
M A S T E R A R B E I T

An Incremental Dynamic Programming Approach
for

Multidimensional Allocation Problems

ausgeführt am Institut für
Computergraphik und Algorithmen
der Technischen Universität Wien

unter der Anleitung von
Univ.-Prof. Dipl.-Ing. Dr.techn. Günther Raidl

und
Dip.-Ing. Dr.techn. Alfred Kalliauer (VERBUND - Austrian

Power Trading AG) als Mitbetreuer

durch
Christoph Bonitz

Gumpendorfer Straße 83-85/1/20
1060 Wien, Österreich

Datum Unterschrift



An Incremental

Dynamic Programming Algorithm for

Multidimensional Allocation Problems

Abstract

This thesis presents an incremental Dynamic Programming (DP) Ap-
proach called Optimal Policy Iteration for solving an allocation problem
inspired by Hydro Storage System Planning. Hydroelectric power plants
have the unique property of being able to efficiently store large amounts
of energy. To achieve good profits, it is necessary to plan when to use this
energy to generate electricity.

The formal problem addressed in this thesis is finding an optimal pol-
icy for allocating a good, for example water, represented in discrete units,
from several stores with limited capacity over a finite period of time (rep-
resented by discrete decision points). The number of allocations can be
constrained for each time step as well as for each combination of store and
time step. The objective value models the expected development of the
good’s market price, and is computed as the sum of concave functions of
the decision variables called pricing functions.

It is shown that, because of the concave pricing functions, two problem
instances that are identical with respect to allocation limits and differ only
by one unit in the capacity of a single store have optimal solutions that
lie within a defined neighborhood of each other. This neighborhood can
efficiently be searched by Dynamic Programming.

An algorithm is presented that uses this property to find an opti-
mal policy for a given problem instance using a series of optimal policies
for sub-problem-instances that are “growing” with respect to capacities,
starting with the optimal solution to a trivial sub-problem. This algo-
rithm, Optimal Policy Iteration, is compared with a standard Dynamic
Programming approach as well as an Evolutionary Algorithm.

The algorithm performs significantly better than a simple DP solution,
making it possible to solve problem instances with large capacities. The
evolutionary algorithm performs better on instances with many stores,
but is not guaranteed to give optimal solutions.

The algorithm uses a deterministic pricing scheme. In its current form
it cannot simply be extended to stochastic pricing models. A counterex-
ample shows that the uncertainty about future prices makes it impossible
to directly translate the locality results from deterministic pricing to a
price scenario.



1 Acknowledgements

There are several people wihout whom this thesis project would not have been
possible. I want to express my gratitude to Professor Günther Raidl, the advisor
of my thesis project, for support, advice, patience, feedback, corrections of drafts
and the possibility of attending the EURO XXII-Conference. The algorithm
analyzed in this thesis was devised by Alfred Kalliauer, who also proposed this
thesis project. Thanks to him for his help, feedback and encouragement during
the project. Special thanks go to my parents Eva and Wolfgang Bonitz for
encouraging and supporting my studies.

Christoph Bonitz
Vienna, May 2008



Diplomarbeit Christoph Bonitz

Contents

1 Acknowledgements 3

2 Introduction 6
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 History and Related Work . . . . . . . . . . . . . . . . . . . . . . 7

3 Related Theory 8
3.1 Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Graphs, Networks, Flow Problems and Residual Graphs . . . . . 9

4 Formal Problem Definition 10
4.1 Policy versus States . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 A Corresponding Integer Linear Programming Formulation . . . 12

5 A Simple Dynamic Programming Approach 14
5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Optimal Policy Iteration, a More Efficient
Algorithm 17
6.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.4 A Simple Example . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 Proof of Correctness of OPI 22
7.1 Network Flow as an Abstraction . . . . . . . . . . . . . . . . . . 22
7.2 Adding a Representation of the Objective function . . . . . . . . 24
7.3 Final Network Layout for the Proof . . . . . . . . . . . . . . . . . 25

7.3.1 Stores and Store Capacities . . . . . . . . . . . . . . . . . 26
7.3.2 Time steps . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.3.3 Objective Function . . . . . . . . . . . . . . . . . . . . . . 26

7.4 Summary: Equivalence to the Problem . . . . . . . . . . . . . . . 28
7.5 Necessary and Sufficient Criteria for a Minimum Cost Maximum

Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.6 Using the Equivalence to Prove Correctness of OPI . . . . . . . . 28
7.7 One OPI Iteration - Inductive Arguments . . . . . . . . . . . . . 29

7.7.1 Augmenting Simple Path Always Exists . . . . . . . . . . 29
7.7.2 Capacity of the Augmenting Path . . . . . . . . . . . . . 30
7.7.3 Choosing a Path . . . . . . . . . . . . . . . . . . . . . . . 30
7.7.4 No Changes . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.7.5 Allocations and Cascades . . . . . . . . . . . . . . . . . . 30
7.7.6 Maximality after Pushing a Flow . . . . . . . . . . . . . . 32
7.7.7 Minimum Cost after pushing a Flow . . . . . . . . . . . . 32

7.8 Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.9 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Page 4



Diplomarbeit Christoph Bonitz

8 Order of OPI Iterations 36
8.0.1 By Dimension . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.0.2 Best Increment . . . . . . . . . . . . . . . . . . . . . . . . 37

9 Implementation 38
9.1 Storing Problem Instances . . . . . . . . . . . . . . . . . . . . . . 38
9.2 Standard DP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.3 Optimal Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . 39
9.4 Evolutionary Algorithm . . . . . . . . . . . . . . . . . . . . . . . 40

10 Computational Experiments 42
10.1 Optimal Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . 42

10.1.1 Order of OPI Iterations . . . . . . . . . . . . . . . . . . . 42
10.1.2 Cascade Effects . . . . . . . . . . . . . . . . . . . . . . . . 47

10.2 Comparison of OPI and naive DP . . . . . . . . . . . . . . . . . . 52
10.3 Comparison of OPI and the Evolutionary Algorithm . . . . . . . 55

10.3.1 Performance Characteristics of the Evolutionary Algorithm 55
10.3.2 Comparison to OPI . . . . . . . . . . . . . . . . . . . . . 59

11 Limitations 62
11.1 Deterministic Pricing . . . . . . . . . . . . . . . . . . . . . . . . . 62
11.2 What Changes with the Introduction of Scenario Trees . . . . . . 62

12 Conclusions 67

A Problem Instance File Format 69

Page 5



Diplomarbeit Christoph Bonitz

2 Introduction

This chapter discusses the motivation for solving the allocation problem dis-
cussed in this thesis. Furthermore, an of the algorithm’s history is given.

2.1 Motivation

This thesis thoroughly analyzes an algorithm that solves an allocation prob-
lem inspired by resource planning for reservoirs of hydroelectric power plants.
Reservoirs of hydroelectric power plants store massive amounts of water behind
a dam. When needed, the potential energy of the water can be transformed into
electrical energy using turbines attached to generators. This flexibility allows
operators to generate electricity when the expected profits are highest.

There are two ways the reservoirs can be filled with water. First, there is
the natural inflow of water from the river on which the plant is built. Second, if
the operator controls at least two reservoirs near to each other and one is below
the other, water can be pumped from the (physically) lower plant to the higher
one using electricity when the prices are low, and used to create electricity
again when the prices are higher, allowing the operator to take advantage of
fluctuations of energy prices Independently of how the reservoir was filled, the
water inside it should be used for the generation of electricity when the prices
are highest.

In this thesis we consider a simplified model that treats the water in a reser-
voir as stored electrical energy that can be allocated in discrete units over a
given period of time, trying to optimize the profit from selling them, given an
expected market price represented by the sum of concave pricing functions. We
do not consider inflow, pumping or evaporation losses.

We look at a recursive definition for the objective function value of a problem
instance, and describe a simple Dynamic Programming (DP) algorithm based
on this recursion. However, the running time of the algorithm dramatically
increases with growing store capacities.

To solve larger instances, this thesis presents an algorithm that exploits
a property guaranteed by the concave pricing functions: When two problem
instances differ only by one unit in the capacities of one store and are identical
with respect to all other constraints, their optimal solutions are similar. Given
the optimal solution to one of them, the other instance’s optimal solution can
be found with an efficient local DP search. The size of the search space only
depends on the number of dimensions and time steps.

Given a problem instance I, the algorithm, Optimal Policy Iteration (OPI),
starts with a trivial sub-problem-instance I0 that has the same allocation limits
as I but a capacity of zero units in each store. The optimal solution to I0 is
not allocating any units, as there are none. Using the optimal solution to I0
we can now efficiently find the optimal solution to a problem instance that has
one unit in one store, and zero in all the others. This scheme can be continued
iteratively, adding one unit per iteration, until we have the optimal solution to
our original problem instance. For this algorithm, the store capacities are only
a linear factor.

This thesis describes the algorithm in detail. Its correctness is shown in a
rigorous formal proof. A description of the implementation is provided. Compu-
tational experiments examine the performance of two variants of this approach

Page 6



Diplomarbeit Christoph Bonitz

and compare it to the simple DP approach described above and an Evolutionary
Algorithm.

2.2 History and Related Work

This thesis is based on work by Alfred and Andrea Kalliauer. In 2002 they
discovered a method for evaluating option prices, which they presented at two
conferences [11], [12]. It is similar to an independently discovered method of
evaluating Swing Options [9] published in 2004.

In 2006 it was discovered that this principle could be extended to multi-
dimensional allocation problems ([2], [1], [13]). At the end of 2006, Alfred
Kalliauer contacted Professor Günther Raidl, head of the Algorithms and Data
Structures Group of the Institute of Computer Graphics and Algorithms at Vi-
enna University of Technology. The aim was a thorough analysis as well as an
implementation of his algorithm during a thesis project.

This is how this thesis came to be. The project resulted in the first imple-
mentation and thorough correctness proof of Alfred Kalliauer’s algorithm, and
was also presented at the 22nd European Conference on Operational Research
in 2007 [4].

Page 7



Diplomarbeit Christoph Bonitz

3 Related Theory

Several chapters of this thesis requires some theoretical background. This chap-
ter gives an overview of the most important theoretical concepts used in this
thesis and contains references to related articles and books.

3.1 Optimization Problems

Optimization problems are problems where the aim is to minimize or maximize
the value of an objective function by assigning values to decision variables such
that a set of constraints are met. That is, from a set of legal solutions choose
one with maximal or minimal objective function value.

Combinatorial optimization is the class of optimization problems where the
number of legal solutions is finite. A well known example is the classic Knapsack
Problem, where we have to choose a subset a finite set of goods that each have
a profit and a weight assigned to them, in a way that maximizes the sum of the
profits but keeps the weight under a given limit. Since the number of subsets
of a finite set is finite, the number of legal solutions must be finite as well.

Conversely, if the number of legal solutions is unlimited, the problem is
called a continuous optimization problem. As an example, consider the fractional
Knapsack Problem, where we are allowed to pick fractions of each good, yielding
an infinite number of legal solutions.

3.2 Dynamic Programming

Dynamic Programming or DP is a technique used primarily to solve optimiza-
tion problems. Its theoretical foundations have first been extensively researched
by Richard Bellman in the 1950s [3].

The well-known algorithms textbook [5] states two important properties of
problems to be solved with Dynamic Programming :

• optimal substructure

• shared subproblems

Overlapping subproblems describes problems which are composed of subprob-
lems, which, again, consist of several subproblems, with the property that one
sub problem occurs in several (sub)problems. This means that a top-down, re-
cursive approach to solving such a problem would result in subproblems being
solved several times. Optimal substructure means that each of the subprob-
lems of an optimal solutions need to be solved in an optimal manner as well,
i.e. a non-optimally solved sub-problem in an optimal solution would yield a
contradiction.

Dynamic Programming is a bottom-up approach. It starts by solving smaller
subproblems to optimality and using them as building blocks to the optimal
solution of larger subproblems. While shared subproblems are a performance
problem in top-down approaches, used together with optimal substructure, they
are used to increase performance in DP.

Page 8



Diplomarbeit Christoph Bonitz

3.2.1 Example

As a short illustration, we will use an example from the upcoming textbook [6].
Consider the problem of finding a longest increasing sub-sequence (LIS) in a
(finite) sequence of integers, i.e. given a sequence s =< a1, . . . , an >, find a
sub-sequence < ai1 , . . . , aim

> s.t. aij
< aik

and ij < ik for all j < k. Clearly,
for a sequence of length one, the longest increasing sub-sequence has length 1.
For any sequence < a1, . . . , an > of length n > 1 it is the maximum of

• the length of the LIS of < a1, . . . , an−1 >

• 1 plus the length of the LIS of < a1, . . . , an−1 > that ends in an element
smaller than an.

The first case occurs if < a1, dot, an−1 > contains a LIS of < a1, . . . , an >,
the second case occurs if a LIS of < a1, . . . , an > ends with an. This yields
the following, simple DP-algorithm for determining the length of any LIS in a
sequence of integers:

• let l1 := 1

• for i in 2, . . . , n let li := 1 + maxj<i, aj<ai
lj

• return max1≤j≤n lj

In this algorithm, the left-to-right order of execution makes it possible to
compute li only once for every i although the value is used several times dur-
ing computation. If, in the second step, for each i we save a reference to the
index j that was used to compute li, we can also compute the actual LIS after
determining its length. This is done by following the references starting from a
sequence element which is the end of a LIS.

