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Abstract

In this paper we describe two approaches to solve a real-world multi-constrained network-design
problem. The objective is to select the cheapest subset of links in a given network which enables to
feasibly route messages from respective source to target nodes regarding various constraints. These
constraints include particular capacity and delay constraints for each message, as well as a global
delay constraint. Furthermore some messages may only be routed on connections supporting a secure
protocol. The problem is strongly NP-hard and larger instances cannot be solved to provable opti-
mality in practice. Hence, we present two heuristic approaches based on Lagrangean Decomposition
and Column Generation, which turned out to be well suited. From these methods we obtain lower
bounds as well as feasible solutions.
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1 Introduction

In this work we consider a complex large-scale network-design problem. The particular problem emerged
from an industry cooperation in the context of air traffic management. Various devices should be con-
nected by a uniform network in order to facilitate efficient information exchange. As these communications
(“messages”) are highly safety critical, several restrictions need to be taken into account. Most important,
it must be ensured that all messages can be routed in a given amount of time. Some communications
need to take place faster than others and the total time to route all messages must not exceed a given
time limit. In addition, some communications need to take place on secure network links, which usually
implies higher costs. The optimization goal is to derive a minimum cost network that is sufficient to
cover a simultaneous feasible routing of the given set of messages, which correspond to a maximum-load
scenario.

The rest of the paper is organized as follows: In Section 2 we give a formal problem definition by
presenting an Integer Linear Programming (ILP) formulation; then, in Section 3 we review underlying
literature; Sections 4 and 5 describe our approaches to solve the given problem by either Lagrangean
Decomposition (LD) or Column Generation (CG); after presenting some computational results in Section
6 we finally give our conclusions in Section 7.

1This work is supported by the Austrian Science Fund (FWF) under contract number P20342-N13.
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2 Problem Formulation

We are given an undirected graph G = (V,E) with a set of edges E defined on a set of nodes V = S∪T∪M
that is partitioned into source, target, and intermediate (Steiner) nodes, respectively. The edge set
E = E+ ∪E− ∪E∗ is partitioned into a set E+ of edges only supporting a secure protocol, a set E− only
supporting an insecure protocol and, a set E∗ of edges supporting both kinds of protocols.

Further we are given a set of m transports T which model all communications and messages that should
be sent over the network. Transport k is defined by the tuple (sk, tk, vk, σk, δk), where sk, tk ∈ V denote
the source and target nodes respectively, vk ∈ R+ the size of the transport and σk ∈ {0, 1} a Boolean
variable indicating if the transport is classified to take place over secure protocols only. Time-critical
transports need to be routed within specified time-limits δk > 0; otherwise we assume δk =∞.

For each edge we are further given nonnegative costs cij ≥ 0, delays dij ≥ 0 and capacities uij ≥ 0.
In addition to the edge costs, there are costs for the use of a certain protocol

(1) pk
ij =


min(psec, pinsec), if σk = 0 ∧ (i, j) ∈ E∗

pinsec, if (i, j) ∈ E−

psec, otherwise,

where psec ≥ 0 denotes the costs for the secure protocol and pinsec ≥ 0 the costs for the insecure protocol.
Delays for the use of a certain protocol are defined analogously by

(2) ak
ij =


min(asec, ainsec), if σk = 0 ∧ (i, j) ∈ E∗

ainsec, if (i, j) ∈ E−

asec, otherwise,

where asec ≥ 0 denotes the delay for the secure protocol and ainsec ≥ 0 the delay of the insecure protocol.
Here we assume that pinsec < psec implies that ainsec < asec and vice versa.

A solution to our problem consists of a feasible routing for each message k, i.e. a path from sk to tk,
satisfying the delay constraints, and we are interested in a minimum cost solution. Of course one arc can
be used by more than one transport, but as all transports are routed simultaneously, they must share its
capacity. In addition to the delay-restrictions for each transport, there exists a global delay-constraint,
which enforces the sum of all routing times to be less than a constant D.

