
Favoritenstraße 9-11 / E186, A-1040 Wien, Austria
Tel. +43 (1) 58801-18601, Fax +43 (1) 58801-18699
www.cg.tuwien.ac.at

Forschungsbericht / Technical Report

TECHNISCHE UNIVERSITÄT WIEN
Institut für Computergraphik und Algorithmen

Solving an Extended Minimum

Label Spanning Tree Problem to

Compress Fingerprint Templates

Andreas M. Chwatal and Günther R. Raidl and

Karin Oberlechner

TR–186–1–08–01

September 2008

Noname manuscript No.
(will be inserted by the editor)

Solving an Extended Minimum Label Spanning Tree

Problem to Compress Fingerprint Templates

Andreas M. Chwatal · Günther R. Raidl ·

Karin Oberlechner

Received: dd. mm. yyyy / Accepted: dd. mm. yyy

Abstract We present a novel approach for compressing relatively small unordered

data sets by means of combinatorial optimization. The application background comes

from the field of biometrics, where the embedding of fingerprint template data into

images by means of watermarking techniques requires extraordinary compression tech-

niques. The approach is based on the construction of a directed tree, covering a suffi-

cient subset of the data points. The arcs are stored via referencing a dictionary, which

contains “typical” arcs w.r.t. the particular tree solution. By solving a tree-based com-

binatorial optimization problem we are able to find a compact representation of the

input data. As optimization method we use on the one hand an exact branch-and-cut

approach, and on the other hand heuristics including a greedy randomized adaptive

search procedure (GRASP) and a memetic algorithm. Experimental results show that

our method is able to achieve higher compression rates for fingerprint (minutiae) data

than several standard compression algorithms.

Keywords combinatorial optimization · metaheuristics · GRASP · memetic

algorithm · biometric template compression · fingerprint minutiae · unordered data

set compression

1 Introduction

In this work, we describe a new possibility for compressing relatively small unordered

data sets. Our particular application background is to encode fingerprint template data

by means of watermarking techniques (see [13]) e.g. in images of identification cards

as an additional security feature. Since the amount of information that can be stored

by means of watermarking is very limited, extraordinary compression mechanisms are

required in order to achieve reasonably small error rates when finally checking finger-

prints against the encoded templates.

Institute of Computer Graphics and Algorithms
Vienna University of Technology
Vienna, Austria
E-mail: chwatal@ads.tuwien.ac.at, raidl@ads.tuwien.ac.at, karin.oberlechner@gmail.com

2

θ

x

y

Fig. 1 Minutiae points of a fingerprint image. The right figure shows the cartesian coordinates
x and y of a specific minutiae point, as well as its orientation θ. Together with its type (e.g.
ridge ending, bifurcation, etc.) one minutiae point can be described as a 4-tuple (x, y, θ, t).

Having a scanned fingerprint image, traditional image processing techniques are

applied for determining its minutiae, which are points of interest such as bifurcations,

crossover, and ridge endings. Fingerprint matching algorithms are usually based on

these minutiae data [17]. Typically, 15 to 80 minutiae are extracted from a single

fingerprint, and for each we obtain as attributes its type t (e.g. ridge ending, bifurcation,

etc.), x and y coordinates, and an angle θ (see Fig. 1). A minutia can thus be interpreted

as a four-dimensional vector. The task we focus on here is the selection of an arbitrary

subset of k minutiae in combination with its lossless encoding in a highly compact way,

with k being a prespecified number.

For this purpose we formulate the problem as a combinatorial optimization prob-

lem, in particular a variant of the well known Minimum Label Spanning Tree (MLST)

Problem [3]. By finding optimal or near-optimal solutions to this problem, we can rep-

resent the minutia data by means of a directed tree spanning k nodes, where each edge

is encoded by a reference to a small set of template arcs and a small correction vector.

The paper is organized as follows: After a review of related work in Section 2 we

give a detailed and more formal problem description in Sections 3 and 4. Section 5

describes the preprocessing which actually computes the labels from the input data.

Section 6 presents a branch-and-cut algorithm to solve the MLST problem variant

to optimality. To achieve shorter running times for practical purposes metaheuristics

are applied to solve the problem approximately. A greedy randomized adaptive search

procedure and a memetic algorithm are described in detail in Section 7. In Section 8 we

explicitly describe how to encode a solution on a binary level. Finally, we present the

results from our computational experiments in Section 9, and conclusions are drawn in

Section 10.

2 Previous Work

In general, data compression creates a compact representation of some input data by

exhibiting certain structures and redundancies within these data. Various well estab-

lished techniques exist for diverse fields of applications like text-, image-, and audio-

compression.

For instance entropy based methods like Huffman coding or arithmetic coding are

well approved in the field of lossless text compression. Alternatively, dictionary coders

3

like the well known LZ77 and LZ78 [27, 28] try to account for (repeating) structures

in the text by means of a dictionary. The idea of a dictionary can also be found in

other compression techniques specialized for image-, audio- or video-compression. For

example, consider the lossy vector quantization method for image compression. Hereby

the input data is grouped in blocks of length L, and the respective elements of such a

block correspond to the components of a vector of size L. The image is represented by

subsequent references to the most similar vector in the codebook, a list of typical and

frequently occuring vectors. For a comprehensive review of data compression techniques

see [22].

Our approach follows this general idea of using a dictionary or codebook, but its

determination as well as its usage is very different to the existing methods. Before going

into details we point out the limitations and peculiarities of our approach.

If k is equal to the number of input data points our approach encodes the input

data in a lossless way; for lower values of k the method can be considered a special

form of lossy compression.

As we are not interested in the respective order of the minutiae, the initial sequence

need not to be preserved. In this case a theoretical bound for the encoding length of

O(log k) exists [23]. As our encoding as directed k-node spanning tree does not preserve

the relative order of the minutiae it can be interpreted as an attempt to benefit from

the absence of the requirement to preserve the order.

In [6] we originally presented our compression model and outlined a GRASP algo-

rithm to solve the associated optimization problem heuristically. An exact branch-and-

cut approach was presented in [5, 20].

In this paper we describe the compression model in depth. Moreover we give a

detailed description of the preprocessing method for the first time. In addition to

a more extensive description of the exact branch-and-cut method and the GRASP

approach we present a new memetic algorithm to solve our optimization problem.

Finally we present a comprehensive evaluation of our results for the first time, including

a detailed description of the test instances, an overview about the compression ratios,

and algorithmic results including the respective running times.

3 Tree-Based Compression Model

More formally, we consider as raw data n d-dimensional points (vectors) V =

{v1, . . . , vn} from a discrete domain D = {0, . . . , ṽ1 − 1} × . . . × {0, . . . , ṽd − 1} cor-

responding to our minutiae data (d = 4 in the above described application scenario).

The domain limits ṽ1, . . . , ṽd ∈ N represent the individual sizes and resolutions of the

d dimensions.

Our aim is to select k of these n points and to connect them by an outgoing

arborescence, i.e. a directed k-node spanning tree. For this we start with a complete

directed graph G = (V, A) with A = {(u, v) | u, v ∈ V, u 6= v} on which we search for the

optimal arborescence by optimization. Each node in this complete graph corresponds

exactly to one of the n points (vectors) and is therefore denoted by the same label vi, i ∈

[0, n]. Consequently, each arc of the arborescence represents the relative geometric

position of its end point in dependence of its starting point.

In addition, we use a small set of specially chosen template arcs. Instead of storing

for each tree arc its length in any of the d dimensions, we encode it more tightly by

4

template arc
correction vector

correction vector domain

Fig. 2 Encoding of some tree arc by means of a template arc and a (small) correction vector

template arcs

Fig. 3 Illustration to the encoding of points via a directed spanning tree using a codebook of
template arcs; correction vectors are omitted

a reference to the most similar template arc and a so called correction vector from a

small domain (see Fig. 2). Thus, the set of template arcs acts as a codebook (Fig. 3).

In order to achieve a high compression rate, we optimize the selection of the k

encoded points, the tree structure, and the used template arcs simultaneously. The

domain for the correction vectors is pre-specified, while the number of template arcs is

the objective to be minimized. Another possibility would be to prespecify the number

of template arcs and minimize the correction vector domain. This approach, however,

is not part of this work and could be a topic of further research.

Having solved this optimization problem, we finally store as compressed information

the template arc set and the tree. The latter is encoded by traversing it with depth-

first search; at each step we write one bit indicating whether a new arc has been

traversed to reach a yet unvisited node or backtracking along one arc took place.

When following a new arc, a reference to its template arc plus the (small) correction

vector are additionally written.

More formally, a solution to our problem consists of

1. a vector of template arcs T = (t1, . . . , tm) ∈ D
m of arbitrary size m representing

the codebook, and

2. a rooted, outgoing tree GT = (VT , AT) with VT ⊆ V and AT ⊆ A connecting

precisely |VT | = k nodes, in which each tree arc (i, j) ∈ AT has associated

– a template arc index κi,j ∈ {1, . . . , m} and

– a correction vector δi,j ∈ D
′ from a pre-specified, small domain D

′ ⊆ D with

D
′ = {0, . . . , δ̃1 − 1} × . . .× {0, . . . , δ̃d − 1}.

For any two points vi and vj connected by a tree arc (i, j) ∈ AT the relation

vj = (vi + tκi,j + δi,j) mod ṽ, ∀(i, j) ∈ AT , (1)

5

must hold; i.e. vj can be derived from vi by adding the corresponding template and

correction vectors. The modulo-calculation is performed in order to always stay within

a finite ring, so there is no need for negative values and we do not have to explicitly

consider domain boundaries.

Our main objective is now to find a feasible solution with a smallest possible code-

book size, i.e. which requires a minimal number m of template arcs.

4 Reformulation as a Minimum Label k-Node Subtree Problem

We approach the problem of finding a smallest possible codebook of template arcs

together with a feasible tree as follows: First we derive a large set T c of candidate

template arcs (see Section 5); then we assign to each arc (i, j) ∈ A all template arcs

T c(aij) ⊆ T c that are able to represent it w.r.t. equation (1). Secondly we optimize

the codebook by selecting a minimal subset T ⊆ T c allowing a feasible tree encoding.

The remaining problem in the second part of this approach is related to the Mini-

mum Label Spanning Tree (MLST) Problem, first introduced in [3]. In this problem an

undirected graph is given and each edge has associated a label from a discrete label set.

The objective is to find a spanning tree whose edges correspond to a minimum set of

labels. The problem is known to be NP-hard, which can be easily shown by a reduction

from the set cover problem [3]. In [14] the authors show that the MLST problem is not

approximable within a constant factor.

In our problem the candidate template arcs T c correspond to the labels. Major

differences are, however, that we have to consider complete directed graphs, multi-

ple labels may be assigned to an arc, and the labels come up with certain geometric

properties.

Altough we do not have a proof yet, there are strong hints that the problem remains

NP-hard in this version. Consider the situation, where an arborescence is prespecified

and its optimal labelling should be found by optimization. Due to the geometric prop-

erties of the arcs and the labels this problem is equivalent to the rectangle covering

problem, which is known to be NP-complete [11].

Another major extension to the MLST problem is the fact that not all nodes but

only an arbitrary subset of size k shall be connected in general. We call the resulting

version of the MLST problem k-node Minimum Label Spanning Arborescence (k-MLSA)

problem.

5 Preprocessing

The preprocessing step is to derive a set of candidate template arcs from which the

codebook will be choosen as a subset. This set of candidate template arcs has to be

sufficiently large to allow an overall optimal solution, i.e. a minimal codebook.

In the following we will use the terms arc and vector equivalently, as each arc (i, j)

in our graph represents the geometric information of the vector (vj − vi) mod ṽ. To

describe the preprocessing in more detail we have to introduce further notation:

– B = {vij = (vj−vi) mod ṽ | (i, j) ∈ A} = {b1, . . . , b|B|}, the set of different vectors

we eventually have to represent.

6

b1

b3

b4

b5

b6

b7
τ (b1, ..., b7)

Fig. 4 The big gray dots are three of the possible representants for the tree arcs b1, . . . , b7,
but the standard template arc τ is the lower left point of the shaded rectangle. The rectangles
depict the δ̃-domain.

– D(t) ⊆ D, the subspace of all vectors a particular template arc t ∈ D is able to

represent when considering the restricted domain D
′ for the correction vectors, i.e.

D(t) = {t1, . . . , (t1 + δ̃1 − 1) mod ṽ1} × . . .× {td, . . . , (td + δ̃d − 1) mod ṽd}. (2)

– B(t) ⊆ B, t ∈ D, the subset of vectors from B that a particular template arc t is

able to represent, i.e. B(t) = {b ∈ B | b ∈ D(t)}.