This example exhibits both characteristics we discussed earlier. It has shared
subproblems because the LIS ending in a some element of a prefix of the given
sequence is used to compute all the LIS of longer prefixes of the sequence.
Furthermore, it has the optimal substructure property. If < ai1 , . . . , aim

> is a
LIS of s =< a1, . . . , an >, < ai1 , . . . , aim−1 > is a LIS of elements of s less than
or equal to aim−1 . We used these properties to in an efficient DP-algorithm for
efficiently solving the problem.

While DP is usually used to compute an optimal result for an optimization
problem, it can also be used as an improvement heuristic ([14], [15], [16]). This
thesis uses Dynamic Programming as an improvement heuristic guaranteed to
converge to an optimal result.

3.3 Graphs, Networks, Flow Problems and Residual Graphs

Graphs are an important tool in computer science theory. Many problems can be
modeled as graph problems or network flows, which is why the basic algorithms
covering these topics can be found in introductory algorithms textbooks like [5]
and [6] or basic graph theory textbooks like [7] (which is also available in German
[8]). This thesis contains the concepts of residual graphs and augmenting paths,
which come from the Ford Fulkerson maximum flow algorithm. [5] has an
excellent introduction to Ford Fulkerson in section 26.2. We will also use the
concept of Minimum Cost Flows, which is covered in [10].

Page 9



Diplomarbeit Christoph Bonitz

4 Formal Problem Definition

maximize ∑
0≤t<T

∑
1≤j≤m

vt,j(xt,j) (1)

s.t.

xt,j ∈ N ∀t = 0, . . . , T ∀j = 1, . . . ,m (2)∑
1≤t≤T

xt,j ≤ sj ∀j = 1, . . . ,m (3)

∑
1≤j≤m

xt,j ≤ fmaxt ∀t = 0, . . . , T − 1 (4)

xt,j ≤ fmaxt,j ∀t = 0, . . . , T ∀j = 1, . . . ,m (5)

where v(t, j, x) ≥ 0,
0 ≤ fmaxt,j ≤ fmaxt ∀t = 0, . . . , T,∀j = 1, . . . ,m
and v′t,j monotonic decreasing

We are trying to maximize the profit from allocating (or selling) discrete
goods from m different sources (also called stores), each of with a capacity
sj > 0, 1 ≤ j ≤ m, to T locations (or time slots). For each time slot t and source
j we have a decision variable xt,j , 0 ≤ t < T, 1 ≤ j ≤ m that describes how
many units from source j are allocated to time slot t. Each decision variable xt,j

contributes to the objective function via a pricing function vt,j(xt,j) which we
require to be non-negative. Furthermore, the first derivatives of these functions
are required to be monotonic decreasing.

The values of the decision variables are subject to the following restrictions:

• Each store has a capacity (sj for the jth), which limits the number of
items we can allocate from the resource stored in it (see equation 3).

• equation 5 states that the maximum number of items allocated at each
time slot t is limited by a value fmaxt.

• An allocation can be constrained even further to a maximum number of
items from a certain source j at a given time slot t by fmaxt,j (equation 4).

The rationale for requiring the first derivatives of the pricing functions to be
monotonic decreasing is the following: If one wants to sell one item of a good
in a given time frame and has several offers, one will sell it for the best profit
that can be realized. The next item will be sold for the second best price etc.
Furthermore, it enables us to prove the correctness of the algorithm discussed
in this thesis via an corresponding network flow problem.

Note that these pricing functions would allow different stores to contain
different goods (although only one good per store). Constraint 5, however,
suggests that those goods are somehow comparable, since it is a constraint
across all stores.

Since we are dealing with multiple allocations, concave pricing functions
and cross constraints, we call the problem Cross Constrained Concave Multiple
Allocation Problem (CCCMAP).

Page 10



Diplomarbeit Christoph Bonitz

Often the pricing can be expressed more intuitively by the profit realized
from the kth item sold from store j at time t, which we will call δt,j(k), defined
for all k ∈ 1 . . .min(fmaxt, fmaxt,j) . It is defined based on vt,j :

δt,j(k) := vt,j(k)− vt,j(k − 1) ∀k = 1, . . . ,≤ fmaxt,j

∀t = 0, . . . T − 1, j = 1, . . . ,m, k ≥ 1

or, vice versa,

vt,j(k) =
∑

1≤i≤k

δt,j(k)

∀t = 0, . . . T − 1, j = 1, . . . ,m, k ≥ 1

A feasible solution for this problem is called a policy, and consists of values
for each of the decision variables xt,j for time slots 0, . . . , T − 1. Intuitively, it
determines for each time slot how many units from which store to sell.

4.1 Policy versus States

There is another way to describe such a policy: For each time slot 0, . . . , T
we specify remaining stock in each store, which we will call rt,j for each t ∈
0 . . . T, 1 ≤ j ≤ m. The stock at time 0 is known from the problem instance, so
it is redundant to specify it. However, it is much more human-readable to do
so, which is why we will specify rt,j for t ∈ 0, . . . , T . We will call this the state
representation.

Table 1 shows a simple example with 2 dimensions and 3 decision points that
illustrates this correspondence. Since units can only be sold in our problem

x1,t x2,t r1,t r2,t

t = 0 1 0 3 3
t = 1 2 1 2 3
t = 2 0 2 0 2
t = 3 undef. undef. 0 0

Table 1: Simple two-dimensional example

(due to the non-negativity of the decision variables), the stock is monotonic
decreasing w.r.t. t. So opposed to the actual allocation decisions, where the only
relationship between the values corresponding to a store over time are given by
the capacity constraints, a store’s storage is monotonic decreasing and it can be
meaningfully plotted over time. Referring to this possible visual representation,
we will call the development of stock over time a trajectory. Each legal policy
corresponds to exactly one trajectory, and we will call a trajectory legal if it is
the result of a legal policy. Formally,

r(t+1),j − rt,j = xt,j ∀t = 1, . . . , T ∀j = 1, . . . ,m (6)
r0,j = sj ∀j = 1, . . . ,m (7)

For any given point in time, the vector containing the stock level of each
store determines the state of the storage system at this time. We call such a
vector a store configuration or just configuration.

Page 11



Diplomarbeit Christoph Bonitz

We call the set of all possible configurations at a given time step, that is

R := {0, . . . , s1} × · · · × {0, . . . , sm}

the state space.

4.2 A Corresponding Integer Linear Programming For-
mulation

There is another effect of the monotonic decreasing profits. Suppose we split up
each integral decision variable xt,j into a vector of binary variables yt,j,k, i.e.

xt,j =
∑

0≤k≤fmaxt,j

yt,j,k, yt,j,k ∈ 0, 1 ∀t, j, k

and consider the new optimization problem that is created when we replace the
integral decision variables with the sum of their binary counterparts i.e.:

maximize ∑
0≤t<T

∑
1≤j≤m

∑
0≤k≤fmaxt,j

δt,j(k) · yt,j,k

s.t.

∑
1≤t≤T

∑
0≤k≤fmaxtj

yt,j,k ≤ sj ∀j = 1, . . . ,m

∑
1≤j≤m

∑
0≤k≤fmaxtj

yt,j,k ≤ fmaxt ∀t = 0, . . . , T − 1

yt,j,k ∈ {0, 1} ∀t, j, k

We were able to drop the constraint expressed in equation 5, because the
number of binary decision variables implicitly enforces the maximum allocation
value specific for both time and store.

Note that this is now an integer linear optimization problem (ILP. Each
binary decision variable represents one allocation unit and contributes to the
objective function with the profit corresponding to this allocation.

Now suppose we take an optimal solution to this problem and use it to
generate a solution to our original problem by setting each integral decision
variable to the sum of its corresponding binary decision variables. What could
we say about this solution?

Obviously, it will be a legal solution, since the capacity constraints, the cross
constraints and the individual constraints are enforced in the ILP-formulation.

Now let us look at the objective values of the ILP-solution and the solution
to the original problem created from it. Since the binary decision variables
corresponding to one integral decision variable are subject to the same cross-
and capacity constraints, they can be picked independently from each other.
This means that, if k decision variables corresponding to xt,j are of value 1 in
an optimal LP-solution, they will be those with the highest profits.

It can easily be seen that if any one of these decision variables having value
1 has less objective value contribution than another one corresponding to xt,j

Page 12



Diplomarbeit Christoph Bonitz

which is set to 0, switching between those two allocations gives a higher profit
without violating any constraints.

Formally, if the binary decision variables yt,j,1, . . . , xt,j,k corresponding to
xt,j are set to 1 in the optimal solution, and their objective value contributions
are

{δt,j(1), . . . , δt,j(k)} where δt,j(a) > δt,j(b)⇔ a > b

then all xt,ji with objective value contributions at least vi−1 are set to 1.
However, since multiple binary decision variables can have the same objective

value contribution, there may be several optimal solutions, having different (but
the same number of) binary decision variables set to 1 (all with objective value
contribution vi).

When it comes to mapping an optimal ILP-result back to the original prob-
lem, though, this is not an issue. The integral decision variable xt,j is determined
by ∑

yt,j,k

0≤k≤fmaxt,j

i.e. their sum, and the objective value contribution of xt,j is equal to the sum of
the corresponding binary decision variables, because of the monotonic decreasing
profits.

For the purpose of refutation, assume that there actually is a solution to the
original problem with a better objective value than the optimal solution to the
problem created by binary decomposition. For each integral decision variable
xt,j , order the corresponding binary decision variables by profit in non-increasing
order. Let the resulting sequence be

< yt,j,o1 , . . . , yt,j,ol
>

Let x∗t,j = k then let

yt,j,o1 = · · · = yt,j,ok
= 1, yt,j,ok+1 = · · · = yt,j,ol

= 0

for all 0 ≤ t < T, 0 ≤ j < m. Because of the non-increasing profits of the pricing
functions, setting the k most valuable binary decision variables must yield the
same profit as the integral decision variable in the original problem. Since
this assignment of values creates legal solutions with the same objective value,
we have refuted our assumption, and thereby proven that the ILP-formulation
indeed yields optimal results for our problem.

Page 13



Diplomarbeit Christoph Bonitz

5 A Simple Dynamic Programming Approach

To better understand the advantages of Optimal Policy Iteration we first look
at a simple approach to solving CCCMAP using Dynamic Programming (DP)
This chapter looks at the structure of the problem and explains why DP is a
reasonable way of solving it. It describes this approach and analyzes the worst
case running time.

5.1 Description

To understand why the problem is a reasonable candidate for Dynamic Pro-
gramming, let us look at the state space. Given that at a given point in time
each of our stores contains a certain number of items, the question is: how can
we compute the value of this configuration?

• We can allocate, that is sell, some (or no) units from our stores at this
point in time within our constraints

• . . . and we can sell what is left in the stores later.

We have pricing functions for determining what profit we will realize by selling
items at this point in time. Once this decision has been made, one has to quan-
tify what “selling later” means in terms of profit. We can define it recursively
as the value of the resulting configuration (i.e. the remaining stock) at the next
time step.

This means that the value of a configuration is given as the optimal combi-
nation of

• legal values of this time slot’s decision variables and

• the value of the resulting configuration at the next time step.

Since our problem has only a finite number of time steps, there is a last one,
for which we have to make a decision as of how we estimate the value of each
configuration. For the sake of simplicity, the formulation of CCCMAP assumes
a value of 0 for all configurations at the end of the planning period.

Note that the recursion has shared subproblems. For example, in a one
dimensional instance, having 3 units at time t could have been a result of having
4 units at time t− 1 and selling 1 of them, or having 5 units and selling 2. The
recursive nature and the shared subproblems make it an ideal candidate for
Dynamic Programming.

With this knowledge, we have what we need for a DP algorithm. We will
use a backward pass to determine the values of each configuration and save how
the value was derived. In a forward pass we construct a policy to realize the
optimal profit using this knowledge.

To do this, we define the value v′t(r) to be the value of a state r= <
r1, . . . , rm > from our state space R = {0, . . . , s1} × · · · × {0, . . . , sm} at time
t. At the end of our planning period, all configurations have value 0, i.e.
v′T (r) = 0 ∀r ∈ R. Furthermore, we define nextt(r) as the configuration at
time t+ 1 following in an optimal trajectory starting at r at time t.

We use the backwards pass to compute these values.

1. Let t := T − 1

Page 14



Diplomarbeit Christoph Bonitz

2. For each configuration r ∈ R at time t we consider all configurations r′ ∈ R
at time t + 1. We already know the value of r′ at time t + 1, which is
v′t+1(r′). If rj − r′j ≤ fmaxt,j and ∑

1≤j≤m

(rj − r′j)

 ≤ fmaxt

the transition from state r to r′ does not violate any constraints. Then
the resulting value is

v′t+1(r′) +
∑

1≤j≤m

vt,j(rj − r′j)

We define v′t(r) to be the best of these values. Furthermore, we remember
which state at time t+1 we used to achieve this value, by setting the value
of nextt(r) := r′.

3. If t > 1 then t := t− 1 and go to step 2

At the end of the backward pass, we have the values of each configuration
at time 0, including the value of the configuration representing the capacities of
our stores, i.e. < s1, . . . , sm >. We can then reconstruct the optimal policy in
a forward pass:

1. Let t := 0, r =< s1, . . . , sm >

2. r′ := nextt(r)

3. xt,j = rj − r′j ∀j = 1, . . .m

4. If t < T − 1 then t := t+ 1 and continue at step 2.

5.2 Analysis

This algorithm is simple but inefficient. In each of the T time steps the algo-
rithms visits all possible configurations, of which there are

∏
1≤i≤m

si.

