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Abstract. After the detection of the first extrasolar planet (exoplanet)
more than one decade ago we currently know about more than 200 plan-
ets around other stars and there are about twenty multi-planet systems.
Today’s most commonly used technique for identifying such exoplanets
is based on radial velocity measurements of the star. Due to the increas-
ing time span and accuracy of the respective observations, the measured
data samples will more and more contain indications of multiple plane-
tary companions. Unfortunately, especially in multi-planet systems, the
determination of these exoplanets’ orbital elements is a rather complex
and computationally expensive data analysis task. It is usually formu-
lated as an optimization problem in which the orbital parameters yielding
minimal residues w.r.t. the measured data are to be found. Very likely,
improved algorithms for (approximately) solving this problem will en-
able the detection of more complex systems. In this paper we describe a
specialized evolution strategy for approaching this problem.

1 Introduction

One of the most popular methods for planet discovery is based on radial veloc-
ity (RV) measurements of the central star, performed by high resolution spec-
troscopy. The stellar wobble induced by the gravitational influence of planetary
companions manifests in Doppler shifts of the spectral absorption lines. A se-
ries of RV-measurements in principle makes it possible to determine most of
the orbital elements of existing planets: the semi-major axis (“distance”) a, the
minimal planetary mass m̃ 1, the orbital eccentricity e, the argument of perigee
ω, and the periastron time t0. Only the right ascension of the ascending node Ω
and the inclination i are impossible to derive by this method.

To compute the RV of a star resulting from a specific set of orbital elements,
the Kepler equation E − e sin E = 2π(t+t0)

T needs to be solved numerically in

advance. Using the equation tan υ
2 =

√
1+e
1−e tan E

2 , the radial velocity of the

planet is given by dz
dt = K

[
cos(υ + ω) + e cos ω

]
, where K = 2π

T
a sin i√
1−e2 .
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1 minimal due to the unknown inclination i. Therefore m̃ is the actual parameter to

be determined, but we denote this term by m̃ for simplicity.



T denotes the revolution period of the planet and is according to Kepler’s third
law given by T 2 = 4π2a3

G·(M+m) (where G denotes the gravitational constant). The
radial velocity of a star (with stellar mass M) originating from the considered
planet is then given by v∗z = − 1

M · dz
dt .

Now, a simple RV-model can be formed by summing up the terms resulting
from the respective planets, but the discrepancies to a two-body system can be
better approximated by the use of Jacobi-coordinates (as for instance explained
in [1]). For outer planets this approach also takes into account the mass of the
more interior planets. Thus the total RV of the star is given by v∗z =

∑
i ξivi

where ξi = mi

M+
Pi

j=0 mj
. By N denoting the total number of planets in a system,

the determination of a fit to the observed radial velocities is basically a mini-
mization problem in roughly P = N · 5 parameters. Additional parameters arise
from offsets in the data-samples (see sec. 3.1). Having RV-Measurements at K
distinct points, the objective function is given by

χ2 :=
K∑

k=0

(4k

σk

)2
. (1)

where 4k denotes the difference between the model and the observed radial
velocity at time i. Sometimes the relative value χ2

red. = χ2/ν, where ν = K−P−1
(P denoting the total number of fitting-parameters) is also used.

1.1 Traditional Data Analysis

The traditional data analysis is largely based on the Fourier transform. From this
one gets the frequency spectrum of the RV-signal, which is a good starting point
for sinusoidal data fits which can later on be improved to Keplerians. In the case
of multiple systems this method is typically applied iteratively. After determining
the characteristics of one planet, its contribution to the RV data is subtracted.
With this residual data, the next planet is considered. This approach is often
referred to as cleaning algorithm, see [2]. Obviously, such an iterative strategy can
be highly misleading. Furthermore, the Fourier-based analysis has disadvantages
like the initial assumption of circular orbits. Consequently a simultaneous fitting
of Keplerians is a desired and more promising alternative.