Furthermore, let B′ ⊆ B, B′ 6= ∅, be some subset of vectors from B. For each

dimension l = 1, . . . , d assume the l-th elements (coordinates) of the vectors in B′ are

labeled by indices in a non-decreasing way, i.e. bl
1 ≤ bl

2 ≤ . . . ≤ bl
|B′|. Let bl

0 = bl
|B′|− ṽl

for convenience. (Note that bl
0 can be negative.)

For such a B′, we define the standard template arc (see also Fig. 4)

τ(B′) = (τ1(B′), . . . , τd(B′)) (3)

where

τ l(B′) = bl
i∗
l

with i∗l = argmaxi=1,...,|B′|b
l
i − bl

i−1 ∀l = 1, . . . , d. (4)

The subspace BB(B′) = {b1i∗1 , . . . , b1i∗1−1 mod ṽ1} × . . . × {bd
i∗
d
, . . . , bd

i∗
d
−1 mod ṽd}

is the smallest bounding box including all vectors from B′ with respect to the ring

structure.

To denote the limits of the bounding box BB(B′) in a simpler way, we further define

τ̂(B′) = (b1i∗1−1, . . . , bd
i∗
d
−1), i.e. τ̂(B′) represents the corner point of the bounding box

opposite to τ(B′).

These definitions lead to the following lemma.

Lemma 1 If a subset B′ ⊆ B of vectors can be represented by a single template arc,

then the standard template arc τ(B′) always is such a template arc.

Proof This directly follows from the definition of τ(B′), since this is the corner point

with the smallest coordinates of the smallest bounding box of all vectors in B′. �

7

δ̃ = (6, 6)
|B| = 20

|T c| = (|B|
4

+ 1)2 = 36

∈ B

∈ T c

1 2 3 4

1

3

2

4

5

6

7

8

9

10

11

12

65 7 8 9 10 11 12 13 14

Fig. 5 Example for |T c| = Θ(|B|d) with d = 2.

We therefore can restrict all further considerations to the set of standard template

arcs induced by all nonempty subsets of vectors that can be represented by a single

template arc, i.e.

T = {τ(B′) | B′ ⊆ B, B′ 6= ∅ ∧B′ ⊆ D(τ(B′))}. (5)

Lemma 2 A set B′ ⊆ B can be represented by a single template arc, thus in particular

by τ(B′), if

ṽl − (bl
i∗
l
− bl

i∗
l
−1) < δ̃l, ∀l = 1, . . . , d. (6)

Proof Case 1: i∗ = 1. In this case we have (ṽl−(bl
1−(vl

|B′|− ṽl)) = vl
|B′|−bl

1 < δ̃l, ∀l =

1, . . . , d. Case 2: i∗ > 1. In this case the bounding box associated to τ(B′) goes accross

the domain border and the condition is (ṽl − (bl
i∗ − vl

i∗−1)) < δ̃l, ∀l = 1, . . . , d. �

Definition 1 (Domination of template arcs) Let t′ = τ(B′) and t′′ = τ(B′′),

B′ ⊆ B, B′′ ⊆ B. Standard template arc t′ dominates t′′ if and only if B′′ ⊂ B′.

From the set T we only need to keep the nondominated template arcs for our purpose,

and call the resulting set T c (candidate template arcs).

5.1 Bounds for the Number of Candidate Template Arcs

A lower bound on |T c| obviously is 1: in the best case, one template arc is able to

represent all b ∈ B.

An upper bound is given by O(|B|d): Each standard template arc t ∈ T c is com-

posed of d coordinates that are adopted from up to d vectors from B. This bound

is tight as the worst-case example in Fig. 5 shows for d = 2. Bold dots represent

the vector set B, small dots the nondominated standard template arcs T c. Obviously,

|T c| = (|B|/4+1)2 = Θ(|B|2). The example can be extended to higher dimensions d and

larger |B| in a straight-forward way. In practice, however, we expect |T c| ≪ Θ(|B|d).

8

Table 1 Basic data structures of the preprocessing algorithm.

Symbol Purpose

C Covered vectors (by current bounding box (t, t̂))
E Actively excluded vectors (must not be covered)
Ω Open vectors
N Newly covered vectors
̥ Feasibly addable vectors

E ... actively excluded vectors

t̂

t

N ... new vectors in current bounding box

F ... feasibly addable vectors

C ... covered by current bounding box

Fig. 6 Partitioning of the nodes during w.r.t. the current bounding box, defined by (t, t̂).

5.2 An Algorithm for Determining T c

We determine the set of candidate template arcs T c by performing a restricted enumer-

ation of all subsets B′ ⊆ B, B′ 6= ∅ that can be represented by their standard template

arc τ(B′). The algorithm maintains three disjunct index sets C, E, Ω ⊆ {1, . . . , |B|}

that represent at all time a partitioning of B, i.e. B = B(C) ∪ B(E) ∪ B(Ω),

C ∩ E = ∅, E ∩ Ω = ∅, C ∩ Ω = ∅. Hereby B(S) is considered to be (arbitrarily)

ordered and denotes the vectors in B referenced by the indices in S. Set C contains

the indices of the vectors which are covered by a current bounding box represented by

vectors t and t̂, set E refers to the vectors that have been actively excluded and must

not be covered, and Ω refers to the remaining, still “open” vectors. Table 1 summarizes

these and a few local data structures.

The candidate template arc determination is started with the procedure

determine-T c (Algorithm 1), which performs the initialization of the global data struc-

tures and then calls the recursive procedure recursive-T c(var C, t, t̂, var E,

var Ω) (Algorithm 2). The keyword var denotes that the respective variables are

passed by call-by-reference. The overall procedure follows the subsequent principle.

1. find further vectors to be added to the current partial solution

2. – there are no further addable vectors ⇒ add current vector t to T c

– otherwise: recursive calls for all possible extensions of current partial solution

9

Algorithm 1: determine-T c()

T c ← ∅; Ξ ← ∅; C ← ∅; E ← ∅; Ω ← {1, . . . , |B|}1

recursive-T c(C, 0, 0, E, Ω)2

return T c
3

Algorithm 2: recursive-T c(var C, t, t̂, var E, var Ω)

if C = ∅ then1

N ← ∅;2

̥← {1, . . . , |B|}3

else4

N ← find-new-vectors-in-BB(t, t̂,Ω)5

C ← C ∪N ; Ω ← Ω \N6

̥← find-addable-vectors(t, t̂, Ω)7

end8

if ̥ = ∅ then9

/* no further i (referencing vectors bi) can be added to C; check10

if C is also maximal with respect to E, the actively excluded

vectors */

if 6 ∃j ∈ E | bl
j ∈ {(t̂

l − δ̃l + 1) mod ṽl, . . . , (t + δ̃l − 1) mod ṽl}, ∀l = 1, . . . , d11

then

T c ← T c ∪ {t}12

end13

else14

for i ∈ ̥ do15

// Vectors B(C ∪ {i}) can be represented by their τ(B(C ∪ {i}))16

C ← C ∪ {i}; Ω ← Ω \ {i}17

(t′, t̂′)← update-BB(t, t̂, bi)18

/* only perform further investigation if bounding box has not19

yet been considered */

if 6 ∃j ∈ E | bl
j ∈ {t

l, . . . , t̂l}, ∀l = 1, . . . , d then20

recursive-T c(C, t′, t̂′, E, Ω)21

end22

/* in the next iteration of the loop, vector bi is actively23

excluded */

C ← C \ {i}24

E ← E ∪ {i}25

end26

end27

C ← C \N28

E ← E \̥29

Ω ← Ω ∪N ∪ E30

Vectors t and t̂ are assumed to represent the bounding box for the vectors referenced

by C. In the first step, a further set N of references to vectors in B is determined,

which are now covered by the bounding box, but which are still contained in Ω. These

vectors are then directly moved from Ω to S, and no branching will occur on these

vectors (actively excluding them would not make sense). Furthermore, the set ̥ of open

10

variables (contained in Ω) which can be feasibly added to C (B′), hereby increasing

the current bounding box up to size δ̃, is determined. Within the loop at line 15, the

algorithm considers each element in ̥ and adds it as next element to C. Procedure

update-BB(t, t̂, bi) (Algorithm 3) updates the bounding box (t, t̂) accordingly. The

addition of further vectors is handled via recursion. Before the loop continues with the

next vector from ̥, the current vector is moved from C to E, i.e. it is actively excluded

from further consideration and must not be considered in subsequent recursive calls.

At the end of the procedure, sets C, E, and Ω are restored to their initial states.

When ̥ becomes empty, no further vectors are available for addition and the

recursion terminates. We then check if a previously created template arc exists that

dominates the current template arc. This is efficiently done by just considering all

actively excluded vectors referred to by E. If one of them can be added to C, then C is

not maximal and another template arc dominating the current one must have already

previously been found.

According to the ring structure of the domain, terms of the form b ∈ (l, . . . , u), e.g.

in line 8 or 13 in update-BB(t, t̂, bi) (Algorithm 3), have the following meaning: if

l ≤ r it simply denotes {x | x ≥ l, x ≤ r}; otherwise the intervall goes across the domain

border and thus the term denotes the values {x | x ≥ 0, x ≤ l} ∪ {x | x ≥ r, x ≤ ṽ},

where ṽ again denotes the domain border. To find new vectors, that are now covered by

a just extended bounding box (t, t̂) we use the procedure find-new-vectors-in-BB(t,

t̂, var Ω) (Algorithm 4). This procedure as well as find-addable-vectors(t, t̂, var

Ω) (Algorithm 5) run in time O(|B| · d).

Algorithm 3: update-BB(t, t̂, bi)

if |C| = 0 then1

// bi is the first vector in C2

t′ ← bi, t̂′ ← bi3

else4

// calculate new (t′, t̂′) based on (t, t̂) and bi5

for l = 1, . . . , d do6

// we assume ∀l = 1, . . . , d : δ̃l ≤ ṽl/27

if bl
i ∈ {(t̂

l − δ̃l + 1) mod ṽl, . . . , tl} then8

t′l ← bl
i9

else10

t′l ← tl11

end12

if bl
i ∈ {t̂

l, . . . , (tl + δ̃l − 1) mod ṽl} then13

t̂′l ← bl
i14

else15

t̂′l ← t̂l16

end17

end18

return (t′, t̂′)19

end20

11

Algorithm 4: find-new-vectors-in-BB(t, t̂, var Ω)

for j ∈ Ω do1

if bl
j ∈ {t

l, . . . , t̂l}, ∀l = 1, . . . , d then2

N ← N ∪ {j}3

end4

end5

return N6

Algorithm 5: find-addable-vectors(t, t̂, var Ω)

̥← ∅1

for j ∈ Ω do2

if bl
j ∈ {(t̂

l − δ̃l + 1) mod ṽl, . . . , (t + δ̃l − 1) mod ṽl}, ∀l = 1, . . . , d then3

̥← ̥ ∪ {j}4

end5

return ̥6

end7

Sets C, E, ̥, and N can efficiently be implemented by using simple arrays and

corresponding variables for indicating the number of currently contained elements. In

this way, the restoration of C and E at the end of recursive-T c (Algorithm 2) can

even be done by simply memorizing the array sizes at the beginning and finally resetting

the counters.

In order to speed up the overall method, we use a k-d tree as data structure (see

[1]) for maintaining Ω. In this way geometrical properties can be exploited, and not all

vectors in Ω need to be explicitly considered each time.

Theorem 1 The overall time complexity for determine-T c is bounded above by O(d ·

|B|3d).

Proof Let ζ = |B|d. As t, t̂ ∈ T c and |T c| = O(ζ) there are ζ!
2(ζ−2)!

possible bounding

boxes (t, t̂), and therefore O(ζ2) recursive calls in the worst case. As the worst case

runtime of the first part of the algorithm is O(d · |B|), we get an overall worst case time

complexity of O(d · |B|3d). �

Note that the running time O(d · |B|3d) to enumerate a set of maximal cardinality

O(|B|d) results from the necessity to remove all dominated elements, as described

above. For our application we assume δ̃ to be relatively small, which implies that B(t)

will be small as well, i.e. one template arc typically just represents a small number of

arcs. Hence, the running times of the procedure are much lower in practice.

6 An Exact Branch-and-Cut Algorithm for Solving k-MLSA

In order to solve the k-MLSA problem to optimality, we consider a branch-and-cut

algorithm for the following formulation as an integer linear program (ILP).

12

6.1 ILP Formulation

To be able to choose the root node of the arborescence by optimization we extend V to

V + by adding an artificial root node 0. Further we extend A to A+ by adding the arcs

(0, i), ∀i ∈ V . We use the following variables for modelling the problem as an ILP:

– For each candidate template arc t ∈ T c, we define a variable yt ∈ {0, 1}, indicating

whether or not the arc is part of the dictionary T .