For each of these configurations it checks all possible combinations of decision
variables for the current time step. There are O(

∏
1≤i≤m

si) such combinations.

For each of these combinations it checks whether it is legal w.r.t. the constraints,
and if it is, it computes a value, which needs time bounded by O(m).

Finding the best value at time 0 takes O

( ∏
1≤i≤m

si

)
and following the next-

Pointers takes O(T ) time. This yields a total time complexity of

O(T ·m · (
∏

1≤i≤m

si)2) (8)

This expression is exponential in the number of dimensions (even though not
explicitly), which is an effect of the well-known Curse of Dimensionality, and
was to be expected.

Page 15



Diplomarbeit Christoph Bonitz

The capacities of the stores appear in a product, which is taken to the second
power. This is very undesirable: It would be intuitive for the capacities to be a
linear factor in the running time. Here the effect of increasing the capacity of
stores is significantly bigger.

For example, consider an instance I with m stores and x units per store, and
an instance I ′ of the same dimensionality but 2x units per store. According to
8, the worst case running time of I is

O(T ·m · x2m)

as opposed to
O(T ·m · (2x)2m) = O(·T ·m · 22m · x2m)

for I ′, which is bigger by a factor of 22m or 4m. More general, this means that
multiplying all capacities of an instance with m dimensions by a factor of k
increases the worst case running time of the simple DP algorithm by a factor of
k2m. Because of this dramatic change, running instances that are large w.r.t.
capacities becomes infeasible, even if their number of dimensions is small.

It would therefore be desirable to find a method for solving these problems
that, in its running time, separates the two components discussed — the num-
ber of stores their capacities. We still expect the number of stores to be an
exponential factor in the running time, however, we would like the capacities to
contribute just linearly.

Page 16



Diplomarbeit Christoph Bonitz

6 Optimal Policy Iteration, a More Efficient
Algorithm

We have considered a simple Dynamic Programming-approach to solve CC-
CMAP and discussed why its running time is unreasonably big. This chapter
introduces Optimal Policy Iteration, an algorithm found by Alfred Kalliauer,
which reduces the impact of capacities on running time. We will look at a de-
tailed description of the algorithm, as well as an analysis of worst case running
time.

6.1 Description

In the definition of CCCMAP we required the first derivative of the profit func-
tions to be monotonic decreasing in every dimension, i.e. given a dimension and
a time step, the n + 1st allocation may not yield more profit than the nth, or
formally

δt,j(n) ≥ δt,j(n+ 1) ∀t = 0, . . . , T − 1,∀j = 1, . . . ,m, ∀n = 1, . . . , fmaxt,j − 1

This closely follows the metaphor of a market: When one has several units of
some good, and a number of buyers offer different prices, one will first sell as
many units as possible for the best price, then the second best price etc.

On the other hand, if we do not require this property of the pricing functions,
small changes in the capacity of a store can have a big effect on the optimal
solution. Let us consider table 6.1 that shows an instance of a problem that is
identical except for not having this constraint and see what can happen if we
increase the capacity of one dimension by one unit.

x δ01(x) δ11(x)
1 1 10
2 1 10
3 1 10
4 100 10

Table 2: Pricing function possible without restrictions

Clearly, for up to 3 units the optimal solution would be to allocate all units
to time step 1. However, when there are 4 units, the optimal solution allocates
all units to time step 0. It is easy to see that this scheme can be used to build
instances where adding one unit to the capacity of a store creates arbitrarily
big changes in the optimal solution by assigning an excessively big profit to a
single allocation which can only be realized after doing a number of unprofitable
allocations.

Requiring the profits to be non-increasing changes this. As an illustration,
consider the simple CCCMAP -instance of the same size shown in table 6.1

In this instance, the first three available units are best allocated time step
1. Again, the fourth allocation at time step 1 is worth less than the fourth
allocation at time step 0. However, since the profits are non-increasing, the
same holds for the first three allocations at time 0. Hence, when a fourth unit

Page 17



Diplomarbeit Christoph Bonitz

x δ01(x) δ01(x)
1 10 11
2 10 11
3 10 11
4 10 1

Table 3: Example with restriction on pricing function

becomes available, it is allocated at time step 0, yielding an optimal solution
that differs only slightly from the one with three units.

We will prove later that this similarity of the optimal solutions for similar
problem instances is indeed an effect of the non-increasing profits. Assume we
have an optimal solution for a CCCMAP -instance I. Consider the instance
I ′ that is the result of adding one unit to the capacity of one dimension and
compare the optimal solutions. We can prove the following statements:

None of the values of the decision variables in the optimal solution to I differs
by more than one unit at any time from those in I ′. Or, more formally, let x∗t,j
denote the value of the decision variable at time t and time j of an optimal
solution for I and x∗

′
i.e.

|x∗t,j − x∗
′

t,j | ≤ 1 ∀t = 0, . . . , T − 1,∀j = 1, . . . ,m

This means that in the decision space, there is an neighborhood property be-
tween the optimal solutions of similar problem instances.

But more important, the trajectories of the two optimal solutions do not
differ by more than one unit at any time and dimension, i.e.

|r∗t,j − r∗
′

t,j | ≤ 1 ∀t = 0, . . . , T − 1,∀j = 1, . . . ,m

This means that there is even a neighborhood property in the state space of
the optimal solutions. Figure 1 illustrates this for an example with one store.

Figure 1: Limited search space around an optimal solution.

Given an optimal solution for three units, the optimal solution for four units

Page 18



Diplomarbeit Christoph Bonitz

cannot be further than one unit away at any time step. Obviously, it cannot be
negative either.

The simple DP-algorithm solved CCCMAP by searching the whole state
space in the backward pass and constructing the optimal trajectory in the for-
ward pass.

Given such a strict neighborhood property in the state space, we can find the
optimal trajectory of the slightly bigger instance via a Dynamic Programming-
search within a small neighborhood of the old optimal solution by restricting
the starting- and end-points of the backward pass to the configurations that do
not differ from those of the old optimal solutions by more than one unit per
dimension.

To actually perform this search, we project the state space into another
space of the same dimensionality, i.e. m dimensions for state and 1 dimension
for time. The projection is chosen such that the old optimal solution has value
1 in each store at each time step in the new state space. When we consider store
values of 0 to 2 in this new state space, 0 always means “one unit less than in
the old solution”, 1 means “the same” and 2 means “one unit more”. This is
illustrated in figure 2, where the such a projection. The optimal solution after
adding one unit is indicated in magenta.

Figure 2: Finding an optimal solution for a larger sub-problem-instance.

We can now easily represent this search space in a multi-dimensional array,
and perform a DP-search on it, allowing only state values of 0 to 2 in each
dimension. In the backward pass we can check the constraints by projecting the
starting- and end-point of each state transition we consider back to the original
state space.

After finishing the backward pass, we perform the forward-pass to find the
optimal solution to the new problem. Then we project this solution back into
the original state space. For the example used before, figure 3 shows the new
optimal solution projected back into the original state space.

The outlined procedure generates an optimal solution to one problem in-
stance based on the optimal solution of a slightly smaller one. This poses the
question of which solution to start with. Alfred Kalliauer devised a very elegant
solution to this[ref]: For every CCCMAP -instance there is a trivial instance with
the same number of time-steps and dimensions, but a capacity of zero units in all
stores. The optimal solution to this problem is simple: Not allocating anything,
i.e. all state- and decision variables are set to zero.

Page 19



Diplomarbeit Christoph Bonitz

Figure 3: Projecting the new optimal solution to the actual state space.

From there we can start incrementing the capacity of the dimensions until
we have reached the capacities of the original problem instances (or no capacity
increase increases the objective function value. Since the optimal solution is
reached via a series of optimal solutions to smaller subproblems, Alfred Kalliauer
called this algorithm Optimal Policy Iteration (OPI).

We will call one DDP search step around an optimal solution, yielding an
optimal solution for a bigger instance, an OPI-iteration or just an iteration.
When we look at the DDP search space for an iteration for an example with
two dimensions, it looks very much like a tube (see figure 4). Following this
visual metaphor, we will call the DDP search space (for problems of any dimen-
sionality) the search tube.

Figure 4: 2D Example (Source:[2])

6.2 Summary

The following description summarizes OPI :

Page 20



Diplomarbeit Christoph Bonitz

1. For a given OPI -instance I define the trivial instance I0 with all capacities
set to 0.

2. Set the current optimal solution to 0 in all state variables at all time steps.

3. Increase the capacity of one store in Ii by one unit, yielding an instance
Ii+1.

4. Project the old optimal solution into an m+1-dimensional array such that
all state variables are set to one at all time steps

5. Perform a DP-backward-pass on this array. To check for constraint vio-
lations, compute the value of starting- and end-points of state transitions
in the original state space.

6. Perform the a forward pass to find the projection of the optimal solution
to Ii+1.

7. Project this solution back to the original state space to obtain the actual
solution.

8. Continue with step 3 unless all capacity limits are reached or the capacity
increase does not improve the objective function value.

9. Output the optimal solution to I.

6.3 Analysis

Starting from the trivial solution of I0 we do at most
∑

1≤j≤m

si local DP searches.

Each of these searches has T steps in which all possible combinations of 3m

current configurations and the 3m configurations of the next time step are eval-
uated. We, again, assume that evaluating one of these time combinations takes
O(m) time. This yields an overall time complexity of∑

1≤j≤m

si · T ·m · 32m (9)

Let us compare this to the running time of the conventional DP-Algorithm,
which is

O(T ·m · (
∏

1≤i≤m

si)2) (10)

Two observations can be made concerning running time:

• The number of dimensions is still an exponential factor (32m).

• However, the capacities of the stores are now a linear factor, vs. being in
the squared product.

6.4 A Simple Example

Page 21



Diplomarbeit Christoph Bonitz

7 Proof of Correctness of OPI

Optimal Policy Iteration uses a neighborhood property of CCCMAP to itera-
tively build an optimal solution to a given instance. This chapter contains a
thorough mathematical proof this property and shows the correctness of the
algorithm.

7.1 Network Flow as an Abstraction

The inspiration for the abstract model that OPI is solving were hydro storage
power plants, which work by harnessing the potential energy of water that
is released when it flows between different elevations. Since a physical flow is
present in such systems, network flows would be one way of thinking when trying
to find an abstraction for such a system. Indeed, this is was Alfred Kalliauer’s
starting point was and finally enabled him to devise the OPI-Algorithm.

For a better understanding of the flow network involved in the proof of
correctness for OPI, let us have a look at how hydro storage planning in general
can be represented by a flow network, gradually going into more detail.

Figure 5 shows a very abstract view of a hydro storage system consisting of
just one store in the context of a flow network (i.e. with a source and a sink).
There is a source of water, and a target where the water flows after passing
the power plant, which we will represent with a sink, as known from network
flow theory. Here, the actual hydro storage system and the turbines that are
generating the power are represented by rectangular nodes.

Figure 5: Abstract view of a hydro storage system.

For the sake of simplicity, let us stop considering the practical aspects of
generating power for the time being, since it is not relevant for the planning,
i.e. we remove the turbine from this system.

Since a standard flow network has no intrinsic representation of both time
and storage, we choose to make this explicit using auxiliary nodes. We do this

Page 22



Diplomarbeit Christoph Bonitz

by splitting up the storage system into several nodes, each one representing
the store at one time step in our planning period (see figure 6 for a graphical
representation of such a network).

Every node has two incoming and two outgoing arcs. The incoming arcs are
the natural inflow of water, and the water that has been stored until this time
step. The outgoing arcs represent the choices one is faced with such a reservoir:
Use some of the water in the store for generating electricity (represented by the
arcs leading to the sink) and/or keep water in the store (represented by the arc
to the store at the next time step). Maximum capacity on those two arcs can be
used to limit both the amount of water that can be used to generate electricity
and the amount of water that can be stored at any time.

Figure 6: Representing water storage in a network

In our problem, we are not considering natural inflow, we just agree on
an amount of water that is stored in the beginning and used in course of the
planning period. This means that the amount of water in the store will only
decrease. Since we suppose our problem instance is correct, meaning we do not
start with more water in the store than can be stored, storage limits are not an
issue of our planning. Hence we can use just one node for each store, with only
one incoming arc that represents the water that is already in the store.

What we do want to consider, however are variations of the electricity mar-
kets. Hence, our network should be able to enforce a different maximum number
of allocations at each time step, so we need to keep at least one outgoing arc
for each time step. This is illustrated in figure 7.

This would be sufficient to enforce the constraints corresponding to a system
with only one store. CCCMAP , however, can have several stores. We will have
one store node for each of them. To enforce the constraints covering the total
amount of electricity generated in all power plants of the system at a given time
step (the cross constraints, we need the flows corresponding to this time step
from all the stores to influence each other in some way. The solution for this is

Page 23



Diplomarbeit Christoph Bonitz

Figure 7: Representing several stores and cross constraints

adding one node for each time step, which we will call time nodes. They have
incoming arcs from all stores. The flow between a store node and a time node is
the amount of electricity generated at the corresponding store and time step, i.e.
it represents one decision variable. Their outgoing arcs go to the sink, and their
capacity is this time step’s cross constraint, satisfying the requirement that the
flows from all stores at this time step influence each other. Such a network is
shown in figure 8.