2 Previous Work

The first application of Genetic Algorithms (GAs) in the area of exoplanet re-
search has been mentioned in [3], where GAs with classical binary encodings are
used to search for the neighborhood of a local minimum. In [4] a GA routine
is used to verify the uniqueness of the 3-planet-solution to the υ-And System.
In [5] the authors use GAs in combination with the Levenberg-Marquardt algo-
rithm to drive numerical integrations to analyse a strongly interacting system.
In [1] and [6] the authors describe the use of a penalty for unstable configura-
tions. They use MEGNO (see [7]) for the fast indication of possible instabilities.



The authors mention, that “[..]GAs are still not very popular but they have been
proven to be very useful for finding good starting points for the precise gradient
methods of minimization like e.g. the well known Levenberg-Marquardt scheme”
[1]. To summarize the hitherto efforts, standard GAs with binary encodings have
been applied to the problem, and they have been augmented by gradient-based
local methods and penalties, but no more problem-adequate representation and
variation operators have been studied so far. In fact, a binary representation of
continuous parameters is nowadays usually not considered a meaningful encoding
for most problems due to its weak locality [8]. In [9], another GA, called Stakanof
method, is mentioned and applied to the µ Ara system with four planets. To our
knowledge, however, no further details are yet published on this GA.

3 Evolution Strategy: ExOD-ES

As, for instance, pointed out in [10] or [8], many researchers consider evolution
strategies (ES) to be more effective in solving continuous parameter optimization
problems than genetic algorithms. This is mainly due to the weak locality of the
GAs binary encoding as well as the absence of self-adaptation mechanisms to
exploit the topological structure of the fitness-landscapes. In the following we
present a problem-specific evolution strategy, essentially following [11].

The approach is based on a (µ, λ)-ES with self-adaptation of strategy pa-
rameters [12] where µ denotes the size of the population and λ the number of
offsprings created in each generation.

In evolution strategies mutation is considered the primary operator and se-
lection is traditionally done in a deterministic way by choosing the µ best off-
springs. Mutation (eq. 2) is performed by adding a Gaussian-distributed random
number to each parameter, where the standard deviation is given by a strategy
parameter σi, associated with each parameter. These strategy parameters are
optimized themselves by also undergoing mutation. They are modified by the
multiplication with a log-normally distributed random value (eq. 3).

x′i = xi + Ni(0, σ′i) (2)

σ′i = σi · eN(0,τ0)+Ni(0,τ) (3)

N(0, τ0) is a normally-distributed random value that is calculated only once
for each candidate solution, while Ni(0, τ) is sampled individually for each pa-
rameter. The corresponding standard deviations are less critical and chosen as
usual: τ0 ∝ 1/

√
2
√

n. For a more detailed description of these standard elements
of evolution strategies, the reader is referred to e.g. [8], or [13]. In the following
we describe the special properties of the ES for the determination of the orbital
elements of exoplanets, subsequently referred to as ExOD-ES2

2 ExOD-ES: Exoplanet Orbit Determination by Evolution Strategies.



3.1 Encoding

Each candidate solution represents a whole planetary system by orbital element
vectors pi = (m̃i, ai, ωi, ei, t0,i), i = 1, . . . , N , where N is the pre-specified num-
ber of planets. As several data sets may contain offsets in their radial velocities,
which may result from the movement of the star through space or instrument
calibration, each sample involved in the fit introduces one additional parameter
rvoffset,d d = 1, . . . , D, with D denoting the total number of data samples. Thus
we altogether have P = N · 5 + D parameters, and for each we additionally
maintain a corresponding strategy parameter σd.

To avoid undesired symmetries in the representation, which degrade per-
formance of the optimization substantially, we ensure that the orbital element
vectors are always sorted according to ascending order of semi-major axes ai.

3.2 Mutation

The classical (µ, λ)-mutation modifies all parameters of the offspring individuals
before selection. In our case it turned out to be better to merely mutate only
one parameter-subset corresponding to one planet, which can be seen analogous
to the evolution of subsystems in nature. In the following we omit the index i
denoting the respective planets for simplicity.

