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Abstract. Same-day delivery problems are challenging stochastic ve-
hicle routing problems, where dynamically arriving orders have to be
delivered to customers within a short time while minimizing costs. In
this work, we consider the short-horizon planning of a problem variant
where every order has to be delivered with the goal to minimize delivery
tardiness, travel times, and labor costs of the drivers involved. Stochastic
information as spatial and temporal order distributions is available up-
front. Since timely routing decisions have to be made over the planning
horizon of a day, the well-known sampling approach from the literature
for considering expected future orders is not suitable due to its high run-
times. To mitigate this, we suggest to use a surrogate function for route
durations that predicts the future delivery duration of the orders belong-
ing to a route at its planned starting time. This surrogate function is di-
rectly used in the online optimization replacing the myopic current route
duration. The function is trained offline by data obtained from running
full day-simulations, sampling and solving a number of scenarios for each
route at each decision point in time. We consider three different models
for the surrogate function and compare with a sampling approach on
challenging real-world inspired artificial instances. Results indicate that
the new approach can outperform the sampling approach by orders of
magnitude regarding runtime while significantly reducing travel costs in
most cases.

Keywords: Same-day delivery · Dynamic and stochastic vehicle routing
· Sampling · Surrogate function optimization · Supervised learning.

1 Introduction

Short delivery times are essential when it comes to selling goods online, especially
during the COVID-19 pandemic when many physical stores had to close tem-
porarily. An increasing number of online retailers are offering same-day delivery
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to satisfy the demand for quickly available goods, further intensifying the need
for cost and labor efficient dynamic vehicle routing. Same-day delivery problems
[12] are stochastic and dynamic in nature and are a subcategory of vehicle rout-
ing problems. In this work a problem variant with additional constraints arising
from practice is considered. Orders arrive dynamically over the day and are due
only a short time after arrival. The orders have to be assigned to drivers and
routes are generated with the goal to minimize delivery tardiness, travel times,
and labor costs of the drivers involved. The fleet is homogeneous and the orders
are served from a single depot. Each driver has a predefined shift, however the
shift end times can be advanced or postponed to some extent to account for the
uncertainty of the actual load.

This paper builds upon a double-horizon approach that was proposed in [3],
which is further explained in Section 2.

However, we are unsatisfied with the existing short-horizon optimization,
which we declare myopic, due to the following aspect: Routes that are optimal
regarding all available orders sometimes have to start soon due to some orders,
but also include one or more less urgent orders with a delivery deadline rela-
tively far in the future. If these currently available orders with later deadlines
introduce a significant travel overhead, it would frequently be wiser to postpone
their delivery as they can likely be combined with future orders resulting in more
efficient routes overall. Thus, it would be beneficial to split routes between ur-
gent and less urgent orders. Routes can only be changed up to their departure,
and possible future improvements for routes with a later starting time are not
considered in the static, myopic optimization. The aim of this work is to present
our adaptations to improve on this aspect.

The basic idea of our approach is to craft a function that discounts travel
times based on the aforementioned observations, making separate routes with
later starting times more attractive. We will refer to that function as surrogate,
since it replaces the normal route duration in the objective function and also
is used instead of a classical sampling approach, which is the de facto stan-
dard for stochastic considerations. This surrogate function is trained offline in
a supervised learning fashion, reducing the computational effort in the online
application in comparison to a sampling approach substantially. The necessary
training data is generated by full-day simulations, in which we sample and solve
100 scenarios for each route at every decision point in time. Three different mod-
els for the surrogate are considered, a manually crafted exponential function, a
linear regression, and a multi-layer perceptron.

In Section 2, an overview of related work is given and discussed. Section 3
defines and formalizes the problem at hand and aims to provide a better under-
standing with an illustrative example. Then, in Section 4, we explain our new
approach in detail and describe the training data acquisition and training pro-
cess in a step-by-step manner. Details on our test setup, and a comparison of our
approaches with a sampling approach on real-world inspired artificial instances,
can be found in Section 5. We observe that on our benchmark instances, the
new approach reduces route travel costs by ≈6.1% in the median compared to
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the myopic optimization with similar tardiness. The sampling approach, in com-
parison, achieves a similar route duration reduction but requires a computation
time that is larger by a factor of ≈540. We finally conclude in Section 6.

2 Related Work

For a review on dynamic and stochastic vehicle routing problems, see Ritzinger
et al. [9]. Our underlying problem variant is introduced in [3] and derived from an
online store with promised delivery durations of one or two hours. The problem
is fully dynamic with a planning horizon of one day, where stochastic informa-
tion regarding the hourly number and spatial distribution of orders is available
upfront. A distinguishing feature is a flexibility of the shift ending times of the
drivers, which is considered in the objective function together with route dura-
tions and a penalty for delivery deadline violations.