This network can be used to enforce all the limits of the problem, namely

• store capacity (as incoming arcs to store nodes)

• cross constraints (as outgoing arcs of the time nodes)

• time/store specific limits (as arcs between time and store nodes)

However, to create a complete representation of our problem, we need some way
to model the objective function.

7.2 Adding a Representation of the Objective function

To represent the objective function, we add costs to the network in figure 8
and add some more refinements. We chose to use a minimum cost maximum
(integral) flow formulation. The minimum cost maximum flow problem is to
find a maximum flow of minimal cost. This means that we now, as desired, have
two different aspects to this problem, namely arc capacities and weights, which

Page 24



Diplomarbeit Christoph Bonitz

Figure 8: Representing several stores and cross constraints

can use those to model both constraints (via arc capacities) and the objective
function (via weights).

7.3 Final Network Layout for the Proof

We define a function from instances I of CCCMAP to a subset of all weighted
flow networks in a way that allows us to map each instance of CCCMAP to
a flow problem, of which the optimal solution, a minimum cost maximum flow
(which we will call F ), can be mapped to the optimal policy P for our instance.

The overall layout of our network is illustrated in figures 9 and 10. The
dashed lines indicate several arcs (that will be illustrated in detail in later fig-
ures). Arcs are labeled with two values, separated by a horizontal line: Their
capacity and their weight. A label ”3|2” means a capacity of three and a weight
of 2. Notice the following properties:

• The network contains both a source s and a sink t.

• Each store is represented by one node (which we will call store node).

• Each time step is represented by one node (which we will call time node)

• Each decision variable is modeled by several arcs between store nodes and
time nodes which are indicated by dotted arrows in figure 9. Each of these
arcs represents one allocation decision

• The contribution of each allocation decision to the objective function is
represented by assigning it negative costs. If the profit of an allocation is
p the corresponding arc’s weight is −p.

Page 25



Diplomarbeit Christoph Bonitz

Figure 9: Final network (overview)

• The objective function is represented by the sum of these (negative) costs.

• There is an additional arc for each store, going from the corresponding
store node to the sink, having the capacity of the store but no cost. Units
that are not allocated contribute to the flow here.

7.3.1 Stores and Store Capacities

Each store corresponds to exactly one store node. In the drawings of the graph,
the store nodes are colored blue and labeled with their numbers.

There is one arc between the source and each store node. This arc is used to
model the capacity constraints. To achieve this, its arc capacity is identical to
the capacity of the corresponding store. We are not using these arcs to model
the objective function, so we set their weight to zero.

7.3.2 Time steps

Each time step is represented by one time node. Their incoming arcs are those
corresponding to the decision variables (which are explained in more detail
shortly). Their outgoing arcs go directly to the sink and their capacity is equal
to the value of these time steps’ cross constraints (thus enforcing them).

7.3.3 Objective Function

The objective function of our problem is computed as the sum of the pricing
functions which assign a gain to the value of each decision variable. In the
network each decision variable is represented as several arcs between a store
and a time node as illustrated in figure 10, one arc for each unit that can legally
be allocated from the corresponding store at this time step with a positive
objective value contribution. That is, there are fmaxt,j arcs from store node j
to time node t. One arc corresponds to one allocation. In other words: Each
arc corresponds to one binary decision variable in the ILP-formulation.

Page 26



Diplomarbeit Christoph Bonitz

Figure 10: Representation of the Decision Variables and Objective Values

Each arc’s capacity is obviously 1 since it corresponds to the allocation of 1
unit. The cost represents the profit realized from this allocation, i.e, for the nth

arc between store j ant time t it is

−δt,j(n) = −(vt,j(n)− vt,j(n− 1)).

Since in the minimum cost maximum flow problem we are looking for a maxi-
mum flow of minimal arc cost, and we want to maximize the objective value, we
must multiply the objective value of an allocation by −1 to represent it as arc
cost. This way, more value translates to less edge cost. Note that, at this point,
we are only theoretically looking at the solutions of the flow problem, not at
the algorithmic challenges involved in its solution that come from the negative
arc costs.

Just like in the ILP-formulation, splitting the decision variables into several
arcs requires the pricing function’s profits to be non-increasing w.r.t. k. Since all
the arcs between a store and a time-node are of the same capacity, a minimum
cost maximum flow will contain those of lowest cost (that is, highest objective
value). This is exactly what we require from our pricing functions: The first
allocation of a good at the given time step is the most valuable etc. This way,
the arcs are chosen in an order that ensures equal objective value contribution
compared to the original problem.

So if there is a total flow of value f between store j and time t, the value
of xt,j will be f . The objective value of the decision variable corresponding
to a time and a store is then the sum of the weight of the corresponding arcs,
multiplied by −1.

We have just established that the value of an allocation decision is repre-
sented correctly in the sum of costs of the flow problem. However, to actually
establish equivalence of our flow problem with the allocation problem, we need
to show one more thing: That requiring a maximum cardinality flow will not
lead to a suboptimal allocation.

It is quite obvious that, if making space for a unit (by shifting other units to
less profitable allocations) costs more than its allocation realizes as a profit, not
allocating it at all is better for the overall objective function. This is why we

Page 27



Diplomarbeit Christoph Bonitz

have to make sure that not allocating a unit at all contributes to the cardinality
of the flow just as the unprofitable allocation would do.

This property is ensured by the arcs that directly connect the store-nodes
with the sink, as shown in figure 10. These arcs have the full capacity of the
store, but no cost. So any inflow of the store nodes can be sent directly to the
sink without having an impact on cost or the decision variables. Since these
special arcs will appear several times in the proof, we will give them a name:
free arcs, as an allusion to their cost of 0. This makes allocations that reduce
the objective value unnecessary for ensuring a maximum flow.

7.4 Summary: Equivalence to the Problem

The following list summarizes the arguments, why we indeed can produce a flow
network N for every one of our problem instances I where the minimum cost
maximum flow F maps to the optimal policy P :

• The integrality constraint is trivial since we require an integral flow.

• The constraint that we can only allocate as many items as we actually
have is represented by the inflow capacity of the store nodes and skew
symmetry of flows (see figure 9).

• The constraints about the maximum number of allocations at a given time
is handled by the outflow capacity of each time-node and skew symmetry
of flows (see figure 11).

• The constraints specific to both store and time step can be enforced by
restricting the number of arcs between the corresponding nodes, each of
which has capacity 1.

• The objective function is represented by the (negative) arc costs.

• Requiring a maximum flow has no negative impact on the objective values.

7.5 Necessary and Sufficient Criteria for a Minimum Cost
Maximum Flow

When is a flow a minimum cost maximum flow? The necessary and sufficient
criteria are:

• It is a maximum flow.

• There are no cycles of negative weight in the residual graphs. Otherwise,
pushing flow along these cycles would reduce the cost.

7.6 Using the Equivalence to Prove Correctness of OPI

Optimal Policy Iteration works by using an optimal policy Pi for an instance Ii
to calculate optimal policy Pi+1 for Ii+1, where Ii+1 differs from Ii only in the
capacity of one store, which is larger by one unit.

Each such step is made by a local search around the trajectory corresponding
to Pi, which covers all trajectories that differ from that of Pi in at most 1 unit
per dimension in each of the time steps.

Page 28



Diplomarbeit Christoph Bonitz

Figure 11: Flow per Time constraints

The starting point for OPI is the trivial problem I0 where all the capacities
are 0, and where the obvious optimal solution is not selling at all.

To prove the correctness of OPI, we need to show two things with this
network equivalence:

• When doing an OPI-step, the new optimal solution is indeed within our
search space.

• The algorithm terminates, i.e. finitely many OPI-steps are necessary for
each CCCMAP -instance.

7.7 One OPI Iteration - Inductive Arguments

To do this, we will look at two flow problems corresponding to a CCCMAP -
instance I, Ni and Ni+1, assuming that we have an optimal solution Fi to Ni

and look how Fi+1 differs from it. So this is an induction proof, with the trivial
problem I0, and its corresponding network N0 as the basis, and the capacity
increase as the induction step.

So how can the optimal flows differ after increasing the capacity of one store
by one unit?

7.7.1 Augmenting Simple Path Always Exists

For the sake of a rigorous discussion, we must check whether it is possible that
the maximum flow does not change at all. In our network this is not the case.
Since we have the free arcs between the store-nodes and the sink that have the
whole capacity of the corresponding store, we can always send flow directly along
those. This increases the cardinality of the flow by one via a simple augmenting
path. Hence, there always is an increase of the total flow.

Lemma 7.1. Every store capacity increase creates a simple augmenting path
in the corresponding flow network.

Page 29



Diplomarbeit Christoph Bonitz

7.7.2 Capacity of the Augmenting Path

Lemma 7.1 has established that the capacity increase always creates an aug-
menting simple path. Let Fi be a maximum flow for Ni. Ni+1 differs from Ni

only in one arc, for which the capacity is one unit bigger in Ni+1. Assume we
apply Fi to Ni+1 and there exists an augmenting path in the residual network
with a capacity greater than one. Only one unit of that capacity can be due
to the difference between Ni and Ni+1. This means that there must have been
an augmenting path in the residual graph of Fi applied to Ni, although we as-
sumed Fi to be a maximum flow for Ni. Hence, the maximum capacity of an
augmenting path in the residual graph for Fi to Ni is one unit.

7.7.3 Choosing a Path

Since Lemma 7.1 tells us that there is always a simple augmenting path, we
can ignore cases of augmenting paths that contain cycles and treat the cycles
independently later in the proof. From all these simple augmenting paths, we
chose the one with minimal cost, and if there are several of them, we choose one
of shortest length.

7.7.4 No Changes

Note that if the minimal cost that we can achieve is 0, the shortest augmenting
path is the one going from source to the store-node of, and then directly to the
sink via the free arc. Mapped back to the CCCMAP -instances, this does not
change the allocation decisions. In other words, when our criteria choose this
path, having more unit from this store available has no impact on objective
value at this point in the algorithm, i.e. this unit will not be allocated.

7.7.5 Allocations and Cascades

In many cases, though, the best augmenting simple path will look something like
the path illustrated in figure 12 and have negative cost (i.e. positive objective
value). The capacity increase in store i will lead to one more unit of i being
allocated at some point x in time. This may, but need not, make it necessary
to remove a unit from some other store, say store j, to be removed from time x,
because of cross constraints. This unit may then be allocated at another time
and so on. We will call such a chain reaction represented by a simple path a
cascade.

These cascades will at most move one unit from each store. If a unit from
a store j is moved, and later in the cascade another unit from j is moved, the
situation would look as shown in figure 13. Since we defined them as the effects
of simple augmenting paths, this will not happen in a cascade (we will explicitly
treat cycles later, though).

A cascade is therefore finite, and there are two ways for it to end.

• The last unit in the cascade is actually allocated. This will look like in
figure 12.

• The last unit in the cascade is pushed out of the allocation. Figure 14
is represented by the flow being pushed through the free arc of this unit,
directly into the sink.

Page 30



Diplomarbeit Christoph Bonitz

Figure 12: An Augmenting Path

Figure 13: Moving more than one unit from a store yields a cycle.

Page 31



Diplomarbeit Christoph Bonitz

Figure 14: An Augmenting Path pushing a unit out of the allocation

7.7.6 Maximality after Pushing a Flow

Along this shortest simple augmenting path of minimal value, we push a flow
of value 1. Is the resulting flow maximal and of minimum cost? We will look at
these two aspects separately.

Maximal cardinality is easier to prove. Assume, for contradiction, that there
is one more augmenting path in the graph, because of the layout, it must go
from the source, via one store node, and then any other number of nodes, to
the sink. This means that at least one arc between the source and a store node
is not yet saturated, independent of the capacity increase in this step, i.e. Fi

applied to Ni did not saturate this arc as well. Together with the corresponding
free arc, this creates a path augmenting Fi over Ni, even though we assumed it
to be maximal. Together with Lemma 7.1 this yields.

Lemma 7.2. Every capacity increase creates at least one augmenting path in
the residual graph of the flow network. The capacity of any such augmenting
path is exactly one unit. After pushing a flow of one unit along any one of these
paths, the resulting flow is a maximum flow.

7.7.7 Minimum Cost after pushing a Flow

Having established that we now indeed have a maximum flow, we need to check
whether it is of minimal cost. The only way to reduce cost now would be a
negative cost cycle.

If, at this point, there exists a negative cost cycle along which flow can be
pushed, and which is independent of the augmenting path that we just discussed
(i.e. it existed before the flow was pushed along the path), it would have also

Page 32



Diplomarbeit Christoph Bonitz

existed without the capacity increase. This contradicts the assumption of Fi

being the optimal solution for NI .
When exactly does such a cycle exist independently of the changes made

by pushing flow along the augmenting path? It is easy to see that this is the
case when it shares no vertices or arcs with the augmenting path. Even having
vertices in common with the augmenting path is no problem by itself. When
the augmenting path allocates a unit from store j to time t, it takes the one of
the most profitable arc between the two vertices, so it is not more profitable to
allocate there after flow was pushed along the path.

This means that only a cycle that visits two vertices in the opposite direction
of the cascade may have been made possible by it: If, before pushing flow along
the cascade, k units of j were allocated to t, and afterwards only k− 1 are, this
potentially more valuable (and now possible) allocation creates the possibility
of having a negative cost cycle where once there was not. This is illustrated in
figure 15.

