The column
#b.s. shows the percentage of runs, where the solution listed in mbest has been found.
Average running times are listed in column tavg. For each algorithm we compare two
parameter settings yielding good compression ratios for the Fraunhofer and the NIST
data respectively. Instead of using k = 30 which for the Fraunhofer data yielded the best
compression results with δ̃ = (30, 30, 30)T

, we used k = 20 instead, as many Fraunhofer
templates have |V | < 30.

Table 5.11 shows the results of the GRASP algorithm for some parameters k and δ in
comparison to the best known solution. The presented results do not substantially differ
from the ones for any other parameter settings of k and δ. The average running time to
find reasonably good solutions w.r.t. our application background (i.e. to find the optimal
solution in most of the cases) is roughly less than ten seconds for the Fraunhofer templates.
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5.10 Experimental Results

Due to their larger size it is much more expensive to solve the NIST data with relatively
high reliability. In this case the running times range from less than one minute to slightly
more than three minutes. Preceding experiments for finding a good parameter setup
indicated that impmax has little impact on the solution quality. Nevertheless setting
impmax = 0 corresponds to a completely arbitrary decision in the randomized construction
process. In such a case the quality of the GRASP solely relies on the subsequent local
search. On the other hand, too high values of impmax lead to unnecessary high running
times. When comparing setups of impmax and itls which yield approximately the same
running times, it turned out that higher values of itls yield better average solutions. Setting
rclmax ≈ 10 turned out to be a good choice, but the exact value is uncritical. Of course,
higher values imply more diversity, which may enable to find the global optimum of difficult
instances more quickly.

The results of the memetic algorithm are presented in Table 5.12. We used a population
size sizepop ∈ {100, 200}, and a group size of four for the tournament selection. The
crossover and mutation probability is set to one, i.e. each offspring is created by crossover
and subsequent mutation. In each iteration a randomly selected candidate solution from
the population was replaced by the newly generated one. Local improvement is performed
for each newly created candidate solution. As mutation type 2 produced better overall
results than mutation type 1, the former was used to create the results listed in Table
5.12. Replacing a randomly selected t ∈ T turned out to be advantageous over replacing
the worst one.

Table 5.12 shows the results of 30 runs with 10000 and 30000 iterations for the Fraunhofer
templates (population size 100); for the NIST templates we list the results for 10000 and
60000 iterations with a population size of 100 and 200, respectively. Again, the presented
results are not essentially different to the ones for any other parameter settings of k and
δ̃. The Fraunhofer data can be compressed reliably within 10000 iterations, which takes
an average running time of roughly 2 seconds. Due to the larger number of points, the
compression of the NIST data is computationally more expensive. At least 60000 iterations
must be used in order to be able to produce reliable results. The respective running times
are roughly 100 seconds.

Due to the relatively high running time of the randomized greedy construction heuristic
(Algorithm 17) it is impossible to find a parameter setup which does not degenerate the
GRASP to some extend but still keeps the overall running times small. Such a setup
would either start local search on nearly arbitrary random solutions (i.e. impmax = 0) or
extremely limit the number of local search iterations, i.e. itls < 5. Allowing slightly higher
running times enables to find the optimal solution in almost every case (Fraunhofer),
except two difficult instances. For the NIST data, sufficiently good solutions can be
produced with adequate reliability in less than four minutes. In the case of the Fraunhofer
data the MA is clearly superior to the GRASP, as it produces better solutions in less
time. In contrast to GRASP it is also possible to create reasonable solutions (though with
moderate quality) in less than 20 seconds. However, when allowing higher running times
of up to five minutes, GRASP clearly outperforms the MA.
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Chapter 5 Application: Biometric Data Compression