– Further we use variables xij ∈ {0, 1}, ∀(i, j) ∈ A+, indicating which arcs belong

to the tree.

– To express which nodes are covered by the tree, we introduce variables zi ∈

{0, 1}, ∀i ∈ V .

Let further A(t) ⊂ A denote the set of tree arcs a template arc t ∈ T c is able to

represent, and let T (a) be the set of template arcs that can be used to represent an

arc a ∈ A, i.e. T (a) = {t ∈ T c | a ∈ A(t)}. We can now model the k-MLSA problem as

follows:

minimize m =
X

t∈T c

yt (7)

s.t.
X

t∈T (a)

yt ≥ xa, ∀a ∈ A (8)

X

i∈V

zi = k (9)

X

a∈A

xa = k − 1 (10)

X

i∈V

x(0,i) = 1 (11)

X

(j,i)∈A+

xji = zi ∀i ∈ V (12)

xij ≤ zi ∀(i, j) ∈ A (13)

xij + xji ≤ 1 ∀(i, j) ∈ A (14)
X

a∈C

xa ≤ |C| − 1 ∀ cycles C in G, |C| > 2 (15)

X

a∈δ−(S)

xa ≥ zi ∀i ∈ V, ∀S ⊆ V, i ∈ S, 0 /∈ S (16)

Inequalities (8) ensure that for each used tree arc a ∈ A at least one valid template

arc t is selected. Equalities (9) and (10) enforce the required number of nodes and arcs

to be selected. Equation (11) requires exactly one arc from the artificial root to one of

the tree nodes, which will be the actual root node of the outgoing arborescence.

Equations (12) state that selected nodes must have in-degree 1. Inequalities (13)

ensure, that an arc may only be selected if its source node is selected as well. Inequalities

(14) forbid cycles of length 2, and finally inequalities (15) forbid all further cycles

(|C| > 2).

In order to strengthen the ILP we can additionaly add (directed) connectivity-

constraints, given by inequalities (16), where δ−(S) represents the ingoing cut of node

13

set S. These constraints ensure the existence of a path from the root 0 to any node

i ∈ V for which zi = 1, i.e. which is selected for connection. In principle, equations

(16) render (12), (13), (14) and (15) redundant [16], but using them jointly may be

beneficial in practice.

6.2 Branch-and-Cut

As there are exponentially many cycle elimination and connectivity inequalities (15)

and (16), directly solving the ILP would be only feasible for very small problem in-

stances. Instead, we apply branch-and-cut [25], i.e. we just start with the constraints

(8) to (14) and add cycle elimination constraints and connectivity constraints only on

demand during the optimization process.

The cycle eliminiation cuts (15) can be easily separated by shortest path com-

putations with Dijkstra’s algorithm. Hereby we use 1 − xLP
ij as the arc weights with

xLP
ij denoting the current value of the LP-relaxation for (i, j) in the current node of the

branch-and-bound tree. We obtain cycles by iteratively considering each edge (i, j) ∈ A

and searching for the shortest path from j to i. If the value of a shortest path plus

xLP
ij is less than 1, we have found a cycle for which inequality (15) is violated. We add

this inequality to the LP and resolve it. In each node of the branch-and-bound tree we

perform these cutting plane separations until no further cuts can be found.

The directed connection inequalities (16) strengthen our formulation. Compared

to the cycle elimination cuts they lead to better theoretical bounds, i.e. a tighter

characterization of the spanning-tree polyhedron [16], but their separation usually is

computationally more expensive. We separate them by computing the maximum flow

from the root node to each of the nodes with zi > 0 as target node. We separate them

by computing for each node with zi > 0 a minimum (0, i)-cut. If the value of this

cut is less than zLP
i , we have found an inequality that is violated by the current LP-

solution. Our separation procedure utilizes Cherkassky and Goldberg’s implementation

of the push-relabel method for the maximum flow problem [4] to perform the required

minimum cut computations.

The branch-and-cut algorithm has been implemented using C++ with CPLEX in

version 11.0 [12].

7 Heuristic Methods

Practical results of the described branch-and-cut algorithm are presented in Section

9. They show that this approach is only applicable for small instances and requires

relatively long running times. Therefore, we now describe a fast greedy construction

heuristic and then focus on metaheuristics including a greedy randomized adaptive

search procedure (GRASP) and a memetic algorithm (MA).

7.1 Greedy Construction Heuristic

Based on the so called MVCA heuristic for the classical MLST problem [3], we devel-

oped a greedy construction heuristic for our k-MLSA problem. A solution is constructed

by starting with an empty codebook T and graph G′ = (V ′, A′) with A′ = ∅, V ′ = ∅

14

and iteratively adding template arcs from T c to T in a greedy fashion. In the following

we will treat T as an ordered set, and refer to its elements by T [i], i = 1, . . . , |T |. Each

time a template arc t is added to T , all corresponding induced arcs A(t) ⊂ A are added

to A′. For each arc (i, j) we also add the corresponding nodes i and j to V ′. This is

done until the resulting graph contains a feasible k-node arborescence. In constrast to

the MVCA heuristic for the classical undirected MLST problem, the decision which

template arc (label) to take next is significantly more difficult, as the impact of the ad-

dition of one template arc towards a final arborescence (with some specific root node)

is not immediately obvious.

In the MVCA heuristic for MLST, a label that reduces the number of separated

components the most is always chosen. The number of components of G′ minus one

corresponds to the number of edges that must be added at least to obtain a complete

spanning tree, and this number of edges is an upper bound for the number of labels to

be added.

In any case, a label which directly yields a spanning tree is an optimal choice and

should be selected. A label which yields a G′ to which only one more edge must be

added is always the second best choice, since exactly one more label is necessary. Note

that any such situation is equally good. In general, the assumption is that a label

yielding a G′ to which a lower number of further edges must at least be added will

usually lead to a better solution (requiring less labels) than a label yielding a G′ having

a higher lower bound of edges to be necessarily added.

While the notion of simple components does not make sense in the directed k-

MLSA anymore, we can still follow the idea of determining the number of edges (arcs)

that must at least be added to obtain a complete arborescence in order to decide upon

the next label to be added.

Let α(G′) denote the minimum number of arcs that need to be added, so that

this augmented graph contains an arborescence. In principle, α(G′) can be calculated

efficiently as follows: Determine all maximal strongly connected components (SCCs) in

G′ and shrink them into corresponding representative single nodes. Arcs to or from a

node in a strongly connected component are replaced by corresponding arcs to/from the

representative node. Multiple arcs between two nodes are replaced by corresponding

single arcs, and self-loops are simply deleted. By this transformation, we obtain a

directed acyclic graph Gs. The problem is reduced, but the value α(G′) will remain the

same since within each strongly connected component, any node can be reached from

each other and no further edges will therefore be necessary. It further does not matter

to which particular node of a strongly connected component an ingoing or outgoing arc

is connected. Let Z ⊆ V be the set of nodes for which no ingoing arc exists in Gs. The

minimum number of required additional arcs is now α(G′) = k − (|V | − |Z |+ 1), and

the label that minimizes this number the most is considered the best choice. Figure 7

shows an example of the computation and usage of α(G′).

We do not need to explicitly shrink the SCCs each time if we keep track of all SCCs

with indegree zero. Algorithm 6 details the overall procedure.

15

2

T c = {t1, t2, t3}

1

1

1

1

2

22

3

3

3

3

Fig. 7 Suppose we want to connect all of the 12 nodes in the given graph G, i.e. k = 12.
After adding the template arcs t1, t2 and t3 we can identify three nontrivial strongly connected
components (SCCs), i.e. components consisting of more than one node. All nodes have incoming
arcs, but these three SCCs do not. We need to add at least two more arcs as α(G′) = 2. Hereby
G′ denotes the graph where each SCC is shrinked into one single node.

Algorithm 6: k-MLSA-greedy(V,A, T c)

G′ = (V ′, A′) with V ′ ← V, A← ∅1

T ← ∅ // currently used labels2

while no k-arborescence exists do3

t∗ ← 0 // best template arc of this iteration4

for all t ∈ T c do5

z∗ ←∞ //stores lowest found number of SCCs6

A′′ ← {aij ∈ A(t)}7

compute SCCs of G′ = (V ′, A′ ∪A′′)8

Z ← SCCs with indegree zero9

if |Z| < z∗ then10

z∗ ← |Z|11

t∗ ← t12

end13

end14

A′ ← A′ ∪ {aij ∈ A(t∗)}15

T ← T ∪ {t∗}16

T ← T\{t∗}17

end18

remove redundant arcs and labels19

Obviously, the algorithm frequently has to check if a partial solution already con-

tains a feasible arborescence. This task can be achieved by performing depth first search

(DFS) using each node as start node (time complexity O(k3)). To achieve a speedup

of this method we try to avoid or reduce the number of time consuming DFS calls. Let

G′ denote the graph containing just the edges and nodes induced by some template arc

set T , i.e. if (i, j) ∈ A is represented by template arc t ∈ T we add the nodes i, j and

the arc (i, j) to G′ = (V ′, A′). Let further δ−(v) denote the in-degree of a node v, i.e.

the number of incoming arcs. Furthermore let δi
0(V

′) denote the subset of nodes from

V ′ with δ−(V ′) = 0, and let us assume that the current partial solution consists of the

16

template arcs (labels) T . First, we check the degree of each node to see if a sufficient

number of nodes v with in-degree δ−(v) > 0 is available. If |V ′| − δi
0(V

′) + 1 < k

then G′ cannot represent a valid solution, and we do not have to perform the DFS. If

a solution is possible we distinguish the following two cases. In the first case, where

k = |V |, there can be at most one node with in-degree zero. If there is such a node it

has to be the root node and we perform the DFS starting from this node. Otherwise, if

all nodes v ∈ V ′ have δ−(v) > 0 we have no choice but to perform DFS starting from

all nodes. In the more general second case k < |V |, if |V ′| − δi
0(V

′) + 1 = k, one of

the nodes with in-degree zero has to be the root of the tree, otherwise the tree would

not contain the required k nodes. So it is sufficient to perform the DFS starting at just

these δi
0(V

′) nodes. Otherwise we again have to perform DFS starting from all nodes.

The final step is to remove redundant tree arcs and redundant template arcs. Be-

cause of mutual dependencies of these tasks, this is a non-trivial operation itself and

hence we apply a heuristic. As long as the solution remains valid we perform the follow-

ing two steps: 1) try to remove redundant labels; 2) as long as |A′| > k try to remove

the leaves and intermediate arcs. By this procedure we finally obtain a valid k-node

arborescence.

7.2 GRASP – Greedy Randomized Adaptive Search Procedure

The greedy heuristic is relatively fast but yields only moderate results. Significantly

better solutions can be achieved by extending it to a greedy randomized adaptive search

procedure (GRASP) [9]. The constructive heuristic is iterated and the template arc to be

added is always selected at random from a restricted set of template arcs, the restricted

candidate list (RCL). As soon as a valid solution exists, it is further improved by a

local search procedure. In total, it iterations of these two steps are performed.

Function k-MLSA-randomized-greedy(V, A, T c) (Algorithm 7) shows the random-

ized greedy construction of solutions in detail. One crucial part in designing an efficient

GRASP is to define a meaningful RCL. The problem in our case is that there are many

equally good template arcs that could be candidates to extend the current partial

solution. On the other hand, finding the best template arcs, i.e. those template arcs

reducing α of the current partial solution the most, can be very time consuming, as all

candidate template arcs need to be considered. As GRASP also heavily relies on the

subsequent local improvement, we do not necessarily need to find the best candidates

to extend our partial solution. On the other hand, being too lazy with this decision

might reduce the overall performance considerably. In the following we describe the

parameterized procedure of building up the RCL in more detail.

Prior to each extension of the current partial solution (line 26), the RCL is built

in the loop in lines 5 to 25. As soon as a further improving template arc is found (line

11) the RCL is cleared, and then successively filled with further template arcs of the

same quality. This finally yields a list of equally good template arcs, which are after

all the candidates for the next greedy decision. The size of this list is limited by rclmax

for performance reasons. There is one further, even more important parameter related

to the issue of balancing the greedy solution quality versus run time efficiency of the

process of building the RCL. The parameter impmax limits the number of improve-

ments according to line 11. In the special case of impmax = 0 the RCL finally simply

consists of the first template arcs improving the current solution. In this case the ma-

jor contribution to construct high quality solutions is passed to the subsequent local

17

Algorithm 7: k-MLSA-randomized-greedy(V,A, T c)

G′ = (V ′, A′) with V ′ ← V, A← ∅1

T ← ∅ // currently used labels2

while no k-arborescence exists do3

i← 04

for all t ∈ T c do5

z∗ ←∞ //stores lowest found number of SCCs6

A′′ ← {aij ∈ A(t)}7

compute SCCs of G′ = (V ′, A′ ∪A′′)8

Z ← SCCs with indegree zero9

if |Z| < z∗ then10

z∗ ← |Z|11

RCL = ∅12

i← i + 113

end14

if |Z| = z∗ then RCL = RCL ∪ t15

if |RCL| ≥ rclmax then16

z∗ ← z∗ − 117

if i ≥ impmax then18

break19

end20

end21

end22

t′ ← random element from RCL23

A′ ← A′ ∪ {aij ∈ A(t′)}24

T ← T ∪ {t′}25

T c ← T c\{t′}26

end27

remove redundant arcs and labels28

search. Setting impmax = ∞ implies a situation where the loop of line 6 iterates over

all candidate template arcs each time. Due to the relatively large number of candidate

template arcs this approach may be to time consuming for practice.