Figure 15: A negative cost cycle enabled by an Augmenting Path

As we see in figure 16, the fact that the allocations run in opposite direction,
actually splits them up in a path and a cycle that are independent of each other.
However, it is not immediately obvious how to make assertions about the costs
concerning these two new structures. What we do know is that, by assumption,
the initial augmenting path from figure 15 had minimal cost c1 (a negative
number). Furthermore, it allowed for a negative cost cycle with cost c2. Let
us denote the total cost of these two changes by c = c1 + c2. Note that, since
the cost of the common edge once contributes to the cost both positively (de-
allocation by the augmenting path) and negatively (allocation by the cycle), it

Page 33



Diplomarbeit Christoph Bonitz

is of no concern to the sum of the total cost of the changes.
Taking another view of the same changes, i.e. seeing an augmenting path

and a cycle independent of each other, obviously does not alter the cost of the
changes which remains c. Let us denote the cost of the augmenting path from
figure 16 with c′1 and the cost of the cycle as c′2. Obviously, c = c′1 + c′2.

This leaves two possibilities for the values of c′1 and c′2. One is that the cycle
has negative cost, which means that there is a negative cost cycle independent of
the capacity increase, which contradicts the optimality of Fi for Ni. The other
is that the cycle has non-negative cost, i.e. c′2 > c2. Since c′1 + c′2 = c1 + c2, this
yields c′1 < c1, which contradicts the assumption that the augmenting path was
the one with the lowest cost.

By contradiction, we proved that after pushing a flow along the shortest aug-
menting simple path of minimal cost transforms one minimum cost maximum
flow into the next. This yields

Lemma 7.3. When applying Fi to Ni+1 there always is an augmenting simple
path, and by choosing the shortest augmenting simple path of minimal cost and
pushing a flow of one unit along this path, we get Fi+1. Fi+1 on Ni+1 has
no augmenting paths or negative cost cycles, it can be mapped on the optimal
solution to Ii+1.

Figure 16: Result: one path, one cycle

7.8 Locality

Theorem 7.4. Given an optimal policy Pi for CCCMAP-instance Ii:
When adding one unit to the capacity of one store, yielding instance Ii+1, in

Page 34



Diplomarbeit Christoph Bonitz

state space its optimal solution Pi+1 differs from Pi by at most one unit per
dimension at each time step.

For the new trajectory to differ from the old one by more than one unit in
any dimension, it is necessary to allocate two or more unit at one dimension
more or less than on the previous policy. This must yield an objective value not
achievable within the described bounds.

What this means in terms of the network flow is that one store has to have
two more units of inflow or outflow (which are equal requirements because of
skew symmetry). However, since we know that a simple augmenting path can
make the transition between two optimal solutions, this requirement would im-
ply the existence of a cycle (see figure 17, which we have proven to be impossible.

Figure 17: Two incoming edges imply the existence of a negative cost cycle

Corollary 7.5. The local DP search space of OPI is sufficient.

7.9 Termination

Theorem 7.6. After a unit from store j is either pushed out of an allocation
when increasing another store’s capacity, or increasing j’s capacity causes no
change in allocation in any OPI-iteration, increasing the capacity of store j in
any later OPI-iteration will cause no changes in the optimal policy.

If a unit from store j is pushed out of the allocation, or a capacity increase
of j does not change the optimal solution, the free arc of j has a flow value of at
least 1 unit. Hence, if allocating a unit of j would become profitable later, this
would result in a negative cost cycle, which we have proven to be impossible.

Corollary 7.7. After at most
∑

1≤j≤m

sj iterations, OPI will terminate with an

optimal solution to a given CCCMAP-instance.

Page 35



Diplomarbeit Christoph Bonitz

8 Order of OPI Iterations

As described and proven earlier, each OPI Iteration serves to calculate the opti-
mal solution to a problem, given the optimal solution of a problem that differs
only by one unit in the capacity of one store. If we write the store capacities of
the problem P one is trying to solve in vector form, that is < s1, . . . , sm >, the
OPI process starts with a problem P0 with capacities < 0, . . . , 0 >.

Increasing the capacity of one store corresponds to adding one of the vectors
{ei; 1 ≤ i ≤ m} of the natural basis of Rm. In R3, e2 is < 0, 1, 0 >. Hence, an
OPI iteration finds the optimal solution of the problem Pi + 1 = Pi + ek given
the optimal solution for Pi for some i and 1 ≤ k ≤ m.

To be more precise, the backward pass of an OPI iteration, given the opti-
mal solution to Pi, calculates the information needed to calculate the optimal
solutions to Pi + ek for all 1 ≤ k ≤ m (actually also for all Pi − ek, but this
is not useful), and even the objective value associated with each of them. The
forward pass then calculates the actual trajectory. This brings up an obvious
question: Which of the neighboring problems shall be chosen for the forward
pass, and thereby for the following iterations?

To answer this, let us first look at when OPI actually stops. The OPI -
process is terminated when in each store

• the capacity constraint is met for each store.

• no matter in which store we increase the capacity, the optimal solution
does not change, i.e. the optimal solution can be obtained with less units
than available.

In the previous section we have shown that after an increase of one unit
from a store is not profitable anymore, or one unit of a store is pushed out of
the allocation, we do not need to consider adding a unit from this store later.
There is no “oscillation” between different solutions.

Hence, we can choose freely in which order we want to add units. Two
strategies come to mind quickly.

• The first strategy is one dimension after the other (which we will call by di-
mension for brevity), i.e. one increases the capacity of the first dimension
until it yields no more profit, and goes on with the second, etc.

• The first strategy is best increment, where we use our knowledge of the
objective values of all the neighboring problems to choose the one with
the biggest objective value increase.

8.0.1 By Dimension

1. Let dim := 1

2. If dim > m stop. Optimal policy has been found.

3. Run the backward pass of OPI

4. If there is no increase in objective value for dimension dim, let dim :=
dim+ 1 and continue with step 2.

5. Run the forward pass on dimension dim

Page 36



Diplomarbeit Christoph Bonitz

6. Update the policy

7. Continue with step 3.

This strategy is simple. It uses all the available resources of the first di-
mension before continuing to the second, and so on. However, this may, and in
many cases will, lead to a bigger number of iterations than absolutely necessary.
If the total number of allocation “slots” is exceeded by the number of available
units, the constraints giving rise to this situation will not be binding in the first
dimensions that are ”filled up”. So if a store has very small profits compared to
the others, but is chosen very early in this process, many, if not all, of its units
will be allocated, only to be pushed out later. The probability of having one
dimension with extremely low profits and very high capacity, which is filled up
early and will create a very big overhead in terms of iterations could be avoided
by choosing the dimensions not in ascending but in a randomized order.

8.0.2 Best Increment

1. Run the backward pass of OPI .

2. If the maximum increase of objective value is 0, stop. Optimal policy has
been found.

3. let dim be one dimension with maximum increase of objective value.

4. Run the forward pass on dimension dim.

5. Update the policy.

6. Continue with step 1.

This strategy is, in concept, a bit more sophisticated than increment by
dimension. It neatly avoids the problem of a dimension with inferior objective
value contribution generating useless iterations by allocating units ordered by
the increase of total objective value. Units of a dimension with very small
objective value contributions would only be allocated very rarely, resulting in
less iterations.

Page 37



Diplomarbeit Christoph Bonitz

9 Implementation

The algorithms used to solve CCCMAP were implemented using the Java pro-
gramming language version 1.5. Building was performed with the automatic
build features of Eclipse version 3.2 using the JDT (Java Development Tools).

9.1 Storing Problem Instances

Problem Instances are stored in text files as described in Appendix A. A class
called Instance reads and writes those files, provides access to the data via
getter and setter methods, and can create random instances for testing.

9.2 Standard DP

Simple Pseudo-code for this algorithm looks like this:

1. Initialize prizes for time T

2. For every possible configuration at time T −1, visit all possible states and
in each one of them, check all possible state transitions to states of time T .
The value of a state at time T−1 is the best sum of sale profit at time T−1
and remaining value at time T encountered in legal (w.r.t. constraints)
transitions. For each configuration, remember which state transition led to
its objective value, by saving the index of the corresponding configuration
at the next time step (this configuration will be called “next configuration”
for brevity).

3. Repeat for steps T − 2 . . . 0 (backward pass).

4. Look for the configuration with the best objective value at time 0.

5. Using the references to the next configuration, reconstruct the optimal
policy (forward pass).

Looking at steps 2 and 3, it becomes obvious that, for each configuration,
we have to store both an objective value and a reference to the corresponding
configuration at the following time step. Since the configurations are an m-
dimensional domain, we need multidimensional arrays for both.

Since the objective values are only used in the backward pass (and then only
by the following step), it is possible to store just the data for the current and
the previous step. The ideal data structure would be two m-dimensional arrays,
with the number of units of each dimension as this dimension’s index.

The forward pass uses the references to the next configuration. Hence, all
these references have to be stored. For one time step the data is m-dimensional,
so a natural way would be adding one dimension for time.

For the algorithm to be able to deal with input of different dimensionality,
we need a way to store multidimensional arrays where the number of dimen-
sions can be chosen at runtime. Since this is not a property of Java container
classes and no useful libraries were found for this, the necessary infrastructure
was implemented to store the data in one-dimensional arrays and convert their
indices to indices of appropriate dimensionality and vice versa.

Page 38



Diplomarbeit Christoph Bonitz

The whole DP-functionality was implemented in a monolithic class called
DPSolver, since coupling would have been very strong in an implementation
using more than one class. It uses the Instance-class to load and store data.

9.3 Optimal Policy Iteration

As described in chapter 6, OPI incrementally uses Dynamic Programming to
incrementally find an optimal solution to CCCMAP . In every iteration, Dy-
namic Programming is performed in a restricted part of the state space around
an optimal solution of a “smaller” problem instance, eventually leading to an
optimal solution to the instance one is trying to solve.

For actually performing this DP-step, the optimal solution to the previous
problem instance is projected into a new state space, in which its configurations
map to the value 1 in all dimensions and at all time steps. We perform the
backward pass of dynamic programming in this new search space, allowing state
values from 0 to 2 in each dimension, with 0 meaning ”one unit less than in the
previous solution”, 1 meaning ”the same” and 2 meaning ”one unit more”. To
see whether a state transition in the transformed search space is legal, it is
necessary to transform the values of its starting- and end-point back to the
original state space.

Assume we have an optimal policy for an intermediate problem instance
with n dimensions. Then the search space we are using has n + 1 dimensions,
n for the stores (with size 3 each) and one for time (with size m). This is why,
like with the standard DP-algorithm, the dimensionality of the search space is
variable. Therefore we work with multi-dimensional indices for one-dimensional
arrays just as we did in the standard DP-approach.

Let us consider the data structures we need to perform one OPI-iteration:
For the backward pass, to get the value of a configuration at time t, we need

• the value of all configurations at time t + 1 as end-points of the state
transitions and

• the configuration of the old optimal policy at times t and t+ 1 as offsets,
to be able to check whether a state transition is legal.

A state transition is legal if its starting- and end-point have non-negative value
and the allocation represented by it is legal w.r.t. the constraints. In every step
of the backward pass, every configuration is considered n times a starting- or an
end-point. To check its legality, it must first be transformed back to the original
state space. To reduce the computing time required for such transformations, it
makes sense to use two Boolean arrays, one for all configurations at time t and
one for time t+ 1, in which we store the pre-computed values of whether these
points can be part of a legal state transition, requiring only one transformation
per configuration. For the forward pass we need some kind of pointer for every
configuration in our search space, which points to the configuration at the next
time step which was used to calculate its best value in the backward pass.

Because of these considerations, the implementation done for this thesis uses
the following data structures:

• An integer array of size T × m for storing the configurations of the old
optimal policy (called old)

Page 39



Diplomarbeit Christoph Bonitz

• Two double-arrays of size 3m to store the values of the configurations at the
current and next time step during the backward pass (valHere, valNext).

• Two Boolean arrays of size 3m that store whether a configuration is a legal
starting- or end-point of a state transition (legalStart,legalEnd).

• One array of integers of size 3m× t to store the ”pointers” for the forward
pass. The pointers are implemented as integers, which are converted to
the m-dimensional index of the corresponding configuration at the next
time step (pNext).

To initialize the data structures, we only need to set the values of all con-
figurations in the old array to 0, which is the trivial solution to the problem
instance with all capacities set to 0.

Given an optimal policy to a sub-problem-instance, the backward pass of
OPI is executed as follows.

• Initialize valNext with zeros (as we define the value of any configuration
at time t to be zero.

• For every time step t in T − 1, . . . , 0:

– Initialize the legalStart and legalEnd arrays by checking whether the
configurations are non-negative in every dimension.

– Initialize the valHere-array with minus infinity, such that every legal
transition creates a better value.

– For each legal configuration at time t check which of the transitions
to legal configurations at time t + 1 is within the constraints by
transforming it back to the original state space. Of the legal state
transitions, choose the one that yields the best value for the cur-
rent configuration, write this value to valHere and a reference to the
corresponding configuration at t+ 1 into pNext.