So far, the pillars of solving this problem are an adaptive large neighborhood
search (ALNS) [10, 7, 1] for the repeated point-in-time optimization runs to ob-
tain routes for currently available orders and a dual horizon approach inspired by
Mitrović-Minić et al. [6]. At every decision epoch, a simplified assignment prob-
lem is solved for the larger horizon (i.e., the whole day) using expected values
for the orders and driver performance. This allows an estimation of the required
labor time which is subsequently fed back into the objective function used in the
point-in-time optimization runs considering only short horizons. Near real-time
decisions regarding planned assignments of orders to multiple trips of drivers,
when to send drivers home, and when to start routes are then derived from the
result of this optimization.

Due to the short delivery deadlines within few hours after customers place
their orders, the problem falls into the class of same-day delivery problems
(SDDP). In a recent notable work, Voccia et al. [12] present a SDDP variant
with hard time windows where orders can also be delegated to a third-party,
apart from delivering it with the in-house fleet. The number of orders to be
delivered in-house is to be maximized and formulated as reward of a Markov
decision process (MDP). A multiple scenario sampling approach (MSA) [2] is
tailored to the problem, where at every decision epoch a multi-trip team ori-
enteering problem with time windows is solved heuristically and a consensus
solution is derived. This method increases the number of filled requests for some
instance classes substantially compared to a simple delay strategy, where deci-
sions are postponed to gather more information until an impact on the number
of filled requests occurs. Still, a relevant drawback is that at every decision a
couple of minutes computation time is required, making it unsuitable for our
near real-time setting.

Despite the fact that we do not model our problem as an MDP explicitly,
we perform implicit state transitions where actions (for each driver in the depot
either wait, start an unalterable delivery route, or end shift) are derived from the
heuristic solution. The goal of this work is to further adapt the objective function
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so that the implied actions lead to states with a higher expected reward in the
near future.

Using the approximate dynamic programming paradigm [8], Ulmer et al. [11]
solve a single-vehicle SDDP with preemptive depot returns using an Approxi-
mate Value Iteration (AVI) scheme where the value function is learned in an
offline training phase over full-day simulations. Furthermore, a dynamic state
space aggregation is used to create a lookup table facilitating near real-time
online decision making.

Joe and Lau [4] build upon this approach for a dynamic vehicle routing
problem with stochastic customers and different degrees of dynamism where
re-routing decisions have to be performed on routing plans over the day. They
replace the lookup table with a deep Q network employing value function ap-
proximation via temporal difference learning with experience replay. A heuristic
search in the decision space is performed via simulated annealing. This approach
is compared with AVI [11] and MSA [2], and the authors report reductions of
the costs in the range of 10% for higher degrees of dynamism.

In a similar spirit, we approximate the value of states by predicting the future
costs of orders that are in a currently planned route by means of parametric
functions to be learned in an offline training phase with training data derived
from multiple realizations in the short horizon—we consider the routes separately
and do not roll-out until the end of the day, hence we make use of a vehicle-
based and temporal decomposition. This learned function is then incorporated
as surrogate in the objective function to be solved heuristically using our ALNS,
resulting in more anticipatory online decision making.

3 Problem Definition and Formalization

In this Section we first give a formal description of the considered dynamic and
stochastic vehicle routing problem and then show an illustrative example where
myopic optimization in the short horizon planning leads to inefficient routes.

We follow the notation of the preceding article [3] and distinguish between
three different problem variants: the offline problem with full knowledge of the
day in advance (OFF), the dynamic problem at a specific time t̃ (DYN-t̃), and
the full dynamic problem for a whole day (DYN-DAY). In this paper we will
mostly focus on the dynamic variants.

3.1 Instance Specification

A DYN-DAY instance consists of many DYN-t̃ instances for increasing times t̃
that are solved iteratively over the whole day. A DYN-DAY instance contains n
orders collectively denoted by V , each of which has a release time trelv at which
the order is ready to be delivered by a driver and a due time tduev at which
the order should be delivered the latest, v ∈ V . Moreover, for each order an
availability time tavailv is provided which corresponds to the time the customer
places the order and tells us when we are allowed to consider the order in our
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planning. We further assume to have for dynamic instances a function ω(t1, t2)
available that yields the expected numbers of orders within the time interval
[t1, t2] within any relevant business times. We also have an idea of the mean
order duration, i.e., the mean active labor time by a driver to deliver an order,
a good DYN-DAY solution in a particular application typically has and denote
this by φ̂.

DYN-t̃ instances occur and are solved every time an order is released, i.e., at
times

{
t̃ | ∃v ∈ V : t = trelv

}
.

Any problem instance also provides information about its relevant vehi-
cles/drives, denoted by set U , with m = |U |, including each driver’s planned
shift time interval [qstartu , qendu ] and earliest shift end q0u ∈ [qstartu , qendu ], u ∈ U . The
drivers’ shift ends are subject to flexibility and therefore also part of the decision
process and objective function. Last but not least, order locations locv, ∀v ∈ V ,
expected travel times δ(v, v′) from locv to locv′ , where v, v′ ∈ V ∪{0}, 0 denotes
the warehouse, are given. The travel times include necessary delays like average
stop time at the customers, average times for loading a vehicle at the warehouse
and postprocessing times when returning to the warehouse. We also assume that
the triangle inequality holds for δ.