We now formulate the problem as an ILP using a multi-commodity flow (MCF) approach, see [1].
For this purpose we define a directed graph G′ = (V,A), where (i, j) ∈ A ∧ (j, i) ∈ A exactly when
(i, j) ∈ E. Binary variables xij , ∀(i, j) ∈ E, indicate if an edge (i, j) ∈ E is used by any transport. The
routing-paths for each transport k are described by flow variables fk

ij ∈ {0, 1}, ∀(i, j) ∈ A, 1 ≤ k ≤ m,
indicating if arc (i, j) is used by this transport. We further define Ak = {(i, j) ∈ A | σk = 0∨(i, j) 6∈ E−},
and Ek analogously for the undirected case. These sets of arcs are appropriate for routing transport k
in correspondence to its security classification.

min
∑

(i,j)∈E

(
cij · xij︸ ︷︷ ︸

edge costs

+
m∑

k=1

fk
ij · pk

ij + fk
ji · pk

ji︸ ︷︷ ︸
protocol costs

)
(3a)

s.t.
∑

(i′,i)∈Ak|i′ 6=tk

fk
i′i −

∑
(i,i′′)∈Ak|i′′ 6=sk

fk
ii′′ = 0 ∀i ∈ V \{sk, tk}, k = 1, . . . ,m(3b)

∑
(sk,j)∈Ak

fk
skj = 1 ∀k = 1, . . . ,m(3c)

∑
(i,tk)∈Ak

fk
itk

= 1 ∀k = 1, . . . ,m(3d)
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m∑
k=1

(fk
ij · υk + fk

ji · υk) ≤ uij ∀(i, j) ∈ E(3e)

∑
(i,j)∈Ak

(dij + ak
ij) · fk

ij ≤ δk ∀k = 1, . . . ,m(3f)

m∑
k=1

∑
(i,j)∈A

(dij + ak
ij) · fk

ij ≤ D(3g)

xij ≥ fk
ij + fk

ji ∀k = 1, . . . ,m, (i, j) ∈ Ak(3h)

xij ∈ {0, 1} ∀(i, j) ∈ E(3i)

fk
ij ∈ {0, 1} ∀k = 1, . . . ,m, (i, j) ∈ A(3j)

The objective function (3a) minimizes total edge and protocol costs. The latter ones are proportional to
the number of transports routed over this arc. Each transport is required to be routed on an elementary
path, which is enforced by flow conservation equalities (3b, 3c, 3d). Inequalities (3e) ensure that the
capacity limit of each edge is not exceeded. Inequalities (3f) state that the delay constraint of each
transport must be fulfilled, and finally inequality (3g) restricts the sum over all delays to D.

3 Previous Work

A similar problem, related to the same industry project, has been presented and solved by POEMS in [5].
POEMS stands for Prototype Optimization with Evolved IMprovement Steps and is a metaheuristic
approach which does not provide quality guarantees. However, differences are that the total delay is
computed in another way and feasibility can be achieved by adding further delay in the case some capacity
constraints are exceeded. So far, no approaches based on mathematical programming techniques have
been published for our particular problem, and also no other methods to derive upper and lower bounds
exist. Nevertheless, similar multi-commodity flow problems with additional constraints have been studied
in literature, and methods like Lagrangean relaxation and column generation turned out to often be very
successful. Our particular problem can be classified as a generalization of the multi-commodity capacitated
network design problem [4], which is NP-hard. Differences are, however, that we additionally have to
consider delay constraints and distinguish between secure and insecure messages.

The extensively studied problem of searching a single shortest path not exceeding a certain resource
limit is referred to as constrained shortest path or constrained least cost problem [3]. This problem
is NP-hard as well. Anyway, many instances can viably be solved by preprocessing techniques with a
subsequent labeling algorithm based on dynamic programming. This algorithm is used by the Lagrangean
decomposition (LD) and column generation (CG) methods we propose in the following.

4 Lagrangean Decomposition

Directly solving the ILP as stated in Section 2 is only possible for relatively small problem instances.
By Lagrangean decomposition it is possible to compute lower bounds in relatively short time, and to
derive good heuristic solutions from these results. We can also expect the lower bounds to be better than
the ones obtained from an LP-relaxation as the integrality property holds. The main idea is to relax
the linking constraints (3h) as well as constraints (3e) and (3g) and iteratively adapt their Lagrangean
coefficients by the volume algorithm [2], which is a special variant of a subgradient algorithm. By basically
replacing fk

ij + fk
ji by variables bkij ∈ {0, 1}, ∀(i, j) ∈ E, and performing the relaxation we obtain:
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min
∑

(i,j)∈E

(
cij · xij +

m∑
k=1

bkij · pk
ij

)
(4a)

+
∑

(i,j)∈E

λij ·

(
m∑

k=1

(
bkij · υk

)
− uij

)
(4b)

+ λ′

 m∑
k=1

∑
(i,j)∈Ek

(
(dij + ak

ij) · bkij
)
−D

(4c)

+
m∑

k=1

∑
(i,j)∈E

λ′′k,ij

(
bkij − xij

)
(4d)

s.t. bkij ∈ Ck(4e) ∑
(i,j)∈Ek

(dij + ak
ij) · bkij ≤ min(δk, D) ∀k = 1, . . . ,m(4f)

bkij · υk ≤ uij ∀k = 1, . . . ,m, (i, j) ∈ Ek(4g)

xij ∈ {0, 1} ∀(i, j) ∈ E(4h)

bkij ∈ {0, 1} ∀(i, j) ∈ E(4i)