In each GRASP iteration, itls local search steps are performed after the randomized

construction. The local search uses a template arc insertion neighborhood, where a

new template arc is added to the solution, and then redundant template arcs are

removed. The goal is to find template arcs that render at least two template arcs from

the current solution redundant. Figure 8 shows such a situation. Another beneficial

situation arises when further nodes are connected to the existing arborescence. In each

iteration the template arcs are considered in decreasing order w.r.t. the number of tree

arcs they represent. The neighborhood is searched with a first improvement strategy.

Furthermore only a prespecified fraction of the template arcs is used, i.e. the template

arcs representing most of the tree arcs.

7.3 Memetic Algorithm

As an alternative to GRASP we implemented a memetic algorithm (MA). It is based

on a steady-state framework, where in each iteration a single offspring solution is

derived and locally improved. It replaces a randomly chosen candidate solution from

the population, to retain diversity. The algorithm uses tournament selection, and local

improvement steps are performed for each new candidate solution after the application

18

1

2

3
4

1

2

3
4

1

2

5 555

T = {t1, t2, t3, t4} T ′ = {t1, t2, t3, t4, t5} T ′ = {t1, t2, t5}

Fig. 8 Template arc insertion neighborhood: after t5 is added to the solution t3 and t4 are
redundant and thus can be removed from the solution

of the evolutionary operators, i.e. recombination and mutation. Algorithm 8 shows the

overall framework.

Algorithm 8: k-MLSA-MA()

randomly create initial population1

t← 02

while t < tmax do3

select parents T ′ and T ′′ by tournament selection4

T ← crossover(T ′, T ′′)5

mutation(T)6

local improvement(T)7

t← t + 18

end9

Following the ideas presented in [26] we encode a candidate solution as an ordered

subset of labels. In our case the template arcs correspond to these labels and the

chromosome of a candidate solution is therefore denoted by T , T [i] denotes the i-th

template arc of candidate solution T . If these template arcs induce a k-node arbores-

cence we have a feasible solution, otherwise further template arcs need to be added

to the candidate solution in order to make the solution feasible. Note however, that a

feasible solution may contain redundant template arcs, which are not necessarily part

of an optimal solution induced by the other template arcs of the ordered set.

For candidate solutions of the initial population we ensure that they are feasible.

To create a randomized candidate solution, all template arcs are shuffled and then

added as long as the candidate solution remains infeasible.

The MA then tries to minimize the number of template arcs required for a feasible

solution by iterative application of the genetic operators and local improvement. As

many candidate solutions have the same number of template arcs, the total number

of induced arcs is also considered in the fitness function f(T), which is going to be

minimized:

f(T) = |T |+

„

1−
|A′|

|A|

«

. (17)

Again, A′ denotes the set of induced tree arcs. This accounts for the fact that candi-

date solutions whose template arcs cover many arcs are more likely to produce good

offsprings and result in successful mutations.

19

Since the order of the template arcs does not need to be preserved, we use a

crossover operator introduced in [19], which takes the template arcs for the child can-

didate solution alternatingly from the parents until a feasible solution is obtained. If a

template arc reoccurs, it is not added to the offspring and the next template arc from

the other parent is processed instead. Function crossover(T ′, T ′′) (Algorithm 9)

shows this procedure in detail. Again T denotes the (ordered) set of template arcs of

an candidate solution, T [i] denotes the i-th template arc.

Algorithm 9: crossover(T ′, T ′′)

T ← ∅ // new offspring initialized with empty set1

i← 0, j ← 0 // counter variables2

while T contains no k-MLSA do3

if i mod 2 = 0 then4

t← T ′[⌊i/2⌋]5

else6

t← T ′′[⌊i/2⌋]7

end8

if t /∈ T then9

T [j]← t10

j ← j + 111

end12

i← i + 113

end14

return T15

In addition to recombination we use two different types of mutation:

1. A randomly selected template arc t /∈ T is appended. This increases the likely-

hood for the ability to remove some redundant template arc by a subsequent local

improvement.

2. A randomly selected template arc t /∈ T , replaces either a random or the worst

t′ ∈ T . The worst template arc is the one inducing the minimal number of arcs.

If the solution is not feasible, further randomly selected template arcs are added

until a feasible solution is reached.

The subsequent local improvement method local-improvement(T) (Algo-

rithm 10), following the one presented in [19], uses the idea that a reordering of the

template arcs could make some of them redundant. In contrast to the local improve-

ment method used in the GRASP algorithm this method can only remove template

arcs from a current solution if some of them are actually redundant. As the MA contin-

uously modifies the candidate solutions from the population and also further template

arcs are added to a candidate solution by mutation, there is no need to use a more

expensive neighborhood search, which also considers currently unused template arcs.

20

Algorithm 10: local-improvement(T)

i← 0 // counter variable1

while i < |T | do2

remove all arcs only labeled by T [i]3

if T containts k-MLSA then4

T ← T \ T [i]5

else6

restore respective arcs7

i← i + 18

end9

end10

The MA uses the same optimizations as the (randomized) greedy construction heuris-

tics (described in Sections 7.1 and 7.2) to reduce the number of DFS calls. Furthermore

it only checks for a k-node arborescence if the number of different nodes reaches the

required size k, because a k-node arborescence is not theoretically possible before that.

Our computational experiments showed that the MA is able to produce optimal

solutions very quickly and in almost every case. Details on the results are given in

Section 9.4.

8 Encoding of the Compressed Templates

In the following we describe how the compressed templates will be encoded on a binary

level. The compression results from Section 9.2 are based on the definitions given in

this section.

We now need to extend the definition of the domain border given in Section 3.

There, the domain border ṽ was defined by ṽl = maxi=1,...,n vl
i, l = 1, . . . , d. For the

concrete specification of the original and the resulting compressed data structure we

need to distinguish between the domain of one particular instance (ṽ), and a further

entity, describing the size of the domain considering all possible input instances.

Definition 2 The overall domain border ξ̃ is given by

ξ̃l = max
I

ṽl
I , l = 1, . . . , d, (18)

where the maximum goes over all input instances I.

To see the necessity to distinguish between ξ̃ and ṽ, reconsider the preprocess-

ing, i.e. the determination of the labels. For the further optimization it is obviously

beneficial when single template arcs represent many tree arcs w.r.t. δ. Figure 9 shows

the representation of the arc (i, j) using the domains ṽ and ξ̃ respectively. Unlike

(i, j) mod ξ̃, (i, j) mod ṽ may be covered by a template arc in the domain ṽ together

with some other tree arcs in this domain. For arcs aij > ξ̃ − δ̃ it is not even possible

to represent them together with arcs from the domain ṽ. Hence, an optimal solution

to the k-MLSA problem may require more template arcs when using ξ̃ instead of ṽ

as parameter for the preprocessing routine. As the values ṽ often significantly deviate

from ξ̃ this effect is not negligible. Since m has a high impact on the compression ratio,

we use ṽ instead of ξ̃ and accept the resulting disadvantage that we have to store ṽ

for each compressed template.

21

~̃
ξ

~̃v

vi

vj

aij mod
~̃
ξ

aij mod ~̃v

Fig. 9 Representation of the arc aij = (vi, vj) using the domains ṽ and ξ̃ respectively.

x

y

offset

Fig. 10 The points vi are scattered in the shaded rectangle. Commonly used encodings of such
data points indicate their common offset (dashed arrow) and the respective relative coordinate
values of the points themselves. A direct encoding would require unnecessary many bits.

In our experimental evaluations (Section 9) we will compare our compressed data

to the following size (in bits) of the original raw data

λraw = size(ConstData) + n ·
dX

l=1

⌈ld ξ̃l⌉, (19)

which is the size of the constant data and n times the number of bits to store one

particular point. The size() operator denotes the number of bits needed to encode the

data given as argument.

The variable ConstData denotes additional data of constant size that is related

to the data points. E.g. if we have offset values (see Fig. 10) for each dimension we

need this data to achieve a lossless compression of the data points themselves.

As the algorithms may be applied to a subset of the dimensions, we need the

following function to define the total encoding length:

χl =
n 1 dimension l is considered by the compression method

0 otherwise.
(20)

The total encoding length of the arborescence (achieved by the compression pro-

cedure) is given by the following formula:

22

λ(m, δ, k, ṽ, ξ, χ) = size

„

ConstData
′

«

+ 2 · 7
|{z}

values k,m

+2 ·
dX

l=1

⌈χl ld ξ̃l⌉

| {z }
root node, domain ṽ

+ 2 · (k − 1)
| {z }

encoding of tree structure

+
˚
m ·

dX

l=1

χl ld ṽlˇ

| {z }

template arcs

+(k − 1) ·
˚

ld m
| {z }

index to template arc

+
dX

l=1

χl ld δ̃l

| {z }

δ̃−values

+
d̃X

l=1

(1− χl) ld ṽl

| {z }

remaining dimensions

ˇ

.

(21)

Note that ConstData of the compressed data is not necessarily the same as the

corresponding entity of the raw data. For instance this can be the case if the raw data

does not contain explicit offset values, but however ∃l ∈ {1, . . . , d} | mini=1,...,n vl
i > 0.

We account for this by drawing a distinction between the constant data of the raw data

(ConstData) and that of the compressed data, namely ConstData
′.

The second term in equation (21) constitutes 14 bits for the storage of k and m;

the third term denotes the number of bits that are necessary to store the root node and

the size of the domain ṽ. The next term represents the encoding of the tree structure.

The encoding is based on the parenthesis theorem of the depth first search (DFS)

algorithm [7]. If we travers the resulting arborescence by DFS and write a “(” each

time we traverse an arc forward, and write “)” each time we traverse an arc backward

the resulting string is an representation of the structure of the DFS-tree. In our case

we simply write “0”s and “1”s instead of “(”s and “)”s, thus requiring (k− 1) · 2 bit in

total. The next term in equation (21) constitutes the size of the m template arcs. We

only need to store the components that are indicated by the characteristic function χl,

as we do not consider the other dimensions for compression, but directly store their

values instead. The term ld ṽl denotes the number of bits that are necessary to store

the respective component of the template arc. The last term in equation (21) describes

the size of the encoding of the (k − 1) tree arcs. Their representation consists of an

index to a template arc, the appropriate correction vectors and finally the components

of the remaining dimensions. Note that it is sufficient to round up the whole last

term in equation (21) (and not each individual logarithm in the respective sums),

because it is always possible to find such an appropriate encoding. For this purpose

consider the following example, where we want to encode values of the following domain:

{0 . . . 4}×{0 . . . 8}×{0 . . . 17}. The number of bits necessary to encode each individual

dimension are 3, 4 and 5 respectively, which yields 12 in total. Contrary a more tight

encoding would use the representation n = c1 + c2 ·18+ c3 · (18 ·9), which just requires

10 bit in total.

8.1 Encoding Example

Let ξ̃ = (512, 512, 512)T , δ̃ = (5, 5)T and k = 9. As δ̃ is only two-dimensional we do

not consider the third dimension of the input data for compression. Instead we simply

23

store the respective values for each tree arc. The input data is given by the following

set:

8

<

:

0

@

200
200
21

1

A,

0

@

208
304
30

1

A,

0

@

211
386
97

1

A,

0

@

261
356
210

1

A,

0

@

313
330
293

1

A,

0

@

314
409
22

1

A,

0

@

503
252
268

1

A,

0

@

608
280
157

1

A,

0

@

414
356
77

1

A,

0

@

662
332
104

1

A,

0

@

702
676
78

1

A

9

=

;

.

Thus the offsets are 200 for the first and second coordinate and the domain borders

are ṽ = (503, 477, 294)T . Figure 11 shows a solution to the given problem. The triv-

ial encoding requires 243 bit, whereas the encoded template has a size of 232 bit;

ConstData’ = 14+27+27+16 = 84. The resulting compression ratio is not very im-

pressive, but in the example only two dimensions have been considered for compression

and δ̃ is extremely small. Beeing able to reconstruct the original datapoints losslessly

would require additional ld(ξ1) + ld(ξ2) = 18 bits for the offsets.