For the forward pass, we first have to choose which trajectory to follow.
When using best increment, we look at all configurations at time 0 that are
bigger than the starting point of the old trajectory in at most one dimension, and
choose the one with the best objective value. If there is no increase in objective
value, we terminate the algorithm and output the previous trajectory as the
optimal solution. For increment by dimension we check whether a capacity
increase in current dimension improves the objective function and follow its
trajectory if it does. If there is no increase and the current dimension was
the last dimension, we terminate. Otherwise the next dimension becomes the
current dimension and we do the same checks again.

Best increment and increment by dimension are implemented in one Java-
class each, using the instance-class for loading and saving problem instances
from files.

9.4 Evolutionary Algorithm

For the purpose of comparison, an Evolutionary Algorithm (EA) was imple-
mented. The aim was to see how an EA with low implementation complexity

Page 40



Diplomarbeit Christoph Bonitz

will perform compared to OPI, with respect to both running time and quality
of results.

Evolutionary Algorithms are inspired by Darwinian Evolution. To find a
solution to a problem with a good objective value, one simulates the effects of
selection, recombination and mutation on a population of solutions until certain
termination criteria are met.

A common technique in EAs is to relax some of the problem’s constraints
and encourage valid solutions by penalizing constraint violations in the objective
function. This is very similar to Lagrangean Relaxation in Linear Programming.
This potentially makes it possible to find solutions that would not have been
found using only valid solutions in the population. Furthermore, one can use
simpler mutation and recombination operators and wait for the individuals to
converge toward valid solutions. A drawback is that there is no guarantee that
solutions found this way are valid.

A very important decision is how strongly to penalize constraint violations.
One wants to encourage valid solutions but keep the positive effect of a more
diverse population. Using a fixed penalization scheme is one possibility. The
other is to adapt parameters that determine the penalties. The latter is called
Stepwise Adaption of Weights (SAW), which was chosen for this implementation.

The characteristics of this implementation are:

• Individuals: Not necessarily valid policies for the problem.

• Initialization: The policies are generated at random. To do this, the
available capacities of each store are randomly allocated across the time
steps, without trying to meet the allocation constraints.

• Mutation: One individual is cloned. Then, at random, either one or five
times, one decision variable of the new individual is altered by adding or
subtracting a random number. Each of the two variants is used to generate
100 individuals per generation.

• Recombination: Two individuals, A and B are chosen at random from the
population and a new individual is created based upon both: The decision
variables for some stores come from A, the others come from B, with the
assignment being random. This is done 100 times per generation.

• Selection: A simple tournament selection is used: Until the population
has the desired size (set to 200 individuals), two individuals are picked
randomly and the one with lower fitness is removed from the population.

• Weights: The penalization is initialized as 1 % of the best profit in the
whole problem for each violation of either capacities or allocation limits,
and, after 10 iterations without objective value gain, increased by 1 % of
the best profit.

• Termination: The algorithm terminates after the penalties are set to at
least 1.5 times the value of the best allocation profit and at least 300 iter-
ations have passed without profit increase. Note that for a penalty bigger
than the best profit, each removal of a unit in violation of a constraint
improves the objective function value.

Page 41



Diplomarbeit Christoph Bonitz

10 Computational Experiments

This section is an overview over the experiments performed during the practical
part of this thesis project. All experiments were performed on a computer with
an Intel Core Duo processor with a clock speed of 2.16GHz and 2 Gigabytes of
RAM running MacOS X 10.5.2. Note that the implementation is not optimized
for parallel processing and makes use of only one processor core.

The instances uses for the tests were generated randomly. For given di-
mensionality and allocation limits, the profits are created the following way
for each store and time step: The profit of the first allocation is the product
of two pseudorandom floating point numbers between 0 and 1 generated by
Java′s Random-Class. For all n greater than one and smaller than the corre-
sponding allocation limit, the profit of the nth allocation is the product of the
n− 1st allocation multiplied by a psedorandom number between 0 and 1. This
scheme guarantees non-increasing profits.

10.1 Optimal Policy Iteration

First we look at the implementation of Optimal Policy Iteration, trying to find
at the difference in running time between the two possible ways of incrementing
capacities.

10.1.1 Order of OPI Iterations

As described in chapter 8, Best Increment minimizes the number of iterations,
while Increment by dimension may allocate units that may be de-allocated in
later iterations, generating excess iterations. We will be using an example with
four dimensions, 30 units per dimension, 20 time steps and an allocation limit
of 4 units per time step to visually illustrate these differences.

Figure 18 visualizes the capacities of the stores over all iterations needed
by Best Increment to reach the optimal solution. Each dimension’s capacity is
plotted in a different color. The plot on the right hand side shows how the ob-
jective value changes over the iterations. Obviously, the profit of the increments
decreases, until no more profit can be made by incrementing capacities and the
optimal solution is reached.

Figure 19 shows the capacity increases that lead to the same optimal solution
when running Increment by Dimension with different dimensions plotted in
different colors. The fact that the capacity increases are ordered is clearly
reflected in the plot. We can see that the first two dimensions are filled to their
full capacity. But when the total number of possible allocations, determined
by the cross-constraints, is reached, some units need to be removed to enable
the allocation of more profitable units from other dimension. Each of the units
removed has obviously been allocated before, so every unit that is removed
corresponds to one redundant iteration. The right hand side plot shows the
objective values corresponding to the iterations. We can see that the profits
of increments are non-increasing while the same dimension is increased, but
changing the dimension leads to “bumps”.

The fact that Increment by Dimension can lead to redundant iterations
(also reflected in the number of iterations in figures 18 and 19, leads to the
intuition that best increment should have significantly better performance. To

Page 42



Diplomarbeit Christoph Bonitz

0 20 40 60 80

0
5

10
15

20
25

30
Development of Capacities

 over all Iterations

Iterations

C
ap
ac
iti
es

0 20 40 60 80

0
5

10
15

20
25

Development 
 of objective value 
 (Best Increment)

Iterations

O
bj

ec
tiv

e 
va

lu
e

Figure 18: Development of capacities and objective value for Best Increment

the surprise of the author, the case was not that clear. Increment by dimension
even turned out to be superior in some instances of higher dimensionality.

After some analysis of the implementation’s source code, the reason became
apparent. When there have been no increments in a store yet, i.e. its capacity
is still set to 0, its state variables are all 0 at all points in time. Figure 20
illustrates the search-tube in such a situation with a two-dimensional example.

This means that in this dimension, a third of the search tube of the backward
pass contains state values. This part of the search tube cannot contain the
trajectory because state variables cannot be less than 0.

When calculating the values of state transitions in the backward pass, all
transitions that start with a negative state value ( 1

3 of the transitions) and/or
end with a negative state value (again, 1

3 of the transitions) will not be consid-
ered. In total, this means that only for 2

3 ·
2
3 = 4

9 of the state transitions, their
objective values need to be computed. This computation involves two mem-
ory lookups, namely the value of the end-point of the state transition and the
profit of the actual transition, which is a computationally intensive aspect of the
backward pass. Hence, reducing the number of these computations significantly
speeds up the entire backward pass.

This implies that, when using increment by dimension, having dimensions
which are cheaper to increment may or may not compensate, and in some cases
even over-compensate, the increased number of dimensions. The following ex-
amples were randomly generated, with an increasing number of dimensions and
5 time steps. For n available units, the number of possible allocations was set
to b 12nc + 1. On some instances increment by dimension performed better, on
others best increment was faster. Table 4 shows the running times and figure 21
shows the a graphical comparison.

The examples did not show benefits for one or another method. However, one
can construct examples where increment by dimension creates a large number
of unnecessary iterations. Consider an instance with only one time step, a total
allocation limit of n units and m dimensions and the profits given in table 5.

The optimal solution is obviously allocating only the n units from store m.

Page 43



Diplomarbeit Christoph Bonitz

0 20 40 60 80 100

0
5

10
15

20
25

30
Development of Capacities

 over all Iterations

Iterations

C
ap
ac
iti
es

0 20 40 60 80 100

0
5

10
15

20
25

Development 
 of objective value 

 (Increase by Dimension)

Iterations

O
bj

ec
tiv

e 
va

lu
e

Figure 19: Development of capacities and objective value for Increment by Di-
mension

Table 4: Running times of Increment by Dimension vs. Best Increment

# of Dimensions Running time IBD (ms) Running Time BI (ms)
1 4 4
2 10 7
3 19 20
4 156 50
5 505 692
6 5706 3167
7 16444 21920
8 281204 298394

While best increment would need n iterations, choosing only the units from
store m, increment by dimension will first choose the units from store 1, then
dimension 2 and arrive at the optimal solution after m · n iterations.

This shows that increment by dimension may, but need not be faster than
best increment, depending mainly on the problem instance. Since we know that
the number of iterations will always be minimal for best increment, it seems to
be the safer choice for any implementation.

Page 44



Diplomarbeit Christoph Bonitz

Figure 20: Two-dimensional example with a third of the search tube being
irrelevant

1 2 3 4 5 6 7 8

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Running time ratio 
 BI / IBD

Dimensions

R
un

ni
ng

 ti
m

e 
ra

tio

Figure 21: Ratio of running times

Page 45



Diplomarbeit Christoph Bonitz

Table 5: A worst-case constellation for Increment by Dimension

x δ01(x) δ02(x) . . . δ0m

1 x x+ 1 . . . x+m− 1
2 x x+ 1 . . . x+m− 1

. . .
n x x+ 1 . . . x+m− 1

Page 46



Diplomarbeit Christoph Bonitz

10.1.2 Cascade Effects

In chapter 7 we considered, looking at the network flow correspondence, how
the optimal solution might change if we add one unit to a store. A new unit
may be allocated replacing another unit, which will be allocated at another time
step replacing yet another unit etc., which we call a cascade effect.

We will now use the instance from the last chapter to see them occurring
when actually running OPI . The plots we will consider are visualizations of
the output from running increment by dimension. While there are also cascade
effects when using best increment, they are more common with increment by
dimension, which makes the latter a better data source for visualizing the effects.

To understand the plots, first look at figure 22. It contains three plots. The
first two plots show the configurations of a store over time in two consecutive
iterations. The third plot shows the difference between the two plots, i.e. the
change that was the result of an OPI -iteration taking place between them. It
is the simplest change that can take place. One unit is allocated and nothing
else happens.

After some iterations, the graphics plotting the configurations against time
contain a lot of information in a very dense visual representation. This makes
it hard to spot the difference between two of them. Hence, we will use the
delta-plots to illustrate the changes made by OPI -iterations. Figure 23 shows
a unit being allocated, replacing a unit from another dimension, which is then
allocated at a later point in time. A unit that is replaced can also be allocated
at an earlier time slot, as shown in figure 24.

A unit that is moved because of an allocation can also move another unit.
This can be seen in figure 25, where the allocation of the new unit moves one
unit forward, which in turn moves yet one more unit back.

When all the allocation-cross-constraints are exhausted, increment by di-
mension may allocate a unit that ”pushes” another unit out of the optimal
solution. This is shown in figure 26. This can also happen indirectly, as can be
seen in figure 27.

Page 47



Diplomarbeit Christoph Bonitz

5 10 15 20

0
5

10
15

20
25

30

Stores at iteration 8

Time Steps

St
or

e 
co

nt
en

ts

5 10 15 20

0
5

10
15

20
25

30

Stores at iteration 9

Time Steps

St
or

e 
co

nt
en

ts

5 10 15 20

-2
-1

0
1

2

Deltas between 
Iterations 8 and 9

Time steps

Di
ffe

re
nc

e 
to

 p
re

vio
us

 a
llo

ca
tio

n

Figure 22: Change between two iterations.

Page 48



Diplomarbeit Christoph Bonitz

5 10 15 20

-2
-1

0
1

2

Deltas between 
Iterations 57 and 58

Time steps

D
iff

er
en

ce
 to

 p
re

vi
ou

s 
al

lo
ca

tio
n

Figure 23: Adding one unit, replacing another unit which is allocated later.

5 10 15 20

-2
-1

0
1

2

Deltas between 
Iterations 61 and 62

Time steps

D
iff

er
en

ce
 to

 p
re

vi
ou

s 
al

lo
ca

tio
n

Figure 24: Adding one unit, replacing another unit which is allocated earlier.

Page 49



Diplomarbeit Christoph Bonitz

5 10 15 20

-2
-1

0
1

2

Deltas between 
Iterations 73 and 74

Time steps

D
iff

er
en

ce
 to

 p
re

vi
ou

s 
al

lo
ca

tio
n

Figure 25: Another cascade effect.

5 10 15 20

-2
-1

0
1

2

Deltas between 
Iterations 81 and 82

Time steps

D
iff

er
en

ce
 to

 p
re

vi
ou

s 
al

lo
ca

tio
n

Figure 26: Adding one unit, replacing another unit which removed.

Page 50



Diplomarbeit Christoph Bonitz

5 10 15 20

-2
-1

0
1

2

Deltas between 
Iterations 84 and 85

Time steps

D
iff

er
en

ce
 to

 p
re

vi
ou

s 
al

lo
ca

tio
n

Figure 27: Pushing one unit out via a cascade effect.

Page 51



Diplomarbeit Christoph Bonitz

10.2 Comparison of OPI and naive DP

The implementation of the simple DP algorithm allows us to compare the per-
formance of OPI to simple DP’s undesirable running times we were trying to
improve. As indicated before, if the running time of DP for a problem instance
with m dimensions and a capacity of s in each dimension is O(x), then the
running time for a problem instance with the same number of dimensions and
capacities of ks in each dimension, is O(x · k2m). Such an increase should,
however, only affect the running time of OPI by a factor of k.

