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Abstract. In this work we consider the application of metaheuristic al-
gorithms to the problem of fitting rectangular signals to time-data series.
The application background is to search for transit signals of exoplanets
in stellar photometric observation data. The presented algorithms in-
clude an Evolution Strategy and Differential Evolution; both algorithms
use an efficient reduction of the search space by exactly solving a subprob-
lem. The presented results affirm the presented methods to be promising
and effective tools for the discovery of the first multi-transit planetary
system.

1 Introduction

Fitting parametrized models to data series is a frequently performed task in
scientific computing. Nevertheless, finding (near-)optimal fits of superposed pe-
riodical signals to time-series data becomes a non-trivial problem when non-
sinusoidal models are considered. In this case it is not always possible to derive
good model parameters from the Fourier spectrum. Noisy data may further
complicate this task. Finding good fits, which is in fact a continuous parameter
optimization problem, is a computationally challenging task under these circum-
stances. In this work, we consider the problem of fitting rectangular signals to
time-data series, and present metaheuristic algorithms to solve the problem.

2 Problem Description

The particular application background comes from the field of astronomy, in
particular the problem of finding signals from transiting exoplanets in stellar
photometric light-curves. For a comprehensive overview on exoplanets and de-
tection methods see [1]. A transiting planet periodically shadows some of the
light from its host star for a short time when it moves into our line of sight to
the star. During the transit the luminosity of the star is marginally reduced. By
neglecting the in- and egress phases, the transit-lightcurve can be well approx-
imated by a periodic rectangular signal. The corresponding parameters are the
period p the transit occurs with, a phase offset τ , the length l of the transit, and
finally the transit depth d. The latter parameter corresponds to the percentage
of light from the star being shadowed by the transiting planet. Figure 1 depicts
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Fig. 1. Transiting planet and corresponding lightcurve

the situation for a single planet. Assuming M planets, the signal of the model
at time t is given by

φ(t) = f∗ −
M∑
j=1

χtjdj , (1)

where f∗ denotes a further parameter describing the regular flux (luminosity) of
the host star; χtj indicates if planet j is transiting at time t and is given by

χtj =
{1 if τj < t mod pj ≤ τj + lj

0 otherwise. (2)

The observed data series is given by a list of {(ti, fi)}, 1 ≤ i ≤ N , where ti
denotes a particular observation time and fi the observed photon flux (i.e. lumi-
nosity) at that given time. Let further mj = (pj , lj , dj , τj) and hence m be the
vector of all model parameters (except f∗). The overall quality of the fit can be
characterized by the root mean square error

f(m, f∗, t,f) =

√√√√ 1
N

N∑
i=1

(fi − φ(ti))2. (3)

The overall objective is to find a parameter setup for m and f∗ minimizing
Eq. (3), i.e. to find a model with minimal deviation from the observations. Due
to stellar fluctuations and measurement errors real-world instances contain noisy
signals. The signal-to-noise ratios can be expected to be very low, i.e. the re-
spective values of dj will be in the same order of magnitude as the standard
deviation σf of the input values.

3 Previous Work

Several applications of genetic algorithms in astronomy are outlined in [2], and
have since then been successfully applied for many purposes. In particular for
the detection of exoplanets, evolutionary algorithms have been used with some



success. For instance, an evolution strategy for fitting Keplerian models to radial
velocity data is described in [3].

The development of efficient transit detection algorithms has recently gained
more interest in the scientific community, as space-based missions like CoRoT1

provide a great amount of observational data. One of the most popular ap-
proaches is the box fitting least-square algorithm [4]. This approach, as well as
phase dispersion minimization [5] have the main drawback, that they are only
directly applicable for finding single planet transits.

So far, no multi-planet system could be discovered by the transit method,
which is possibly due to the difficulty of detecting their signals in (existing)
observational data. More efficient techniques to tackle this numeric optimization
problem would thus be a valuable contribution to exoplanet research.

4 Improvement and Evaluation of Candidate Solutions

The overall search process becomes more efficient when optimal values of depths
dj are derived from pj , lj , τj for each planet j. For this purpose we introduce
binary flags (b1, . . . , bM ) for each observation point oi = (ti, fi), i = 1, . . . , N ,
indicating which planet is transiting at the given time. These flags can be inter-
preted as integer number with binary representation b1b2 . . . bM ∈ [0, 2M − 1],
implying a partitioning of the set O = {o1, . . . , oN} of all observation points
O = O0 ∪ O1 ∪ . . . ∪ O2M−1. Assuming two planets M = 2 we obtain the set of
out-of-transit observations O0, the sets O1, O2 of transit events of planets one
and two respectively, and the set O3 where planets one and two are transiting
simultaneously. Optimal transit depths can be derived by minimizing

f(d) =
N∑
i=1

(fi − (f∗ −
M∑
j=1

χijdj))
2, (4)

which can be achieved by solving the system of linear equations resulting from
∂f(d)
∂dk