9 Experimental Results

This section starts by a description of the input data used for our computational

experiments. Then we present the results of the exact method in order to analyse the

compression ratios achievable by our methods. Furthermore we shortly evaluate the

impact of the compression to the false non-match rate (FNMR). Finally we present

the results of the metaheuristic techniques (greedy algorithm, GRASP, and the memetic

algorithm) in comparison to the optimal results of branch-and-cut. All running times

in this section refer to a 2.4 GHz Opteron processor with 4 GB RAM.

9.1 Test Instances

For our tests we use two different data sets. The first set of 20 templates was provided

by the Fraunhofer Institute Berlin and is in the following referred to as Fraunhofer

Templates. In addition we use a minutia data set from the U.S. National Institute

of Standards and Technology [10]. For the instances we use the prefix ft and nist,

respectively.

The Fraunhofer data set contains 20 templates which are multiple scans of four dif-

ferent fingers from two persons. The encoding of the points is ξ̃ = (ξx, ξy, ξθ, ξtype)
T =

(29, 29, 29, 21)T . The size of ConstData is 14 bit, i.e. 7 bit for the offset value for

each spatial dimension respectively. The templates consist of 15 to 40 minutia which

corresponds to a typical amount of minutia detected by an electronic fingerprint scan-

ner. The templates are listed in the first part of Table 3, i.e. ft-01 to ft-20. The full

name matches the pattern P[0-9999] F[0-99] R[0-99] where P abbreviates “Person”,

F “Finger”, and R “Release”. One can see, that various releases of the same finger

involve significant differences to the number of minutia that are detected. The sec-

ond part of the table lists the templates from the NIST data set. From the large set

of NIST Templates we selected a subset for our experiments, see Table 3. We chose

five templates from each of the categories ugly, bad and good. The instance names

reflect this classification. Furthermore for each fingerprint, there exists minutia data

to a latent and a corresponding tenprint image. Latent refers to fingerprints on e.g.

crime scenes that are invisible to the eye and require some type of chemical processing

or dusting to make them visible. Fingerprint images that are created by inking and

24

root node

ṽ

7 + 7 = 14 Bit

ld ξ = 27 bit

ld ξ = 27 bit

tree structure 2 · (k − 1) = 2 · 8 = 16 bit

template arcs

k,m 9 2

(303, 52, 268)

(503, 477, 294)

1111001100011000

m · ⌈
∑d

l=1 χl ld vl⌉ = 2 · 18 = 36 bit

(k − 1) · ⌈ld m +
∑d

l=1 χl ld δ̃l +
∑d̃

l=1(1 − χl) ld ṽl⌉

t1 = (100, 25)

t2 = (50, 50)

tree arcs 1 5 3 157

1 3 4 30

1 5 1 293

2

2

2

idx δ1 δ2 remaining dimension

3 2 210

4 2 104

972 4

Encoding

(303, 52, 268)

(408, 80, 157)

(8, 104, 30)(8, 104, 30)

(462, 132, 104)

(113, 130, 293)

(114, 209, 22)

(11, 186, 97)

= 8 · (1 + 4.64 + 8.19) = 112 bit

(61, 156, 210)

2 3 3 22

(214, 156, 77)

1 1 1 77

Fig. 11 This figure shows a concrete encoding example. The first block basically contains
information to be able to process the following blocks. It is followed by the list of the templace
arcs. This can be compared to a dictionary or codebook of traditional compression methods.
The block on the bottom contains the actual tree information, i.e. a list of arcs encoded by an
index to one of the template arcs, the respective correction vectors, and finally the values of
the dimensions which are not considered for compression. The black dots indicate that the size
of the respective (sub)blocks is not known in advance, because it depends on output values of
the compression algorithm (like the number of template arcs m).

rolling fingertips onto a paper or some scanning device and traditionally have been

captured of all ten fingers are usually referred to as tenprints. Obviously the quality of

tenprints is superior to the latents, which typically just consist of a few dozen minu-

tiae (min=5, max=82, avg=20.55, std-dev=13.25). The tenprints have between 48 and

193 minutiae (avg = 106.3, std-dev=25), which is a significantly higher number than

we can expect to get from an electronic fingerprint scanning device. None the less, in

our experiments we only use the tenprint data, as the latents do not contain enough

25

Table 2 Characterization of the two template data sets

Fraunhofer NIST

avg(|V |) 30.75 96.47
min(|V |) 15 72
max(|V |) 40 120

ṽavg (286, 383, 358, 2)T (3993, 3368, 359, 2)T

ṽmin (129, 191, 252, 2)T (2936, 2281, 359, 2)T

ṽmax (224, 287, 312, 2)T (3293, 2788, 353, 2)T

minutiae and the larger size of the tenprints enables us to test the performance of our

method concerning higher numbers of data points. The encoding of the NIST points is

ξ̃ = (ξx, ξy, ξθ, ξtype)
T = (212, 212, 29, 21)T . The size of ConstData is 33, which are

the offsets for the dimensions x, y and θ.

Column ρ∗ shows the best compression ratios that could be achieved by our compu-

tational experiments, the column right to it show the respective parameter values that

yielded the result. The results for the Fraunhofer templates are exact ones, whereas the

results for the NIST templates are results of metaheuristics. Table 2 gives an overview

of the characteristics of the two data sets.

9.2 Compression Results

Table 3 gives an overview of the data instances used for our experimental evaluations,

and the corresponding best results. Besides the number of nodes and resulting tree arcs

we list the best compression ratios we could achieve by our method together with the

respective parameter values. The compression ratios ρ are defined by

ρ [%] = 100−
100 · λraw

λenc
, (22)

where λraw refers to equation (19) of the k selected points and λenc to equation (21). As

ρ does not reflect the size of the compressed template compared to the full template,

but only to the trivial encoding of the k selected points, we will also refer to ρ as

relative compression ratio. We denote the best found compression ratio by ρ∗. Though

adequate for our application background, we do not set ConstData
′ = 0 for the

subsequent experiments, in order to evaluate the compression ratios more objectively.

In Table 4 we present some data regarding the preprocessing – the determination of

the candidate template arcs T c. For larger values of δ the running times become quite

large, which is clearly not satisfactory. Obviously, the running times for δ yielding the

best compression ratios (e.g. δ = (25, 25)T or δ = (30, 30, 30)T , see Tables 6 and 8) are

of high importance. Fortunately the running times for these parameter values seem to

be still reasonable for practical applications.

Tables 5, 6, 7, and 8 give an overview of the compression ratios of this ap-

proach. For the Fraunhofer data we used the parameter values k ∈ {10, 15, . . . , 40}

and δ ∈

„

10
10

«

,

„

15
15

«

, . . . ,

„

45
45

«

,

„

50
50

«ff

(i.e. applying the algorithm to two dimen-

sions) as well as δ ∈

8

<

:

0

@

10
10
10

1

A ,

0

@

15
15
15

1

A ,

0

@

20
20
20

1

A , . . . ,

0

@

45
45
45

1

A ,

0

@

50
50
50

1

A

9

=

;

(applying the algorithm

26

Table 3 Overview about the test instances used for our experiments and their best results

short name full name |V | |B| ρ∗[%] parameters

ft-01 P0001 F00 R00 31 930 9.9 k = 25, δ = (20, 20)T

ft-02 P0001 F00 R01 38 756 8.7 k = 25, δ = (40, 40)T

ft-03 P0001 F00 R02 35 1190 9.6 k = 35, δ = (35, 35, 35)T

ft-04 P0001 F00 R03 20 380 5.1 k = 15, δ = (35, 35, 35)T

ft-05 P0001 F00 R04 39 1482 11.5 k = 30, δ = (20, 20)T

ft-06 P0001 F01 R00 15 210 2.8 k = 15, δ = (40, 40)T

ft-07 P0001 F01 R01 28 756 7.2 k = 25, δ = (20, 20)T

ft-08 P0001 F01 R02 27 702 9.8 k = 20, δ = (35, 35)T

ft-09 P0001 F01 R03 27 702 8.6 k = 25, δ = (50, 50)T

ft-10 P0001 F01 R04 31 930 8.5 k = 25, δ = (45, 45)T

ft-11 P0001 F03 R00 38 1406 11.7 k = 39, δ = (45, 45)T

ft-12 P0001 F03 R01 28 756 12.0 k = 25, δ = (35, 35)T

ft-13 P0001 F03 R02 25 600 8.7 k = 25, δ = (50, 50)T

ft-14 P0001 F03 R03 33 1056 10.2 k = 30, δ = (45, 45)T

ft-15 P0001 F03 R04 29 812 9.9 k = 29, δ = (45, 45)T

ft-16 P0014 F00 R00 37 1332 10.6 k = 25, δ = (40, 40, 40)T

ft-17 P0014 F00 R01 31 930 8.6 k = 25, δ = (45, 45)T

ft-18 P0014 F00 R02 40 1560 13.5 k = 30, δ = (30, 30, 30)T

ft-19 P0014 F00 R03 35 1190 10.1 k = 30, δ = (45, 45)T

ft-20 P0014 F00 R04 28 756 7.1 k = 20, δ = (45, 45)T

nist-b-01-t u201t6i 99 9702 18.9 k = 80, δ = (120, 120)T

nist-b-02-t u202t8i 93 8556 18.9 k = 80, δ = (120, 120)T

nist-b-03-t u204t2i 100 9900 18.9 k = 80, δ = (120, 120)T

nist-b-04-t u205t4i 84 6972 13.8 k = 80, δ = (120, 120)T

nist-b-05-t u206t3i 72 5256 18.9 k = 80, δ = (80, 80)T

nist-g-01-t b101t9i 106 11130 18.9 k = 80, δ = (80, 80)T

nist-g-02-t b102t0i 94 8742 13.4 k = 80, δ = (80, 80)T

nist-g-03-t b104t8i 107 11342 18.9 k = 80, δ = (120, 120)T

nist-g-04-t b105t2i 81 6480 18.6 k = 80, δ = (80, 80)T

nist-g-05-t b106t8i 93 8556 13.8 k = 80, δ = (80, 80)T

nist-u-01-t g001t2i 99 9702 13.4 k = 80, δ = (80, 80)T

nist-u-02-t g002t3i 99 9702 13.8 k = 80, δ = (80, 80)T

nist-u-03-t g003t8i 101 10100 18.9 k = 80, δ = (120, 120)T

nist-u-04-t g004t8i 102 10302 13.8 k = 80, δ = (80, 80)T

nist-u-05-t g005t8i 120 14280 13.8 k = 73, δ = (80, 80)T

to three dimensions) and all their combinations for our experiments. The results for

the Fraunhofer data have been computed with the exact branch-and-cut method, and

are therefore optimal values. Due to the long running time and memory requirements

the branch-and-cut algorithm is not practicable for the NIST templates. These results

have therefore been computed with the memetic algorithm. Tables 5, 6, 7, and 8 list

average compression values, where the average goes over all instances and parameter

settings listed in the table caption.