3.2 Feasible Solutions

A candidate solution is a tuple 〈R, τ, q〉 where

– R = (Ru)u∈U denotes the ordered sequence of routes Ru = {ru,1, . . . , ru,`u}
to be performed by each vehicle u ∈ U , and each route r ∈ Ru is an ordered
sequence r = {vr0 = 0, vr1, . . . , v

r
lr
, vrlr+1 = 0} with vri ∈ V, i = 1, . . . , lr,

being the i-th order to be delivered and 0 representing the warehouse at
which each tour starts and ends,

– τ = (τr)r∈Ru,u∈U are the (planned) departure times of the routes, and
– q = (qu)u∈U are the shift end times of the vehicles.

The time at which the i-th order vri of route r, i = 1, . . . , lr, is delivered is

a(r, i) = τr +

i−1∑
j=0

δ(vrj , v
r
j+1). (1)

The total duration of a route r ∈ Ru of a vehicle u ∈ U is

d(r) =

lr∑
i=0

δ(vri , v
r
i+1), (2)

and the route therefore is supposed to end at time τr + d(r).

Let τmin(r) = maxi=1,...,lr t
rel
vri

be the earliest feasible starting time of a route
r, which corresponds to the maximum release time of the orders served in the
route. In our planning all routes r ∈ R can be changed up to their respective
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departure time τr, after which the route is fixed. Furthermore, let τmax(r) be
the latest starting time without violating any due time, i.e.,

τmax(r) = min
i=1,...,lr

tduevri
−

i−1∑
j=0

δ(vrj , v
r
j+1)

 . (3)

A solution is feasible when

– each order v ∈ V appears exactly once in all the routes in
⋃
u∈U Ru,

– each route r ∈ Ru, u ∈ U , is started in the planned shift time of the assigned
vehicle, i.e., τr ∈ [qstartu , qendu ], and not started before all orders are released,
i.e., τr ≥ τmin(r),

– the routes in each Ru, u ∈ U , start at increasing times and do not overlap,
i.e., τru,i

+ d(ru,i) ≤ τru,i+1
, i = 1, . . . , |Ru| − 1,

– and the actual shift end time is not smaller than the finishing time of
the last route (if there is one) and the minimum shift time, i.e., qu ≥
max(q0u, supr∈Ru

(τr + d(r))), u ∈ U .

3.3 Objective Function

The utmost goal is to minimize and balance any tardiness of deliveries. As sec-
ondary objectives, the route durations and the excess labor times are to be
minimized. We model this via an objective function to be minimized consisting
of a linear combination of a quadratic tardiness penalty term and linear cost
terms for the secondary objectives:

f(〈R, τ, q〉) = α ·
∑

r∈Ru,u∈U

lr∑
i=1

max(0, a(r, i)− tduevri
)2 + γ ·

∑
u∈U

(qu− q0u) +
∑

r∈Ru,u∈U

d(r),

(4)

A tardiness penalty factor of α = 1000 is chosen to approximate a lexicographic
approach. The excess labor times cost factor γ is set to 4.

The objective values are not easily interpretable by humans. To give us an-

other solution quality indicator we use the mean order duration φ(r) = d(r)
lr

for
a route r ∈ R, measured in minutes, which can be understood as mean active
labor time by a driver to deliver an order. Calculating the mean over all the
routes in a solution yields φ̄, which is an important figure of merit of a whole
solution.

3.4 Illustrative Example

To make the issue we address in this work clear, we present a simple example of a
DYN-DAY instance, in which an optimal solution to a first DYN-t̃ instance leads
to a situation so that an overall suboptimal solution for DYN-DAY is achieved.

Let us assume orders 1–6 become available at t̃=0 and we are thus considering
DYN-0. Orders 1–5 are supposed to have the same due time 60 minutes later. The
remaining order 6 is located far away from orders 1 to 5 and has a substantially
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Fig. 1. Myopic solution (top) vs. optimal solution (bottom). Node 0 represents the
warehouse, all other nodes orders.

later due time of 120 minutes. Considering only these orders an optimal solution
to DYN-0 would be to pack all orders into one route, since only then the total
route duration is minimal. This single route r1 has to start at time τr1 = 5
to avoid any tardiness. This solution is depicted in the top half of Fig. 1. The
problem with this solution arises when half an hour later new orders 7–10 are
placed with some delivery locations close to order 6, which itself, however, has
been included in the already started first route. An optimal solution for DYN-
30min will then be a route r2 with the remaining orders 7–10 as also pictured
in Fig. 1. The resulting total objective value, which in this case is equal to the
sum of all route durations, is 220 minutes.