= 2
∑N
i=1

(
fi − f∗ +

∑M
j=1 χ

i
jdj

)
· χik = 0 for all k = 1, . . . ,M . Let f̂K =∑

i∈
S

k∈K Ok
fi,K ⊆ {0, . . . , 2M − 1} denote the sum of the observed photon

fluxes from groups
⋃
k∈K Ok, and f̂ =

∑N
i=1 fi analogously. Let further nK =

|
⋃
k∈K Ok| and χ̃ij , j = 1, . . . , 2M − 1, i = 1, . . . , N indicate if observation i

belongs to group j. For the case M = 2 we can now derive a direct expression by
the partial derivative ∂f(d)

∂d1
= 2·

∑N
i=1

(
fi − 2f∗ + 2

∑2M−1
j=1 χ̃ijdj

)
·
(
χ̃i1 + χ̃i3

)
= 0

from which we obtain

d1 = f∗ − f̂1,3

n1,3
− n3

n1,3
· d2, and d2 = f∗ − f̂2,3

n2,3
− n3

n2,3
· d1, (5)

where f∗ = f̂0/n0. By inserting d2 into the equation for d1 we obtain

d1 =
(

(1− n3

n1,3
)f̂0 − 1

n2,3
f̂2,3 +

n3

n1,3 · n2,3
f̂2,3

)
·
(

1− n2
3

n1,3 · n2,3

)−1

, (6)

and a corresponding equation for d2 by inserting d1 into the equation for d2.
1 CoRoT: Convection Rotation and planetary Transits; European space telescope



5 Fitness-Landscape Analysis

In order to evaluate the applicability of metaheuristics for solving this problem,
we performed a comprehensive fitness-landscape analysis. For this purpose we
created numerous test instances containing signals from two planets. For each
configuration we created multiple instances with different signal-to-noise ratios.
Figure 2 shows the fitness-distance correlation for one typical instance. For the
measure of the distances to the global optimum we used simple Euclidean dis-
tances. The left plot shows the view of the whole parameter space. One can
see that there is almost no correlation of fitness values to the distances to the
global optimum. All points have roughly the same value, which corresponds to
the level of noise of the input instance. This effect is due to adjustment of the
model transit-depths and the out-of-transit stellar flux according to the other
(randomly created) parameter values, as described in Section 4. As a conse-
quence the depths are set to zero for most configurations, and the out-of-transit
stellar flux is set to the average value of all data points. Values higher than this
average seldomly occur when the out-of-transit average (due to the model) is
lower than the in-transit average value.

Fig. 2. Fitness-distance correlation diagrams, for the whole parameter-space (left), and
a restricted parameter space close to the global optimum solution (right)

The right plot of Fig. 2 shows a closer view to the global optimum. Here, param-
eter values have been enumerated in a discretized way such that all distances are
smaller than 0.42. This plot clearly shows that a strong correlation of distances
to fitness values appears when coming close to the global optimum. These results
indicate that it is very hard to find the region of the global optimum, but if that
region has been found, it is relatively easy to find the global optimum itself.
For problems with these properties metaheuristic algorithms are known to be a
good choice. For the particular case, they must facilitate effective mechanisms
for self-adaptation, i.e. to facilitate an explorative search process until the region
of the global optimum is found, and then change their behavior to a fine grained
exploitative search.



6 Metaheuristic Algorithms

There exists a variety of algorithms for heuristically solving difficult continu-
ous parameter optimization problems like Evolution Strategies (ES), Differential
Evolution (DE) and Continuous Scatter Search (CSS) [6–8]. These algorithms
are population-based approaches, iteratively modifying and evaluating a set of
candidate solutions. In order to find strengths and drawbacks of these methods
w.r.t. this particular problem we implemented them without major modifica-
tions. Preceding experiments showed that concerning our problem ES and DE
are clearly superior to CSS, as the latter one suffers from relatively time con-
suming subset generation. Hence, we now focus on ES and DE, which are briefly
described in the following.

Individuals are directly encoded as vectors of real values in both approaches.
Both algorithms do not use any local optimization method, except the tech-
niques described in Section 4. General purpose local optimizers as for instance
the Nelder-Mead method [9] turned out to be too time-consuming, and are, as
indicated by the Figure 2, only beneficial if already very close to the global
optimum. They are therefore not used in our evaluation.