At a first glance the compression ratios are not too high. However, when compared

to other well established compression techniques, it turns out that all these methods

consistently enlarge the templates. Table 9 shows the results of our application of

other well known compression tools to our test data. Colums 2 to 7 list the results

of some compression algorithms implemented in the LEDA C++ library [15] for var-

2
7

Table 4 Number of candidate template arcs |T c| and running times of the preprocessing for the Fraunhofer data with some typical values of δ

δ (10, 10)T (20, 20)T (30, 30)T (40, 40)T (10, 10, 10)T (20, 20, 20)T (30, 30, 30)T (40, 40, 40)T

inst. |T c| t[s] |T c| t[s] |T c| t[s] |T c| t[s] |T c| t[s] |T c| t[s] |T c| t[s] |T c| t[s]

ft-01 797 7 1863 74 3747 526 5802 2810 826 3 860 6 1693 34 3897 272
ft-02 610 4 1443 30 2666 185 4374 911 664 2 715 4 1560 23 3353 241
ft-03 1002 12 2684 146 4644 902 7786 4799 1042 5 1152 11 2620 82 6464 1019
ft-04 296 1 510 4 1035 23 31582 101 356 1 352 1 695 8 1223 55
ft-05 1401 23 3398 297 7044 2052 11276 12144 1246 8 1486 20 3546 237 8669 2578
ft-06 145 1 248 1 354 3 574 11 202 1 156 1 231 1 439 2
ft-07 517 3 1019 19 2035 102 3280 426 680 2 614 3 1129 11 2237 63
ft-08 533 3 1030 19 1898 92 3402 463 630 2 570 3 1064 10 2164 57
ft-09 506 3 1022 17 1828 94 3429 382 626 2 578 3 1061 11 2091 58
ft-10 767 6 1721 46 3132 283 5365 1334 812 3 812 5 1548 28 2930 165
ft-11 1565 28 3751 377 7561 3261 11542 15580 1168 7 1677 25 4446 305 11497 3748
ft-12 699 5 1548 51 3268 356 5064 1836 632 2 752 5 1718 40 4224 341
ft-13 498 3 1010 19 2201 122 3980 617 517 1 531 3 1143 15 2573 143
ft-14 1002 10 2292 109 4458 991 7130 3468 842 4 1024 8 2286 58 5150 522
ft-15 742 6 1768 63 3487 442 5720 2549 656 2 786 5 1676 30 3980 333
ft-16 1144 14 2501 145 4984 919 7330 4431 1142 6 1457 21 3125 190 6095 2858
ft-17 800 5 1633 42 3317 301 5585 1365 814 3 878 6 1878 31 3847 273
ft-18 1288 22 2858 238 5632 1577 8950 6106 1298 10 1710 31 3963 270 8889 3435
ft-19 1017 10 2161 87 3857 531 6247 2515 1000 5 992 10 1944 49 4538 399
ft-20 622 3 1086 20 1649 107 3022 395 658 2 672 4 990 20 2021 104

28

Table 5 Average compression ratios for the Fraunhofer templates for δ = (30, 30, 30)T

k ρmax ρmin ρavg σρ

10 -6.12 -6.80 -6.63 0.29
15 5.07 -9.22 1.15 3.67
20 6.62 -1.57 4.60 3.11
25 10.92 -0.14 5.05 3.68
30 13.47 1.29 6.31 3.05
35 9.66 4.63 7.56 2.26

Table 6 Average compression ratios for the Fraunhofer templates with k ∈ {20, 25, 30}

δ ρmax ρmin ρavg σρ

(10, 10)T 9.48 -0.87 4.98 2.11
(15, 15)T 9.93 1.39 5.44 2.06
(20, 20)T 11.71 0.35 5.95 2.31
(25, 25)T 9.80 0.87 5.43 1.89
(30, 30)T 9.76 2.69 5.79 1.97
(35, 35)T 12.04 0.00 4.52 2.87
(40, 40)T 10.19 0.00 5.87 2.58
(45, 45)T 10.19 0.35 6.03 2.56
(50, 50)T 8.68 -2.96 4.54 2.31

(10, 10, 10)T 0.84 -20.21 -5.82 4.95
(15, 15, 15)T 6.72 -8.01 -0.30 3.73
(20, 20, 20)T 11.01 -5.92 2.61 3.57
(25, 25, 25)T 10.54 -3.36 3.90 2.83
(30, 30, 30)T 13.47 -1.57 5.14 3.39
(35, 35, 35)T 10.45 0.82 5.70 2.81
(40, 40, 40)T 10.64 -0.52 4.29 2.93
(45, 45, 45)T 9.60 0.35 4.99 1.92
(50, 50, 50)T 9.60 0.42 4.84 2.51

Table 7 Average compression ratios for the NIST templates with δ = (80, 80, 80)T

k ρmax ρmin ρavg σρ

20 17.35 4.85 9.47 2.87
40 18.90 11.03 15.42 2.97
60 18.97 10.00 16.08 2.20
80 19.30 10.70 15.49 3.26

Table 8 Average compression ratios for the NIST templates with k ∈ {40, 60, 80}

δ ρmax ρmin ρavg σρ

(40, 40)T 19.02 12.40 15.09 1.77
(80, 80)T 15.51 3.63 10.01 3.42

(40, 40, 40)T 18.24 11.80 15.85 1.80
(80, 80, 80)T 19.30 10.00 15.67 2.85

29

����� ����� ����� ����� �����

�	

��

��

�

�

�

	

��

��

��

��

��

��

��

����

�
�
�
�
��
�
�
��
�
��
�
��
�

Fig. 12 Average compression ratios for the Fraunhofer data for k ∈ {10, 20, 30, 40} and 2-
dimensional δ

�������� �������� �������� �������� ��������

���

���

��

�

�

��

��

��

��

��

��

	
��

�
�
�
�
�

�
�
��
�
��

��
�

Fig. 13 Average compression ratios for the Fraunhofer data for k ∈ {10, 20, 30, 40} and 3-
dimensional δ

ious values of k. For this purpose we selected k points at random. The abbrevations

in the first header row denote: Huff =̂ Huffman Coding; BMA =̂ Burrows-Wheeler

Transform in combination with a Move-To-Front coder and an Adaptive Arithmetic

Coder [24, 2, 18]; Columns 8 to 19 show the results for the application of some com-

monly used (Unix/Linux) compression tools, namely zip, gzip, bzip2 and compress

under Kubuntu Linux in version 8.04. Again, we selected k points at random and ap-

plied the compression tools to their binary encoding. Finally we subtracted the size

of constant data of known size from the compressed file size, in particular 22 byte for

zip, 18 byte for gzip and 8 byte for bzip2.

The bad performance of these tools on our data set may be explained on the one

hand by the fact that they are not specifically designed to compress very small data

sets, but on the other hand also by the observation that the input data does not

contain a significant amount of redundant information. Furthermore the underlying

3
0

Table 9 Compression ratios in % of various well known compression techniques applied to our data sample

instance Huff BMA Huff BMA Huff BMA zip gzip bzip2 compr zip gzip bzip2 compr zip gzip bzip2 compr

k=10 k=20 k=30 k=10 k=20 k=30

ft-01 -91.7 -47.5 -90.9 -29.9 -89.9 -21.8 -331.2 -9.3 -165.6 -21.8 -155.8 -7.3 -79.4 -17.6 -101.9 -4.8 -66.3 -15.3
ft-02 -92.2 -47.5 -91.6 -30.6 -91.1 -23.8 -331.2 -9.3 -168.7 -21.8 -155.8 -7.3 -97.0 -17.6 n/a n/a n/a n/a
ft-03 -91.9 -47.5 -91.1 -29.9 -90.7 -22.4 -331.2 -9.3 -159.3 -21.8 -155.8 -7.3 -86.7 -17.6 -101.9 -4.8 -72.1 -15.3
ft-04 -91.9 -47.5 -91.2 -29.9 -91.2 -29.9 -331.2 -9.3 -156.2 -21.8 -155.8 -7.3 -88.2 -17.6 n/a n/a n/a n/a
ft-05 -92.2 -47.5 -91.5 -29.9 -90.8 -22.4 -331.2 -9.3 -175.0 -21.8 -155.8 -7.3 -100.0 -17.6 -101.9 -4.8 -68.2 -15.3
ft-06 -91.4 -47.5 -91.2 -35.8 -91.2 -35.8 -331.2 -9.3 -21.8 n./a n./a n./a n./a n/a n/a n/a n/a
ft-07 -91.9 -47.5 -91.5 -30.6 -91.0 -23.8 -331.2 -9.3 -171.8 -21.8 -155.8 -7.3 -98.5 -17.6 n/a n/a n/a n/a
ft-08 -91.7 -47.5 -90.9 -30.6 -90.6 -24.0 -331.2 -9.3 -153.1 -21.8 -155.8 -7.3 -83.8 -17.6 n/a n/a n/a n/a
ft-09 -91.4 -47.5 -90.6 -30.6 -90.2 -24.6 -331.2 -9.3 -159.3 -21.8 -155.8 -7.3 -82.3 -17.6 n/a n/a n/a n/a
ft-10 -91.7 -46.7 -91.1 -30.6 -90.5 -22.4 -331.2 -9.3 -175.0 -21.8 -155.8 -7.3 -92.6 -17.6 -101.9 -4.8 -75.0 -15.3
ft-11 -91.4 -47.5 -91.2 -29.9 -90.3 -22.4 -331.2 -9.3 -162.5 -21.8 -155.8 -7.3 -85.2 -17.6 -101.9 -4.8 -71.1 -15.3
ft-12 -91.4 -47.5 -91.4 -30.6 -90.7 -23.8 -331.2 -9.3 -153.1 -21.8 -155.8 -7.3 -89.7 -17.6 n/a n/a n/a n/a
ft-13 -91.9 -47.5 -91.5 -29.9 -91.0 -25.7 -331.2 -9.3 -165.6 -21.8 -155.8 -7.3 -92.6 -17.6 n/a n/a n/a n/a
ft-14 -91.9 -47.5 -90.9 -29.2 -90.2 -21.8 -331.2 -9.3 -162.5 -21.8 -155.8 -7.3 -89.7 -17.6 -101.9 -4.8 -69.2 -15.3
ft-15 -91.9 -47.5 -91.1 -30.6 -90.3 -22.5 -331.2 -9.3 -156.2 -21.8 -155.8 -7.3 -80.8 -17.6 n/a n/a n/a n/a
ft-16 -91.1 -47.5 -90.5 -29.9 -89.8 -21.8 -331.2 -9.3 -156.2 -21.8 -155.8 -7.3 -89.7 -17.6 -101.9 -4.8 -71.1 -15.3
ft-17 -91.4 -47.5 -91.1 -29.2 -90.6 -23.0 -331.2 -9.3 -153.1 -21.8 -155.8 -7.3 -88.2 -17.6 -101.9 -4.8 -74.0 -15.3
ft-18 -91.9 -47.5 -91.2 -30.6 -90.8 -23.0 -331.2 -9.3 -181.2 -21.8 -155.8 -7.3 -94.1 -17.6 -101.9 -4.8 -67.3 -15.3
ft-19 -91.9 -47.5 -91.2 -29.9 -90.5 -22.4 -331.2 -9.3 -168.7 -21.8 -155.8 -7.3 -89.7 -17.6 -101.9 -4.8 -70.1 -15.3
ft-20 -91.7 -47.5 -91.4 -30.6 -90.7 -23.8 -331.2 -9.3 -156.2 -21.8 -155.8 -7.3 -89.7 -17.6 n/a n/a n/a n/a

k=20 k=40 k=80 k=20 k=40 k=80

nist-u-01 -90.7 -24.6 -88.7 -14.5 -84.6 -8.2 -128.2 -5.4 -78.2 -16.3 -62.7 -2.6 -45.7 -14.3 -31.0 -1.3 -40.2 -16.0
nist-u-02 -90.2 -24.6 -87.8 -13.8 -84.2 -8.2 -128.2 -5.4 -76.0 -16.3 -62.7 -2.6 -34.5 -13.8 -31.0 -1.3 -39.9 -16.5
nist-u-03 -90.3 -24.6 -88.1 -14.2 -83.3 -7.5 -128.2 -5.4 -79.3 -16.3 -62.7 -2.6 -41.4 -14.3 -31.0 -1.3 -38.4 -16.0
nist-u-04 -90.3 -24.6 -88.3 -14.5 -84.6 -8.2 -128.2 -5.4 -72.8 -16.3 -62.7 -2.6 -39.3 -13.8 -31.0 -1.3 -39.9 -16.0
nist-u-05 -90.4 -24.6 -88.4 -14.5 -84.8 -8.5 -128.2 -5.4 -80.4 -16.3 -62.7 -2.6 -48.4 -14.3 -31.0 -1.3 -42.4 -16.8
nist-b-01 -90.5 -24.0 -88.2 -13.8 -84.8 -8.7 -128.2 -5.4 -79.3 -16.3 -62.7 -2.6 -42.0 -14.3 -31.0 -1.3 -39.9 -17.1
nist-b-02 -89.8 -24.6 -87.7 -14.5 -83.5 -8.0 -128.2 -5.4 -78.2 -16.3 -62.7 -2.6 -34.5 -13.8 -31.0 -1.3 -37.1 -16.8
nist-b-03 -89.9 -24.0 -88.5 -13.8 -84.5 -8.2 -128.2 -5.4 -75.0 -16.3 -62.7 -2.6 -44.6 -13.8 -31.0 -1.3 -38.1 -16.8
nist-b-04 -90.6 -24.6 -88.6 -14.5 -84.5 -8.0 -128.2 -5.4 -77.1 -16.3 -62.7 -2.6 -39.8 -13.8 -31.0 -1.3 -39.9 -16.5
nist-b-05 -90.3 -24.6 -88.3 -14.5 -84.4 -8.0 -128.2 -5.4 -75.0 -16.3 -62.7 -2.6 -44.6 -14.3 -31.0 -1.3 -38.4 -16.8
nist-g-01 -90.1 -24.0 -88.5 -13.8 -84.6 -8.4 -128.2 -5.4 -72.8 -16.3 -62.7 -2.6 -43.6 -13.2 -31.0 -1.3 -38.6 -15.5
nist-g-02 -90.9 -24.6 -88.8 -13.8 -84.2 -8.0 -128.2 -5.4 -80.4 -16.3 -62.7 -2.6 -46.2 -13.2 -31.0 -1.3 -39.4 -16.0
nist-g-03 -90.7 -24.6 -88.1 -13.8 -84.5 -8.4 -128.2 -5.4 -80.4 -16.3 -62.7 -2.6 -40.4 -14.3 -31.0 -1.3 -40.5 -17.1
nist-g-04 -90.6 -24.6 -88.3 -14.2 -84.9 -8.4 -128.2 -5.4 -78.2 -16.3 -62.7 -2.6 -47.3 -13.8 -31.0 -1.3 -78.2 -16.5
nist-g-05 -90.1 -24.0 -87.5 -14.2 -83.8 -7.1 -128.2 -5.4 -78.2 -16.3 -62.7 -2.6 -38.8 -14.3 -31.0 -1.3 -38.6 -16.8

31

����� �������� ����� ��������

�

�

�

�

�

��

��

��

��

��

��

��

��

��

�	
��

�
�
�
�	
�
�
��
�
��
�
��
�

Fig. 14 Average compression ratios for the NIST data for k ∈ {20, 40, 60, 80}

algorithms are not able to benefit from the special structure of the input data, i.e.

spatial coordinates, but also cannot benefit from the fact that the relative order of the

points need not be preserved.