Table 5.13: Average absolute compression ratios

instances δ̃
T k ρavg σρ ρ̃avg σρ̃

Fraunhofer

(30, 30) 20 4.81 2.13 34.50 12.08
(30, 30, 30) 20 4.41 3.27 36.08 14.34

(30, 30) 30 7.94 1.73 18.20 7.68
(30, 30, 30) 30 5.98 3.23 17.68 10.11

NIST

(80, 80) 20 10.46 1.52 82.45 2.18
(80, 80, 80) 20 9.47 2.87 82.25 2.21

(80, 80) 40 15.41 2.26 65.92 4.15
(80, 80, 80) 40 15.26 2.97 65.84 4.38

(80, 80) 60 15.85 0.58 48.79 6.29
(80, 80, 80) 60 16.08 2.20 48.79 6.27

(80, 80) 80 16.31 1.99 30.49 8.25
(80, 80, 80) 80 15.49 3.26 29.76 9.03

5.10.5 Absolute Compression Ratios

In Section 5.10.2 we presented the compression ratios achievable on our test data by our
compression model in comparison to the trivial representation of the k selected points,
for which the size is given by equation (5.15). With respect to our particular application
background of fingerprint template verification not all entities considered in equation (5.17)
need to be encoded. In the following we describe which information can be neglected.

It is obviously not possible that two scans of the same finger yield exactly the same
minutiae. Distortions like rotations, scalings and shifts are always involved. Matching
algorithms thus have to account for such distortions in order to be able to reliably match
two minutiae sets from the same finger with e.g. different coordinate offset values. Con-
sequently we do not need to store such offset values in our compressed template as they
are of no importance for the matching algorithm. Therefore ConstData′ = 0. Moreover,
as we do not necessarily need all minutiae in order to perform a reliable matching (see
Section 5.10.3), the absolute compression ratios are much better than the values given in
Section 5.10.2, where the ratios are always related to the simple storage of k minutiae.
By absolute compression ratio ρ̃ we mean the ratio of the simple encoding size of the full
template, which is given by equation (5.15), to the compressed template with k points
given by equation (5.17) with ConstData′ = 0.

Whereas on the one hand the relative compression ratios are of more importance for
evaluating the magnitude of our compression model, the absolute compression ratios are
of higher importance for practical purposes on the other hand. Table 5.13 summarizes the
absolute compression ratios for the Fraunhofer and the NIST data.

148



5.11 Conclusions and Further Work

5.11 Conclusions and Further Work

We presented a new approach for compressing fingerprint templates, or more generally d-
dimensional data points. A subset of k data points is encoded via a directed spanning tree,
for which the arcs are represented by indices to a set of template arcs plus correction vectors
from a small domain. The selection of stored data points (nodes), the tree structure, and
the template arc dictionary are optimized at the same time with the objective to find a
feasible encoding requiring the least number of template arcs.

The general idea of compressing data by solving a graph-based combinatorial optimization
problem is completely novel to our knowledge. In our approach, we determine a (large)
set of candidate template arcs during preprocessing and then solve an extended variant of
the minimum label spanning tree problem. An exact branch-and-cut based algorithm as
well as heuristic approaches are investigated for the solution of the latter.

The compression ratios presented in Section 5.10.2 are not really compelling, as the data
instances do not contain many structural or redundant information, which would enable
higher compression. Nevertheless our experiments showed that our approach outperforms
several other well known compression techniques on these data sets. When considering
reasonable large values of k (i.e. k ≥ 20) that keep the false non-match rates reasonable
small, average absolute compression ratios of more than 30% can be achieved. Hence the
presented method can be suitable for compressing minutiae templates for embedding them
into images by watermarking techniques.

The presented branch-and-cut algorithm finds provably optimal solutions in a couple of
seconds in many cases. Unfortunately there are also instances for which the running
times are much too high for practical applications. For this reason we developed faster
metaheuristics and compared their running times and solution qualities. The MA turned
out to be very fast, in particular the Fraunhofer instances can be solved to optimality in
less than 10 seconds in almost every case. In contrast to the MA, GRASP is able to find
the best known solutions with very high probability also for the larger NIST instances.
Nevertheless, the running times are slightly higher and range from less than one minute
to more than three minutes in this case.

Moreover, it is possible to extend the model in order to eventually achieve higher com-
pression ratios. One such extension would be to permit tree arcs to be represented by a
sequence of multiple template arcs and corresponding correction vectors. This may on the
one hand reduce the number of template arcs, but also implies further storage overhead
for a more complex encoding and enhanced algorithmic complexity.
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Chapter 6

Conclusions

There are two rules to success in life: Rule #1. Don’t tell
people everything you know.