6.1 Evolution Strategy

The ES can be classified as a (µ, λ)-ES with self-adaptation of strategy param-
eters [10], where µ denotes the size of the population and λ the number of
offsprings created in each generation. It turned out to be advantageous to use a
variant of elitist-selection which creates the new population by deterministically
taking the best µ individuals from the µ parents and λ offsprings, but taking at
most µ̂ individuals from the parents. Hence, our selection is in fact in-between
(µ+ λ)-selection and (µ, λ)-selection.

Mutation is considered to be the primary operator and is performed by adding
Gaussian random values to the parameters xk (see Eq. (9)), where the standard
deviation is given by a strategy parameter σk, associated with each parameter.

x′k = xk +Nk(0, σ′k) (7)

These strategy parameters are also modified by the evolutionary operators, which
facilitates self-adaption of the search process.

σ′k = σk · eN(0,τ0)+Nk(0,τ) (8)

After the application of the evolutionary operators, the optimal transit-depths
dj , j = 1, . . . ,M are calculated before fitness function evaluation. If some depth
is set to 0.0 – implying that this particular planet-model does not improve the
quality of the fit at all – a new random planet is created on this position, which
might increase diversity among the population. Prior to mutation recombina-
tion operators might be applied with some probability. We use the intermediate
recombination, given by

x′k = αk · x1
k + (1− αk)x2

k, (9)



where x1
k and x2

k denote the parameters of the parents and αk is a uniform
random number from the interval [−β, 1 +β] for each parameter k, where β = 1

2
turned out to be most successful.

6.2 Differential Evolution

Differential Evolution (DE) is a particular variant of an evolutionary algorithm,
operating on a population of individuals which are encoded by a vector of real
parameter values. Mutation is performed by combining three randomly selected
individuals with indices (r1, r2 and r3) to a new individual vi,t+1 by

vji,t+1 = xjr1,t + F · (xjr2,t − x
j
r3,t), (10)

where F ∈ [0, 2]. Using the notation ui,t+1 = (u1
i,t+1, u

2
i,t+1, . . . , u

3·M
i,t+1) for a

particular individual, crossover is given by

uji,t+1 =

{
vji,t+1 if rj ≤ CR ∨ j = ri

xji,t if rj > CR ∧ j 6= ri
(11)

where CR ∈ [0, 1] denotes the crossoverrate and rj , ri ∈ [0, 1] random numbers.
The new individual xi,t+1 is obtained by

xi,t+1 =

{
ui,t if f(ui,t) < f(xi,t)
xi,t otherwise.

(12)

7 Results

For an extensive evaluation of our algorithms we created artificial test-instances.
Real stellar signals typically do not only contain the rough (nearly) rectangular
signals from the transiting planet, but also portions of stellar jitter and measure-
ment errors. We take this into account by adding Gaussian random variables to
each data point in the artificial signal. We thus create three instances for each
configuration: one strictly rectangular signal and two noisy ones with different
standard deviations.

Table 1 shows the results of 50 independent runs for various test instances.
The first part shows the results for single signals, whereas the second part con-
tains two-planet signals. For each algorithm we report the percentage of times
where optimal solutions have been obtained and the average running times. Each
column contains three values corresponding to signals without noise and with
noise of σ = 100 and σ = 300 for the particular instances respectively. For
some instances no results are available (indicated by “n/a”), as the algorithm
stopped prematuerly because of many solutions having lower fitness values than
the solution of the artificial signal.

For both algorithms we set the number of maximum iterations to 1000. We
did not impose a time limit, but runs have been stopped when the global opti-
mum was found. With “global optimum” we refer to a solution which is close



Table 1. Test-instances and corresponding success ratios of evolution strategy and
differential evolution and average running times

Instance- Parameters (50/100,500)-ES DE (|P | = 200)
name p l d τ (% opt.) tavg[s] (% opt.) tavg[s]

art-100 1.0 0.10 100.0 0.5 100,100, 62 34, 34,311 100,100, 86 181,196,207
art-101 1.0 0.10 500.0 0.5 100,100,100 26, 19, 31 100,100,100 182,192,217
art-102 2.0 0.10 100.0 0.5 100,100, 28 12, 13,313 100,100, 28 129,135, 65
art-103 2.0 0.10 500.0 0.5 100,100,100 15, 12, 13 100,100,100 127,159,132
art-104 2.0 0.10 100.0 0.5 100,100, 94 12, 14, 48 100,100,100 108,109,140
art-105 2.0 0.05 500.0 0.5 100, 90,n/a 13, 49,n/a 100,100,n/a 103,115,137
art-106 1.0 0.05 500.0 0.5 98, 96, 70 22, 37,134 100,100,100 264,164,161
art-107 1.0 0.05 300.0 0.5 100,100, 46 23, 24,296 100,100, 86 159,155,180
art-108 1.0 0.05 100.0 0.5 94, 96,n/a 37, 27,n/a 100,100,n/a 162,164, 52
art-109 1.0 0.02 500.0 0.5 70, 72, 4 46, 60,576 100,100, 0 136,141,192
art-110 1.0 0.02 300.0 0.5 86, 76, 4 30, 61,498 100,100, 8 137,149,291
art-111 1.0 0.02 100.0 0.5 82, 26,n/a 38,208,n/a 100, 44,n/a 149,147,163