Hence, the best way to show the performance improvement is to take a series
of instances with a fixed number of dimensions but increasing capacities. For
a practical test, 4 dimensions, 10 time steps and at most 10 allocations per
time step were chosen. The sum of the capacities ranges from 1 to 28 units.
The experiment compares the Best Increment strategy of OPI to the simple DP
algorithm on these instances.

Table 6 shows the results of this test. As expected, the running time of
naive DP increased dramatically, while the increase in running time of OPI was
linearly bounded.

This data cannot be meaningfully compared on a linear scale. Figure 28
therefore compares the running times on a logarithmic scale. Figures 29 and 30
plot the running times of the two algorithms separately on linear scales.

0 5 10 15 20 25

Running times 
 OPI vs. Naive DP
(logarithmic scale)

Total Number of Units

M
ill

is
ec

on
ds

●

● ●

●

● ●
● ●

● ●
●

● ● ●
●

● ● ●
● ●

●

● ●
●

● ●
●

●

1e
+

01
1e

+
03

1e
+

05

● OPI
DP

Figure 28: OPI and simple DP applied to 4-dimensional problem instances of
increasing capacity

These results confirm that OPI successfully fixes the biggest performance
problem the simple DP algorithm has when solving CCCMAP by turning the
capacities of the stores into a linear factor.

Page 52



Diplomarbeit Christoph Bonitz

Table 6: CPU-times of OPI vs. simple DP

# of units OPI (ms) naive DP (ms)
1 23 1
2 11 6
3 12 7
4 23 8
5 39 8
6 41 15
7 52 38
8 43 102
9 70 117
10 76 205
11 119 352
12 84 629
13 93 998
14 86 1489
15 137 2309
16 185 3580
17 160 5177
18 164 7259
19 229 10410
20 195 15272
21 143 20317
22 247 28177
23 221 38119
24 158 50760
25 248 65539
26 250 86174
27 179 118279
28 304 148940

Page 53



Diplomarbeit Christoph Bonitz

●

●
●

●

● ●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

● ●

●

●

0 5 10 15 20 25

10
20

50
10

0
20

0

Running time 
 OPI

Total Number of Units

M
ill

is
ec

on
ds

Figure 29: OPI performance on a decimal scale

0 5 10 15 20 25

0
50

00
0

10
00

00
15

00
00

Running time 
  Naive DP

Total Number of Units

M
ill

is
ec

on
ds

Figure 30: DP performance on a decimal scale

Page 54



Diplomarbeit Christoph Bonitz

10.3 Comparison of OPI and the Evolutionary Algorithm

This chapter looks at how Optimal Policy Iteration performs compared to an
Evolutionary Algorithm (EA). The behavior of the EA itself is analyzed thor-
oughly before comparing it to OPI. In this chapter, all running times of the EA
are the mean of 30 runs, rounded to milliseconds. Furthermore, the standard
deviation is provided.

10.3.1 Performance Characteristics of the Evolutionary Algorithm

The mutation and crossover operators of the Evolutionary Algorithm imple-
mented for this thesis change the decision variables in a randomized way. In
other words, neither the result nor the running time is pre-determined for a given
problem instance. Empirical tests are therefore the best method of determining
the runtime behavior of the algorithm.

As described in chapter 9.4, the mutation and crossover operators do not
guarantee that mutations or offspring of a legal policy are legal policies as well.
However, constraint violations are penalized, i.e. the value of the profit function
is reduced for every constraint violation. Those penalties are increased during
the running time of the algorithm until every allocation that violates a constraint
violation is penalized by a higher value than its profit can be. In the beginning,
though, an allocation that violates a constraint, may yield a profit that is greater
than the penalty for the corresponding violation (see chapter 9.4 for a detailed
description of the parameters used in the implementation).

Hence, in the beginning we can expect to see more units allocated than
available, and time steps where the time-specific allocation limits are exceeded.
When the penalties are increased, the less profitable violations disappear, until
a legal solution is reached. This can be seen clearly when looking at the plot in
figure 31. It plots the EA’s profit function against the iterations of one run of
the algorithm on a problem instance with 4 dimensions, 30 units per dimension,
20 time steps and an allocation limit of 4 units per time step. Note that, in the
end, when the penalties increase, the quality of the average solution decreases.
This seems to be due to illegal solutions being less and less profitable, therefore
taking up a decreasing part of the population.

Since the EA does not search the all possible legal policies, but rather a
set of profitable policies (that are, in the beginning, not necessarily legal), the
number of possible configurations should be of little impact. One would expect
other factors to be more important: The number of decision variables, the
total number of units in the problem instance, or the number of possible legal
allocations.

First we will check whether the number of dimensions is relevant to the
performance of the EA. To do this, we are running the EA on a series of instances
with increasing number of decision variables. For each number d of decision
variables we create two instances. One with 10 time steps, d

10 dimensions, each
with capacity 20 and an allocation limit of 2·d

10 units per time step, and one
with 5 time steps, 2·d

10 dimensions, a capacity of 10 units per dimension and
a limit of 4·d

10 units per time step. This means that both instances have the
same number of units available, the same total allocation limit and the same
number of decision variables, but a different number of dimensions. The results
of this experiment can be viewed in table 7 and figure 32 do not indicate that

Page 55



Diplomarbeit Christoph Bonitz

0 500 1000 1500 2000

24
26

28
30

32

Iterations

O
bj

ec
tiv

e 
Va

lu
e

Figure 31: Objective function of EA, best (blue) vs. average value (red)

the number of dimensions influences the running time of the EA. What we see
clearly is the linear impact of the number of decision variables on the running
time.

Table 7: Impact of Dimensionality

# of dec. vars. fewer dims. (ms) std. dev. more dims. (ms) std. dev.
10 3600 130.9683 3253 101.77045
20 5534 212.2356 4579 58.34814
30 6398 131.1239 6135 203.21837
40 8223 251.6215 7584 141.76570
50 9737 310.8023 9123 721.69024
60 11677 268.1619 10268 401.50609
70 12471 261.4463 13478 412.39063

To check the influence of whether all units can be allocated (we call this
a saturated instance) or not (unsaturated instance), we created instances from
1 to 7 dimensions, with 10 time steps, 20 and units per dimension. To get
an unsaturated instance, we set the allocation limit to twice the number of
dimensions per time step, and half of that for a saturated one. The results
are summarized in table!8 and visualized in figure 33. Saturation seems not to
influence the running time.

The last experiment checks how big of a difference the number of units
per dimension makes. To do that, we created instances ranging from 1 to 7
dimensions, with 10 time steps. For a dimensionality of d we chose either 20

Page 56



Diplomarbeit Christoph Bonitz

●

●

●

●

●

●

●

10 20 30 40 50 60 70

0
20

00
60

00
10

00
0

14
00

0

Impact of Dimensionality

Decision Variables

M
ill

is
ec

on
ds

● less dimensions
more dimensions

Figure 32: Impact of dimensionality on the running time of the EA

Table 8: Impact of Saturation

# of dec. vars. unsaturated (ms) std. dev. saturated (ms) std. dev.
10 3562 99.29302 3384 69.31193
20 5138 130.13980 4532 55.12865
30 6604 92.22101 5767 110.56231
40 8507 193.15643 7039 97.77974
50 9939 239.39156 8560 164.82319
60 11960 640.29286 10721 279.23318
70 12480 462.76025 13821 328.59800

Page 57



Diplomarbeit Christoph Bonitz

●

●

●

●

●

●
●

10 20 30 40 50 60 70

0
50

00
10

00
0

15
00

0

Impact of Saturation

Decision Variables

M
ill

is
ec

on
ds

● unsaturated
saturated

Figure 33: Impact of saturation on the running time of the EA

or 40 units per dimension, and allocation limits of either 2 · d or 4 · t units per
time step and dimension. Table 9 and figure 34 show the results. The total
number of units seems to affect the running time as a linear factor with a small
coefficient.

Table 9: Impact of Capacities

# of dec. vars. less cap. (ms) std. dev. more cap. (ms) std. dev.
10 4153 196.0169 3743 195.66394
20 6039 276.7526 5246 73.43103
30 8303 858.1097 6748 202.73657
40 10805 796.3802 8356 442.84328
50 12405 974.2088 10645 461.54626
60 14795 1362.1322 11178 270.57560
70 17245 1766.4727 12942 628.31907

The experiments showed that the number of dimensions indeed does not
matter, that the number of decision variables is the most important (linear)
factor. The number of possible allocations has little impact on the running
time, but saturated instances have more predictable running time. The sum of
the capacities seems to influence the performance as a linear factor with small
coefficients.

Page 58



Diplomarbeit Christoph Bonitz

●

●

●

●

●

●

●

10 20 30 40 50 60 70

0
50

00
10

00
0

15
00

0
20

00
0

Impact of 
 Total Capacity

Decision Variables

M
ill

is
ec

on
ds

● big capacity
small capacity

Figure 34: Impact of the total number of capacities on the running time of the
EA

10.3.2 Comparison to OPI

As seen in the previous section, the most important factor for the EAs running
time is the number of decision variables. For OPI , the most significant impact
on running time comes from the number of dimensions. Hence, the best way to
show the differences in performance between OPI and the EA is to use a series
of instances with increasing dimensionality. To do this, we chose examples with
1 to 7 dimensions, 5 units per dimension, 30 time steps and an allocation limit
of 1 unit per time step. Table 10 shows the results. Quality denotes the EA’s
average best solution divided by the optimal solution (computed using OPI, and
measures how good the EA approximates the optimal solution. As expected,
the running times of OPI increases exponentially, while the running times of
the EA increases linearly.

To get a meaningful plot that compares these results, one must use a loga-
rithmic scale, as done in figure 35. Figures 37 and 36 show the running times
plotted against separate linear scales.

Page 59



Diplomarbeit Christoph Bonitz

Table 10: Performance of EA vs. OPI

dims OPI (ms) EA (ms) std. deviation quality (EA) std. deviation
1 20 8433 565.0908 1.0000000 0.000000000
2 26 12012 174.2651 0.9934545 0.001236241
3 85 15094 376.7782 0.9994806 0.002844628
4 967 19907 699.1662 0.9969838 0.005588005
5 10022 23602 877.6363 0.9888670 0.004086761
6 83673 27647 632.5258 0.9829171 0.007579513
7 912853 33659 1840.7905 0.9867220 0.007779252

●
●

●

●

●

●

●

1 2 3 4 5 6 7

Running times 
 EA vs. OPI 

 (logarithmic scale)

Number of dimensions

S
ec

on
ds

● OPI
EA

10
10

0
60

0

Figure 35: EA vs. OPI performance on an increasing number of dimensions

Page 60



Diplomarbeit Christoph Bonitz

● ● ● ● ●

●

●

1 2 3 4 5 6 7

0
20

0
40

0
60

0
80

0

Running times of OPI

Number of dimensions

S
ec

on
ds

Figure 36: OPI performance on a decimal scale

1 2 3 4 5 6 7

10
15

20
25

30

Running times of EA

Number of dimensions

S
ec

on
ds

Figure 37: EA performance on a decimal scale

Page 61



Diplomarbeit Christoph Bonitz

11 Limitations

The objective function value of CCCMAP represents prices for a good. It uses an
expected development of prices for planning. For real-life applications, it would
make sense to consider several pricing scenarios, which can be represented by
probability trees.

When this thesis project started, it was thought that extending OPI to
solve problems with stochastic pricing would be simple. However, while trying
to find a proof that this was indeed the case, the author found a counterexample
that shows that the neighborhood properties needed by OPI do not hold for
stochastic pricing. This chapter explains this limitation in detail.

11.1 Deterministic Pricing

OPI works very well for deterministic pricing, since changes in the optimal
solution created by adding one unit can only have an absolute value of ≤ 1 in
every decision variable. The reason is, intuitively speaking, that adding one
unit can, as described before, only cause a simple “cascade” of reallocation that
is without cycles, i.e. no time step or store is affected more than once.

11.2 What Changes with the Introduction of Scenario Trees

In a stochastic setting, i.e with a scenario tree for pricing, units from different
dimensions can contribute “simultaneously” (that is, at the same time step but
in different scenarios) to the profit of one time step, even if they cannot all be
allocated at the same time in one scenario.

Let us give an example to illustrate this. Figure 38 is a scenario tree that
branches once. Let us first have a look at the composition of the figure, as it
contains a lot of information and is also used in more complex examples.

• The first column is used to label the discrete time steps (from top to
bottom), which shows us that this example has two decision points.

• The second column contains the maximum number of units that may
be allocated at the given time step, called fmaxt in the formal problem
definition.

• To the right we see a scenario tree.

– Each node contains, for each of the store, the profit δt,j that will be
realized by selling one item from the corresponding store at the given
time in this scenario (i.e. the pricing function is defined vt,j(x) =
x · δt,j in the examples for this chapter).

– Every branch is represented by several edges labeled with the prob-
ability of their occurrence.

– One scenario is a path from the root node to a leaf node.

A policy, as shown in figure 39, is again a tree, which is isomorphic to
the scenario tree. For each node in the scenario tree it contains a node with
allocation decisions for each decision variable corresponding to the current time
step. Note that we are considering decision variables, not state variables here.