What is understood, need not be discussed.
Lauren Adam.

C
ontrary to the quite ironic introductory quotations of this final chapter,
we will now reflect the most important achievements of this thesis. It is
however in the nature of things that not all considered methods and ideas
gained incorporation into this thesis. It is though important to mention

potential links to further research and open questions, which will be done at the end of
each section in this chapter.

6.1 Heuristic Methods

In Chapter 3 a comprehensive review of existing work related to the minimum label span-
ning tree (MLST) problem has been presented. The methods consist of approximation
algorithms as well as metaheuristic techniques. Selected methods, like MVCA and GRASP
have been reimplemented in a slightly modified or improved version. Then we shifted at-
tention towards the ant colony optimization (ACO) metaheuristic. Several pheromone
models and algorithmic variants have been proposed and evaluated. Furthermore, local
search has been considered as a local method to improve promising solutions created by
artificial ants. The method showed decent performance with certain parameter settings,
i.e. results of good quality could be obtained relatively fast. With improved parameter set-
tings, implying longer running times, even better than the currently best known solutions
could be found for some of the largest instances of a frequently used MLST benchmark
set.
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Chapter 6 Conclusions

6.2 Exact Methods

In Chapter 4 we then focused on exact methods, primarily based on mixed integer pro-
gramming (MIP) techniques. Again, we started by reviewing existing exact approaches,
which can be roughly divided into methods based on MIP techniques and on the other
hand methods based on the A* algorithm. In the following several MIP formulations have
been proposed, including reproductions and reformulations of existing models, as well as
new formulations that have not yet been considered for the MLST problem. We have
shown how these formulations could be strengthened by new additional classes of valid
inequalities, and how cutting-planes could be separated efficiently within a branch-and-cut
algorithm. Furthermore it has been shown how lifted odd-hole inequalities can be applied
to the MLST problem, implying a strengthening of the model. All proposed models have
then been compared regarding their polyhedral properties. Although one of the newly pro-
posed formulations has a weaker LP-relaxation, it permits a fast cutting-plane separation.
In particular it has been shown that feasibility for any model based on directed connection
cuts can be achieved by a cutting-plane separation based on a fast depth first search al-
gorithm. Moreover we have proposed a branch-and-cut-and-price algorithm, starting with
a reduced set of labels and pricing in promising additional labels, potentially improving
the objective value, on demand. For the separation of the odd-hole inequalities we used a
heuristic approach based on a mixed integer formulation.

The chapter has then been closed with the presentation of the results of extensive com-
putational tests. The performance of the considered formulations together with certain
strengthening methods is strongly dependent on the particular class of input instances.
However, for most instances the new formulation has shown by far the best performance.
In the case of sparse graphs and a relatively low number of labels the single-commodity
flow formulation has also produced acceptable results. The directed cut formulation is only
beneficial for instances where the number of labels lies in the same order of magnitude
as the number of edges in the input graph. The proposed classes of inequalities consis-
tently improve all considered formulations from a theoretical and practical perspective.
Together with these inequalities the new formulations are able to solve larger instances to
optimality than previously proposed methods. The resulting branch-and-cut algorithm is
thus considered to be the state-of-the-art exact mathematical programming algorithm for
the MLST problem.

The branch-and-cut-and-price approach is only beneficial for graphs with huge amounts
of labels, but isolated single optima of very low objective value. The separation of odd-
hole inequalities is particularly beneficial for certain classes of instances of low to medium
density graphs and many labels. However, in this case a significant speedup has been
achieved for many groups of instances. Furthermore their application has made it possible
to solve more instances to optimality than without their separation.

The development of improved separation heuristics may even render their application
more beneficial. Again, ant colony optimization appears to be auspicious for this task
as pheromones are able to retain information about found odd-hole candidates that have
been shown to be invalid. Advances regarding such faster separation heuristics are not
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only important for the MLST problem, but also for the well-known set covering problem.
Regarding exact algorithms for the MLST problem it seems also promising to consider
certain constraint programming techniques. This is, however beyond the scope of this
thesis, and could be part of future research.