For better convergence rates it is profitable to further consider some mutual
dependencies. If ω has been changed by an angle φ we update t0 by eq. 4 in
order to keep the initial phase information, and thus not bias t0 by the variation
of another parameter:

t0 = t0 + T (a) · φ

2π
. (4)

For similar reasons we adjust t0 after changes of a:

t0 = t0 + 1/2 · (T (a)− T (a′)). (5)

This especially assists the development of long period planets as changes of a
are distributed more uniformly over the time interval.

Restriction of the solution space: To improve the overall convergence prop-
erties of the algorithm we restrict the solution space in such a way that unstable
systems, which cannot persist for more than a couple of centuries, will almost
never be created by the variation operators.

Of course there remains the low probability of observing such systems that
are currently undergoing some change, i.e. there are strong gravitational interac-
tions between the planets and therefore the Keplerian model of the orbits which
basically treats the system as a sum of two-body problems is not valid any more.
In this case it is necessary to perform numerical integration. To determine mean-
ingful starting values, however, Keplerian models are still useful. Consequently
it is important to be able to adjust the impacts of the stability criterion and
thus the amount of restriction.



Hill-Stability Criterion: A very simple stability-criterion dates back to G.W.
Hill , and states that the toruses defined by the regions around planetary orbits
up to distances from the orbital trajectory of Hill-radius

rH = a
( m

3 ·M
)1/3

(6)

of two planets should not overlap. More formally, for two planets i and i+1 this
can be written as

|ai − ai+1| > ζ
[
rH(ai,mi) + rH(ai+1,mi+1)

]
, (7)

where ζ is a parameter that, for instance, guarantees stability for timescales as
the age of the solar system (≈4.5 billion years) when ranging from 11 to 13. The
physical meaning of the Hill-radius can be interpreted as the border of the region
where the gravitational influence of the planet clearly dominates the effects from
the central star. If the toruses of the so called Hill-spheres of two planets overlap,
it is just a question of time, when a first/next dynamical interaction will occur.
ζ from eq. 7 is thus a parameter of ExOD-ES, forcing two distinct orbits to
have a specific minimal distance. Moderate values like ζ = 3, . . . , 5 turned out
to be sufficient for the algorithm.

Mutation Operator: The mutation operator is parameterized by the sur-
rounding semi-major axes (in this context denoted by a− and a+) and the re-
spective weighted Hill-radii (r̃−H = ζ · r−H and r̃+

H = ζ · r+
H). If there are no

surrounding planets, the parameters amin and amax, which can be derived from
the input data, are used respectively. The mutation of the semi-major axes of
one planet is performed as follows:

η = N(0, σ) (8)

a′ =





a + η if a + r̃H + η < a+ − r̃+
H and a− r̃H + η > a− + r̃−H

a if a + η < a+ − r̃+
H and a + η > a− + r̃−H

but a + r̃H + η > a+ − r̃+
H and a− r̃H + η < a− + r̃−H

a + η + 2 · r̃+
H if a + η > a+ − r̃+

H

a + η − 2 · r̃−H if a + η < a− + r̃−H
(9)

In the first case there is no overlap of the Hill-toruses of the planet under con-
sideration with the ones of the neighboring planets. In this case there is no
difference to the conventional mutation. Otherwise there are different grades of
violating the Hill-criterion. If the Hill-torus overlaps with the one of a neigh-
bor, then we keep the initial value. The other two cases treat the situations of
stronger violation of the criterion, i.e. where the planet itself would intrude one
neighboring Hill-torus. Here the mutation operator enables to “tunnel” through



the neighboring Hill-torus and therefore takes up another position (according
to its distance). This is a very important mechanism to escape local optima.
Suppose the situation that the most planets are well determined, but on one
position a planet, which is difficult to determine, is still missing in the model.
The above mechanism enables a quick adoption of an individual to such a better
model.

Unfortunately it is very likely that the objective value will decrease in such
situations, even when the planet moved closer to the correct position. This is
because the latter individual can be expected not to be well adapted to the
new local minima. To counteract this shortcoming, we modify the conventional
selection such that it supports the evolution of such new subsystems. Therefore
we introduce a new parameter γ for each individual, which indicates the number
of generations this “path of evolution” should survive. During the following
iterations only the “new” planet is modified in order to make this individual
competitive with the other ones of the population as soon as possible. After
such a mutation we initially set γ = γmax, and then in each generational step
the γ-parameter of the respective individuals is decremented by one (if γ > 0).
The related modifications of the selection mechanism are described in sec. 3.4.