A better solution to this example can be seen in the second half of Figure
1. The important difference is that the first route from the previous solution is
split into two, resulting in one route r3 comprising orders 1–5, starting at time
τr3 = 5 and having a mean order duration better than the former single route,
and one route r4 containing only order 6. This latter route has a bad mean order
duration of 50 minutes per order, but also a much later starting time of τr4 = 90.
Even though this results in a worse short-term objective value for DYN-0, this
second route has now a lot of slack left and considering expected future orders
can likely be improved later. In our example this happens when the new orders
7–10 become available in DYN-30, and order 6 can be delivered in one route r5
together with the new orders. Overall the objective value and sum of all route
durations for this solution is 190, which is an improvement of approximately
14% over the myopic solution.

In conclusion, when orders are expected in the near future, it makes sense to
postpone to a certain degree the delivery of orders with due times farther in the
future when they cannot be well integrated in soon-to-start routes.
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4 Discounting Travel Times to Consider Expected Orders

As pointed out in Section 2, to at least partially avoid traps like the one sketched
above arising from the myopic view of the DYN-t̃ instances, the standard method
from literature is to sample scenarios into the near future by creating artificial
orders from expected spatial and temporal distributions, to solve these scenarios,
and then to derive a consensus solution [2, 12]. We propose the simpler approach
of discounting durations of routes in the objective function of the DYN-t̃ in-
stances in dependence of their starting times, the number of expected future
orders, and further features. We make use of supervised learning to come up
with a surrogate function for the route durations to move the computational
effort into a one-time offline training phase. This function is then directly used
in the optimization of a given DYN-t̃. We now describe our approach in detail.

In the definition of f(〈R, τ, q〉) in (4) on page 6 we replace the route duration
d(r) of each route r ∈ Ru, u ∈ U with a discounted duration d′(r) acting as a
surrogate for the future delivery time of the orders belonging to r. We define the
following aims to guide us to a sensible discounting function.

– Routes that are already efficient, i.e., have a low mean order duration φ(r),
should not be modified.

– The discounting of the duration should in general be stronger when more
orders are expected in the near future. On the contrary, we should not reduce
d(r) if there are no further orders expected until route r should start.

– Routes that are inefficient and combine orders that are due soon with orders
that have significantly more time left should be avoided in particular.

– In conclusion, the discounted route duration d′(r) should approximate the
expected total time it will take to perform the deliveries of that route in
the future, taking into account expected new orders and assuming optimal
routing decisions also in the future.

A current route that will be started soon cannot be expected to be improved
much as not many new orders are expected. This includes routes with small
slack max(0, τmax(r) − t̃) but also any other case in which the route is started
soon, e.g., due to an earliest starting time strategy. In contrast, larger improve-
ments are likely for any route that is planned to be started much later and
which is not yet efficient, particularly if many orders are expected in the near
future, more precisely in the time interval from the current time t̃ to the route’s
planned starting time τr. Thus, this duration is an important parameter of the
discounting.

Another important parameter is the expected number of arriving new orders
until the start of the route, i.e., ω(t̃, τr). Moreover, the estimated mean order

duration of a good DYN-DAY solution φ̂ is also important for the following con-
sideration. A route r to be started at some distant time τr and whose mean order
duration φ(r) is worse than φ̂ can be expected to be adapted and combined with
future orders so that the average times for delivering the orders in r approaches
φ̂.
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Formally, we model this by the discounted route duration function

d′(r) =

{
gΘ(d(r), lr, ω(t̃, τr), φ̂, . . .) if τr > t̃ ∧ φ(r) > φ̂

d(r) else.
(5)

where function gΘ represents a machine learning model with trainable param-
eters Θ and input features that include at least d(r), lr, ω(t̃, τr) and φ̂. This

model is supposed to yield reduced durations within [φ̂ · lr, d(r)] for routes that
are not started immediately (τr > t̃) and where the current mean order duration

φ(r) is worse than φ̂. In Section 4.2 we will consider three different approaches
for realizing gΘ, which are an exponential function, a linear regression, and a
multilayer perceptron.

An aspect of this approximation that deserves mentioning is that multiple
routes of the current solution may be scheduled at overlapping times in the future
and may compete for new orders. This may slow down improvement of inefficient
routes but may also create new possibilities for more efficient combinations. As
we do not see any meaningful and efficient way to consider this aspect and also
conjecture that the benefits and disadvantages of concurrent routes in conjunc-
tion with the route improvement potential may outweigh each other at least to a
certain degree, we do not explore this further here. Moreover, the actual impact
may be partially mitigated by suitably tuning Θ.

4.1 Obtaining Training Data

To obtain training date for our route duration discounting models, we apply the
following sampling-based approach on a set of representative historic or artificial
DYN-DAY training instances.