6.3 Application Scenario

Chapter 5 was finally devoted to the application of an extended version of the MLST prob-
lem to a particular application scenario. The considered situation is the compression of
fingerprint minutiae data to facilitate their embedding into passport images by watermark-
ing techniques. For this purpose a new compression model for unordered sets has been
proposed. To our best knowledge, this is the first approach to data compression directly
exploiting the property that the order of the given elements needs not to be preserved.
A further difference to existing compression approaches is the underlying combinatorial
model.

Compression is achieved by encoding a subset of the given points by means of a spanning
tree, which should be uniform regarding to the geometric information reflecting the relative
positions of the two points associated to the edges. The edges themselves are encoded by
a reference into a small set of “template arcs” and a small correction vector. Compression
will be achieved if the total number of required template arcs is sufficiently small.

More precisely the compression model is given by a directed version of the MLST problem
defined on complete graphs. The labels themselves correspond to the above mentioned
template arcs and are derived in a preprocessing step based on restricted enumeration.
To solve the resulting optimization problem several heuristic algorithms like greedy ran-
domized adaptive search procedures and genetic algorithms, but also exact methods like
branch-and-cut have been applied. Furthermore an improved exact branch-and-cut-and-
price method has been described, which does not require the preprocessing step anymore,
but rather creates new label variables on demand during the solution process. The pricing
problem, i.e. the determination of new labels to be added to the model is solved by an
algorithm based on a k-d tree data structure.

The last part of this chapter is devoted to a comprehensive computational study of the
proposed compression approach and corresponding solution methods. A comparison to
other compression techniques shows the superiority of this approach for the considered data
set. Computational experiments show the aptitude of the proposed methods regarding the
considered application.

Future work could consist of various extensions and improvements to the proposed com-
pression model. In this work we have focused on the derivation of a minimal codebook
w.r.t. a prespecified correction vector domain. The complementary view would be to min-
imize the correction vector domain according to a prespecified number of template arcs.
Optimizing over both parameters (the number of template arcs and the correction vector
domain) would eventually yield the best compression ratios, but also bears the challenge
of solving an even more difficult optimization problem. Further improvements could for
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Chapter 6 Conclusions

instance be the introduction of intermediate nodes, which need not to be connected to
the tree, but may be used to obtain solutions requiring less template arcs, and therefore
yield higher compression ratios. Such trees are well known as Steiner trees. However, from
the current point of view it remains unclear, how to determine such a set of intermediate
nodes. A further interesting idea would be to derive a model for a lossy compression, such
that the decoded vectors are close to, but not identical to the original ones. These ideas
might be interesting starting points for further research into this direction, but are beyond
the scope of this thesis.
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[35] G. Cornuéjols and A. Sassano. On the 0, 1 facets of the set covering polytope. Math.
Program., 43(1):45–55, 1989.

[36] G. Dantzig. Linear Programming and Extensions. Princeton University Press, Au-
gust 1998.

[37] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations
Research, 8(1):101–111, 1960.

[38] J. Denzinger, F. Informatik, U. Kaiserslautern, and T. Offermann. On cooperation
between evolutionary algorithms and other. In Search Paradigms, Proc. CEC-99,
pages 2317–2324, 1999.

[39] G. Desaulniers, J. Desrosiers, and M. M. Solomon, editors. Column Generation.
Springer, 2005.

[40] J. Desrosiers, F. Soumis, and M. Desrochers. Routing with time windows by column
generation. Networks, 14(4):545–565, 1984.

[41] O. Dietzel. Combinatorial Optimization for the Compression of Biometric Tem-
plates. Master’s thesis, Vienna University of Technology, Institute of Computer
Graphics and Algorithms, May 2008. supervised by G. Raidl and A. Chwatal.

[42] M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search strategy.
Technical Report 91-016, Politecnico di Milano, Italy, 1991.

157



Bibliography

[43] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part
B, 26:29–41, 1996.
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