Here, Ck is the set of incidence vectors representing all feasible paths connecting sk with tk. To tighten
the model we keep the delay constraints (4f) in the ILP model. Constraints (4g) are only included for
completeness of the formulation; in our implementation they are already met by a preprocessing step
that just includes valid arcs for each transport k in the resulting subproblem. The objective function
(4a) to (4d) can be rewritten as follows

min − λ′ ·D +
∑

(i,j)∈E

(
(cij · xij − λij · uij)(5)

+
m∑

k=1

(
bkij ·

(
pk

ij + λij · υk + λ′ · (dij + ak
ij) + λ′′k,ij

)
− λ′′k,ij · xij

))
.(6)

We can observe that in this relaxation we have now k independent delay-constrained shortest path
problems to solve, where when considering transport k the new costs of an arc (i, j) are given by

(7) ĉkij = pk
ij + λij · υk + λ′(dij + ak

ij) + λ′′k,ij .

Each delay-constrained shortest path problem is solved by the algorithm from [3]. In a preprocessing step
unnecessary edges are removed from the graph, which already yields the optimal solution in many cases.
Otherwise the solution is obtained by a subsequent labeling algorithm, based on dynamic programming.
The values xij are set by simple inspection according to

(8) xij =

{
0, if cij −

∑m
k=1 λ

′′
k,ij > 0,

1, otherwise.
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Based on this formulation we can solve the LD by the volume algorithm, which is a refined subgradient
approach [2]. Afterwards, we try to derive a feasible solution by a Lagrangean heuristic. Paths obtained
by LD are iteratively added to the solution. If the capacities of some arcs are exceeded by a transport k,
the corresponding path is not added immediately. Instead our heuristic tries to find a new feasible path
for this transport on the graph with residual capacities. For more details on this procedure see [7].

5 Column Generation

Alternatively, by using a path-based formulation rather than a flow-formulation, we can approach the
problem by column generation; see [6] for a comprehensive review. Let Pk denote the set of all feasible,
i.e. delay-constrained, paths for each transport k when no other transports are considered.

A particular path for a transport k from sk to tk is denoted by ϕk ∈ Pk. To indicate if an arc (i, j)
belongs to path ϕk we use constants

(9) δϕk

ij =

{
1, if (i, j) ∈ ϕk

0, otherwise
∀k = 1, . . . ,m, (i, j) ∈ E.

For the total delay of a path δϕk

ij we further introduce constants

(10) a′ϕk
=

∑
(i,j)∈Ek

δϕk

ij ·
(
ak

ij + dij

)
,

and analogously for the protocol costs

(11) c′ϕk
=

∑
(i,j)∈Ek

δϕk

ij · p
k
ij .

To indicate if a path ϕk is selected we introduce the variable ωϕk
∈ {0, 1}. The problem can now be

described by the following constrained set covering model, which is our integer master problem (IMP).

min
m∑

k=1

∑
ϕk∈Pk

c′ϕk
· wϕk

+
∑

(i,j)∈E

cij · xij(12a)

s.t.
∑

ϕk∈Pk

wϕk
≥ 1 ∀k = 1, . . . ,m(12b)

∑
ϕk∈Pk

δϕk

ij · wϕk
≤ xij ∀k = 1, . . . ,m, (i, j) ∈ E(12c)

m∑
k=1

∑
ϕk∈Pk

aϕk
· wϕk

≤ D(12d)

m∑
k=1

∑
ϕk∈Pk

wϕk
· δϕk

ij · υk ≤ uij ∀(i, j) ∈ E(12e)

wϕk
∈ {0, 1} ∀ϕk ∈ Pk(12f)

The objective function (12a) minimizes the sum over all link and protocol costs. Inequalities (12b) ensure,
that at least one path is selected for each transport. Inequalities (12c) enforce the selection of the edges
used by the active paths. The global delay constraint is stated by inequality (12d), and the compliance
with the capacity constraints is guaranteed by inequalities (12e).
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We aim at solving the linear programming (LP) relaxation of the IMP, which is called (linear) master
problem (MP). To do so, we start with a small, restricted set of considered paths P̃k ⊂ Pk for each
transport. The corresponding LP is called restricted master problem (RMP). Then, we iteratively try to
find new variables corresponding to paths whose inclusion in the RMP can further improve the objective
value (pricing problem).