Page 62



Diplomarbeit Christoph Bonitz

Each decision has a value, and the sum of those values are also included in the
corresponding table.

The total expected value of a policy can be computed in at least two ways:

1. By scenario: For each scenario, add up the value of the allocation decisions
in the nodes on the path corresponding to the scenario, and multiply them
by the probability of the scenario. The probability is the product of the
probabilities along the edges of the path.

2. By node: For each node, add up the value of the allocation decisions
in this node, multiply it with the probability of this node being reached
in a scenario. This probability is 1 for the root and the product of the
probabilities on the path from the root to the node for all other nodes.
Then add up the values of the nodes.

Figure 38: A simple scenario tree

Page 63



Diplomarbeit Christoph Bonitz

Figure 39: Optimal solution to figure 38 with capacities < 1, 1 > yielding ob-
jective value: 1.1

Now assume we want to optimally allocate 1 unit each from store 1 and 2
given the scenario tree in figure 38. The best expected value is realized when
we do not sell any unit at time step 0 and, for each of the scenarios, the more
valuable unit at time 1 (which is what figure 39 stands for) yielding a total
profit of 1.1. Obviously, because we have two independent scenarios, different
units can be allocated in different scenarios. In this case this has the effect that
even though only one unit can be allocated at time step 1, the allocation of two
different units at that time contributes to the objective function. This property
will be important later.

Figure 40: An example with 4 dimensions and 2 time steps
.

Consider figure 40, which uses the same idea as figure 38. Given 1 unit each
in store 1 and 2 and2 units in store 3, the optimal policy is to allocate 2 units
from store 3 at time 0 (profit: 0.8), and in each scenario, the better of unit 1
and 2 at time 1 (profit 1.1 in each scenario with p = 0.5) yielding an expected
total profit of 1.9. This is illustrated in figure 41

However, when adding one unit in store 4, the optimal solution changes: The
unit from store 4 will realize an expected profit of 1 when allocated at time 1,
and no profit otherwise. The optimal solution here is to allocate one unit from

Page 64



Diplomarbeit Christoph Bonitz

Figure 41: Optimal allocations for the problem from figure 40 with capacities
< 1, 1, 2, 0 > yielding objective value 1.9

both 1 and 2 at time 0 (profit: 1), one unit from 4 at time 1 in both scenarios
(profit: 1 in each scenario with p = 0.5), yielding a total expected profit of 2,
as illustrated in figure 42

Comparing figure 41 and 42 shows that the decision variables of store 3 have
changed by a value of 2 at time 0, when there was a capacity increase of only
1 unit in store 4. This directly is due to the nature of the stochastic scenario
tree.

In figure 41, one unit from either store 1 or 2 was allocated at time 1, depend-
ing on the scenario. Even though only one unit can be (and was) allocated at
time 1 in any given scenario, both allocations contribute to the objective value,
weighted by the probability of their nodes. Also, since the decisions before the
scenario branch have to be compatible with both scenarios, both units are kept
in time step 0.

Adding one unit in dimension 4 changes the situation: The profit from
allocating it at time step 1 is bigger than what is lost when reallocating the
units from store 1 and 2 to time step 0, replacing both units from store 3 due
to cross constraints. This is a direct effect of stochasticity: With deterministic
pricing, we used network flows and their property of skew symmetry, to show
that, in a cascade of replacements, one unit can only replace one unit, and
changes of more than 1 in any decision variable yield a contradiction. In the
stochastic setting, the flow correspondence will not work, since the scenarios
are different “threads of reality” , something that cannot be modeled in a flow
network like the one we used in the proof.

Independent of the likelihood of such a constellation in a real-world example,
this shows that Optimal Policy Iteration is unsuitable for optimizing the given
formal problem when pricing is subject to a scenario tree.

Page 65



Diplomarbeit Christoph Bonitz

Figure 42: Optimal allocations for the problem from figure 40 with capacities
< 1, 1, 2, 1 > yielding objective value 2

Page 66



Diplomarbeit Christoph Bonitz

12 Conclusions

In this thesis we introduced an incremental Dynamic Programming approach
called Optimal Policy Iteration (OPI) for solving CCCMAP , an allocation prob-
lem with several stores and discrete time steps, varying prices over time and
cross-constraints over the stores. We are trying to find an Allocation Policy
that satisfies all constraints and is optimal with respect to profit.

The formal problem definition is inspired by the task of optimally using ki-
netic energy, stored in hydroelectric power plants in the form of water reservoirs,
to create electricity at the most profitable times. Alfred Kalliauer, who works
in the field of power trading, devised OPI as a solution to this problem.

We proved a neighborhood property between optimal solutions of problem
instances that are identical, except for a difference of one unit in one store.
Given an optimal policy for a problem instance, this property allows us to find
the optimal policy for any instance that differs by one unit in the capacity of
one store with an efficient DDP-search. This search consists of two passes:

• A backward pass that searches a neighborhood of the optimal solution to
the current sub-instance. This pass results in the values of the optimal
policies for all the sub-instances which are similar to the current one in
the way described before, as well as the data necessary to compute the
policies.

• A forward pass that computes the actual policy for one of these instances
based on data from the backward pass.

To turn this into a usable algorithm for actually solving more complex in-
stances of CCCMAP , we start with a trivial instance, which has the same con-
straints as the one we are trying to solve, except for all capacities, which are set
to zero. This trivial instance has an equally trivial optimal solution, which is
not allocating any units. Starting from this solution, we can add to the capaci-
ties of the stores, one unit at a time and calculate the optimal solution to this
sub-problem-instance using DDP. We call the process of adding one unit to the
capacity of a store and finding its optimal solution via DDP an iteration We
have shown that an optimal solution to our original problem has been found if
we either reached the capacity constraints or adding more units does not yield
an increase in profit in any dimension.

In other words, the algorithm calculates the optimal policy for a problem
instance via iterating over a series of optimal policies for smaller sub-problem-
instances. This is the reason for its name, Optimal Policy Iteration.

With respect to performance, the advantage of OPI is being able to separate
the impact of the number of dimensions and the capacities of the stores on the
running time. The worst case running time of a single iteration depends only
on the number of dimensions and time steps, whereas the number of iterations
depends on the total number of units in all stores. This is a big improvement
compared with a simple DP approach, in which doubling the number of available
units in each store increased the worst case running time by a factor of 22m

where m is the number of dimensions, whereas the same change only doubles
the running time of OPI.

The order in which the capacities are increased can be chosen freely. In
this thesis, we looked at two ways of systematically doing so: Increment By

Page 67



Diplomarbeit Christoph Bonitz

Dimension (IBD), which increases the capacities one store after another, and
Best Increment (BI), which uses the values computed in the backward pass to
choose the most profitable increase. Computational experiments have shown
that BI minimizes the number of iterations. However, IBD keeps a significant
part of the search space out of the legal range for many iterations. This reduces
the number of state transitions to be calculated, resulting in more, but faster
iterations. When it comes to the choice between BI and IBD, there is not one
best choice. For both variants, instances can be constructed that show benefits
for that order. However, it seems to be a safe choice to choose Best Increment,
which minimizes the number of iterations.

Both variants of Optimal Policy Iteration were implemented using Java. For
comparison, a simple Dynamic Programming approach as well as an Evolution-
ary Algorithm (EA) were implemented.

As predicted, OPI outperformed the simple DP algorithm when capacities
were increased but the number of dimensions remained constant. This meets
the expectations set by the improvements in worst case running time. The
outcome between OPI and the EA was not that clear. For the EA, the number
of dimension seems to have only linear impact. This makes it faster with more
than 6 dimensions. However, the Evolutionary Algorithm is not guaranteed to
yield optimal results.

An important negative result of this thesis is described in chapter 11. The
possibility of using a slightly modified version of OPI for computing optimal
policies when the prices are determined by a scenario tree was a main motivation
of pursuing the algorithm’s exploration. We showed, however, that introducing
scenario trees means that, given an optimal policy for a problem instance, the
current size the neighborhood is not sufficient for finding an optimal solution
when creating a new instance by adding one unit.

Optimal Policy Iteration turned out to be a reliable method of constructing
optimal solutions to the allocation problem considered in this thesis. It signifi-
cantly improves the worst case running time of simple DP with only a moderate
increase in implementation complexity.

References

[1] Alfred Kalliauer. Mathematische Entscheidungsmodelle aus der Praxis –
fuer den Alltag, Tagung Schulmathematik, TU Wien, 2006.

[2] Alfred Kalliauer und Andrea Kalliauer. “Optimal Policy Iteration” in
Dynamic Programming and Application to multi-dimensional Allocation
Problems. In International Conference OR2006, Sep. 2006, Karlsruhe.

[3] Richard Bellman. Dynamic Programming. Princeton University Press,
1957.

[4] Guenther R. Raidl Christoph Bonitz, Alfred Kalliauer. An incremental dy-
namic programming algorithm for multi-dimensional allocation problems.
In EURO XXII Conference, Prague, 2007.

[5] Thomas H. Cormen, Charles E. Leierson, Ronald L. Rivest, and Clifford
Stein. Introduction To Algorithms. MIT Press, second edition (paperback)
edition, 2001.

Page 68



Diplomarbeit Christoph Bonitz

[6] S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani. Algorithms. Draft.

[7] Reinhard Diestel. Graph Theory. Springer-Verlag, Heidelberg, third edition
edition, 2005.

[8] Reinhard Diestel. Graphentheorie. Springer-Verlag, Heidelberg, 3. auflage
edition, 2006.

[9] Patrick Jaillet, Ehud I. Ronn, and Stathis Tompaidis. Valuation of
commodity-based swing options. Management Science, 50:909–921, 2004.

[10] Dieter Jungnickel. Graphs, Networks and Algorithms (Algorithms and
Computation in Mathematics) Für Kunden: Stellen Sie Ihre eigenen Bilder
ein. Hier reinlesen und suchen Graphs, Networks and Algorithms (Algo-
rithms and Computation in Mathematics). Springer, 2004.

[11] Alfred Kalliauer and Andrea Kalliauer. Computation model for option eval-
uation on probability trees using excel. In Conference OR2002, Klagenfurt,
2002.

[12] Alfred Kalliauer and Andrea Kalliauer. A variation of th calculation scheme
for stochastic dynamic programming and its application to option pricing
and allocation problems. In 21st IFIP-Conference on Systems Modeling
and Optimization, Sophia-Antibes, 2003.

[13] Kalliauer Alfred. Modellierung von kombinierten, mehrdimensionalen
SWING-Optionen, Internationale Energiewirtschaftstagung, TU Wien,
2007.

[14] R.E. Larson. State Increment Dynamic Programming. Elsevier, 1968.

[15] Jun Morimoto, Garth Zeglin, and Chris Atkeson. Minimax differential
dynamic programming: Application to a biped walking robot. In Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1927–1932, 2003.

[16] Richard S. Sutton. Planning by incremental dynamic programming. In
Proceedings of the Eighth International Workshop on Machine Learning,
pages 353–357. Morgan Kaufmann, 1991.

APPENDIX

A Problem Instance File Format

CCCMAP -instances are stored in ASCII-encoded text-files with the UNIX-
newline-character as line separator. Such a file has three sections: A first section
describing problem dimensionality and constraints, a second section containing
the actual profits from allocations and a third section containing the best known
solution.

• The first line starts with an #-sign and is ignored. This is where a textual
description of the problem can be placed.

• The second line contains an integer, which is the number of dimensions.

Page 69



Diplomarbeit Christoph Bonitz

• The third line contains an integer for each dimension, signifying its capac-
ity.

• The fourth line contains the number of time steps.

• The fifth line contains the global allocation limit per time step.

• The sixth line contains the time-specific allocation limit for each time step.

• The seventh line is left blank.

• For each time step there are as many lines as there are dimensions, followed
by a single blank line. Each nonempty line represents a dimension and
contains real values, which are the profits that can be realized by allocating
units from this dimension for this time step, starting with the profit for
the first allocation, ending with the profit for the n-th dimension, where
n is the global allocation limit per time step. The values are separated by
single space characters.

• The next set of lines contains the decision variables for the currently best-
known solution to this problem instance. Each line represents one dimen-
sion and contains one integer for each time step.

• After one blank line, the last line contains the objective function value of
the best known solution.

If there is no known legal solution yet, the decision variables and the objec-
tive function value are set to zero, indicating the trivial solution of not selling
anything.

The following file shows a problem instance with two dimensions (each having
capacity 5), 10 time steps, a global allocation limit of two units per time step,
and all allocation limits specific to time steps set to two as well. No solution is
known yet. As an example for objective value contribution, the first allocation
in the second dimension on the third time step contributes 0.23471394.

# Automatically generated output
2
5 5
10
2
2 2 2 2 2 2 2 2 2 2

0.0781024 0.076438956
0.13969767 0.036287837

0.30170012 0.20553117
0.46896946 0.17205842

0.01167334 0.011118219
0.23471394 0.06047001

0.6273717 0.13196075
0.22822744 0.14278845

Page 70



Diplomarbeit Christoph Bonitz

0.13320045 0.08295837
0.68440807 0.078431234

0.015616558 0.005626765
0.018131502 0.017843708

0.12342043 0.10180663
0.039027095 0.026482176

0.05179189 0.042044643
0.8425374 0.45524323

0.001603663 9.1767317E-4
0.32266328 0.16260414

0.08939438 0.056387104
0.04071935 0.034606844

0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0

0.0

Page 71