1. We consider a DYN-DAY instance and iteratively solve the implied DYN-t̃
instances in the classical way without any route distance discounting. For
each obtained DYN-t̃ solution, we apply a decomposition approach, in which
we consider each route independently by the following steps.

2. Each route r to be started not immediately, i.e., at some time τr > t̃, and
for which φ(r) > φ̂, we create nsample scenarios, with nsample being a strat-
egy parameter. Each scenario consists of the original orders of route r and
norders ∼ P(ω(t̃, τr)) additional artificial orders, where norders is a random
number always sampled anew from the Poisson distribution P(ω(t̃, τr)) with
mean ω(t̃, τr). The motivation here is that the arrival of orders can be seen
as a Poisson process. Each artificial order is assigned a randomly sampled
geographical location from a set of sufficient size representing the delivery
area, a random availability time in (t̃, τr], and a due time that corresponds
to the availability time plus the maximum delivery duration promised to the
customers. Each scenario created this way is then solved as an independent
OFF instance.

3. In each obtained scenario solution we consider each original (i.e., not sam-
pled) order and take its route’s mean order duration. The sum of these times
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over all original orders is then said to be the scenario’s total delivery duration
for the original orders of route r. Ultimately we average these total delivery
durations over all scenarios to obtain the target duration d̂(r) which we want
to approximate by our discounted route duration d′(r).

4. We store the original route r together with d(r), t̃, τr, ω(t̃, τr), φ̂ and the

obtained d̂(r) for training and continue by processing all further routes in
the same way.

4.2 Models for the Discounting

As introduced in Eq. (5), function gΘ(d(r), lr, ω(t̃, τr), φ̂, . . .) is a trainable model

that yields the discounted route duration when d(r) > φ̂ · lr. For training this
model we apply the mean squared error (MSE) in respect to the training targets,

i.e., d̂(r), as loss function. We investigate here three alternative models presented
in the following.

Exponential Function.

gexpρ (d(r), lr, ω(t̃, τr), φ̂) = d(r)− (d(r)− φ̂ · lr) · (1− e−ρ·ω(t̃,τr)) (6)

This function was manually crafted based on the previously explained con-
siderations that the mean order delivery time of orders in a current route with
a distant starting time can be expected to improve up to a certain amount. The
expected maximum improvement is assumed to be equal to d(r)−φ̂ ·lr. However,
actual improvement can only occur with additional orders in the interval (t̃, τr].
This is expressed by the last term in the function, where parameter ρ controls the
speed of approaching φ̂ · lr in dependence of the number of expected upcoming
new orders ω(t̃, τr) until the route’s starting time τr in an exponential manner.
The parameter that needs to be learned here is just Θ = ρ, and we apply grid
search to find a value minimizing the MSE.

Linear Regression. Our second approach is a linear combination of a larger set
of manually selected features, i.e., linear regression, with the trainable param-
eters vector Θ being the respective regression coefficients. We initially consider
the following features in addition to a constant bias.

1. The basic features d(r), lr, ω(t̃, τr) and φ̂ as in the exponential function.
2. The relative starting time of the route τr − t̃.
3. The difference φ(r)− φ̂, i.e., how far off the route’s mean delivery duration

is from the assumed target value φ̂.
4. The variance of the geographic locations of the orders for each route, denoted

by var(r); the farther apart the delivery locations are, the more likely it seems
that a new order fits nicely in between two existing orders.

5. The square and the logarithm of each of the above features to also accom-
modate nonlinear dependencies in a simple form.
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To avoid the inclusion of features that do not significantly improve the pre-
diction and reduce the danger of overfitting, we started off with just the basic
features and iteratively added a feature from the remaining pool that reduced
the MSE the most. This process of selecting features was continued until the
MSE did not change by more than one percent. 5-fold cross validation was used
in this feature selection process to reduce the risk of overfitting. Ultimately, we
came up with the feature vector (d(r), lr, ω(t̃, τr), log(ω(t̃, τr)), φ̂, φ(r) − φ̂,

(φ(r)− φ̂)2, (τr− t̃)2, log(τr− t̃), var(r), var(r)2) used in all further experiments.

Multilayer Perceptron. Our third model for discounting travel durations is
a multilayer perceptron (MLP). It is fully connected with two hidden layers and
ReLU activation functions in all layers, and Adam [5] is used as optimizer. The
considered pool of features was the same as in the linear regression, and the same
selection process was performed leading to the feature vector (d(r), log(d(r)),

lr, φ̂, τr − t̃, φ(r)− φ̂) used in all following experiments. Note in particular that
here the variance of the orders’ geographic locations did not show a significant
contribution and therefore was not included. Further details on the network
configuration and training will be provided below in the experimental results.

5 Computational Study

All algorithms were implemented in Python 3.8. Training and evaluation of the
regressors was performed with scikit-learn version 0.23.1. All tests were con-
ducted on Intel Xeon E5-2640 2.40 GHz processors in single-threaded mode and
a memory limit of 4 GB.