Let µk be the dual variables for inequalities (12b), πe,k the dual variables for inequalities (12c); let
further η be the dual variable for inequality (12d) and ρe the dual variables for inequalities (12e). Based
on our MP and these dual variables, the reduced costs for a path ϕk ∈ Pk are given by

(13) c̄ϕk
= c′ϕk

− µk +
∑
e∈ϕk

πe,k + aϕk
· η +

∑
e∈ϕk

ρeυk .

A solution to the pricing problem is a path with negative reduced costs. By adding the corresponding
variable to the model, the current solution of the RMP can be further improved. Such a path ϕk having
c̄ϕk

< 0 is thus a shortest path on a graph with arc costs

(14) ĉkij = pk
ij + πe,k + η · (aij + dij) + ρe · υk .

Note that this pricing problem corresponds to the subproblem in LD, and we therefore solve it again by
the algorithm from [3]. In order to create the initial set of variables of the RPM, we use a heuristic that
tries to find a feasible path for each transport, not considering mutual dependencies originating from the
capacity constraints. Then, in an iterative process, these paths are modified in order to become compliant
with the capacity constraints, if necessary. Again, the same heuristic as in LD is finally applied to derive
a heuristic solution to IMP.

6 Computational Results

In order to evaluate our algorithms we created artificial test instances with 25 to 1000 nodes and 100 to
1000 transports. We further considered various network densities and ratios c̄ij/p̄ij , where c̄ij and p̄ij

denote average link and protocol costs, respectively. Instances with |V | ≤ 30, |T | ≤ 200, |A| ≤ 10 · |V |
and c̄ij/p̄ij ≈ 1 can typically be solved to proven optimality within a couple of minutes by directly solving
the MCF model. For a subset of these instances we show the average optimality gaps of the upper- and
lower bounds obtained by LD and CG in Table 1. Each group of instances (first column) contains nine
instances with different network densities. Optimal solution values have been obtained by directly solving
the ILP-model (3). For this purpose, as well as for the solution of the RMP of the CG, we used ILOG
CPLEX in version 11.0. Runtimes of LD and CG have been limited to 1000 seconds and all tests have
been performed on a Dual Core AMD Opteron 2214 machine with 4 GB RAM.

For larger instances feasible solutions can usually be obtained within a couple of seconds (mainly by
the primal heuristic), but finding optimal solutions is no longer possible. By the LD and CG approaches
high quality solutions can be obtained in particular for instances with c̄ij/p̄ij ≈ 1. Table 2 shows the
results for some larger instances. The first two columns list average gaps between upper and lower bounds
of LD and CG, respectively, while the third column shows gaps between the best bounds of both methods.
One can see that LR is superior to CG in most cases, however, using the best lower and upper bounds
from both methods the best average gaps, see the last column of Table 2.

7 Conclusions and Future Work

In this work we presented new approaches to solve a real-world multi-constraint network design problem
including a multi-commodity flow model and heuristic methods based on Lagrangean decomposition and
column generation. Our results indicate that these methods are capable of finding high quality solutions
of reasonably sized input instances in relatively short time. In particular for the column generation
approach, however, further improvements like applying stabilization techniques [6] seem to be promising
and will be part of future work.
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Table 1: Average %-gaps (and standard deviations) of LD and CG w.r.t. optimal solution values.

Lagrangean decomp. column gen.
inst. (|V |, |T |) LB [%] UB [%] tavg[s] LB[%] UB[%] tavg[s]

25,100 -0.95 (0.33) 5.17 (2.48) 87 -11.91 (33.03) 5.91 (8.57) 11
25,200 -0.64 (0.44) 4.18 (1.35) 334 -11.57 (33.16) 3.51 (2.85) 28
30,100 -1.30 (0.50) 6.05 (3.18) 225 -1.28 (0.50) 3.43 (1.57) 14
30,200 -0.74 (0.25) 4.98 (2.69) 528 -0.72 (0.24) 4.43 (3.22) 36

Table 2: Average gaps (and standard deviations) of LD and CG for larger problem instances between
lower and upper bounds.

inst. (|V |, |T |) LD-gap [%] tavg[s] CG-gap [%] tavg[s] total gap [%]

50,100 9.47 (2.63) 361 6.80 (2.30) 84 6.80 (2.30)
50,200 12.08 (0.97) 581 27.93 (40.88) 515 8.30 (2.38)
100,100 11.22 (3.71) 665 17.14 (31.16) 487 6.68 (2.30)
100,200 16.31 (3.22) 926 90.26 (29.21) 946 15.66 (2.07)
500,100 14.23 (4.11) 1000 100.00 (0.00) 1000 14.23 (4.11)
500,200 21.95 (2.75) 1000 100.00 (0.00) 1000 21.83 (2.81)
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