There is an additional mechanism that accomplishes the same purpose: the
planet that is least important for the model is removed from it, and a new planet
is created randomly on another position. Again we set a γ > 0 to enforce an
evolution of this planet.

The mutation of the mass m requires an additional mechanism to guar-
antee valid solutions (eq. 10). If the mutation of the mass would violate the
Hill-criterion we keep the maximal possible value and perform the conventional
mutation otherwise.

m′ =





m + η if a + r̃H(m + η) < a+ − r̃+
H

and a− r̃H(m + η) > a− + r̃−H
otherwise: argmaxι(m + ι), ι ∈ [0, µ], such that

the above conditions are satisfied.

(10)

3.3 Recombination

We apply different variants of recombination, which are performed before the
mutation. For each individual we perform an intermediate recombination of all
strategy-parameters, which is due to [12] an important prerequisite for a well
working self-adaptation:

σ′k = ukσa,k + (1− uk)σbi,k (11)

Here uk is a random variable in the domain [0, 1]. For some low percentage
(≈ 10%) of the population we additionally perform parameter intermediate re-
combination.

Furthermore we employ another variant, which is only performed for multiple
systems. Hereby for each position one randomly selected planet from randomly



selected individuals is inherited. Although this planetary recombination is not
very effective in the sense that it produces a lot of promising offsprings, it is of-
ten the crucial mechanism for finding the global optimum. This works, because
the population occasionally consists of various systems where some but not all
planets are already identified correctly and in addition maybe reside on a wrong
position. By creating new systems by combining planets from existing ones it
is very likely to perform one ore more accurate recombinations during the evo-
lution process which finally yield the global optimum. It turned out to be best
to perform this operation for about 10% of the individuals of the population
and then put them directly into the next generation population (instead of the
offspring population).

We found almost no significant improvement of the overall search quality by
using the recombination of the strategy parameters and a marginal significance
for the other ones. Nevertheless by using the planetary recombination the global
optimum was often found earlier than without it. Although helpful in some
situations, as far as our tests indicate recombination generally did not turn out
to be a key factor for a successful search.

3.4 Selection

As already mentioned, the standard deterministic selection mechanism (see e.g.
[8]) is modified to support more obtrusively altered individuals to some degree.
For this purpose we reserve bµπγc places of the population for individuals with
γ > 0. Experiments indicated that values πγ ≈ 3 are well suited. Then, in a first
step the best µ−bµ/πγc offsprings are added to the next generation population.
The remaining places are successively filled by adding the best bµ/πγγmaxc in-
dividuals with γ = i, where i = 1, . . . , γmax. In case of stagnation we re-include
the best-so-far solution to the population.

4 Results

Parameter values of µ = 50, λ = 5000 turned out to be adequate for a reliable
search and high solution quality. The algorithm converges after some hundreds
of iterations most of the time. Assuming about 150 measurements for a 3-planet
system it takes about a couple of hours to find high quality solutions.

As currently no benchmark data-sets exist and previous publications are not
focused on algorithmic aspects, it is difficult to compare our approach to others
quantitatively. Tests with artificially created data-sets clearly demonstrate the
ability to solve multiplanet-systems consisting of up to four planets.

As an example for the application to real data-sets we applied our algorithm
to the υ-Andromedae and the 55-Cancri systems [4, 14]. In most of our test
runs, ExOD-ES was able to obtain the same or very similar configurations as
published in these previous works.



5 Conclusions

In this article we described an evolution strategy which has been specifically tai-
lored for effectively fitting Keplerians to RV data. Besides various mechanisms to
create promising offsprings the use of the Hill-stability criterion for the mutation
operator considerably reduces the size of the configuration space and therefore
supports an effective search. We evaluated the proposed algorithm on real and
artificially created data. Results indicate that the ExOD-ES appears to be a
promising approach to solve complex systems with high accuracy. Our next step
will be to apply our algorithm to the µ Ara system [9].
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