In all tests a driver is sent home as early as possible, i.e., after the driver’s
last so far planned route or at the earliest shift end, to minimize labor cost.
Planned routes always start at the latest possible departure time that does not
increase the costs for labor time and tardiness to utilize the full slack for possible
improvement. The three different discounting models are compared with results
using the myopic optimization as done in [3] and the sampling approach with
consensus function. The ALNS, which is the fundamental optimization method
for all mentioned approaches, stops after 100 non-improving iterations, and we
refer to [3] for all further details concerning its operators and configuration.

5.1 Instances

We consider artificial DYN-DAY instances that are inspired by real-world in-
stances of an online retailer. We consider steady, linearly rising, and falling load
patterns over 11 hours, where the average load over the day is either 10, 20, 30,
or 40 arriving orders per hour. Orders are due in one hour with 60% probability
and with 40% in two hours. The order locations are uniformly distributed in
the unit square. Travel times between orders are determined by the Euclidean
distance multiplied by 50 minutes, additional constant six minutes stop times
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at the customers, and small loading and postprocessing times from and to the
warehouse. The warehouse location is randomly chosen from {0.25, 0.75}2 in-
spired by the slight off-center location of the real-world situation. Since we focus
on the route duration costs, sufficiently many drivers are available all the time
to ensure zero or very little tardiness. We generated 240 instances in total, 20
for each of the 12 instance classes and perform a 50/50 training and test split.

φ̂ is provided for each class. All instances were made available on GitHub1.

5.2 Training of the Discounted Route Duration Models

Following the training and test data generation as described in Section 4.1, we
end up with a 60% batch of 33790 training samples and a 40% batch of 22527
test samples to train and evaluate an estimator for d̂(r).

We train the learnable parameter ρ in the exponential model (6) by means of
a grid search. The result can be seen in Figure 2, which displays how the MSE
changes depending on ρ. Moreover, the instance’s φ̂ is reduced by 20%, which
was empirically determined to produce better results in previous experiments.
The single global optimum for ρ is 0.091, at which the test MSE is 154 909 and
154 265 for the training batch.

Fig. 2. Exponential model: MSE
of predicted values gΘ(r) with re-
spect to labels d̂(r), i.e., the loss
over ρ.

In case of the linear regression with the
finally selected features as laid out in Sec-
tion 4.2, MSEs of 144 785 and 143 329 were
achieved on the training and test portions of
the data, respectively.

Concerning the MLP, preliminary tests
suggested that two hidden layers with 50
nodes each seem to be a reasonable choice,
which we used further on. The learning rate
that is used for training is a constant 0.001.
To avoid overfitting we utilize early stopping,
for which 300 iterations without improvement
of a 10% validation set is the stopping cri-
terion. The resulting training and test MSEs
are 80 032 and 79 219 respectively, slightly
less than half of the error of the exponential
model.

Concerning the MSEs, we can conclude
that the linear regression performs slightly

better than the exponential model, but the MLP is clearly superior. As we
considered separate training and test sets and the respective MSEs lie close to-
gether for all three models, we conclude that overfitting seems to be no issue for
all three models.

1 https://github.com/nfrohner/pdsvrpddsf
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5.3 Full-day Simulation Results

The myopic short-horizon optimization serves as a baseline to quantify the im-
provement that is achieved. Furthermore, the three route duration discounting
approaches are compared to a sampling approach with consensus function as
the de facto standard for considering stochastic aspects. This approach creates
for each DYN-t̃ instance 100 scenarios by augmenting the original instance with
randomly sampled orders. These sampled orders are generated in the same man-
ner as already explained in Section 4.1, except that the time interval [t̃, t̃ + 1h]
is used instead of the slack of the route, i.e., samples are generated for up to
one hour into the future. These scenarios are then solved with the myopic short-
term optimization utilizing ALNS. Then, all sampled orders are removed from
each scenario solution. Finally, a consensus solution is derived from the scenario
solutions in a way that was inspired by [12]. The selection is done by counting
identical scenario solutions and choosing the most frequent solution as consensus
solution. We define identical in this context as two solutions that assign identi-
cal routes to the same drivers in the same sequence. Analogous to that identical
routes are defined as routes that contain the same orders in the same sequence.

We use the original objective function f(〈R, τ, q〉) as defined in (4) as the
primary measure of success for comparing results, but also aim to gain a more in-
depth understanding of the different approaches by observing the total duration
of all routes in a solution, the total excess labor time of a solution, the mean
order duration over the whole solution φ̄ and the running time on the specified
test setup. Tardiness is not presented in this Section, because it is negligibly
small for all instance classes and approaches alike, which was one of our aims
when generating the test instances as explained in Section 5.1.