9.3 Matching Results

The impact of the reduction of the number of minutia, i.e. the parameter k to the

reliability of the matching of different minutiae templates has been evaluated in [8].

Obviously k is the only parameter of our algorithm having an impact to matching

quality. Other influences result from the concrete hardware (fingerprint scanner), the

minutiae detection and extraction algorithm and also the concrete matching algorithm.

For this purpose, computational experiments have been performed with the Fraun-

hofer data together with a fingerprint minutiae matching algorithm, also provided by

the Fraunhofer institute [8]. The false match rate (FMR) turned out not to be crit-

ical for our application scenario. For nearly all reasonable values of k, i.e. k ≥ 5, it

remained zero. For a verification application the false non-match rate (FNMR) is of

higher importance. When mating different templates from the same finger the FNMR

is about 5% on average. This non vanishing FNMR is due to some randomness in the

template aquisition process (scanning, detection, extraction). Hence it is unlikely to

achieve exactly the same minutiae sets by performing the aquisition process several

times. Values of k ≤ 20 yielded FNMRs of more than 30% on average, which defi-

nitely seems to be too high for our application scenario. Nevertheless, larger values,

in particular k ≥ 25 yielded FNMR of less than 20% on average. This seems to be

reasonable as the aquisition process can be repeated several times in the case of failure

of verification. Demanding k ≥ 25 might indeed be very pessimistic, as 12-20 minutiae

are often thought to be sufficient for a trusty matching [21].

Nevertheless the optimal value of k is highly dependend on the concrete imple-

mentation of this application, in particular the fingerprint scanner and the subsequent

32

image processing algorithms. The exact requirements regarding the FNMR need to be

specified for a concrete implementation; also the acceptable computation times have

influence.

9.4 Algorithmic results

In this section we compare the presented k-MLSA algorithms regarding the running

times and solution quality.

Altough the running times of the branch-and-cut algorithm are sometimes very low,

there are also many cases where the running times are clearly too high for practical

purposes. Due to the larger size of the NIST templates the branch-and-cut approach

is not practicable for them anymore. Computational experiments showed that using

the cycle elimination cuts exclusively, i.e. without the directed connection cuts, yields

lower runnung times than using both kinds of cuts. The exclusive use of the directed

connection cuts turned out to be very slow, due to the computationally more expensive

separation problem, i.e. the maximum flow problem. Most of the instances can be solved

to provably optimality within a couple of seconds, but there are also many instances

where the total running time lies between 10 and 30 minutes, or even more in some

rare cases. These running times are clearly too high for practical applications, where a

total running time of a few minutes will be acceptable. The metaheuristics are able to

fulfill this goal.

The results regarding the running times and solution quality, i.e. the number of

template arcs required for the resulting arborescence, are presented in Tables 10 and

11. The first three columns show the instance names and parameters k and δ. Then,

in the first part of the table, we list the results from the exact branch-and-cut method,

the second part contains the objective value of the currently best known solution. The

column mbest shows the best result of the multiple runs of the algorithm, column mavg

shows the average value. By σx we denote the standard deviation of the entity x. The

column #b.s. shows the percentage of runs, where the solution listed in mbest has been

found. Average running times are listed in column tavg. For each algorithm we compare

two parameter settings yielding good compression ratios for the Fraunhofer and the

NIST data respectively. Instead of using k = 30 which for the Fraunhofer data yielded

the best compression results with δ = (30, 30, 30)T , we used k = 20 instead, as many

Fraunhofer templates have |V | < 30.

Table 10 shows the results of the GRASP algorithm for some parameters k and δ

in comparison to the best known solution. The presented results do not substantially

differ from the ones for any other parameter settings of k and δ. The average running

time to find reasonably good solutions w.r.t. our application background (i.e. to find

the optimal solution in most of the cases) is roughly less than ten seconds for the

Fraunhofer templates. Due to their larger size it is much more expensive to solve the

NIST data with relatively high reliability. In this case the running times range from less

than one minute to slightly more than three minutes. Preceding experiments for finding

a good parameter setup indicated that impmax has little impact on the solution quality.

Nevertheless setting impmax = 0 corresponds to an completely arbitrary decision in

the randomized construction process. In such a case the quality of the GRASP solely

relies on the subsequent local search. On the other hand, too high values of impmax

lead to unnecessary high running times. When comparing setups of impmax and itls
which yield approximately the same running times, it turned out that higher values of

33

itls yield better average solutions. Setting rclmax ≈ 10 turned out to be a good choice,

but the exact value is uncritical. Of course, higher values imply more diversity, which

may enable to find the global optimum of difficult instances more quickly.

The results of the memetic algorithm are presented in Table 11. We used a popu-

lation size sizepop ∈ {100, 200}, and a group size of four for the tournament selection.

The crossover and mutation probability is set to one, i.e. each offspring is created by

crossover and subsequent mutation. In each iteration a randomly selected candidate

solution from the population was replaced by the newly generated one. Local improve-

ment is performed for each newly created candidate solution. As mutation type 2

produced better overall results than mutation type 1, the former was used to create

the results listed in Table 11. Replacing a randomly selected t ∈ T turned out to be

advantageous over replacing the worst one.

Table 11 shows the results of 30 runs with 10000 and 30000 iterations for the

Fraunhofer templates (population size 100); for the NIST templates we list the results

for 10000 and 60000 iterations with a population size of 100 and 200, respectively.

Again, the presented results are not essentially different to the ones for any other

parameter settings of k and δ. The Fraunhofer data can be compressed reliably within

10000 iterations, which takes an average running time of roughly 2 seconds. Due to the

larger number of points, the compression of the NIST data is computationally more

expensive. At least 60000 iterations must be used in order to be able to produce reliable

results. The respective running times are roughly 100 seconds.

Due to the relatively high running time of the randomized greedy construction

heuristic (Algorithm 7) it is impossible to find a parameter setup which does not

degenerate the GRASP to some extend but still keeps the overall running times small.

Such a setup would either start local search on nearly arbitrary random solutions (i.e.

impmax = 0) or extremely limit the number of local search iterations, i.e. itls < 5.

Allowing slightly higher running times enables to find the optimal solution in almost

every case (Fraunhofer), except two difficult instances. For the NIST data, sufficiently

good solutions can be produced with adequate reliability in less than four minutes.

In the case of the Fraunhofer data the MA is clearly superior to the GRASP, as it

produces better solutions in less time. In contrast to GRASP it is also possible to

create reasonable solutions (though with moderate quality) in less than 20 seconds.

However, when allowing higher running times of up to five minutes, GRASP clearly

outperformes the MA.

9.5 Absolute Compression Ratios

In Section 9.2 we presented the compression ratios achievable on our test data by

our compression model in comparison to the trivial representation of the k selected

points, for which the size is given by equation (19). With respect to our particular

application background of fingerprint template verification not all entities considered

in equation (21) need to be encoded. In the following we describe which information

can be neglected.

It is obviously not possible that two scans of the same finger yield exactly the same

minutia. Distortions like rotations, scalings and shifts are always involved. Matching

algorithms thus have to account for such distortions in order to be able to reliably

match two minutiae sets from the same finger with e.g. different coordinate offset values.

Consequently we do not need to store such offset values in our compressed template

3
4

Table 10 Results and running times of the GRASP

instance k δ m t[s] mbest mavg σm #b.s. [%] tavg[s] mbest mavg σm #b.s. [%] tavg[s] ρb.s.[%]

B&C results GRASP GRASP
it = 10, itls = 5, rclmax = 5, impmax = 0 it = 10, itls = 20, rclmax = 10, impmax = 10

ft-01

20

0

@

30
30
30

1

A

3 79 4 4.00 0.00 100 1.57 3 3.87 0.34 13 7.97 6.10
ft-02 3 0 4 4.00 0.00 100 1.00 3 3.67 0.47 33 6.20 6.10
ft-03 3 85 3 3.00 0.00 100 2.03 3 3.00 0.00 100 10.03 6.10
ft-04 4 10 4 4.70 0.46 30 0.15 4 4.30 0.46 70 2.03 -0.87
ft-05 3 327 3 3.00 0.00 100 4.82 3 3.00 0.00 100 16.90 6.10
ft-07 4 14 4 4.00 0.00 100 0.33 4 4.00 0.00 100 4.00 -1.57
ft-08 4 13 4 4.00 0.00 100 0.93 4 4.00 0.00 100 3.93 -1.57
ft-09 4 24 4 4.00 0.00 100 0.33 4 4.00 0.00 100 4.00 -1.57
ft-10 3 36 3 3.13 0.34 87 1.00 3 3.00 0.00 100 6.30 6.10
ft-11 3 853 3 3.00 0.00 100 4.27 3 3.00 0.00 100 23.07 6.10
ft-12 3 52 3 3.00 0.00 100 1.00 3 3.00 0.00 100 5.93 6.62
ft-13 3 21 3 3.00 0.00 100 0.20 3 3.00 0.00 100 2.97 6.62
ft-14 3 275 3 3.00 0.00 100 2.00 3 3.00 0.00 100 8.73 6.10
ft-15 3 15 3 3.00 0.00 100 1.00 3 3.00 0.00 100 5.93 6.62
ft-16 3 282 3 3.00 0.00 100 2.97 3 3.00 0.00 100 16.53 6.10
ft-17 3 235 3 3.00 0.00 100 1.03 3 3.00 0.00 100 5.97 6.10
ft-18 3 823 3 3.00 0.00 100 5.57 3 3.00 0.00 100 21.93 6.10
ft-19 3 97 3 3.00 0.00 100 1.90 3 3.00 0.00 100 8.10 6.10
ft-20 3 0 3 3.00 0.00 100 0.30 3 3.00 0.00 100 3.00 6.10

best known solution it = 5, itls = 5, rclmax = 10, impmax = 0 it = 5, itls = 10, rclmax = 10, impmax = 5

nist-b-01

40

0

@

80
80
80

1

A

4 n/a 4 4.83 0.37 17 91.60 4 4.50 0.50 50 189.97 18.90
nist-b-02 4 n/a 4 4.37 0.48 63 78.47 4 4.00 0.00 100 180.17 18.90
nist-b-03 4 n/a 4 4.43 0.50 57 89.57 4 4.03 0.18 97 190.67 18.90
nist-b-04 5 n/a 5 5.27 0.44 73 24.70 5 5.00 0.00 100 53.97 13.75
nist-b-05 4 n/a 4 4.93 0.25 7 73.37 4 4.77 0.42 23 157.47 18.90
nist-g-01 4 n/a 4 4.83 0.37 17 71.23 4 4.37 0.48 63 159.57 18.90
nist-g-02 5 n/a 5 5.73 0.44 27 67.50 5 5.40 0.49 60 151.13 13.38
nist-g-03 4 n/a 4 4.17 0.37 83 94.50 4 4.00 0.00 100 189.57 18.90
nist-g-04 4 n/a 5 5.00 0.00 0 85.77 4 4.97 0.18 3 201.70 18.60
nist-g-05 5 n/a 5 5.13 0.34 87 40.13 5 5.03 0.18 97 64.57 13.75
nist-u-01 5 n/a 6 6.03 0.18 0 68.90 5 5.90 0.30 10 156.70 18.38
nist-u-02 5 n/a 5 5.00 0.00 100 69.87 5 5.00 0.00 100 152.37 13.75
nist-u-03 4 n/a 4 4.47 0.50 53 82.20 4 4.13 0.34 87 193.13 18.90
nist-u-04 5 n/a 5 5.17 0.37 86 44.53 5 5.00 0.00 100 74.83 13.75
nist-u-05 5 n/a 5 5.93 0.25 6 20.90 5 5.70 0.46 30 42.77 13.75