art-210 1.0/2.2 0.10/0.10 500.0/500.0 0.5/1.0 92, 90, 94 205,322,252 12, 12,n/a 526,531,602
art-211 1.0/2.2 0.10/0.10 500.0/300.0 0.5/1.0 98, 92, 80 314,318,422 56, 36, 8 518,527,616
art-212 1.0/2.2 0.10/0.05 300.0/500.0 0.5/1.0 78, 78, 48 322,440,658 20, 12, 28 479,453,475
art-213 1.0/2.2 0.05/0.05 500.0/500.0 0.5/1.0 88, 88, 46 374,601,663 0, 0, 0 481,500,474
art-214 1.0/7.5 0.05/0.20 400.0/500.0 0.5/1.0 54, 52, 40 316,306,396 32, 28, 14 217,328,340
art-215 1.0/7.5 0.10/0.20 400.0/500.0 0.5/1.0 72, 78, 72 348,339,312 100,100, 98 607,597,446
art-216 1.0/3.1 0.05/0.10 400.0/500.0 0.5/1.0 56, 60, 4 316,483,735 12, 6, 2 351,355,426
art-217 1.0/3.1 0.05/0.10 500.0/400.0 0.5/1.0 66, 76, 18 382,525,720 0, 0, 4 447,466,418
art-218 1.0/3.1 0.05/0.10 500.0/300.0 0.5/1.0 82, 72, 22 594,770,831 0, 0, 6 451,477,472
art-219 1.0/3.1 0.05/0.10 500.0/200.0 0.5/1.0 74, 76, 4 744,647,807 0, 2, 0 481,479,484

to the artificial signal and has the same (or lower) objective function value. Al-
tough unlikely, better solutions might exist, i.e. solutions where arbitrary fitting
of the noise yields lower deviations to the observations than the original im-
posed signal. Such situations are indicated by “n/a” in Table 1, as the algorithm
is prematurely stopped in these cases.

For ES we used the parameter setting µ = 100, λ = 500, and µ̂ = 50. Prior to
mutation we performed intermediate recombination for the strategy parameters
and parameters with a probability of 0.8. For the DE algorithm we used F =
1, CR = 0.5 and a population size of 200.

For both algorithms we used the parameter-space reduction as described in
Section 4 and an advanced method to speed up the fitness-function evaluation
which is beyond the scope of this paper. The optimal calculation of the depths
significantly improves the ability of the algorithm to improve existing solutions
quickly. All tests have been performed on a heterogenous cluster mostly consist-
ing of recent hardware like Intel Core2 Quad, Intel Xeon and Dual-Core AMD
Opteron processors.

The results show that optimal solutions can be obtained with high probabil-
ity and acceptable running times for these data instances. Although not part of
this work, we want to emphasize that the algorithms have comparable perfor-
mance on real data-instances obtained from the CoRoT space telescope, which
are known to contain planetary signals. For this purpose we added additional
artificial signals to selected data instances, as so far no multi-planet signals have
been found in this data.



8 Conclusions and Future Work

Both algorithms, ES and DE, exhibit a good performance and robustness on the
test-instances presented in Section 7. Generally the ES converges faster which
is mainly due to the effectiveness of the self-adaptation mechanism regarding
the particular structure of the solution space. Although the DE algorithm gen-
erally requires longer running times, for some instances higher success ratios are
obtained. Hence, both approaches have a justification to be used in practice.

An important part of transit detection algorithms, not considered in this
work, is to compute a value indicating the statistic significance of the resulting
fit. Such a measure enables to distinguish real signals from signals containing just
noise and non-periodic signals and obviously should keep the false-alarm prob-
ability to a reasonably small rate. Techniques, currently used for single-planet
signals (e.g. see [4]) are not directly applicable to multi-planet fits obtained by
this approach. Hence we currently simply use the ratio between the standard
deviation of the obtained fit to the standard deviation of the raw data, or alter-
natively Student’s t-test in order to test if the in-transit levels have significantly
different values in comparison to the out-of-transit levels. More extensive (blind)
testing needs to be performed to asses the reliability of these approaches, but
also more elaborate techniques might be necessary. Nevertheless, it is likely that
current indicators are already able to select a reasonable subset of candidates
from the huge amount of real-world input-data being worth analyzed in more
detail subsequently. The application of the presented algorithms to yet publicly
available CoRoT data is ongoing.
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