In Table 1 the median of the mentioned measures of success are compared
for all instance classes and the median of the relative changes to results of the
myopic approach is displayed for the most important measures as well. As the
sampling approach did not terminate within a time limit of 700 hours per full-
day instance for average loads of 30 and higher, we only obtained results up to
an average load of 20 for it. In Figure 3 boxplots of f(〈R, τ, q〉) are drawn over
instance classes grouped by the average load as well as the load pattern.

As expected, all approaches that consider possible future orders outperform
the myopic optimization, up to 8% in the median. We observe that the expo-
nential approach outperformed the other approaches for average loads of 30 and
40. Furthermore, a positive correlation between the average load and the rela-
tive improvement over the myopic short-term optimization can be seen. Falling
load solutions have higher f(〈R, τ, q〉) in general, but the differences in relative
improvement over the myopic optimization among load patterns is rather small,
with steady load having a slight edge over falling and rising load.

Considering that the MLP has the smallest training MSE, it is unexpected to
observe that some solutions are worse than the ones that utilize the exponential
model. We suspect that the cause for this is attributed to the way in which the
training data is generated. More specifically, we intentionally decided to restrict
the training data generation to routes in final DYN-t̃ solutions obtained from
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Table 1. The three discounting approaches, myopic optimization, and sampling applied
to ten benchmark instances for each combination of average load and a falling, rising,
or steady load as the day progresses.

Load Pattern Approach f(〈R, τ, q〉) Trav. time [h] Labor φ Runtime [min]
Avg. Median Change Median Change Median Median Change Median

10 Falling Myopic 4057.258 0.00% 67.197 0.00% 136.5 36.125 0.00% 4
Exponential 3921.867 -2.92% 64.297 -3.14% 424.5 34.920 -3.14% 5
Linear Regression 3851.000 -4.28% 64.069 -4.32% 141.0 35.170 -4.33% 8
MLP 3912.190 -4.96% 64.349 -3.92% 147.9 34.404 -3.92% 11
Classical Sampling 3928.320 -4.20% 64.634 -3.80% 201.4 35.157 -3.79% 2950

Rising Myopic 3816.300 0.00% 63.413 0.00% 172.5 35.485 0.00% 4
Exponential 3695.408 -3.49% 61.564 -3.32% 37.0 33.920 -3.31% 5
Linear Regression 3662.175 -3.57% 61.036 -3.59% 117.5 34.505 -3.58% 8
MLP 3701.557 -3.89% 61.693 -3.79% 61.6 33.976 -3.81% 12
Classical Sampling 3749.525 -1.14% 62.464 -0.85% 45.5 34.845 -0.85% 3347

Steady Myopic 3984.472 0.00% 66.040 0.00% 0.0 35.475 0.00% 5
Exponential 3891.581 -4.31% 64.456 -5.01% 0.0 34.000 -5.00% 5
Linear Regression 3938.683 -4.97% 65.258 -5.63% 135.0 33.795 -5.63% 7
MLP 3845.711 -5.54% 63.349 -5.48% 0.0 33.064 -5.48% 8
Classical Sampling 3769.011 -8.56% 62.771 -8.41% 3.5 32.618 -8.41% 2543

20 Falling Myopic 7142.592 0.00% 118.993 0.00% 77.0 32.015 0.00% 24
Exponential 6802.900 -5.90% 112.105 -5.87% 19.0 30.025 -5.87% 32
Linear Regression 6823.300 -5.40% 112.755 -5.58% 25.0 30.265 -5.57% 49
MLP 6884.071 -5.10% 112.935 -5.10% 1.0 30.360 -5.10% 51
Classical Sampling 6693.054 -6.32% 111.639 -6.18% 4.0 30.127 -6.18% 30372

Rising Myopic 7027.803 0.00% 116.848 0.00% 380.0 32.365 0.00% 23
Exponential 6482.008 -6.51% 107.817 -6.53% 177.0 30.965 -6.53% 32
Linear Regression 6419.892 -6.62% 106.955 -6.52% 136.0 31.055 -6.54% 40
MLP 6432.858 -6.54% 107.044 -6.22% 124.2 31.065 -6.20% 62
Classical Sampling 6641.478 -3.79% 110.440 -3.72% 102.0 32.138 -3.72% 33728

Steady Myopic 7101.992 0.00% 117.963 0.00% 252.5 32.690 0.00% 26
Exponential 6765.575 -6.77% 112.431 -6.60% 137.5 31.465 -6.59% 28
Linear Regression 6830.842 -4.02% 113.435 -3.86% 127.5 31.585 -3.85% 37
MLP 6721.294 -5.68% 111.578 -5.53% 95.1 31.519 -5.54% 52
Classical Sampling 6735.598 -5.93% 112.078 -5.60% 94.0 31.060 -5.60% 25646

30 Falling Myopic 10432.136 0.00% 172.496 0.00% 487.5 31.150 0.00% 77
Exponential 9657.147 -7.07% 159.930 -7.01% 681.0 29.030 -7.00% 95
Linear Regression 9721.894 -5.92% 160.721 -5.55% 713.0 29.025 -5.55% 135
MLP 9689.704 -5.95% 160.690 -5.44% 714.7 29.072 -5.45% 176