3
5

Table 11 Results and running times of the memetic algorithm

instance k δ m t[s] mbest mavg σm #b.s. [%] tavg[s] mbest mavg σm #b.s. [%] tavg[s] ρb.s.[%]

B&C results MA (it = 10000, sizepop = 100) MA (it = 30000, sizepop = 100)

ft-01

20

0

@

30
30
30

1

A

3 79 3 3.70 0.47 30 1.84 3 3.23 0.42 77 5.58 6.10
ft-02 3 0 3 3.04 0.18 97 1.38 3 3.00 0.00 100 4.29 6.10
ft-03 3 85 3 3.00 0.00 100 2.45 3 3.00 0.00 100 7.51 6.10
ft-04 4 10 4 4.00 0.18 100 1.01 4 4.00 0.00 100 3.08 -0.87
ft-05 3 327 3 3.00 0.00 100 2.23 3 3.00 0.00 100 6.48 6.10
ft-07 4 14 4 4.00 0.00 100 1.49 4 4.00 0.00 100 4.62 -1.57
ft-08 4 13 4 4.00 0.00 100 1.50 4 4.00 0.00 100 4.08 -1.57
ft-09 4 24 4 4.00 0.00 100 1.35 4 4.00 0.00 100 4.54 -1.57
ft-10 3 36 3 3.43 0.50 57 1.53 3 3.17 0.38 84 5.79 6.10
ft-11 3 853 3 3.00 0.00 100 2.01 3 3.00 0.00 100 6.50 6.10
ft-12 3 52 3 3.00 0.00 100 2.26 3 3.00 0.00 100 4.86 6.10
ft-13 3 21 3 3.03 0.18 97 1.59 3 3.00 0.00 100 3.60 6.10
ft-14 3 275 3 3.16 0.37 83 1.15 3 3.00 0.00 100 7.04 6.10
ft-15 3 15 3 3.00 0.00 100 2.33 3 3.00 0.00 100 4.88 6.10
ft-16 3 282 3 3.00 0.00 100 1.69 3 3.00 0.00 100 7.50 6.10
ft-17 3 235 3 3.46 0.48 67 1.82 3 3.17 0.38 84 5.36 6.10
ft-18 3 823 3 3.00 0.00 100 2.75 3 3.00 0.00 100 8.50 6.10
ft-19 3 97 3 3.06 0.18 97 2.69 3 3.00 0.00 100 8.05 6.10
ft-20 3 0 3 3.00 0.00 100 1.58 3 3.00 0.00 100 4.79 6.10

best known solution MA (it = 10000, sizepop = 100) MA (it = 60000, sizepop = 200)

nist-b-01

40

0

@

80
80
80

1

A

4 n/a 5 5.10 0.31 0 24.66 5 5.00 0.00 0 98.90 13.75
nist-b-02 4 n/a 4 4.74 0.44 27 15.16 4 4.20 0.40 80 89.95 18.90
nist-b-03 4 n/a 4 4.60 0.50 40 17.94 4 4.10 0.31 90 104.43 18.90
nist-b-04 5 n/a 5 4.94 0.37 10 16.32 5 5.60 0.50 40 91.75 13.75
nist-b-05 4 n/a 5 5.94 0.51 0 16.86 4 5.00 0.26 3 93.73 18.90
nist-g-01 4 n/a 4 4.87 0.35 14 17.57 4 4.64 0.49 33 101.82 18.90
nist-g-02 5 n/a 6 6.17 0.38 0 21.03 5 5.97 0.18 3 117.78 13.38
nist-g-03 4 n/a 4 4.80 0.41 46 16.36 4 4.30 0.47 70 94.29 18.90
nist-g-04 4 n/a 5 5.38 0.49 0 21.38 5 5.00 0.00 0 115.99 13.38
nist-g-05 5 n/a 5 6.57 0.57 3 16.97 5 5.74 0.45 26 92.97 13.75
nist-u-01 5 n/a 6 6.90 0.31 0 21.17 6 6.10 0.31 0 117.19 11.03
nist-u-02 5 n/a 5 5.60 0.49 40 17.54 5 5.00 0.00 100 100.68 13.75
nist-u-03 4 n/a 5 5.04 0.18 0 17.41 4 4.50 0.50 50 98.18 18.90
nist-u-04 5 n/a 5 5.84 0.38 17 17.75 5 5.24 0.43 76 98.87 13.75
nist-u-05 5 n/a 6 6.37 0.49 0 15.30 6 6.04 0.18 0 83.56 11.47

36

Table 12 Average absolute compression ratios

instances δ k ρavg σρ ρ̃avg σρ̃

Fraunhofer

(30, 30)T 20 4.81 2.13 34.50 12.08
(30, 30, 30)T 20 4.41 3.27 36.08 14.34

(30, 30)T 30 7.94 1.73 18.20 7.68
(30, 30, 30)T 30 5.98 3.23 17.68 10.11

NIST

(80, 80)T 20 10.46 1.52 82.45 2.18
(80, 80, 80)T 20 9.47 2.87 82.25 2.21

(80, 80)T 40 15.41 2.26 65.92 4.15
(80, 80, 80)T 40 15.26 2.97 65.84 4.38

(80, 80)T 60 15.85 0.58 48.79 6.29
(80, 80, 80)T 60 16.08 2.20 48.79 6.27

(80, 80)T 80 16.31 1.99 30.49 8.25
(80, 80, 80)T 80 15.49 3.26 29.76 9.03

as they are of no importance for the matching algorithm. Therefore ConstData
′ = 0.

Moreover, as we do not necessarily need all minutiae in order to perform a reliable

matching (see Section 9.3), the absolute compression ratios are much better than the

values given in Section 9.2, where the ratios are always related to the simple storage of

k minutiae. By absolute compression ratio ρ̃ we mean the ratio of the simple encoding

size of the full template, which is given by equation (19), to the compressed template

with k points given by equation (21) with ConstData
′ = 0.

Whereas on the one hand the relative compression ratios are of more importance for

evaluating the magnitude of our compression model, the absolute compression ratios

are of higher importance for practical purposes on the other hand. Table 12 summarizes

the absolute compression ratios for the Fraunhofer and the NIST data.

10 Conclusions and Further Work

We presented a new approach for compressing fingerprint templates, or more generally

d-dimensional data points. A subset of k data points is encoded via a directed spanning

tree, for which the arcs are represented by indizes to a set of template arcs plus cor-

rection vectors from a small domain. The selection of stored data points (nodes), the

tree structure, and the template arc dictionary are optimized at the same time with

the objective to find a feasible encoding requiring the least number of template arcs.

The general idea of compressing data by solving a graph-based combinatorial opti-

mization problem is completely novel to our knowledge. In our approach, we determine

a (large) set of candidate template arcs during preprocessing and then solve an ex-

tended variant of the minimum label spanning tree problem. An exact branch-and-cut

based algorithm as well as heuristic approaches are investigated for the solution of the

latter.

The compression ratios presented in Section 9.2 are not really compelling, as the

data instances do not contain many structural or redundant information, which would

enable higher compression. Nevertheless our experiments showed that our approach

outperforms several other well known compression techniques on these data sets. When

considering reasonable large values of k (i.e. k ≥ 20) that keep the false non-match

37

rates reasonable small, average absolute compression ratios of more than 30% can

be achieved. Hence the presented method can be suitable for compressing minutiae

templates for embedding them into images by watermarking techiques.

The presented branch-and-cut algorithm finds provably optimal solutions in a cou-

ple of seconds in many cases. Unfortunately there are also instances for which the

running times are much too high for practical applications. For this reason we devel-

oped faster metaheuristics and compared their running times and solution qualities.

The MA turned out to be very fast, in particular the Fraunhofer instances can be

solved to optimality in less than 10 seconds in almost every case. In contrast to the

MA, GRASP is able to find the best known solutions with very high probability also

for the larger NIST instances. Nevertheless, the running times are slightly higher and

range from less than one minute to more than three minutes in this case.

As the preprocessing consumes a significant amount of time, it seems promising to

incorporate the preprocessing into the optimization itself. In this case the optimization

would start with a small set of template arcs and then iteratively create new promising

template arcs on demand. Following this idea, the branch-and-cut algorithm can be

extended to a branch-and-cut-and-price algorithm. Thereby, the pricing problem ad-

dresses the question which template arc to create next. We designed an effective method

to solve the pricing problem by means of a k-d tree. Nevertheless, the branch-and-cut-

and-price is still work in progress, but preliminary results indicate that this, as well

as the hybridization of the exact methods with the metaheuristics, may significantly

improve the overall performance.

38

References

1. J. L. Bentley. Multidimensional binary search trees used for associative searching.

Commun. ACM, 18(9):509–517, 1975.

2. M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algo-

rithm. Technical Report 124, Digital SRC Research Report, 1994.

3. R.-S. Chang and S.-J. Leu. The minimum labeling spanning trees. Information

Processing Letters, 63(5):277–282, 1997.

4. B. V. Cherkassky and A. V. Goldberg. On implementing the push-relabel method

for the maximum flow problem. Algorithmica, 19(4):390–410, 1997.

5. A. M. Chwatal and G. R. Raidl. Applying branch-and-cut for compressing finger-

print templates (short abstract). In Proceedings of the European Conference on

Operational Research (EURO) XXII, Prague, Czech Republic, 2007.

6. A. M. Chwatal, G. R. Raidl, and O. Dietzel. Compressing fingerprint templates by

solving an extended minimum label spanning tree problem. In Proceedings of the

Seventh Metaheuristics International Conference (MIC), Montreal, Canada, 2007.

7. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-

rithms. The MIT Press, 2nd edition, 2001.

8. O. Dietzel. Combinatorial Optimization for the Compression of Biometric Tem-

plates. Master’s thesis, Vienna University of Technology, Institute of Computer

Graphics and Algorithms, May 2008.

9. T. Feo and M. Resende. Greedy randomized adaptive search procedures. Journal

of Global Optimization, 6:109–133, 1995.

10. Garris M. D. and McCabe R. M. NIST special database 27: Fingerprint minutiae

from latent and matching tenprint images. Technical report, National Institute of

Standards and Technology, 2000.

11. D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing

problems in image processing and vlsi. Journal of the ACM, 32(1):130–136, 1985.

12. ILOG Concert Technology, CPLEX. ILOG. http://www.ilog.com. Version 11.0.

13. A. Jain and U. Uludag. Hiding fingerprint minutiae in images. In Proceedings of

Third Workshop on Automatic Identification Advanced Technologies, pages 97–102,

2002.

14. S. O. Krumke and H.-C. Wirth. On the minimum label spanning tree problem.

Information Processing Letters, 66(2):81–85, 1998.

15. Library for Efficient Datastructures and Algorithms (LEDA). Algorithmics Solu-

tions Software GmbH. http://www.algorithmic-solutions.com/. Version 5.1.

16. T. Magnanti and L. Wolsey. Optimal trees. Network Models, Handbook in Opera-

tions Research and Management Science, pages 503–615, 1995.

17. D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar. Handbook of fingerprint

recognition. Springer, 2003.

18. A. Moffat, R. M. Neal, and I. H. Witten. Arithmetic coding revisited. ACM

Transactions on Information Systems, 16(3):256–294, 1998.

19. J. Nummela and B. A. Julstrom. An effective genetic algorithm for the minimum-

label spanning tree problem. In GECCO ’06: Proceedings of the 8th annual con-

ference on Genetic and evolutionary computation, pages 553–558, New York, NY,

USA, 2006. ACM.

20. G. R. Raidl and A. Chwatal. Fingerprint template compression by solving a min-

imum label k-node subtree problem. In E. Simos, editor, Numerical Analysis and

Applied Mathematics, volume 936 of AIP Conference Proceedings, pages 444–447.

39

American Institute of Physics, 2007.

21. A. Saleh and R. Adhami. Curvature-based matching approach for automatic fin-

gerprint identification. In Proceedings of the Southeastern Symposium on System

Theory, pages 171–175, 2001.

22. K. Sayood. Introduction to Data Compression. Morgan Kaufmann Publishers Inc.,

USA, third edition, 2006.

23. L. R. Varshney and V. K. Goyal. Benefiting from disorder: Source coding for

unordered data. arXiv, abs/0708.2310, 2007.

24. J. S. Vitter. Design and analysis of dynamic huffman codes. Journal of the ACM,

34(4):825–845, 1987.

25. L. A. Wolsey and G. L. Nemhauser. Integer and Combinatorial Optimization.

Wiley-Interscience, November 1999.

26. Y. Xiong, B. Golden, and E. Wasil. A one-parameter genetic algorithm for the

minimum labeling spanning tree problem. IEEE Transactions on Evolutionary

Computation, 9(1):55–60, 2 2005.

27. J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory, 23(3):337–343, 1977.

28. J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.

IEEE Transactions on Information Theory, 24(5):530–536, 1978.