Rising Myopic 10313.425 0.00% 170.299 0.00% 1308.5 31.055 0.00% 76
Exponential 9687.325 -6.66% 160.255 -6.66% 802.5 28.690 -6.68% 99
Linear Regression 9766.358 -6.26% 162.100 -6.14% 385.5 29.150 -6.14% 134
MLP 9599.087 -6.68% 159.226 -6.06% 569.4 29.196 -6.04% 146

Steady Myopic 10378.903 0.00% 171.450 0.00% 867.5 31.460 0.00% 82
Exponential 9633.436 -6.94% 159.578 -6.64% 629.0 29.225 -6.62% 76
Linear Regression 9772.233 -5.61% 161.868 -5.32% 305.5 29.895 -5.34% 112
MLP 9802.089 -4.79% 162.408 -4.82% 675.5 29.394 -4.83% 156

40 Falling Myopic 12632.717 0.00% 209.611 0.00% 508.5 29.530 0.00% 149
Exponential 11713.483 -7.83% 194.497 -7.90% 247.0 27.420 -7.88% 193
Linear Regression 11970.428 -6.76% 198.876 -6.56% 241.5 27.465 -6.57% 295
MLP 12031.577 -6.41% 199.944 -6.38% 414.8 27.629 -6.36% 425

Rising Myopic 12837.467 0.00% 212.832 0.00% 969.5 30.170 0.00% 195
Exponential 12005.597 -6.65% 199.567 -6.58% 494.5 27.675 -6.57% 234
Linear Regression 12238.508 -6.36% 203.612 -6.21% 408.5 28.025 -6.20% 311
MLP 12042.505 -6.57% 199.835 -6.22% 615.2 27.862 -6.21% 332

Steady Myopic 12635.717 0.00% 209.439 0.00% 883.0 29.335 0.00% 178
Exponential 11715.214 -8.04% 194.479 -8.16% 540.5 27.000 -8.16% 170
Linear Regression 11798.203 -6.49% 196.503 -6.46% 407.0 27.560 -6.48% 259
MLP 11836.576 -7.42% 196.776 -7.45% 535.3 27.341 -7.46% 309

the ALNS. The reasoning behind that decision is that we want to avoid an
overwhelmingly large number of routes that are very bad, to derive finer tuned
models for better routes, which usually end up in the solution. This is especially
bad for the linear regression and the MLP that are more closely fitted to the
training data, whereas the exponential function benefits in this regard from its
simplicity and robustness.

6 Conclusions and Future Work

We considered a same-day delivery problem in which dynamically arriving orders
have to be delivered within a short time span while minimizing travel times, la-



Learning Surrogate Functions for Planning in SDD Problems 15

10 20 30 40
average load

4000

6000

8000

10000

12000

14000

f

approach
myopic
mlp
linear regression
exponential
sampling

falling rising steady
load pattern

4000

6000

8000

10000

12000

14000

f

myopic
mlp
linear regression
exponential

Fig. 3. Solution quality f(〈R, τ, q〉) over average load and load pattern. The sampling
approach is not included in the load pattern graphic due to missing data for average
loads greater than 20.

bor costs, and tardiness. We focused on incorporating stochastic knowledge into
the objective function of the point-in-time optimization runs, realized by an
ALNS, by discounting route durations in dependence of diverse features. The
most important features are the number of orders that can be expected up to
the latest time the route would need to be started and the route’s mean deliv-
ery duration, but several other factors were also considered and partly showed
significant benefits.

Overall, our experiments clearly indicated that this approach is able to allevi-
ate to a substantial degree the weaknesses of a myopic optimization, in particular
in higher load situations. Of the three route duration discounting models the ex-
ponential function performs the best, reducing the travel time as well as the
total objective by ≈6.1% on average over all instance classes. The more flexible
neural net, in contrast, performed significantly weaker. We conjectured that the
reason for this at the first glance surprising observation is the bias we have in
the training data. The simpler exponential function seems to be more robust
concerning candidate routes with properties that do not appear so frequently in
the routes determined by the ALNS when generating training data. Moreover,
the independent consideration of the routes is another source of potential errors.
In our experiments, the exponential discounting even outperformed the sampling
approach regarding solution quality in most cases and cuts down on runtime by
several orders of magnitude.

Further work should consider alternative ways of generating training data
to possibly reduce the bias. For example, intermediate solutions of the ALNS
may occasionally also be used for data generation. Bootstrapping φ̂ from previous
non-myopic runs could improve the accuracy of the parameter and lead to further
improvement. Moreover, the variability of this mean order duration over the day
due to varying load and traffic should be considered. Also, further tests with
real-world inspired spatial order distributions (e.g., clustered instances) and load
patterns could be helpful to evaluate practical aspects of the discounting models.
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